CN105503254B - 一种钛酸钡泡沫陶瓷及其制备方法 - Google Patents

一种钛酸钡泡沫陶瓷及其制备方法 Download PDF

Info

Publication number
CN105503254B
CN105503254B CN201610014637.5A CN201610014637A CN105503254B CN 105503254 B CN105503254 B CN 105503254B CN 201610014637 A CN201610014637 A CN 201610014637A CN 105503254 B CN105503254 B CN 105503254B
Authority
CN
China
Prior art keywords
barium titanate
foamed ceramics
slurry
titanate foamed
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610014637.5A
Other languages
English (en)
Other versions
CN105503254A (zh
Inventor
梁国正
郑龙辉
顾嫒娟
朴慧淑
袁莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201610014637.5A priority Critical patent/CN105503254B/zh
Publication of CN105503254A publication Critical patent/CN105503254A/zh
Priority to US15/740,802 priority patent/US20180194692A1/en
Priority to PCT/CN2016/107787 priority patent/WO2017121201A1/zh
Application granted granted Critical
Publication of CN105503254B publication Critical patent/CN105503254B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/061Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances by melting out
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • C04B2235/945Products containing grooves, cuts, recesses or protusions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products

Abstract

本发明公开了一种钛酸钡泡沫陶瓷及其制备方法。以有机粘结剂、有机流变剂和有机分散剂为助剂,去离子水为溶剂,纳米钛酸钡为陶瓷原料,混合研磨后,形成具有一定固含量的浆料;将预处理过的聚合物海绵浸渍于浆料中挂浆处理后,经干燥,得到挂浆理想且无堵孔的钛酸钡泡沫陶瓷生坯,再经烧结得到钛酸钡泡沫陶瓷。本发明提供的泡沫陶瓷呈三维立体网络骨架结构,其骨架是由化学组成单一的纯净钛酸钡陶瓷组成。它集成了钛酸钡优异的介电性能以及泡沫陶瓷高孔隙率、低比重的特点,同时具有高强度。本发明提供的钛酸钡泡沫陶瓷的制备方法具有工艺简单、适用性广等特点,适合于工业化生产。

Description

一种钛酸钡泡沫陶瓷及其制备方法
技术领域
本发明涉及一种钛酸钡泡沫陶瓷及其制备方法,属于泡沫陶瓷技术领域。
背景技术
泡沫陶瓷(Foam Ceramic,FC)是一种经特殊工艺制作而成的具有三维立体网络骨架结构和贯通气孔的新型多孔陶瓷材料。比较成熟的泡沫陶瓷制备工艺有发泡工艺、添加造孔剂工艺及有机泡沫浸渍法等。其中,有机泡沫浸渍法具有工艺简单、可批量生产等优点。然而,该工艺大部分采用微米或是更大尺寸的陶瓷原料以及无机助剂制备陶瓷浆料,因此常常需要进行长时间的研磨以得到分散均匀、流动性良好的浆料。
鉴于泡沫陶瓷所具有的高化学稳定性、高强度、耐高温、抗热震、低密度、高气孔率、大比表面积等诸多优点,因此其广泛应用于制备汽车尾气装置、节能隔热材料、工业污水处理、化学催化剂载体、生物材料等。值得注意,现有的泡沫陶瓷材料基本上为终端产品,直接应用,尚未用于制备高介电常数树脂基复合材料。
目前,泡沫陶瓷主要有碳化硅(SiC)、氧化铝(Al2O3)和氮化硅(Si3N4)。它们的介电常数都较小(一般小于12),不能满足高介电材料的性能要求。同时,现有的泡沫陶瓷材料的强度较低,因此为了提高其强度,往往在制备过程中添加大量的无机助剂,难于得到化学组成单一的纯净泡沫陶瓷。如“氧化铝质泡沫陶瓷过滤器”(CN 101164658)的中国发明专利,公开了一种以氧化铝为主要成分所制备的一种适合于铝、铝合金及铜过滤净化的氧化铝质泡沫陶瓷过滤器。该泡沫陶瓷在制备过程中加入了二氧化硅、滑石、高岭土为烧结助剂,得到的是一种含有其他杂质的氧化铝质泡沫陶瓷。又如“氮化硅质泡沫陶瓷及其制备方法”(CN 102093076A)的中国发明专利,公开了一种以氮化硅为主要成分,以氧化钇、氧化铝以及二氧化硅为烧结助剂,采用有机泡沫浸渍法制备的一种氮化硅质泡沫陶瓷。众所周知,在众多的材料性能之中,介电性能是对结构变化最为敏感的性能之一。因此,杂质的存在将不利于保持原有介电陶瓷的优异介电性能。
钛酸钡陶瓷具有优异的机械强度、高介电常数、低介电损耗及铁电、压电及正温度系数效应等优异的电学性能,是制备高介电、铁电、压电等材料的理想材料。迄今,关于钛酸钡泡沫陶瓷及其制备方法尚未见诸报道。鉴于钛酸钡陶瓷的性能优势及其主要应用领域,化学组成单一的纯净钛酸钡泡沫陶瓷才能发挥其性能优势,满足应用要求。显然,这将导致出现强度低的问题。因此,如何制备具有高强度且化学组成单一的纯净钛酸钡泡沫陶瓷是摆在研究者面前的一个富有挑战性意义的课题。
发明内容
本发明针对现有技术存在的不足,提供一种具有高强度、高介电常数骨架、且化学组成单一的纯净钛酸钡泡沫陶瓷及其制备方法。
为达到上述目的,本发明所采用的技术方案是:一种钛酸钡泡沫陶瓷的制备方法,包含如下步骤:
(1)按质量计,将100份纳米钛酸钡与30~120份浓度为1~15wt%的有机粘结剂水溶液充分研磨,得到浆料A;在浆料A中加入10~80份浓度为0.5~3wt%的有机流变剂水溶液,充分研磨后得到浆料B;在浆料B中加入20~80份浓度为0.5~3wt%的有机分散剂水溶液,充分研磨后得到浆料C;
(2)将规格为15~35PPI的聚合物海绵浸渍在浓度为5~20wt%的氢氧化钠水溶液中,升温至50~75℃并保温2~6h后,取出聚合物海绵,用去离子水洗涤、甩干,得到聚合物海绵D;在常温下,将聚合物海绵D浸渍在浓度为0.5~3wt%的表面活性剂水溶液中,停留2~6h后,取出甩干,在温度40~80℃的条件下干燥,得到预处理的聚合物海绵E;
(3)将预处理的聚合物海绵E浸渍在步骤(1)制得的浆料C中,在常温下放置1~10min进行挂浆处理,挤压排除多余的浆料后,在温度为40~80℃的条件下进行干燥处理;依次重复挂浆、干燥处理1~7次,得到钛酸钡泡沫陶瓷生坯;
(4)将步骤(3)制得的钛酸钡泡沫陶瓷生坯以0.5~5℃/min的速率由室温升温至100~300℃,再以0.5~5℃/min的速率升温至500~700℃, 在温度为500~700℃的条件下保温0.5~2h后,以2~10℃/min的速率升温至1000~1500℃,在温度为1000~1500℃的条件下保温1~5h后,随炉冷却至室温,得到一种钛酸钡泡沫陶瓷。
本发明所述聚合物海绵的聚合物材质为聚氨酯、聚苯乙烯、聚氯乙烯中的任意一种。
所述的纳米钛酸钡的平均粒径≤100nm。
所述的有机粘结剂为聚乙烯醇、羧甲基纤维素、甲基纤维素中的一种,或它们的任意组合。
所述的有机流变剂为羧甲基纤维素、羟己基纤维素中的一种,或它们的任意组合。
所述的有机分散剂为聚乙烯亚胺、聚丙烯酰胺、聚丙烯酸胺中的一种,或它们的任意组合。
所述的表面活性剂为羧甲基纤维素、聚乙烯亚胺中的一种,或它们的任意组合。
本发明技术方案还包括按上述制备方法得到的钛酸钡泡沫陶瓷。
本发明采用纳米钛酸钡作为浆料的无机陶瓷成分,充分利用了材料的纳米效应,所制得的钛酸钡泡沫陶瓷具有高强度,其原理具体而言:首先,纳米级陶瓷晶粒缺陷多、比表面积大,因此烧结活性大,制成的陶瓷强度高;其次,纳米级晶粒还能妨碍微裂纹的发展,不易造成穿晶断裂,有利于提高断裂韧性、耐磨性和强度;第三,纳米级颗粒能形成分散均匀的浆料,坯体致密,也不易造成堵孔。特别是,为制得化学组成单一的纯净泡沫陶瓷,本发明采用有机助剂;而有机助剂高温分解后产生的是小孔,因此采用纳米钛酸钡能提高泡沫陶瓷骨架的致密性;第四,纳米颗粒可以使烧结体的密度提高。
同时,本发明选用具有高介电常数的纳米钛酸钡作为原料,其他有机助剂在烧结过程中分解,而钛酸钡进一步瓷化,表现出更高的介电常数,因此,得的钛酸钡泡沫陶瓷是一种具有高介电常数的骨架。
与现有技术相比,本发明取得的有益效果是:
1、本发明所制备的钛酸钡泡沫陶瓷是一种具有化学组成单一的纯净钛酸钡骨架的泡沫陶瓷,这是因为在制备过程中没有添加或者“就地”生成其他无机材料,而是采用有机助剂,其在高温烧结过程中分解,从而得到一种高强度、高介电常数骨架、且具有化学组成单一的纯净钛酸钡泡沫陶瓷。
2、不同于现有技术中的浆料以微米级陶瓷原料及无机助剂为组成,本发明采用纳米钛酸钡作为浆料的无机陶瓷成分且使用有机助剂。因此,本发明不需要使用球磨机进行长时间研磨,而只需通过简单的研磨即可得到分散均匀、流动性良好的浆料,具有高效率、节能的优点。
3、本发明所制备的钛酸钡泡沫陶瓷集成了钛酸钡优异的介电性能以及泡沫陶瓷高孔隙率、低比重的特点,为钛酸钡泡沫陶瓷的进一步改性与应用、新型介电泡沫陶瓷的研发、钛酸钡泡沫陶瓷/聚合物复合材料高性能化等方面提供巨大的应用前景。
4、本发明提供的钛酸钡泡沫陶瓷的制备方法具有工艺简单、适用性广等特点,适合于工业化生产。
附图说明
图1是本发明实施例1制备的聚氨酯海绵E、钛酸钡泡沫陶瓷生坯及钛酸钡泡沫陶瓷和实施例2制备的钛酸钡泡沫陶瓷的体视显微镜照片。
图2是本发明实施例1、3、4和5中钛酸钡泡沫陶瓷的X射线衍射图。
图3是本发明实施例5提供的钛酸钡泡沫陶瓷的扫描电镜照片(放大1千倍)。
图4是本发明比较例1制备的钛酸钡泡沫陶瓷/氰酸酯树脂复合材料和比较例2制备的钛酸钡陶瓷/氰酸酯树脂复合材料的介电常数随频率变化图。
图5是本发明实施例5、6和7制备的钛酸钡泡沫陶瓷的抗压强度。
具体实施方式
下面结合附图、实施例和比较例,对本发明技术方案作进一步的描述。
实施例1
1)浆料的配制
将20g钛酸钡(平均粒径100nm)与10g 浓度为10wt%的聚乙烯醇水溶液充分研磨,得到浆料A;在浆料A中加入5g 浓度为2wt%的羧甲基纤维素水溶液,充分研磨后得到浆料B;在浆料B中加入10g浓度为 1wt%的聚丙烯酰胺水溶液,充分研磨后得到浆料C。
2)聚氨酯海绵的处理
将规格为25 PPI的聚氨酯海绵浸渍在浓度为15wt%的氢氧化钠水溶液中,升温至60℃并保温3.5h;而后将聚氨酯海绵取出,用去离子水洗涤数次,甩干后得到聚氨酯海绵D;在常温下,将聚氨酯海绵D浸渍在浓度为1wt%的羧甲基纤维素水溶液中并停留3h;而后取出甩去多余的羧甲基纤维素水溶液,在温度60℃条件下干燥,得到预处理的聚氨酯海绵E。其体视显微镜照片参见附图1。
3)钛酸钡泡沫陶瓷生坯的制备
将预处理的聚氨酯海绵E浸渍在步骤1)制得的浆料C中,在常温下放置5min;随后挤压排除多余的浆料,于温度40℃条件下干燥;依次重复挂浆、干燥处理4次,得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。其体视显微镜照片参见附图1。
4)钛酸钡泡沫陶瓷的制备
将步骤3)制得的钛酸钡泡沫陶瓷生坯以2℃/min的速率由室温升温至200℃,再以1℃/min的速率升温至600℃;在600℃保温1h;然后以5℃/min的速率升温至1200℃,保温2h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。其体视显微镜照片和X射线衍射图分别参见附图1和2。
实施例2
1)钛酸钡泡沫陶瓷生坯的制备
将实施例1中预处理的聚氨酯海绵E浸渍在实施例1提供的浆料C中,在常温下放置5min;随后挤压排除多余的浆料,于温度40℃条件下干燥;依次重复挂浆、干燥处理2次,得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
2)钛酸钡泡沫陶瓷的制备
将步骤1制得的钛酸钡泡沫陶瓷生坯以2℃/min的速率由室温升温至200℃,再以1℃/min的速率升温至600℃;在600℃保温1h;然后以5℃/min的速率升温至1200℃,保温2h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。其体视显微镜照片参见附图1。
参见附图1,它是本发明实施例1制备的聚氨酯海绵E、钛酸钡泡沫陶瓷生坯及钛酸钡泡沫陶瓷和实施例2制备的钛酸钡泡沫陶瓷的体视显微镜照片。从中可知,实施例1中预处理的聚氨酯海绵E经浆料挂浆后,钛酸钡均匀地涂覆在海绵的骨架上(实施例1)。经烧结后,聚氨酯海绵高温分解,得到孔分布均匀且无堵孔的钛酸钡泡沫陶瓷(实施例1和2)。与实施例2制备的钛酸钡泡沫陶瓷相比,实施例1制备的钛酸钡泡沫陶瓷具有更粗壮的骨架,那是因为随着挂浆次数的增加,在海绵骨架上的挂浆量增加。
实施例3
将实施例1中制得的钛酸钡泡沫陶瓷生坯以2℃/min的速率由室温升温至200℃,再以1℃/min的速率升温至600℃;在600℃保温1h;然后以5℃/min的速率升温至1000℃,保温2h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。其X射线衍射图参见附图2。
实施例4
将实施例1中制得的钛酸钡泡沫陶瓷生坯以2℃/min的速率由室温升温至200℃,再以1℃/min的速率升温至600℃;在600℃保温1h;然后以5℃/min的速率升温至1100℃,保温2h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。其X射线衍射图参见附图2。
实施例5
将实施例1中制得的钛酸钡泡沫陶瓷生坯以2℃/min的速率由室温升温至200℃,再以1℃/min的速率升温至600℃;在600℃保温1h;然后以5℃/min的速率升温至1300℃,保温2h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。其X射线衍射图、扫描电镜照片和抗压强度分别参见附图2、3和5。
参见附图2,它是本发明实施例1、3、4和5制备的钛酸钡泡沫陶瓷的X射线衍射图。可以看到,纳米钛酸钡在22.1°、31.6°、38.9°、45.2°、50.8°、56.1°、65.8°、70.2°、74.6°以及78.9°处出现明显的衍射峰,它们分别对应于(100)、(110)、(111)、(002)/(200)、(210)、(211)、(220)、(221)、(310)和(113)晶面(JCPDS No.5-0626)。2θ在45.2°是否分裂成两个衍射峰是判断钛酸钡晶型的有效依据。由于实施例3中制备的钛酸钡泡沫陶瓷在45.2°处未出现分裂峰,因此可判断实施例3所制备的钛酸钡泡沫陶瓷为立方晶型。与实施例3不同,实施例1、4和5所制备的钛酸钡泡沫陶瓷的谱图在45.2°处出现两个分裂峰,表明钛酸钡泡沫陶瓷的晶型向四方相转变,且其分裂峰强随烧结温度的升高而明显,说明钛酸钡泡沫陶瓷中四方相的含量增多。结果表明改变烧结温度可以调节钛酸钡泡沫陶瓷的晶型及不同晶相的含量。特别值得注意的是,所有的X射线衍射图均未出现其他杂峰,表明有机助剂在烧结过程中分解,得到化学组成单一的纯净钛酸钡泡沫陶瓷。
参见附图3,它是本发明实施例5制备的钛酸钡泡沫陶瓷的扫描电镜照片。从中可以看出,泡沫陶瓷生坯经高温烧结之后,有机助剂分解,钛酸钡晶粒生长、变大,得到致密性较好的钛酸钡泡沫陶瓷骨架。
以上结果表明已经成功地制备了化学组成单一且致密性较好的钛酸钡泡沫陶瓷。
比较例1, 钛酸钡泡沫陶瓷/氰酸酯树脂复合材料的制备:将实施例1中制得的钛酸钡泡沫陶瓷置于模具中,于160℃烘箱预热;将2,2-二(4-氰酰苯基)丙烷(双酚A型氰酸酯)在160℃熔化1h,将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中,于160℃下抽真空除气泡0.5h;而后按照160℃/2h+180℃/2h+200℃/2h+220℃/2h和240℃/4h的工艺分别进行固化和后处理;缓慢冷却至室温,得到钛酸钡泡沫陶瓷/氰酸酯树脂复合材料,其中氰酸酯树脂的含量为69.2vol%。该复合材料的介电常数随频率变化图参见附图4。
比较例2,钛酸钡/氰酸酯树脂复合材料的制备:在搅拌条件下,将21.3g的钛酸钡(平均粒径100nm)与10g双酚A型氰酸酯于150℃混合,于90℃超声分散10min后,在150℃预聚0.5h,得到预聚体;将预聚体浇入模具中,在160℃真空条件下脱气泡0.5h,按照工艺160℃/2h+180℃/2h+200℃/2h+220℃/2h和240℃/4h工艺进行固化和后处理,即得到钛酸钡/氰酸酯树脂复合材料,其中氰酸酯树脂的含量为69.2vol%。该复合材料的介电常数随频率变化图参见附图4。
参见附图4,它是比较例1制备的钛酸钡泡沫陶瓷/氰酸酯树脂复合材料与比较例2制备的钛酸钡/氰酸酯树脂复合材料的介电常数随频率变化图。由图可知,在相同的功能体含量下,钛酸钡泡沫陶瓷/氰酸酯树脂复合材料比钛酸钡/氰酸酯树脂复合材料具有更高的介电常数,如比较例1在100Hz下,其介电常数可达83.3,其值是比较例2制得的钛酸钡/氰酸酯树脂复合材料(9.9)的8.4倍。这是因为以具有三维立体网络骨架的钛酸钡泡沫陶瓷作为功能体,使得钛酸钡均匀分布在复合材料中,从而大大地提高了复合材料的介电常数。因此,本发明提供的化学组成单一的纯净钛酸钡泡沫陶瓷有利于制备具有高介电常数的复合材料。
实施例6
1)钛酸钡泡沫陶瓷生坯的制备
将实施例1中预处理的聚氨酯海绵E浸渍在浆料C(实施例1)中,在常温下放置5min;随后挤压排除多余的浆料,于温度40℃条件下干燥;依次重复挂浆、干燥处理3次,得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
2)钛酸钡泡沫陶瓷的制备
将步骤1)制得的钛酸钡泡沫陶瓷生坯以2℃/min的速率由室温升温至200℃,再以1℃/min的速率升温至600℃;在600℃保温1h;然后以5℃/min的速率升温至1300℃,保温2h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。其抗压强度参见附图5。
实施例7
1)钛酸钡泡沫陶瓷生坯的制备
将实施例1中预处理的聚氨酯海绵E浸渍在浆料C(实施例1)中,在常温下放置5min;随后挤压排除多余的浆料,于温度40℃条件下干燥;依次重复挂浆、干燥处理5次,得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
2)钛酸钡泡沫陶瓷的制备
将步骤1)制得的钛酸钡泡沫陶瓷生坯以2℃/min的速率由室温升温至200℃,再以1℃/min的速率升温至600℃;在600℃保温1h;然后以5℃/min的速率升温至1300℃,保温2h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。其抗压强度参见附图5。
参见附图5,它是本发明实施例5、6和7制备的钛酸钡泡沫陶瓷的抗压强度。由图可以看出,随着挂浆次数的增加,钛酸钡泡沫陶瓷的抗压强随之增加。当挂浆次数分别为4、5和6时,钛酸钡泡沫陶瓷的抗压强度分别为0.16MPa、0.21MPa和0.27MPa。结果表明,制备得到的钛酸钡泡沫陶瓷具有一定的强度,足以保证在复合材料的制备过程中,钛酸钡陶瓷不被破坏。
实施例8
钛酸钡泡沫陶瓷的制备
将实施例1中制得的钛酸钡泡沫陶瓷生坯以2℃/min的速率由室温升温至200℃,再以1℃/min的速率升温至600℃;在600℃保温2h;然后以5℃/min的速率升温至1400℃,保温2h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。
实施例9
钛酸钡泡沫陶瓷的制备
将实施例1中制得的钛酸钡泡沫陶瓷生坯以2℃/min的速率由室温升温至200℃,再以1℃/min的速率升温至600℃;在600℃保温1h;然后以5℃/min的速率升温至1500℃,保温1h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。
实施例10
1)浆料的配制
将20g钛酸钡(平均粒径30nm)与24g浓度为1wt%的羧甲基纤维素水溶液充分研磨,得到浆料A;在浆料A中加入5g浓度为2wt%的羧甲基纤维素水溶液,充分研磨后得到浆料B;在浆料B中加入16g浓度为0.5wt%的聚丙烯酰胺水溶液,充分研磨后得到浆料C。
2)聚苯乙烯海绵的处理
将规格为25PPI的聚苯乙烯海绵浸渍在浓度为5wt%的氢氧化钠水溶液中,升温至75℃并保温6h;而后,将聚苯乙烯海绵取出,用去离子水洗涤数次,甩干后得到聚苯乙烯海绵D;在常温下,将聚苯乙烯海绵D浸渍在浓度为1wt%的羧甲基纤维素水溶液中并停留6h;而后,取出甩去多余的羧甲基纤维素水溶液,在温度60℃条件下干燥,得到预处理的聚苯乙烯海绵E。
3)钛酸钡泡沫陶瓷生坯的制备
将预处理的聚苯乙烯海绵E浸渍在步骤1)制得的浆料C中,在常温下放置1min;随后挤压排除多余的浆料,于温度50℃条件下干燥;依次重复挂浆、干燥处理1次,得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
4)钛酸钡泡沫陶瓷的制备
将步骤3)制得的钛酸钡泡沫陶瓷生坯以0.5℃/min的速率由室温升温至200℃,再以1℃/min的速率升温至600℃;在600℃保温1h;然后以5℃/min的速率升温至1200℃,保温5h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。
实施例11
1)浆料的配制
将20g钛酸钡(平均粒径50nm)与6g 浓度为10wt%的聚乙烯醇水溶液和18g浓度为1wt%的羧甲基纤维素水溶液的混合液充分研磨,得到浆料A;在浆料A中加入5g浓度为0.5wt%的羧甲基纤维素水溶液和5g浓度为3wt%的羟己基纤维素水溶液的混合液,充分研磨后得到浆料B;在浆料B中加入10g浓度为1wt%的聚丙烯酰胺水溶液,充分研磨后得到浆料C。
2)聚氨酯海绵的处理
将规格为25PPI的聚氨酯海绵浸渍在浓度为20wt%的氢氧化钠水溶液中,升温至50℃并保温2h;而后,将聚氨酯海绵取出,用去离子水洗涤数次,甩干后得到聚氨酯海绵D;在常温下,将聚氨酯海绵D浸渍在浓度为3wt%的聚乙烯亚胺水溶液中并停留2h;而后,取出甩去多余的聚乙烯亚胺水溶液,在温度80℃条件下干燥,得到预处理的聚氨酯海绵E。
3)钛酸钡泡沫陶瓷生坯的制备
将预处理的聚氨酯海绵E浸渍在浆料步骤1)制得的C中,在常温下放置10min;随后挤压排除多余的浆料,于温度50℃条件下干燥;依次重复挂浆、干燥处理4次,得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
4)钛酸钡泡沫陶瓷的制备
将步骤3)制得的钛酸钡泡沫陶瓷生坯以0.5℃/min的速率由室温升温至200℃,再以5℃/min的速率升温至600℃;在600℃保温0.5h;然后以2℃/min的速率升温至1300℃,保温2h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。
实施例12
1)浆料的配制
将20g钛酸钡(平均粒径100nm)与6g浓度为15wt%的甲基纤维素水溶液充分研磨,得到浆料A;在浆料A中加入16g浓度为0.5wt%的羧甲基纤维素水溶液,充分研磨后得到浆料B;在浆料B中加入10g浓度为0.5wt%的聚丙烯酰胺水溶液和6g浓度为0.5wt%的聚丙烯酸胺水溶液的混合液,充分研磨后得到浆料C。
2)聚氨酯海绵的处理
将规格为25PPI的聚氨酯海绵浸渍在浓度为10wt%的氢氧化钠水溶液中,升温至60℃并保温3.5h;而后,将聚氨酯海绵取出,用去离子水洗涤数次,甩干后得到聚氨酯海绵D;在常温下,将聚氨酯海绵D浸渍在浓度为0.5wt%的聚乙烯亚胺水溶液中并停留3h;而后,取出甩去多余的聚乙烯亚胺水溶液,在温度40℃条件下干燥,得到预处理的聚氨酯海绵E。
3)钛酸钡泡沫陶瓷生坯的制备
将预处理的聚氨酯海绵E浸渍在步骤1)制得的浆料C中,在常温下放置5min;随后挤压排除多余的浆料,于温度80℃条件下干燥;依次重复挂浆、干燥处理4次,得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
4)钛酸钡泡沫陶瓷的制备
将步骤3)制得的钛酸钡泡沫陶瓷生坯以5℃/min的速率由室温升温至200℃,再以5℃/min的速率升温至600℃;在600℃保温0.5h;然后以10℃/min的速率升温至1000℃,保温2h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。
实施例13
1)浆料的配制
将20g 钛酸钡(平均粒径30nm)与10g浓度为1wt%的羧甲基纤维素水溶液和10g浓度为1wt%的甲基纤维素水溶液充分研磨,得到浆料A;在浆料A中加入2g浓度为2wt%的羧甲基纤维素水溶液,充分研磨后得到浆料B;在浆料B中加入10g浓度为1wt%的聚丙烯酰胺水溶液和6g浓度为1wt%的聚乙烯亚胺水溶液的混合液,充分研磨后得到浆料C。
2)聚氨酯海绵的处理
将规格为35PPI的聚氨酯海绵浸渍在浓度为15wt%的氢氧化钠水溶液中,升温至60℃并保温3.5h;而后,将聚氨酯海绵取出,用去离子水洗涤数次,甩干后得到聚氨酯海绵D;在常温下,将聚氨酯海绵D浸渍在等体积浓度为1wt%的羧甲基纤维素水溶液和浓度为1wt%的聚乙烯亚胺水溶液的混合液中并停留3h;而后,取出甩去多余的羧甲基纤维素和聚乙烯亚胺的混合液,在温度60℃条件下干燥,得到预处理的聚氨酯海绵E。
3)钛酸钡泡沫陶瓷生坯的制备
将预处理的聚氨酯海绵E浸渍在步骤1)制得的浆料C中,在常温下放置10min;随后挤压排除多余的浆料,于温度50℃条件下干燥;依次重复挂浆、干燥处理4次,得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
4)钛酸钡泡沫陶瓷的制备
将步骤3)制得的钛酸钡泡沫陶瓷生坯以2℃/min的速率由室温升温至200℃,再以1℃/min的速率升温至600℃;在600℃保温1h;然后以2℃/min的速率升温至1000℃,保温1h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。
实施例14
1)浆料的配制
将20g钛酸钡(平均粒径50nm)与6g浓度为10wt%的聚乙烯醇水溶液和10g浓度为1wt%的羧甲基纤维素水溶液的混合液充分研磨,得到浆料A;在浆料A中加入5g浓度为2wt%的羧甲基纤维素水溶液,充分研磨后得到浆料B;在浆料B中加入5g浓度为1wt%的聚丙烯酰胺水溶液和5g浓度为1wt%的聚乙烯亚胺水溶液的混合液,充分研磨后得到浆料C。
2)聚氯乙烯海绵的处理
将规格为15PPI的聚氯乙烯海绵浸渍在浓度为20wt%的氢氧化钠水溶液中,升温至60℃并保温2h;而后,将聚氯乙烯海绵取出,用去离子水洗涤数次,甩干后得到聚氯乙烯海绵D;在常温下,将聚氯乙烯海绵D浸渍在浓度为0.5wt%的羧甲基纤维素水溶液中并停留3h;而后,取出甩去多余的羧甲基纤维素水溶液,在温度60℃条件下干燥,得到预处理的聚氯乙烯海绵E。
3)钛酸钡泡沫陶瓷生坯的制备
将预处理的聚氯乙烯海绵E浸渍在步骤1)制得的浆料C中,在常温下放置5min;随后挤压排除多余的浆料,于温度80℃条件下干燥;依次重复挂浆、干燥处理4次,得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
4)钛酸钡泡沫陶瓷的制备
将步骤3)制得的钛酸钡泡沫陶瓷生坯以0.5℃/min的速率由室温升温至200℃,再以5℃/min的速率升温至600℃;在600℃保温2h;然后以5℃/min的速率升温至1200℃,保温2h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。
实施例15
1)浆料的配制
将20g 钛酸钡(平均粒径30nm)与24g浓度为1wt%的甲基纤维素水溶液充分研磨,得到浆料A;在浆料A中加入2g浓度为3wt%的羟己基纤维素水溶液,充分研磨后得到浆料B;在浆料B中加入16g浓度为0.5wt%的聚乙烯亚胺水溶液,充分研磨后得到浆料C。
2)聚苯乙烯海绵的处理
将规格为25PPI的聚苯乙烯海绵浸渍在浓度为5wt%的氢氧化钠水溶液中,升温至75℃并保温6h;而后,将聚苯乙烯海绵取出,用去离子水洗涤数次,甩干后得到聚苯乙烯海绵D;在常温下,将聚苯乙烯海绵D浸渍在浓度为3wt%的聚乙烯亚胺水溶液中并停留2h;而后,取出甩去多余的聚乙烯亚胺水溶液,在温度60℃条件下干燥,得到预处理的聚苯乙烯海绵E。
3)钛酸钡泡沫陶瓷生坯的制备
将预处理的聚苯乙烯海绵E浸渍在步骤1)制得的浆料C中,在常温下放置10min;随后挤压排除多余的浆料,于温度50℃条件下干燥;依次重复挂浆、干燥处理7次,得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
4)钛酸钡泡沫陶瓷的制备
将步骤3)制得的钛酸钡泡沫陶瓷生坯以0.5℃/min的速率由室温升温至200℃,再以5℃/min的速率升温至600℃;在600℃保温2h;然后以10℃/min的速率升温至1000℃,保温5h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。
实施例16
1)浆料的配制
将20g 钛酸钡(平均粒径50nm)与6g浓度为15wt%的聚乙烯醇水溶液充分研磨,得到浆料A;在浆料A中加入16g 浓度为0.5wt%的羟己基纤维素水溶液,充分研磨后得到浆料B;在浆料B中加入4g浓度为3wt%的聚丙烯酸胺水溶液,充分研磨后得到浆料C。
2)聚氯乙烯海绵的处理
将规格为25PPI的聚氯乙烯海绵浸渍在浓度为20wt%的氢氧化钠水溶液中,升温至50℃并保温2h;而后,将聚氯乙烯海绵取出,用去离子水洗涤数次,甩干后得到聚氯乙烯海绵D;在常温下,将聚氯乙烯海绵D浸渍在浓度为0.5wt%的聚乙烯亚胺水溶液中并停留2h;而后,取出甩去多余的聚乙烯亚胺水溶液,在温度80℃条件下干燥,得到预处理的聚氯乙烯海绵E。
3)钛酸钡泡沫陶瓷生坯的制备
将预处理的聚氯乙烯海绵E浸渍在步骤1)制得的浆料C中,在常温下放置1min;随后挤压排除多余的浆料,于温度80℃条件下干燥;依次重复挂浆、干燥处理1次,得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
4)钛酸钡泡沫陶瓷的制备
将步骤3)制得的钛酸钡泡沫陶瓷生坯以5℃/min的速率由室温升温至100℃,再以0.5℃/min的速率升温至500℃;在500℃保温0.5h;然后以10℃/min的速率升温至1500℃,保温2h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。
实施例17
1)浆料的配制
将20g钛酸钡(平均粒径100nm)与15g浓度为10wt%的聚乙烯醇水溶液充分研磨,得到浆料A;在浆料A中加入10g浓度为1wt%的羧甲基纤维素水溶液,充分研磨后得到浆料B;在浆料B中加入5g浓度为2wt%的聚丙烯酸胺水溶液,充分研磨后得到浆料C。
2)聚氨酯海绵的处理
将规格为25PPI的聚氨酯海绵浸渍在浓度为15wt%的氢氧化钠水溶液中,升温至60℃并保温3.5h;而后,将聚氨酯海绵取出,用去离子水洗涤数次,甩干后得到聚氨酯海绵D;在常温下,将聚氨酯海绵D浸渍在浓度为0.5wt%的聚乙烯亚胺水溶液中并停留6h;而后,取出甩去多余的聚乙烯亚胺水溶液,在温度60℃条件下干燥,得到预处理的聚氨酯海绵海绵E。
3)钛酸钡泡沫陶瓷生坯的制备
将预处理的聚氨酯海绵E浸渍在步骤1)制得的浆料C中,在常温下放置5min;随后挤压排除多余的浆料,于温度40℃条件下干燥;依次重复挂浆、干燥处理7次,得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
4)钛酸钡泡沫陶瓷的制备
将步骤3)制得的钛酸钡泡沫陶瓷生坯以2℃/min的速率由室温升温至300℃,再以2℃/min的速率升温至700℃;在700℃保温2h;然后以8℃/min的速率升温至1200℃,保温3h;结束后,随炉冷却至室温,得到钛酸钡泡沫陶瓷。

Claims (8)

1.一种钛酸钡泡沫陶瓷的制备方法,其特征在于包含如下步骤:
(1)按质量计,将100份纳米钛酸钡与30~120份浓度为1~15wt%的有机粘结剂水溶液充分研磨,得到浆料A;在浆料A中加入10~80份浓度为0.5~3wt%的有机流变剂水溶液,充分研磨后得到浆料B;在浆料B中加入20~80份浓度为0.5~3wt%的有机分散剂水溶液,充分研磨后得到浆料C;
(2)将规格为15~35 PPI的聚合物海绵浸渍在浓度为5~20wt%的氢氧化钠水溶液中,升温至50~75℃并保温2~6h后,取出聚合物海绵,用去离子水洗涤、甩干,得到聚合物海绵D;在常温下,将聚合物海绵D浸渍在浓度为0.5~3wt%的表面活性剂水溶液中,停留2~6h后,取出甩干,在温度40~80℃的条件下干燥,得到预处理的聚合物海绵E;
(3)将预处理的聚合物海绵E浸渍在步骤(1)制得的浆料C中,在常温下放置1~10min进行挂浆处理,挤压排除多余的浆料后,在温度为40~80℃的条件下进行干燥处理;依次重复挂浆、干燥处理1~7次,得到钛酸钡泡沫陶瓷生坯;
(4)将步骤(3)制得的钛酸钡泡沫陶瓷生坯以0.5~5℃/min的速率由室温升温至100~300℃,再以0.5~5℃/min的速率升温至500~700℃, 在温度为500~700℃的条件下保温0.5~2h后,以2~10℃/min的速率升温至1000~1500℃,在温度为1000~1500℃的条件下保温1~5h后,随炉冷却至室温,得到一种钛酸钡泡沫陶瓷。
2.根据权利要求1所述的一种钛酸钡泡沫陶瓷的制备方法,其特征在于:所述聚合物海绵的聚合物材质为聚氨酯、聚苯乙烯、聚氯乙烯中的任意一种。
3.根据权利要求1所述的一种钛酸钡泡沫陶瓷的制备方法,其特征在于:所述的纳米钛酸钡的平均粒径≤100nm。
4.根据权利要求1所述的一种钛酸钡泡沫陶瓷的制备方法,其特征在于:所述的有机粘结剂为聚乙烯醇、羧甲基纤维素、甲基纤维素中的一种,或它们的任意组合。
5.根据权利要求1所述的一种钛酸钡泡沫陶瓷的制备方法,其特征在于:所述的有机流变剂为羧甲基纤维素、羟己基纤维素中的一种,或它们的任意组合。
6.根据权利要求1所述的一种钛酸钡泡沫陶瓷的制备方法,其特征在于:所述的有机分散剂为聚乙烯亚胺、聚丙烯酰胺、聚丙烯酸胺中的一种,或它们的任意组合。
7.根据权利要求1所述的一种钛酸钡泡沫陶瓷的制备方法,其特征在于:所述的表面活性剂为羧甲基纤维素、聚乙烯亚胺中的一种,或它们的任意组合。
8.一种采用权利要求1所述的制备方法得到的钛酸钡泡沫陶瓷。
CN201610014637.5A 2016-01-11 2016-01-11 一种钛酸钡泡沫陶瓷及其制备方法 Active CN105503254B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610014637.5A CN105503254B (zh) 2016-01-11 2016-01-11 一种钛酸钡泡沫陶瓷及其制备方法
US15/740,802 US20180194692A1 (en) 2016-01-11 2016-11-29 Barium titanate foam ceramics and preparation method thereof
PCT/CN2016/107787 WO2017121201A1 (zh) 2016-01-11 2016-11-29 一种钛酸钡泡沫陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610014637.5A CN105503254B (zh) 2016-01-11 2016-01-11 一种钛酸钡泡沫陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN105503254A CN105503254A (zh) 2016-04-20
CN105503254B true CN105503254B (zh) 2018-06-29

Family

ID=55711633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610014637.5A Active CN105503254B (zh) 2016-01-11 2016-01-11 一种钛酸钡泡沫陶瓷及其制备方法

Country Status (3)

Country Link
US (1) US20180194692A1 (zh)
CN (1) CN105503254B (zh)
WO (1) WO2017121201A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105503254B (zh) * 2016-01-11 2018-06-29 苏州大学 一种钛酸钡泡沫陶瓷及其制备方法
CN105948804A (zh) * 2016-04-28 2016-09-21 十九冶成都建设有限公司 浸渍法制备泡沫陶瓷时泡沫载体的处理方法
CN107671993B (zh) * 2017-11-02 2020-10-30 唐山工业职业技术学院 陶瓷素骨胎造型方法
CN108203308A (zh) * 2018-01-16 2018-06-26 哈尔滨时代创新科技发展有限公司 一种开孔泡沫玄武岩材料及制作方法
CN108840718B (zh) * 2018-08-29 2020-11-06 郑州孚莱孚特性材料有限公司 一种氧化铝泡沫陶瓷的制备方法
CN109553412B (zh) * 2018-12-07 2021-09-14 北京建筑材料检验研究院有限公司 一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法
CN110467463A (zh) * 2019-09-19 2019-11-19 河南工程学院 一种铌酸锶钡/氮化硼三维网络材料及制备方法
CN110981533A (zh) * 2019-12-18 2020-04-10 上栗县上栗镇中心小学 一种有机泡沫浸渍法制备多孔陶瓷的工艺
CN113201195B (zh) * 2021-06-15 2022-08-02 西北工业大学 一种钛酸锶钡多孔陶瓷/聚偏氟乙烯复合材料及制备方法
CN113845700B (zh) * 2021-09-28 2022-10-14 四川大学 一种钛酸钡基体复合材料及其diw打印成型方法和应用
CN114315409A (zh) * 2021-12-24 2022-04-12 江苏材睿科技有限公司 一种改性钛酸钡泡沫陶瓷材料的制备方法及其所得材料
CN114274312B (zh) * 2022-01-25 2022-08-30 东北大学 一种制备泡沫陶瓷的装置及方法
CN115819084A (zh) * 2022-10-27 2023-03-21 南京工业大学 一种选择性吸收-辐射器材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104129978A (zh) * 2014-07-30 2014-11-05 江西盛祥电子材料有限公司 一种泡沫陶瓷吸音降噪板及其制备工艺
CN104193396A (zh) * 2014-08-21 2014-12-10 江苏南瓷绝缘子股份有限公司 一种泡沫陶瓷的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947867B2 (ja) * 1976-11-17 1984-11-21 松下電器産業株式会社 多孔質半導体磁器発熱体の製造方法
CN202796464U (zh) * 2012-04-17 2013-03-13 符建 一种高介电材料多孔结构电容
CN103000849B (zh) * 2012-12-17 2015-09-16 常州大学 一种高介电性电池隔膜
CN103011817B (zh) * 2012-12-24 2014-06-11 中国科学院金属研究所 一种钇硅氧多孔高温陶瓷材料的制备方法
CN105503254B (zh) * 2016-01-11 2018-06-29 苏州大学 一种钛酸钡泡沫陶瓷及其制备方法
CN105419328B (zh) * 2016-01-11 2018-01-16 苏州大学 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN105541389B (zh) * 2016-01-11 2018-03-30 苏州大学 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN105622162B (zh) * 2016-01-11 2018-03-23 苏州大学 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104129978A (zh) * 2014-07-30 2014-11-05 江西盛祥电子材料有限公司 一种泡沫陶瓷吸音降噪板及其制备工艺
CN104193396A (zh) * 2014-08-21 2014-12-10 江苏南瓷绝缘子股份有限公司 一种泡沫陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis and Characterization of BaTiO3-Based Foams with a Controlled Microstructure;Laurel Wucherer et al.;《International Journal of Applied Ceramic Technology》;20091231;第6卷(第6期);第659页结论部分 *

Also Published As

Publication number Publication date
US20180194692A1 (en) 2018-07-12
CN105503254A (zh) 2016-04-20
WO2017121201A1 (zh) 2017-07-20

Similar Documents

Publication Publication Date Title
CN105503254B (zh) 一种钛酸钡泡沫陶瓷及其制备方法
CN105622162B (zh) 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法
CN105541389B (zh) 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
US10807916B2 (en) Modified barium titanate foam ceramic/thermosetting resin composites and preparation method thereof
CN102099289B (zh) 用于制造碳化硅的方法
CN107434905B (zh) 导热聚合物复合材料及其制备方法与应用
CN108285355B (zh) 制备SiC纳米线增强反应烧结碳化硅陶瓷基复合材料的方法
CN102757224A (zh) 烧结制备致密碳化硼基陶瓷材料的方法
CN106478107A (zh) 一种氮化硅晶须结合碳化硅多孔陶瓷及其制备方法
CN108033801A (zh) 氮化硅纳米线增强多孔氮化硅复合材料及其制备方法
CN110655407A (zh) 一种电阻可控碳化硅陶瓷的制备方法
CN103274693A (zh) 一种具有新型孔壁结构的多孔碳化硅陶瓷及其制备方法
CN107649688A (zh) 一种易加工的金刚石导热复合材料及其制备方法和应用
CN109095930A (zh) 一种氮化硼泡沫材料及其制备方法
CN104926309B (zh) 一种无硼或稀土元素的致密碳化硅陶瓷的制备方法
CN107337453A (zh) 一种结合气固反应法制备重结晶碳化硅多孔陶瓷的方法
CN110157931A (zh) 一种具有三维网络结构的纳米碳增强金属基复合材料及其制备方法
Zhuang et al. Fabrication of gel cast BN/Si3N4 composite ceramics from surface-coated BN powder
CN114956828B (zh) 碳化硅陶瓷及其制备方法和应用
JP2882575B2 (ja) 高熱伝導窒化ケイ素セラミックスならびにその製造方法
CN110092650B (zh) 轻质高强针状莫来石多孔陶瓷及其制备方法以及过滤器
CN104072147B (zh) 一种氮化硅蜂窝陶瓷的制备方法
CN105016773B (zh) 反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法
CN109133986A (zh) 一种基于发泡法的AlN-SiC多孔复合陶瓷及其制备方法
WO2005049525A1 (ja) 高熱伝導性窒化アルミニウム焼結体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant