CN109553412B - 一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法 - Google Patents

一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法 Download PDF

Info

Publication number
CN109553412B
CN109553412B CN201811494345.1A CN201811494345A CN109553412B CN 109553412 B CN109553412 B CN 109553412B CN 201811494345 A CN201811494345 A CN 201811494345A CN 109553412 B CN109553412 B CN 109553412B
Authority
CN
China
Prior art keywords
strontium titanate
barium strontium
low
water
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811494345.1A
Other languages
English (en)
Other versions
CN109553412A (zh
Inventor
兰天
马国儒
张陆阳
陈磊
王立静
李志君
平永杰
李文超
田瑞霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Building Materials Inspection And Research Institute Co Ltd
Original Assignee
Beijing Building Materials Testing Academy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Building Materials Testing Academy Co ltd filed Critical Beijing Building Materials Testing Academy Co ltd
Priority to CN201811494345.1A priority Critical patent/CN109553412B/zh
Publication of CN109553412A publication Critical patent/CN109553412A/zh
Application granted granted Critical
Publication of CN109553412B publication Critical patent/CN109553412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)

Abstract

本发明公开了一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法,制备方法包括,将钛酸锶钡陶瓷粉体加入去离子水中球磨得到钛酸锶钡水基浆料,加入表面活性剂,混合并调节pH值,随后搅拌发泡,注模成型,脱膜干燥后得到坯体,最后高温烧结即得;所制得的钛酸锶钡多孔陶瓷的孔隙率为75‑95%,介电常数为30‑260,介电损耗为0.0004‑0.003。本发明基于颗粒稳定泡沫原理,采用直接发泡法制备了多孔钛酸锶钡陶瓷,工艺简单,成本低廉,具有环境友好、节能减排的特点;本发明制备得到的多孔钛酸锶钡陶瓷气孔均匀,具有很低的介电常数和介电损耗,填补了目前无法制备介电常数低于300钛酸锶钡陶瓷的空白,应用广泛。

Description

一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法
技术领域
本发明属于功能陶瓷材料技术领域,具体涉及一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法。
背景技术
钛酸锶钡(BST)作为一种重要的铁电材料广泛用于广泛应用于电子、机械和陶瓷工业,其应用于可调谐微波设备时,需要其具有高可调谐性、低介电常数、低介电损耗;然而,钛酸锶钡陶瓷的介电常数过高,因此如何降低其介电常数一直是研究热点。
通过掺杂离子或者与非铁电陶瓷混合可以降低钛酸锶钡介电常数,但是会严重牺牲其可调谐性;将钛酸锶钡制备成多孔结构通过引入空气也可以降低介电常数,同时不会弱化调谐性,因此制备多孔钛酸锶钡为获得具有低介电常数的钛酸锶钡陶瓷提供了一个很好的思路。
现有技术中,多孔钛酸锶钡陶瓷主要采用添加造孔剂法制备,该工艺需要排胶过程,且其工艺复杂,大大增加了生产成本,并造成了严重的环境问题;此外,目前报道的使用造孔剂法制备的多孔钛酸锶钡陶瓷的气孔率很低,大多低于50%,其介电常数在一定程度上得到了降低,但是降低效果不显著。目前尚未见到介电常数小于300的钛酸锶钡陶瓷的制备方法的相关报道。
发明内容
针对现有技术的不足,本发明提供了一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法。
根据本发明一方面提供了一种低介电常数低损耗的钛酸锶钡多孔陶瓷的制备方法,包括以下步骤:
S1、将钛酸锶钡陶瓷粉体加入去离子水中,球磨得到钛酸锶钡水基浆料;
S2、将表面活性剂加入到所述钛酸锶钡水基浆料中,混合均匀后,调节pH值;
S3、将步骤S2中含表面活性剂的钛酸锶钡水基浆料搅拌发泡,注模成型,脱膜干燥后得到坯体,最后高温烧结即得。
在上述技术方案中,步骤S2中,所述表面活性剂为棓酸丙酯和十六烷基硫酸钠的混合物。
在上述技术方案中,步骤S2中,所述pH值调节为6.5-9.8。
进一步地,在上述技术方案中,步骤S2中,在所述表面活性剂中,棓酸丙酯的加入质量为水基浆料的0.06-0.30wt%,十六烷基硫酸钠的加入质量为水基浆料的0.02-0.07wt%。
再进一步地,在上述技术方案中,步骤S3中,所述搅拌发泡的搅拌转速为1200-5000rpm,搅拌时间为4-10min。
又进一步地,在上述技术方案中,步骤S1中,所述钛酸锶钡陶瓷粉体的粒径为0.1-3.5μm。
还进一步地,在上述技术方案中,步骤S1中,所述钛酸锶钡水基浆料的固含量为20-60wt%。
优选地,在上述技术方案中,步骤S3中,所述脱膜干燥的干燥温度为15-35℃,干燥时间为1.5-18h。
优选地,在上述技术方案中,步骤S3中,所述高温烧结的烧结制度为:以2-6℃/min的升温速率,从室温加热至1300-1600℃,随后保温时间为1-4h。
根据本发明另一方面提供了上述制备方法制备得到的低介电常数低损耗的钛酸锶钡多孔陶瓷;所述钛酸锶钡多孔陶瓷的孔隙率为75-95%,介电常数为30-260,介电损耗为0.0004-0.003。
本发明的优点:
(1)本发明基于颗粒稳定泡沫原理,采用直接发泡法制备了多孔钛酸锶钡陶瓷,工艺简单,成本低廉;
(2)本发明所提供的制备方法只需一次烧结,因为不需要添加造孔剂,因此烧结时无需排胶工序,整个生产过程具有环境友好、节能减排的特点;
(3)本发明所提供的制备方法制备得到的多孔钛酸锶钡陶瓷气孔均匀,具有很低的介电常数和介电损耗,填补了目前无法制备介电常数低于300钛酸锶钡陶瓷的空白;
(4)本发明所提供的制备方法通过调节表面活性剂添加量、钛酸锶钡固相含量、烧结温度等条件可以实现多孔钛酸锶钡陶瓷的孔径、气孔率、介电性能的有效调控;
(5)本发明所提供的制备方法制备得到的轻质钛酸锶钡陶瓷在10-106Hz的频率范围内能保持介电常数的稳定无波动。
附图说明
图1为本发明实施例1-3所用的钛酸锶钡陶瓷粉体的扫描电子显微镜照片;
图2是本发明实施例1所制备的多孔钛酸锶钡陶瓷的扫描电子显微镜照片。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的保护范围,本发明的保护范围以权利要求书为准。
在以下实施例中,扫描电镜照片采用JSM-IT300LA扫描电子显微镜得到。
若未特别指明,本发明实施例中所用的实验试剂和材料等均可市售获得,若未具体指明,本发明实施例中所用的技术手段均为本领域技术人员所熟知的常规手段。
本发明实施例所采用的钛酸锶钡陶瓷粉体为市售产品,其扫描电子显微镜照片如图1所示,图1结果表明,钛酸锶钡陶瓷粉体的平均粒径为0.64μm。
实施例1
本发明实施例提供了一种低介电常数低损耗的钛酸锶钡多孔陶瓷的制备方法,具体步骤如下:
S1、将钛酸锶钡陶瓷粉体和去离子水混合,配制得到固相含量为40%的浆料,然后利用滚筒式球磨机球磨5h得到钛酸锶钡水基浆料;
S2、往步骤S1中制备得到的钛酸锶钡水基浆料中加入浆料质量的0.12wt%棓酸丙酯和0.03wt%十六烷基硫酸钠,磁力搅拌3min后,调节pH至9.1;
S3、将步骤S2中得到的含表面活性剂的钛酸锶钡水基浆料置于机械搅拌机内,在1400rpm下机械搅拌5min得到稳定的钛酸锶钡泡沫浆料,注模4min后脱模,并在常温常压下干燥24h,最后将干燥后的泡沫坯体以4℃/min的升温速率加热至1350℃,保温2h,自然冷却后即得。
经测试,如图2所示,实施例1所制备得到的钛酸锶钡多孔陶瓷气孔大小均匀,平均孔径为96μm,气孔率为89.3%;在10-106Hz频率下,其介电常数为62.4,介电损耗角正切值为0.0013。
实施例2
本发明实施例提供了一种低介电常数低损耗的钛酸锶钡多孔陶瓷的制备方法,具体步骤如下:
S1、将钛酸锶钡陶瓷粉体和去离子水混合,配制得到固相含量为30%的浆料,然后利用滚筒式球磨机球磨2h得到钛酸锶钡水基浆料;
S2、往步骤S1中制备得到的钛酸锶钡水基浆料中加入浆料质量的0.15wt%棓酸丙酯和0.05wt%十六烷基硫酸钠,磁力搅拌3min后,调节pH至9.2;
S3、将步骤S2中得到的含表面活性剂的钛酸锶钡水基浆料置于机械搅拌机内,在1600rpm下机械搅拌8min得到稳定的钛酸锶钡泡沫浆料,注模4min后脱模,并在常温常压下干燥24h,最后将干燥后的泡沫坯体以3℃/min的升温速率加热至1350℃,保温1h,自然冷却后即得。
经测试,实施例2所制备得到的钛酸锶钡多孔陶瓷气孔大小均匀,平均孔径为107μm,气孔率为93.7%;在10-106Hz频率下,其介电常数为36.6,介电损耗角正切值为0.0009。
实施例3
本发明实施例提供了一种低介电常数低损耗的钛酸锶钡多孔陶瓷的制备方法,具体步骤如下:
S1、将钛酸锶钡陶瓷粉体和去离子水混合,配制得到固相含量为50%的浆料,然后利用滚筒式球磨机球磨6h得到钛酸锶钡水基浆料;
S2、往步骤S1中制备得到的钛酸锶钡水基浆料中加入浆料质量的0.12wt%棓酸丙酯和0.03wt%十六烷基硫酸钠,磁力搅拌3min后,调节pH至8.8;
S3、将步骤S2中得到的含表面活性剂的钛酸锶钡水基浆料置于机械搅拌机内,在1500rpm下机械搅拌8min得到稳定的钛酸锶钡泡沫浆料,注模6min后脱模,并在常温常压下干燥24h,最后将干燥后的泡沫坯体以3℃/min的升温速率加热至1500℃,保温2h,自然冷却后即得。
经测试,实施例3所制备得到的钛酸锶钡多孔陶瓷气孔大小均匀,平均孔径为47μm,气孔率为81.5%;在10-106Hz频率下,其介电常数为201.3,介电损耗角正切值为0.0011。
最后,以上仅为本发明的较佳实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种低介电常数低损耗的钛酸锶钡多孔陶瓷的制备方法,其特征在于,包括以下步骤:
S1、将钛酸锶钡陶瓷粉体加入去离子水中,球磨得到钛酸锶钡水基浆料;
S2、将表面活性剂加入到所述钛酸锶钡水基浆料中,混合均匀后,调节pH值;
S3、将步骤S2中含表面活性剂的钛酸锶钡水基浆料搅拌发泡,注模成型,脱膜干燥后得到坯体,最后高温烧结即得;
步骤S1中,所述钛酸锶钡陶瓷粉体的粒径为0.1-3.5 μm,所述钛酸锶钡水基浆料的固含量为20-60 wt%;
步骤S2中,所述pH值调节为6.5-9.8;
所述表面活性剂为棓酸丙酯和十六烷基硫酸钠的混合物;在所述表面活性剂中,棓酸丙酯的加入质量为水基浆料的0.06- 0.30 wt%,十六烷基硫酸钠的加入质量为水基浆料的0.02-0.07 wt%;
步骤S3中,所述高温烧结的烧结制度为:以2-6 ℃/min的升温速率,从室温加热至1300-1600 ℃,随后保温时间为1-4 h。
2.根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述搅拌发泡的搅拌转速为1200-5000 rpm,搅拌时间为4-10 min。
3.根据权利要求1或2所述的制备方法,其特征在于,步骤S3中,所述脱膜干燥的干燥温度为15-35 ℃,干燥时间为1.5-18 h。
4.根据权利要求1-3任一项所述的制备方法制备得到的低介电常数低损耗的钛酸锶钡多孔陶瓷。
5.根据权利要求4所述的低介电常数低损耗的钛酸锶钡多孔陶瓷,其特征在于,在10-106Hz频率下,所述钛酸锶钡多孔陶瓷的孔隙率为75-95 %,介电常数为30-260,介电损耗为0.0004-0.003。
CN201811494345.1A 2018-12-07 2018-12-07 一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法 Active CN109553412B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811494345.1A CN109553412B (zh) 2018-12-07 2018-12-07 一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811494345.1A CN109553412B (zh) 2018-12-07 2018-12-07 一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN109553412A CN109553412A (zh) 2019-04-02
CN109553412B true CN109553412B (zh) 2021-09-14

Family

ID=65869161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811494345.1A Active CN109553412B (zh) 2018-12-07 2018-12-07 一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN109553412B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101182189A (zh) * 2007-11-15 2008-05-21 电子科技大学 多元掺杂的高性能氧化铍陶瓷材料及制备方法
CN101723664A (zh) * 2009-12-08 2010-06-09 华中科技大学 介电可调介质陶瓷材料的制备方法
CN104591728A (zh) * 2015-01-08 2015-05-06 陕西科技大学 一种Ba(0.9-x)Sr0.1MgxTiO3温度稳定型无铅陶瓷制备方法
CN105503254A (zh) * 2016-01-11 2016-04-20 苏州大学 一种钛酸钡泡沫陶瓷及其制备方法
CN105669245A (zh) * 2016-01-27 2016-06-15 清华大学 一种多孔石英陶瓷的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056468B2 (en) * 2000-06-15 2006-06-06 Paratek Microwave, Inc. Method for producing low-loss tunable ceramic composites with improved breakdown strengths
KR100390952B1 (ko) * 2000-06-28 2003-07-10 주식회사 하이닉스반도체 커패시터 제조 방법
CN101602521A (zh) * 2009-07-15 2009-12-16 中山大学 一种多孔BaTiO3纳米颗粒球的合成方法
CN104496521B (zh) * 2014-12-02 2016-10-05 航天特种材料及工艺技术研究所 一种制备Si3N4/BAS泡沫陶瓷材料的方法
CN108395240B (zh) * 2018-04-25 2020-05-05 东南大学 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101182189A (zh) * 2007-11-15 2008-05-21 电子科技大学 多元掺杂的高性能氧化铍陶瓷材料及制备方法
CN101723664A (zh) * 2009-12-08 2010-06-09 华中科技大学 介电可调介质陶瓷材料的制备方法
CN104591728A (zh) * 2015-01-08 2015-05-06 陕西科技大学 一种Ba(0.9-x)Sr0.1MgxTiO3温度稳定型无铅陶瓷制备方法
CN105503254A (zh) * 2016-01-11 2016-04-20 苏州大学 一种钛酸钡泡沫陶瓷及其制备方法
CN105669245A (zh) * 2016-01-27 2016-06-15 清华大学 一种多孔石英陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis and Characterization of BaTiO3-Based foams with a Controlled Microstructure;Laurel Wucherer;《Applied Ceramic Technology》;20090630;背景、试验 *

Also Published As

Publication number Publication date
CN109553412A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
CN112830782B (zh) 一种高熵稀土铌/钽/钼酸盐陶瓷及其制备方法
US10822278B2 (en) Barium titanate foam ceramic/thermosetting resin composites and preparation method thereof
CN113105237B (zh) 一种ab2o6型钽酸盐陶瓷及其制备方法
CN108395240B (zh) 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用
CN111116192B (zh) 一种微波铁氧体材料、制备方法及微波通信器件
CN111592348A (zh) 一种具有优异温度稳定性的低介电常数微波介质陶瓷及其制备方法
CN110564085A (zh) 一种用于高性能电路板的ptfe陶瓷改性基材膜的制造方法
CN106588006A (zh) 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷
CN111153694B (zh) 一种微波介质陶瓷材料及制备方法
CN113511890A (zh) 一种基于发泡法的焦磷酸锆多孔陶瓷材料及其制备方法
CN110885243B (zh) 一种低介电常数铝酸盐微波介质陶瓷材料及其制备方法
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN109553412B (zh) 一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法
CN106893303A (zh) 一种高介电常数轻质介质基材及其制备方法
CN109694247B (zh) 一种高效率的储能线性电介质陶瓷材料及其制备方法
KR20210122225A (ko) 도핑된 페로브스카이트 바륨 스타네이트 재료 및 이의 제조 방법과 응용
Liu et al. Preparation and properties of 0.79 ZnAl2O4-0.21 TiO2 microwave dielectric ceramics via digital light processing
CN107162391B (zh) 一种以废玻璃为原料制备微米级气孔结构可调控的泡沫玻璃的制备方法
CN114163231A (zh) 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用
CN111908897A (zh) MgO基微波陶瓷介质材料及其制备方法
CN104788094A (zh) 一种钛酸铋陶瓷材料的制备方法
CN111574794B (zh) 高介电常数聚四氟乙烯薄膜及其制备方法和应用
JP7238127B2 (ja) ドープされたペロブスカイト型スズ酸バリウム材料及びその製造方法、並びにその用途
CN111943670B (zh) LiWVO6-K2MoO4基复合陶瓷微波材料及其制备方法
CN110590395B (zh) 一种轻质多孔高q微波介质陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 100041 No. 69 Jinding North Road, Beijing, Shijingshan District

Patentee after: Beijing Building Materials Inspection and Research Institute Co., Ltd.

Address before: 100041 No. 69 Jinding North Road, Beijing, Shijingshan District

Patentee before: BEIJING BUILDING MATERIALS TESTING ACADEMY Co.,Ltd.