CN108395240B - 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用 - Google Patents

磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN108395240B
CN108395240B CN201810382639.9A CN201810382639A CN108395240B CN 108395240 B CN108395240 B CN 108395240B CN 201810382639 A CN201810382639 A CN 201810382639A CN 108395240 B CN108395240 B CN 108395240B
Authority
CN
China
Prior art keywords
lanthanum phosphate
lanthanum
porous ceramic
ceramic
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810382639.9A
Other languages
English (en)
Other versions
CN108395240A (zh
Inventor
刘玉付
汪坤
乔健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810382639.9A priority Critical patent/CN108395240B/zh
Publication of CN108395240A publication Critical patent/CN108395240A/zh
Application granted granted Critical
Publication of CN108395240B publication Critical patent/CN108395240B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

本发明公开了一种磷酸镧粉体的制备方法,包括:将碳酸镧与浓磷酸在水中混合均匀,搅拌至反应完全,干燥,湿法球磨,干燥后研磨;对研磨产物在900℃~1200℃保温0.5~5h,得到磷酸镧粉体。本发明还公开了通过将含有该磷酸镧粉体的发泡浆料悬浮体凝胶注模成型,干燥和脱脂烧结制备磷酸镧多孔陶瓷的方法,以及制得的磷酸镧多孔陶瓷作为透波材料的应用。本发明的方法制得的磷酸镧粉体纯度高,分散性好,粒度分布均匀,制得的磷酸镧多孔陶瓷的孔隙率≥70%,且平均孔径为50~120μm,10GHz的介电常数为2~4,损耗角正切为1.5~3.5×10‑3,具有良好的透波性能和隔热性能。

Description

磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用
技术领域
本发明属于透波材料领域,具体涉及一种磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用。
背景技术
随着航空航天及通讯技术的不断发展,透波材料越来越引起人们的重视。透波材料是广泛应用于运载火箭、飞船、导弹及返回式卫星等等先进科学装备的一种多功能电介质材料,恶劣的使用环境对透波材料提出了防热隔热、透波、耐候、承载等多方面的要求。因此,人们对具有高温热稳定性、低导热率、与熔融金属的不反应性、对反应气体的不渗透性且具有优异电磁波透过性能等功能性的材料抱有极大的兴趣。具有独居石或堇青石结构的稀土磷酸盐,特别是磷酸镧材料,则日益受到研究人员的重视。
磷酸镧具有独居石结构,晶体结构属于单斜晶系,熔点为(2070±20)℃,具有优异的高温相稳定性,与很多氧化物具有很好的化学相容性和物理相容性。在1650℃,磷酸镧能稳定地存在于氧化铝陶瓷中且不与其发生反应。LaPO4-Al2O3陶瓷具有可加工性,氧化物/磷酸盐陶瓷的可加工性主要是由于磷酸镧和氧化物之间的弱界面结合。因此,磷酸镧粉体的合成对于氧化物/磷酸盐可加工陶瓷的研究有着重要的意义。Wang等人采用La2O3和H3PO4直接反应,然后在高温下煅烧制备了磷酸镧粉体,缺点是煅烧温度比较高,颗粒尺寸不均匀,形貌不规则(Synthesis and sintering of LaPO4 powder and itsapplication.Materials Chemistry and Physics,2003,79(1),30-36.)。此外,磷酸盐的层状结构允许裂解和吸收裂纹能量,还可以用来对复合陶瓷进行增韧。
多孔陶瓷具有三维空间网状结构,由于它具有气孔率高、比表面积大、热导率低、介电常数低、耐高温等优点,并且具有较好的力学性能和耐化学腐蚀性能,可用作高温隔热材料、隔音材料、冶金工业熔融金属过滤器、催化剂载体,甚至可用于电解隔膜、透波天线罩等领域,应用十分广泛。多孔陶瓷有多种制备工艺,如有机模板法、凝胶注模法、直接发泡法、添加造孔剂法等。
目前磷酸镧陶瓷主要研究集中在致密陶瓷和复合陶瓷材料增韧以及陶瓷荧光材料中,而对于磷酸镧多孔陶瓷的隔热性能及透波性能研究较少。如Yoshikazu等人在制备的磷酸镧基复合材料的孔隙率只有约40%(Uniformly Porous Al2O3/LaPO4and Al2o3/CePo4Composites with Narrow Pore-Size Distribution.Journal of the AmericanCeramic Society,2005,88(11):3283-3286.),而更高孔隙率的磷酸镧陶瓷还未有制备。
公开号为CN104194789A、名称为“一种磷酸镧陶瓷荧光材料制备方法”的专利采用微波结合共沉淀法低温快速制备Ce、Tb共掺杂磷酸镧发光陶瓷。其中,磷酸镧采用La2O3和浓硝酸按摩尔比1∶10~40混合,再加入H2O2和(NH4)2HPO4反应制得前驱体后烧结得到。该专利的方法工艺较为复杂,且成本很高。
公开号CN 101508580 A公开了一种LaPO4均匀弥散分布的LaPO4/Al2O3复合陶瓷的制备方法,在La(NO3)3水溶液中滴加等体积等浓度的Na3PO4水溶液,并保持一定的PH,搅拌一段时间后干燥制得含LaPO4的粉体。
磷酸镧的高温稳定性十分优异,磷酸镧多孔陶瓷可作为耐火材料应用于约1500℃高温。由磷酸镧制备而成的多孔陶瓷,既具有多孔陶瓷本身的优点,还能提高耐高温性能、高温化学稳定性以及耐热冲击韧性等。如微波加热过程中吸收体以及承载体都具有较高温度,为防止内部热量通过谐振腔体传到机体外部,同时满足微波加热器的高效运行的要求,必须在承载体外侧放置一种同时具有高温隔热和高温透波功能的高效隔热材料,磷酸镧多孔陶瓷就能很好的满足这种应用场合。然而,目前磷酸镧在透波材料方面的应用却未见报导。
发明内容
本发明的目的在于提供一种具备高气孔率、低热导率、低介电常数的磷酸镧(LaPO4)多孔陶瓷,克服目前磷酸镧粉体制备复杂、磷酸镧多孔陶瓷气孔率低的不足。
本发明另一目的在于提供上述磷酸镧(LaPO4)多孔陶瓷的制备方法和在透波材料中的应用。
技术方案:本发明公开一种磷酸镧的制备方法,该制备方法包括以下步骤:
1)将碳酸镧与浓磷酸在水中混合均匀,搅拌至反应完全,除去产物中的水份分,得到块状固体;
2)对步骤1)制得的块状固体进行湿法球磨,干燥后进行研磨;
3)对步骤2)的研磨产物在900℃~1200℃保温0.5~5h,得到磷酸镧粉体。
上述磷酸镧的制备方法的步骤1)中,碳酸镧与浓磷酸在水中混合均匀的方法优选将浓磷酸缓慢倒入碳酸镧的水溶液中,搅拌反应时间为10~60分钟;碳酸镧与浓磷酸的质量比为1∶0.4~0.5,浓磷酸中磷酸的质量分数为70~85wt%;水的加入量能够使碳酸镧与浓磷酸充分反应即可,优选地,碳酸镧与水的质量比为1∶0.7~1.3;除去产物中的水份分的方法可使用本领域已知干燥方法进行,优选地,将产物置于烘箱中,150~200℃干燥18~24h。
步骤2)中,湿法球磨中使用的分散剂为本领域常用的易挥发溶剂,优选乙醇、丙酮、水中一种或多种的混合溶剂;湿法球磨中块状固体与所述分散剂的质量比为1∶0.5~2;湿法球磨后干燥的方法可使用本领域已知干燥方法,优选地,将湿法球磨的产物在50~70℃干燥完全后进行研磨。
步骤3)中,将步骤2)的研磨产物以3~5℃/min的速度升温至900℃~1200℃保温1~3h,得到磷酸镧粉体。
采用上述方法制得的磷酸镧粉体纯度较高,分散性好,粒度较小且均匀。
本发明另一方面提供一种磷酸镧多孔陶瓷的制备方法,其特征在于,该制备方法包括以下步骤:
1)使用上述制备方法制备磷酸镧粉体;
2)将步骤1)制得的磷酸镧粉体、分散剂和催化剂在水中混合均匀,配制陶瓷浆料预混液;向陶瓷浆料预混液中加入用于形成凝胶的有机单体和交联剂,并加入发泡剂和稳泡剂进行发泡,获得发泡陶瓷浆料;催化剂为使有机单体和交联剂反应生成凝胶的催化剂;
3)向步骤2)获得的发泡陶瓷浆料中加入用于使有机单体和所述交联剂反应生成凝胶的引发剂,混合均匀后注入模具,20~40℃下放置1~3h后脱模,干燥,得到陶瓷生坯;
4)将步骤3)制得的陶瓷生坯在500℃~900℃保温0.5~3h,然后升温至1200~1600℃烧结0.5~4h,得到LaPO4多孔透波陶瓷。
为了使磷酸镧粉体和催化剂在水中充分混合,上述陶瓷浆料预混液的配制方法包括:将磷酸镧粉体、分散剂和催化剂按照质量比(95~100)∶(1~1.6)∶(1.1~1.3)在水中混合球磨球磨1~2小时,球磨速度为300~360r/min。此时PVP、六偏磷酸钠能够在粉体表面形成双电子层,催化剂能降低胶体表面自由能,得到粘度低、稳定性好的悬浮体浆料。
为了促进多孔陶瓷的烧结,提高多孔陶瓷强度,同时提升多孔陶瓷的隔热性能,配制陶瓷浆料预混液过程中还加入了钛白粉;磷酸镧粉体、有机单体、交联剂、催化剂、引发剂、分散剂、钛白粉、发泡剂和稳泡剂的质量比为(95~100)∶(11~13)∶(1.1~1.3)∶(1.1~1.3)∶(0.8~1.3)∶(1~1.6)∶(0~6)∶(0.2~0.3)∶(0.04~0.06);分散剂为六偏磷酸钠和聚乙烯吡咯烷酮(PVP)中的一种或两种;有机单体为N-羟甲基丙烯酰胺(N-MAM);交联剂为N,N’-亚甲基双丙烯酰胺(MBAM);催化剂为N,N,N’,N’-四甲基乙二胺(TEMED);发泡剂为十二烷基硫酸钠(SDS);稳泡剂为十二醇;引发剂为过硫酸铵(APS)。
为了调节浆料粘度并控制发泡量,在加入引发剂前,还包括加入流变剂将发泡陶瓷浆料的粘度调节至1000~1500mPa·s的步骤;流变剂可以为羧甲基纤维素钠(CMC)。
步骤2)中,通过机械搅拌进行所述发泡,搅拌发泡时,机械搅拌速度为200-300r/min,随着浆料粘度的增加须适当增加转速,减少由于粘度增加产生的浆料各部分固含量不均匀现象,最终发泡量是球磨后悬浮液的4~6倍。
上述陶瓷浆料预混液的配制过程中,每100g磷酸镧粉体中加入45~50g水,降低水含量可以抑制坯体干燥过程中的收缩开裂,同时也保证了陶瓷浆料的流变性和发泡量。优选地,十二烷基硫酸钠、十二醇、羧甲基纤维素钠和水的质量比为(0.2~0.3)∶(0.04~0.06)∶(0.1~0.3)∶(45~50);凝胶注模体系中有机单体、交联剂、催化剂、引发剂和磷酸镧粉体的质量比为(11~13)∶(1.1~1.3)∶(1.1~1.3)∶(0.8~1.2)(95~100)。
优选地,LaPO4粉体、有机单体、交联剂、催化剂、引发剂、分散剂、钛白粉、流变剂、发泡剂、稳泡剂和水组成,其质量比为:(95~100)∶(11~13)∶(1.1~1.3)∶(1.1~1.3)∶(0.8~1.3)∶(1~1.6)∶(0~6)∶(0.1~0.3)∶(0.2~0.3)∶(0.04~0.06)∶(47~53)。
进一步优选地,碳酸镧、水、浓磷酸的质量比为10∶10∶4和10∶10∶5;有机单体、交联剂、催化剂、引发剂、磷酸镧的质量比为1∶0.1∶0.1∶0.1∶10;磷酸镧粉体与水的质量比为2∶1。
本发明另一方面提供上述磷酸镧多孔陶瓷的制备方法制得的磷酸镧多孔陶瓷,该磷酸镧多孔陶瓷密度为1.0~1.7g/cm3,气孔率为72~85%,气孔孔径为50~120μm,抗压强度为5~12Mpa;当材料厚度为1cm,热面温度为1000℃时,冷面温度为290~350℃;10GHz的介电常数为2~4,损耗角正切为1.5~3.5×10-3
本发明另一方面提供上述制备方法制得的磷酸镧多孔陶瓷在透波材料方面的应用。
有益效果:本发明通过碳酸镧和浓磷酸反应制得磷酸镧粉体,操作简单,煅烧温度低,效率高,先球磨后烧结,减少了后续步骤球磨时间,本发明的方法制得的磷酸镧粉体纯度高,分散性好,粒度分布均匀。另外,本发明将分散剂、催化剂和磷酸镧粉体先混合后球磨,得到粘度低、稳定性好的悬浮液;优化了注凝体系的比例含量,既不会在短时间内迅速放热产生爆聚现象,也不会因为交联量不够、聚合不完全导致生坯强度低、脱模困难;制备的磷酸镧多孔陶瓷的孔隙率≥70%,且平均孔径为50~120μm,10GHz的介电常数为2~4,损耗角正切为1.5~3.5×10-3,具有良好的透波性能和隔热性能。
附图说明
图1是经1500℃处理的磷酸镧粉体的XRD图。
图2是制备的磷酸镧多孔陶瓷的实物图及微观形貌图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
实施例1
将200g碳酸镧和200g水搅拌混合均匀,再倒入80g浓磷酸(浓磷酸中磷酸的质量分数为80%)并不断搅拌至反应完全,再放入烘箱中150~200℃干燥18~24h。将干燥后得到的块体与140g酒精混合,经行星球磨1~1.5h后,再50℃干燥,并以3℃/min升温至900℃并保温2h,得到磷酸镧粉体。
将1.0g PVP、0.5g六偏磷酸钠、1.1g TEMED和50g去离子水混合均匀后形成预混液,再加入100g本实施例制备的磷酸镧粉体,经行星球磨1h后,得到粘度低的陶瓷浆料预混液。再向陶瓷浆料预混液中加入11g N-MAM、1.1g MBAM、0.25g十二烷基硫酸钠(SDS)(发泡剂)和0.04g十二醇(稳泡剂)并机械搅拌,再缓慢加入0.2g羧甲基纤维素钠(CMC)调节浆料粘度,至发泡量为浆料体积的5倍,再加入3.1g含有过硫酸铵的水溶液(过硫酸铵的质量分数约为35.5%),搅拌均匀后注入模具,此时单体和交联剂发生交联反应并原位固化。将试样脱模后放入鼓风干燥箱中50℃干燥48h得到陶瓷生坯。最后将陶瓷生坯放入高温电炉中,以1℃/min升温至700℃,并保温1h进行充分脱脂,再以2℃/min升温至1500℃,并保温2h,样品随炉冷却到室温后取出,得到磷酸镧多孔陶瓷。
如图1(a)所示,磷酸镧多孔陶瓷晶相全部为独居石结构的磷酸镧。磷酸镧多孔陶瓷实物及微观结构如图2所示。
所得到的磷酸镧多孔陶瓷的密度为1.05g/cm3,气孔率约为83%,气孔孔径为50~80μm,抗压强度约为8.84MPa,当材料厚度为1cm,热面温度为1000℃时,冷面温度为292℃,隔热性能良好。其10GHz室温介电常数为2.0,损耗角正切为1.5×10-3,可作为高温透波材料兼具有良好的隔热作用。
实施例2
将200g碳酸镧和200g水搅拌混合均匀,再倒入100g浓磷酸(浓磷酸中磷酸的质量分数为80%)并不断搅拌至反应完全,再放入烘箱中150℃干燥24h。将干燥后得到的块体与140g酒精混合,经行星球磨1~1.5h后,再50℃干燥,并以3℃/min升温至900℃并保温2h,得到磷酸镧粉体。
将1.0g PVP、0.5g六偏磷酸钠、1.1g TEMED、和45g去离子水混合均匀后配置成预混液,再向预混液中加入100g本实施例制备的磷酸镧粉体,经行星球磨1.5h后,得到稳定的陶瓷浆料预混液。再向陶瓷浆料预混液中加入11g N-MAM、1.1g MBAM、0.25g十二烷基硫酸钠(SDS)(发泡剂)和0.04g十二醇(稳泡剂)并机械搅拌,再缓慢加入0.2g羧甲基纤维素钠(CMC)调节浆料粘度,至发泡量为浆料体积的5倍,再加入3.1g含有过硫酸铵的水溶液(质量分数约为35.5%),搅拌均匀后注入模具,此时单体和交联剂发生交联反应并原位固化。将试样脱模后放入鼓风干燥箱中50℃干燥48h得到陶瓷生坯。最后将陶瓷生坯放入高温电炉中,以1℃/min升温至700℃,并保温1h进行充分脱脂,再以2℃/min升温至1500℃,并保温2h,样品随炉冷却到室温后取出,得到磷酸镧多孔陶瓷。如图1中的(b)所示,多孔陶瓷晶相也全部为独居石结构的磷酸镧。
所得到的磷酸镧多孔陶瓷的密度为1.18g/cm3,采用阿基米德排水法测得的气孔率约为80%,气孔孔径为60~120μm,抗压强度约为9.92MPa,当材料厚度为1cm,热面温度为1000℃时,冷面温度为324℃,隔热性能良好。其10GHz室温介电常数为2.2,损耗角正切为1.7×10-3
实施例3
将200g碳酸镧和200g水搅拌混合均匀,再倒入80g浓磷酸(浓磷酸中磷酸的质量分数为80%)并不断搅拌至反应完全,再放入烘箱中150℃干燥24h。将干燥后得到的块体与140g酒精混合,经行星球磨1~1.5h后,再50℃干燥,并以3℃/min升温至900℃并保温2h,得到磷酸镧粉体。
将1.0g PVP、0.5g六偏磷酸钠、1.1g TEMED、和50g去离子水混合均匀后形成预混液,再加入100g本实施例制备的磷酸镧粉体和2g钛白粉,经行星球磨1h后,得到粘度低的陶瓷浆料预混液。再向陶瓷浆料预混液中加入11g N-MAM、1.1g MBAM、0.25g十二烷基硫酸钠(SDS)(发泡剂)和0.04g十二醇(稳泡剂)并机械搅拌,再缓慢加入0.2g羧甲基纤维素钠(CMC)调节浆料粘度,至发泡量为浆料体积的5倍,再加入3.1g含有过硫酸铵的水溶液(过硫酸铵的质量分数约为35.5%),搅拌均匀后注入模具,此时单体和交联剂发生交联反应并原位固化。将试样脱模后放入鼓风干燥箱中50℃干燥48h得到陶瓷生坯。最后将陶瓷生坯放入高温电炉中,以1℃/min升温至700℃,并保温1h进行充分脱脂,再以2℃/min升温至1500℃,并保温2h,样品随炉冷却到室温后取出,得到磷酸镧多孔陶瓷。
所得到的磷酸镧多孔陶瓷的密度约为1.64g/cm3,气孔率约为72.6%,气孔孔径为50~80μm,抗压强度约为10.26MPa,其10GHz室温介电常数为2.99,损耗角正切为2.8×10-3
实施例4
将200g碳酸镧和200g水搅拌混合均匀,再倒入100g浓磷酸(浓磷酸中磷酸的质量分数为80%)并不断搅拌至反应完全,再放入烘箱中150℃干燥24h。将干燥后得到的块体与140g酒精混合,经行星球磨1~1.5h后,再50℃干燥,并以3℃/min升温至900℃并保温2h,得到磷酸镧粉体。
将1.0g PVP、0.5g六偏磷酸钠、1.1g TEMED、和45g去离子水混合均匀后配置成预混液,再向预混液中加入100g本实施例制备的磷酸镧粉体和5g钛白粉,经行星球磨1.5h后,得到稳定的陶瓷浆料预混液。再向陶瓷浆料预混液中加入11g N-MAM、1.1g MBAM、0.25g十二烷基硫酸钠(SDS)(发泡剂)和0.04g十二醇(稳泡剂)并机械搅拌,再缓慢加入0.2g羧甲基纤维素钠(CMC)调节浆料粘度,至发泡量为浆料体积的5倍,再加入3.1g含有过硫酸铵的水溶液(过硫酸铵的质量分数约为35.5%),搅拌均匀后注入模具,此时单体和交联剂发生交联反应并原位固化。将试样脱模后放入鼓风干燥箱中50℃干燥48h得到陶瓷生坯。最后将陶瓷生坯放入高温电炉中,以1℃/min升温至700℃,并保温1h进行充分脱脂,再以2℃/min升温至1500℃,并保温2h,样品随炉冷却到室温后取出,得到磷酸镧多孔陶瓷。
所得到的磷酸镧多孔陶瓷的密度约为1.68g/cm3,气孔率约为72%,气孔孔径为50~90μm,抗压强度约为11.16MPa,其10GHz室温介电常数为3.2,损耗角正切为3.3×10-3
实施例5
将200g碳酸镧和200g水搅拌混合均匀,再倒入100g浓磷酸(浓磷酸中磷酸的质量分数为80%)并不断搅拌至反应完全,再放入烘箱中150~200℃干燥18~24h。将干燥后得到的块体与100g酒精和水的混合溶液(酒精与水体积比为1∶1)混合,经行星球磨1~1.5h后,再50℃干燥,并以5℃/min升温至1200℃并保温1h,得到磷酸镧粉体。
将0.5g PVP、0.5g六偏磷酸钠、1.3g TEMED、和50g去离子水混合均匀后形成预混液,再加入6g钛白粉和100g本实施例制备的磷酸镧粉体,经行星球磨1h后,得到粘度低的陶瓷浆料预混液。再向陶瓷浆料预混液中加入13g N-MAM、1.3g MBAM、0.3g十二烷基硫酸钠(SDS)(发泡剂)和0.06g十二醇(稳泡剂)并机械搅拌,再缓慢加入0.2g羧甲基纤维素钠(CMC)调节浆料粘度,至发泡量为浆料体积的5倍,再加入2.3g含有过硫酸铵的水溶液(过硫酸铵的质量分数约为35.5%),搅拌均匀后注入模具,此时单体和交联剂发生交联反应并原位固化。将试样脱模后放入鼓风干燥箱中50℃干燥48h得到陶瓷生坯。最后将陶瓷生坯放入高温电炉中,以1℃/min升温至500℃,并保温3h进行充分脱脂,再以2℃/min升温至1200℃,并保温4h,样品随炉冷却到室温后取出,得到磷酸镧多孔陶瓷。
所得到的磷酸镧多孔陶瓷的密度为1.0g/cm3,气孔率约为85%,气孔孔径为60~120μm,抗压强度约为7.9MPa,当材料厚度为1cm,热面温度为1000℃时,冷面温度为290℃,隔热性能良好。其10GHz室温介电常数为3.85,损耗角正切为3.35×10-3
对比例1
将200g碳酸镧和200g水搅拌混合均匀,再倒入100g浓磷酸并不断搅拌至反应完全,再放入烘箱中150~200℃干燥18~24h。将干燥后得到的块体以5℃/min升温至1500℃并保温2h,得到磷酸镧块体。将1.0g PVP、0.5g六偏磷酸钠、1.1g TEMED、和50g去离子水混合均匀后形成预混液,再加入100g已制备的磷酸镧块体,经行星球磨4h后,球磨罐中仍然残留大量磷酸镧颗粒。这是因为经高温烧结后的磷酸镧块体硬度更大,即使延长球磨时间,也很难球磨均匀,因陶瓷颗粒团聚形成的小块体大量存在。
将1.0g PVP、0.5g六偏磷酸钠、1.1g TEMED、和45g去离子水混合均匀后配置成预混液,再向预混液中加入100g本对比例制得的磷酸镧,经行星球磨6h后,加入11g N-MAM、1.1g MBAM、0.25g十二烷基硫酸钠(SDS)(发泡剂)和0.04g十二醇(稳泡剂)并机械搅拌,再缓慢加入0.2g羧甲基纤维素钠(CMC)调节浆料粘度,至发泡量为浆料体积的5倍,再加入3.1g过硫酸铵的水溶液(质量分数约为35.5%),搅拌均匀后注入模具,此时单体和交联剂发生交联反应并原位固化。将试样脱模后放入鼓风干燥箱中50℃干燥48h得到陶瓷生坯。最后将陶瓷生坯放入高温电炉中,以1℃/min升温至700℃,并保温1h进行充分脱脂,再以2℃/min升温至1500℃,并保温2h,样品随炉冷却到室温后取出,得到磷酸镧多孔陶瓷。
所得到的磷酸镧多孔陶瓷密度为1.9g/cm3,气孔率约为68.3%,气孔孔径为50~90μm,抗压强度约为15.3MPa,当材料厚度为1cm,热面温度为1000℃时,冷面温度为335℃。其10GHz室温介电常数为3.6,损耗角正切为6.2×10-3。由于浆料中混有较多的未球磨完全的磷酸镧颗粒,导致密度较大,相对于实施例,隔热效果较差,且介电常数和介电损耗较高。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种磷酸镧多孔陶瓷的制备方法,其特征在于,该制备方法包括以下步骤:
1)制备磷酸镧粉体:将碳酸镧与浓磷酸在水中混合均匀,搅拌至反应完全,除去产物中的水分,得到块状固体;制得的块状固体进行湿法球磨,干燥后进行研磨;研磨产物在900℃~1200℃保温0.5~5h,得到磷酸镧粉体;
2)将步骤1)制得的磷酸镧粉体、分散剂和催化剂在水中混合均匀,配制陶瓷浆料预混液;向所述陶瓷浆料预混液中加入用于形成凝胶的有机单体和交联剂,并加入发泡剂和稳泡剂进行发泡,获得发泡陶瓷浆料;所述催化剂为使所述有机单体和交联剂反应生成凝胶的催化剂;
3)向步骤2)获得的发泡陶瓷浆料中加入用于使所述有机单体和所述交联剂反应生成凝胶的引发剂,混合均匀后注入模具,20~40oC下放置1~3h后脱模,干燥,得到陶瓷生坯;
4)将步骤3)制得的陶瓷生坯在500℃~900℃保温0.5~3h,然后升温至1200~1600℃烧结0.5~4h,得到LaPO4多孔透波陶瓷;
所述配制陶瓷浆料预混液过程中还加入了钛白粉;所述磷酸镧粉体、有机单体、交联剂、催化剂、引发剂、分散剂、钛白粉、发泡剂和稳泡剂的质量比为(95~100):(11~13):(1.1~1.3):(1.1~1.3):(0.8~1.3):(1~1.6):(0~6):(0.2~0.3):(0.04~0.06);所述有机单体为N-羟甲基丙烯酰胺,所述交联剂为N,N'-亚甲基双丙烯酰胺,所述催化剂为N,N,N’,N’-四甲基乙二胺,所述引发剂为过硫酸铵,所述分散剂为六偏磷酸钠和聚乙烯吡咯烷酮,所述发泡剂为十二烷基硫酸钠,所述稳泡剂为十二醇。
2.根据权利要求1所述的磷酸镧多孔陶瓷的制备方法,其特征在于,步骤1)中,所述碳酸镧与浓磷酸的质量比为1:0.4~0.5,所述浓磷酸中磷酸的质量分数为70~85%;所述除去产物中的水分的方法包括:将产物置于烘箱中,150~200℃干燥18~24h。
3.根据权利要求1所述的磷酸镧多孔陶瓷的制备方法,其特征在于,步骤1)中,所述湿法球磨中使用的分散剂为乙醇、丙酮和水中一种或多种的混合溶剂,所述块状固体与所述分散剂的质量比为1:0.5~2。
4.根据权利要求1所述的磷酸镧多孔陶瓷的制备方法,其特征在于,步骤1)中,将研磨产物以3~5℃/min的速度升温至900℃~1200℃保温1~3h,得到磷酸镧粉体。
5.根据权利要求1所述的磷酸镧多孔陶瓷的制备方法,其特征在于,所述陶瓷浆料预混液的配制方法包括:将磷酸镧粉体、分散剂和催化剂按照质量比(95~100): (1~1.6): (1.1~1.3)在水中混合球磨1~2小时,所述球磨速度为300~360r/min。
6.根据权利要求1所述的磷酸镧多孔陶瓷的制备方法,其特征在于,在加入所述引发剂前,还包括加入流变剂将发泡陶瓷浆料的粘度调节至1000~1500 mPa·s的步骤;所述流变剂为羧甲基纤维素钠,其比例为0.06-0.19wt%。
7.一种磷酸镧多孔陶瓷,其特征在于,所述磷酸镧多孔陶瓷为采用权利要求1所述的制备方法制得的,该磷酸镧多孔陶瓷密度为1.0~1.7 g/cm3,气孔率为72~85%,气孔孔径为50~120µm,抗压强度为5~12Mpa;当磷酸镧多孔陶瓷的材料厚度为1cm,热面温度为1000℃时,冷面温度为290~350℃;10GHz的介电常数为2~4,损耗角正切为1.5~3.5×10-3
8.权利要求1~6中任意一项所述的制备方法制得的磷酸镧多孔陶瓷在透波材料方面的应用。
CN201810382639.9A 2018-04-25 2018-04-25 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用 Expired - Fee Related CN108395240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810382639.9A CN108395240B (zh) 2018-04-25 2018-04-25 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810382639.9A CN108395240B (zh) 2018-04-25 2018-04-25 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108395240A CN108395240A (zh) 2018-08-14
CN108395240B true CN108395240B (zh) 2020-05-05

Family

ID=63100522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810382639.9A Expired - Fee Related CN108395240B (zh) 2018-04-25 2018-04-25 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108395240B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553412B (zh) * 2018-12-07 2021-09-14 北京建筑材料检验研究院有限公司 一种低介电常数低损耗的钛酸锶钡多孔陶瓷及其制备方法
CN110526710B (zh) * 2019-10-14 2021-10-08 西北工业大学深圳研究院 一种锆酸镧多孔陶瓷及其制备方法和应用
CN115043665A (zh) * 2022-06-07 2022-09-13 哈尔滨工业大学 一种多孔莫来石-磷酸镧复相透波材料及其制备方法
CN115852672A (zh) * 2022-12-07 2023-03-28 航天特种材料及工艺技术研究所 一种高固含量低粘度的氧化铝浆料及其制备方法
CN117385485B (zh) * 2023-12-07 2024-02-23 天津包钢稀土研究院有限责任公司 稀土基宽光谱被动降温中空隔热纤维及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219894A (zh) * 2008-01-08 2008-07-16 上海大学 一种可切削氧化锆/磷酸镧全瓷口腔修复体材料的制备方法
CN101508580A (zh) * 2009-03-21 2009-08-19 中国海洋大学 一种LaPO4均匀弥散分布的LaPO4/Al2O3复合陶瓷的制备方法
CN104129979A (zh) * 2014-07-28 2014-11-05 北京交通大学 一种结构可控、性能可调的钙长石多孔陶瓷及其制备方法
CN106315536A (zh) * 2016-11-24 2017-01-11 淄博包钢灵芝稀土高科技股份有限公司 制备磷酸稀土的方法
CN107417288A (zh) * 2017-09-07 2017-12-01 济宁学院 氧化铝纤维增强纳米氧化铝泡沫陶瓷及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219307A (ja) * 2005-02-08 2006-08-24 Mitsubishi Rayon Co Ltd 多孔質リン酸カルシウム系セラミックス/カーボンナノチューブ組成物、その製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219894A (zh) * 2008-01-08 2008-07-16 上海大学 一种可切削氧化锆/磷酸镧全瓷口腔修复体材料的制备方法
CN101508580A (zh) * 2009-03-21 2009-08-19 中国海洋大学 一种LaPO4均匀弥散分布的LaPO4/Al2O3复合陶瓷的制备方法
CN104129979A (zh) * 2014-07-28 2014-11-05 北京交通大学 一种结构可控、性能可调的钙长石多孔陶瓷及其制备方法
CN106315536A (zh) * 2016-11-24 2017-01-11 淄博包钢灵芝稀土高科技股份有限公司 制备磷酸稀土的方法
CN107417288A (zh) * 2017-09-07 2017-12-01 济宁学院 氧化铝纤维增强纳米氧化铝泡沫陶瓷及其制备方法

Also Published As

Publication number Publication date
CN108395240A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
CN108395240B (zh) 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用
CN113831136B (zh) 一种固相烧结碳化硅制品及其制备方法
CN106747541A (zh) 一种原位合成莫来石晶须自增韧的莫来石陶瓷的方法
CN108585940B (zh) 磷酸盐多孔陶瓷及其制备方法和应用
CN103626510B (zh) 原位生长制备硼酸镁晶须多孔陶瓷的方法
CN109320257B (zh) 一种高强度高孔隙率多孔氮化硅陶瓷的制备方法
CN103242044B (zh) 一种BN/Si3N4复相陶瓷的凝胶注模成型制备方法
CN110092650B (zh) 轻质高强针状莫来石多孔陶瓷及其制备方法以及过滤器
CN108975949B (zh) 一种基于原位发泡AlON-AlN多孔材料及其制备方法
CN117285338A (zh) 一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法
CN115073195B (zh) 用于3d打印雷达天线罩的氮化硅晶须增强氮化物复合材料及制备和打印方法
CN110606768A (zh) 堇青石多孔陶瓷膜支撑体及其近净尺寸制备方法
CN115231925A (zh) 一种微波制备六铝酸钙结合碳化硅陶瓷的方法
CN109574649A (zh) 一种钇铝石榴石透明陶瓷的制备方法
CN115849928A (zh) 一种含有磷酸镧界面层的注凝成型的氧化铝纤维增强复合材料及其制备方法
CN108585825A (zh) 一种镁铝尖晶石基透波隔热材料及其制备方法
CN108147834A (zh) 介电常数可调控的轻质氮化硅天线罩及其制备方法
CN109970429B (zh) 硅气凝胶原位固化制备石墨增强金属基复合材料预制体的方法
CN110255939B (zh) 一种泡沫陶瓷轻集料及其制备方法
CN114044695A (zh) 一种多孔陶瓷材料及其制备方法
CN113582694A (zh) 一种采用Isobam体系凝胶注模成型钇铝石榴石型微波介质陶瓷的方法
CN109133976B (zh) 一种多孔氧化铝制备方法
CN114956840B (zh) 基于煤矸石的高强高微孔莫来石耐火材料及其制备方法
CN108046806A (zh) 一种凝胶注模制备致密钛铝碳陶瓷的方法
CN109081688A (zh) 一种氧化铝纤维增强蛋白土制备莫来石多孔陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200505