CN117285338A - 一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法 - Google Patents

一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法 Download PDF

Info

Publication number
CN117285338A
CN117285338A CN202311131580.3A CN202311131580A CN117285338A CN 117285338 A CN117285338 A CN 117285338A CN 202311131580 A CN202311131580 A CN 202311131580A CN 117285338 A CN117285338 A CN 117285338A
Authority
CN
China
Prior art keywords
rare earth
earth silicate
temperature resistance
entropy
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311131580.3A
Other languages
English (en)
Inventor
吴贞
周佳欣
王京阳
曾大玮
罗志新
孙鲁超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202311131580.3A priority Critical patent/CN117285338A/zh
Publication of CN117285338A publication Critical patent/CN117285338A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0605Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances by sublimating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5236Zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及轻质多孔高温隔热材料领域,具体为一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法。高熵稀土硅酸盐具体为单相的(YaHobYbcLudXe)2Si2O7,按摩尔百分比计,a、b、c和d的取值范围为10%~35%,e的取值范围为0%~35%,且a+b+c+d+e=1,X为Sc、Tm、Er、Dy或Tb,高熵稀土硅酸盐材料的孔隙率范围为85%~96%。以上述稀土氧化物、氧化硅粉末为原料,以水为分散介质配制陶瓷浆料,加入分散剂使浆料颗粒分散均匀,然后加入发泡剂并快速搅拌发泡,随后注模和低温冷冻,接着进行真空干燥和脱模。最后在马弗炉中高温烧结,制备出多孔高熵稀土硅酸盐高温隔热材料。本发明制备工艺简单,成本低廉,绿色环保,在航空航天的热防护领域具有广阔的应用前景。

Description

一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法
技术领域
本发明涉及轻质多孔高温隔热材料领域,具体为一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法。
背景技术
随着航空航天技术的迅速发展,高超声速飞行器在高速飞行时会产生严重的气动加热现象,造成飞行器表面温度迅速升高(>1500℃)。严重的气动热会使飞行器内部结构产生热应力,降低飞行器的强度并破坏其结构的完整性。陶瓷纤维刚性隔热瓦是目前常用的热防护材料之一,其应用面积占总热防护表面的68%,比如:美国第三代纤维隔热瓦的BRI系列和AETB系列,具有轻质和隔热性能好的优点;但是其长时间服役温度一般小于1300℃,短板为耐高温性较差,如表1所示。虽然这些材料具有较低的密度和热导率,但是经历热循环(即服役时)材料发生了严重的收缩。如此高的收缩率会明显影响飞行器的气动外形,热防护系统会产生较大缝隙,对飞行器安全产生严重威胁。所以,发展一种新型的耐高温性好的轻质高强低热导率的隔热材料具有重要意义。
表1LI-2200和AETB在空气中加热10min之后的收缩率变化
稀土硅酸盐凭借较高的熔点、非常低的热导率、良好的机械加工性和抗热气体腐蚀性、高的化学稳定性和热稳定性以及较低线性热膨胀系数,成为新型高温隔热材料的基体材料。此外高熵陶瓷由于具有四个核心效应,因而在性能上表现出更加优异的综合性能,如更好的强度、更低的热导率、更高的熔点等等。例如,多主元稀土硅酸盐比单主元稀土硅酸盐具有更高的熔点(高约100~200℃)以及更好的相稳定性(L.C.Sun et al.MaterialsResearch Letters.(材料研究快报)2020;8:424-430.)。因此,采用高熵稀土硅酸盐作为新型隔热材料的基体材料,有望获得更佳的耐高温性能,从而发展出综合性能优异的新型高温隔热材料。
发明内容
为了解决高温隔热领域存在的难题和对于新型隔热材料的迫切需要,本发明的目的在于提供一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法,可获得具有超高孔隙率、低热导率和优良耐高温性的高熵稀土硅酸盐多孔陶瓷隔热材料。
本发明的技术方案如下:
一种耐高温性好的超高孔隙率高熵稀土硅酸盐,高熵稀土硅酸盐具体为单相的(YaHobYbcLudXe)2Si2O7,按摩尔百分比计,a、b、c和d的取值范围为10%~35%,e的取值范围为0%~35%,且a+b+c+d+e=1,X为Sc、Tm、Er、Dy或Tb,高熵稀土硅酸盐材料的孔隙率范围为85%~96%。
所述的耐高温性好的超高孔隙率高熵稀土硅酸盐,优选的,a的取值范围为20%~30%,b的取值范围为20%~30%,c的取值范围为15%~30%,d的取值范围为15%~30%,e的取值范围为0%~15%。
一种耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,具体步骤如下:
(1)混料:将Y2O3粉、Ho2O3粉、Yb2O3粉、Lu2O3粉、X2O3粉和SiO2粉球磨混合均匀形成混合粉末;
(2)配制浆料:按质量份数计,依次加入去离子水20~45份、分散剂0.5~5份、YSZ纤维0~35份、混合粉末10~50份为原料,搅拌1~5小时,形成颗粒分散均匀的浆料;
(3)发泡-凝胶注模:将上述浆料置于35~75℃的水浴中,再按质量份数计,加入发泡剂1~10份,快速搅拌进行发泡,然后加入凝胶剂1~10份和表面活性剂1~5份,搅拌并注模;
(4)冷冻干燥:将注模后陶瓷泡沫坯体和模具放入-25~-70℃的冷冻箱中进行低温冷冻,接着在真空环境下干燥,之后坯体脱模;
(5)高温烧结:在空气中1400~1600℃下进行高温反应烧结1~5小时,便制备出具有超高孔隙率、低热导率和优良耐高温性的高熵(YaHobYbcLudXe)2Si2O7多孔陶瓷。
所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,步骤(1)中,球磨混合的方式为湿法行星球磨,湿法行星球磨工艺参数:转速为100~500转/分钟,球磨时间为6~48h。
所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,步骤(2)中,分散剂为聚甲基丙烯酸铵、柠檬酸或柠檬酸铵。
所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,步骤(2)中,YSZ纤维优选为1~20份。
所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,步骤(3)中,发泡剂为十二烷基硫酸铵或十二烷基硫酸钠,凝胶剂为淀粉、明胶或琼脂,表面活性剂为丙三醇或聚乙二醇,快速搅拌的搅拌机转速范围为500~5000rpm。
所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,步骤(4)中,低温冷冻时间为1~24小时,真空干燥时间为10~48小时。
所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,所制备高熵稀土硅酸盐多孔陶瓷的压缩强度为0.3~10MPa,热导率为0.05~0.35W/(m·K),热处理线收缩率<1.5%。
本发明的设计思想是:
为了解决目前隔热领域热防护材料高温下收缩率大的难题,本发明采用发泡-注凝-冷冻干燥工艺,兼具直接发泡法、凝胶注模成型法和冷冻干燥法的优点,能够很容易地制备出低密度、低热导率、超高孔隙率(85%~96%)、耐高温性好和具有复杂形状的多孔陶瓷。采用多主元稀土硅酸盐为原料,利用高熵效应,提高材料的熔点、相稳定性和耐高温性、降低热导率并提高力学性能。
本发明的优点及有益效果是:
1.本发明通过发泡-注凝-冷冻干燥法制备超轻质的高熵稀土硅酸盐多孔陶瓷隔热材料,其孔隙率高达85%~96%,压缩强度达到0.3~10MPa,热导率达到0.05~0.35W/(m·K),热处理线收缩率<1.5%。
2.本发明操作方便,工艺流程简单,具有绿色环保的特点,易于实现产业化。
3.本发明所制备的超高孔隙率高熵稀土硅酸盐多孔陶瓷有望成为性能优异的高温隔热材料(~1500℃),在航空航天热防护领域具有广阔的应用前景。
附图说明
图1为高熵(Y0.2Ho0.1Yb0.3Lu0.3Dy0.1)2Si2O7多孔陶瓷的扫描电镜(SEM)照片。
图2为氧化钇稳定氧化锆(YSZ)纤维增强型高熵(Y0.3Ho0.2Yb0.1Lu0.35Sc0.05)2Si2O7多孔陶瓷的X射线层析成像照片。
图3为YSZ纤维增强型高熵(Y0.25Ho0.25Yb0.25Lu0.25)2Si2O7多孔陶瓷的X射线衍射谱图。
具体实施方式
在具体实施过程中,本发明以稀土氧化物以及氧化硅粉末为原料,调节YSZ纤维的添加量,YSZ的作用是作为增强相,通过纤维桥连或纤维拔出等机制提高超高孔隙率多孔陶瓷的力学强度、并协同优化热学性能降低材料热导率,以水为分散介质配置浆料,搅拌浆料1~5小时,加入分散剂(聚甲基丙烯酸铵、柠檬酸或柠檬酸铵),再将上述浆料升温至35~75℃,快速搅拌下依次加入发泡剂(十二烷基硫酸铵或十二烷基硫酸钠)、凝胶剂(淀粉、明胶或琼脂)和表面活性剂(丙三醇或聚乙二醇),然后注模和冷冻,接着真空干燥、坯体脱模。最后在1400~1600℃下进行高温烧结,制备出高熵稀土硅酸盐多孔陶瓷,从而获得高孔隙率、低热导率和耐高温性优良的隔热材料,制备工艺简单,操作方便,成本低廉,工业生产前景广阔。
下面通过附图和实施例对本发明进一步详细描述。
实施例1
本实施例中,先称取去离子水35g,不断搅拌下依次加入柠檬酸0.5g和Y2O3:Ho2O3:Yb2O3:Lu2O3:Dy2O3:SiO2摩尔比2:1:3:3:1:20的混合粉末25g,进行混合并搅拌1小时,形成均匀分散的浆料;然后将上述浆料置于35℃的水浴中,加入十二烷基硫酸铵10g,快速搅拌(搅拌机转速为1500rpm)进行发泡10分钟,接着加入明胶10g和聚乙二醇5g,搅拌后注模;
将注模之后的坯体和模具放入-25℃的冷冻箱中进行低温冰冻24小时,接着在真空环境下干燥20小时,之后坯体脱模;最后在空气中1600℃下进行高温反应烧结1小时,制备出具有超高孔隙率和低热导率的高熵(Y0.2Ho0.1Yb0.3Lu0.3Dy0.1)2Si2O7多孔隔热陶瓷。
本实施例中,高熵(Y0.2Ho0.1Yb0.3Lu0.3Dy0.1)2Si2O7多孔陶瓷的孔隙率为95%,压缩强度为0.36MPa,以及热导率为0.07W/(m·K)。如图1所示,由多孔陶瓷样品的微观形貌的SEM照片可以看出,样品的大孔孔径分布为50~300μm,小孔尺寸为0.1~5μm。经过3次1550℃保温2h的高温热循环后,高熵稀土硅酸盐多孔陶瓷的平面方向收缩率为0.25%,厚度方向的收缩率为0.37%。
实施例2
本实施例中,先称取去离子水20g,不断搅拌下依次加入聚甲基丙烯酸铵5g、YSZ纤维4g和Y2O3:Ho2O3:Yb2O3:Lu2O3:Sc2O3:SiO2摩尔比6:4:2:7:1:40的混合粉末24g,进行混合并搅拌2小时,形成均匀分散的浆料;然后将上述浆料置于50℃的水浴中,加入十二烷基硫酸钠1g,快速搅拌(搅拌机转速为3000rpm)进行发泡30分钟,接着加入淀粉5g和丙三醇3g,搅拌后注模;
将注模之后的坯体和模具放入-40℃的冷冻箱中进行低温冰冻12小时,接着在真空环境下干燥36小时,之后坯体脱模;最后在空气中1400℃下进行高温反应烧结5小时,制备出具有超高孔隙率和低热导率的纤维增强型高熵(Y0.3Ho0.2Yb0.1Lu0.35Sc0.05)2Si2O7多孔陶瓷。
本实施例中,YSZ纤维增强型高熵(Y0.3Ho0.2Yb0.1Lu0.35Sc0.05)2Si2O7多孔陶瓷的孔隙率为89%,压缩强度为3.96MPa,以及热导率为0.15W/(m·K)。如图2所示,由YSZ纤维增强多孔陶瓷的X射线层析成像的XRT照片可以看出,样品中纤维分布均匀。
经过3次1550℃保温2h的高温热循环后,YSZ纤维增强型高熵稀土硅酸盐多孔陶瓷的平面方向收缩率为0.71%,厚度方向的收缩率为1.16%。
实施例3
本实施例中,先称取去离子水45g,不断搅拌下依次加入柠檬酸铵3g、YSZ纤维6g和Y2O3:Ho2O3:Yb2O3:Lu2O3:SiO2摩尔比1:1:1:1:8的混合粉末40g,进行混合并搅拌3小时,形成均匀分散的浆料;然后将上述浆料置于70℃的水浴中,加入十二烷基硫酸钠5g,快速搅拌(搅拌机转速为500rpm)进行发泡50分钟,接着加入琼脂1g和丙三醇1g,搅拌后注模;
将注模之后的坯体和模具放入-50℃的冷冻箱中进行低温冰冻2小时,接着在真空环境下干燥10小时,之后坯体脱模;最后在空气中1550℃下进行高温反应烧结2小时,制备出具有超高孔隙率和低热导率的YSZ纤维增强型高熵(Y0.25Ho0.25Yb0.25Lu0.25)2Si2O7多孔陶瓷。
本实施例中,YSZ纤维增强型高熵(Y0.25Ho0.25Yb0.25Lu0.25)2Si2O7多孔陶瓷的孔隙率为92%,压缩强度为1.56MPa,以及热导率为0.10W/(m·K)。如图3所示,由YSZ纤维增强型高熵稀土硅酸盐多孔陶瓷与未掺杂纤维的相组成XRD谱可以看出,加入YSZ纤维之后,YSZ纤维与(Y0.25Ho0.25Yb0.25Lu0.25)2Si2O7基体两相可稳定共存。经过3次1550℃保温2h的高温热循环后,YSZ纤维增强型高熵稀土硅酸盐多孔陶瓷的平面方向收缩率为0.59%,厚度方向的收缩率为0.91%。
实施例结果表明,本发明采用发泡-注凝-冷冻干燥工艺制备出具有超高孔隙率和低热导率的高熵稀土硅酸盐多孔陶瓷隔热材料,并且耐高温性能优异,1550℃经历数小时的热处理后线收缩率小于1.5%,明显小于对标的美国刚性隔热瓦热处理收缩率(低了一个数量级)。并且,本发明制备工艺简单,成本低廉,绿色环保,适合大规模生产,应用前景广阔。

Claims (9)

1.一种耐高温性好的超高孔隙率高熵稀土硅酸盐,其特征在于,高熵稀土硅酸盐具体为单相的(YaHobYbcLudXe)2Si2O7,按摩尔百分比计,a、b、c和d的取值范围为10%~35%,e的取值范围为0%~35%,且a+b+c+d+e=1,X为Sc、Tm、Er、Dy或Tb,高熵稀土硅酸盐材料的孔隙率范围为85%~96%。
2.按照权利要求1所述的耐高温性好的超高孔隙率高熵稀土硅酸盐,其特征在于,优选的,a的取值范围为20%~30%,b的取值范围为20%~30%,c的取值范围为15%~30%,d的取值范围为15%~30%,e的取值范围为0%~15%。
3.一种权利要求1至2之一所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,其特征在于,具体步骤如下:
(1)混料:将Y2O3粉、Ho2O3粉、Yb2O3粉、Lu2O3粉、X2O3粉和SiO2粉球磨混合均匀形成混合粉末;
(2)配制浆料:按质量份数计,依次加入去离子水20~45份、分散剂0.5~5份、YSZ纤维0~35份、混合粉末10~50份为原料,搅拌1~5小时,形成颗粒分散均匀的浆料;
(3)发泡-凝胶注模:将上述浆料置于35~75℃的水浴中,再按质量份数计,加入发泡剂1~10份,快速搅拌进行发泡,然后加入凝胶剂1~10份和表面活性剂1~5份,搅拌并注模;
(4)冷冻干燥:将注模后陶瓷泡沫坯体和模具放入-25~-70℃的冷冻箱中进行低温冷冻,接着在真空环境下干燥,之后坯体脱模;
(5)高温烧结:在空气中1400~1600℃下进行高温反应烧结1~5小时,便制备出具有超高孔隙率、低热导率和优良耐高温性的高熵(YaHobYbcLudXe)2Si2O7多孔陶瓷。
4.根据权利要求3所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,其特征在于,步骤(1)中,球磨混合的方式为湿法行星球磨,湿法行星球磨工艺参数:转速为100~500转/分钟,球磨时间为6~48h。
5.根据权利要求3所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,其特征在于,步骤(2)中,分散剂为聚甲基丙烯酸铵、柠檬酸或柠檬酸铵。
6.根据权利要求3所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,其特征在于,步骤(2)中,YSZ纤维优选为1~20份。
7.根据权利要求3所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,其特征在于,步骤(3)中,发泡剂为十二烷基硫酸铵或十二烷基硫酸钠,凝胶剂为淀粉、明胶或琼脂,表面活性剂为丙三醇或聚乙二醇,快速搅拌的搅拌机转速范围为500~5000rpm。
8.根据权利要求3所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,其特征在于,步骤(4)中,低温冷冻时间为1~24小时,真空干燥时间为10~48小时。
9.按照权利要求3所述的耐高温性好的超高孔隙率高熵稀土硅酸盐的制备方法,其特征在于,所制备高熵稀土硅酸盐多孔陶瓷的压缩强度为0.3~10MPa,热导率为0.05~0.35W/(m·K),热处理线收缩率<1.5%。
CN202311131580.3A 2023-09-04 2023-09-04 一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法 Pending CN117285338A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311131580.3A CN117285338A (zh) 2023-09-04 2023-09-04 一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311131580.3A CN117285338A (zh) 2023-09-04 2023-09-04 一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法

Publications (1)

Publication Number Publication Date
CN117285338A true CN117285338A (zh) 2023-12-26

Family

ID=89240041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311131580.3A Pending CN117285338A (zh) 2023-09-04 2023-09-04 一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法

Country Status (1)

Country Link
CN (1) CN117285338A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117886625A (zh) * 2024-03-15 2024-04-16 安徽大学 高强度多孔堇青石陶瓷材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117886625A (zh) * 2024-03-15 2024-04-16 安徽大学 高强度多孔堇青石陶瓷材料的制备方法
CN117886625B (zh) * 2024-03-15 2024-05-24 安徽大学 高强度多孔堇青石陶瓷材料的制备方法

Similar Documents

Publication Publication Date Title
CN109694258B (zh) 一种YSZ纤维增强型γ-Y2Si2O7多孔隔热陶瓷的制备方法
CN108329051B (zh) 一种超高孔隙率和低坯体收缩率Y2SiO5多孔陶瓷的制备方法
CN117285338A (zh) 一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法
Zhang et al. Foam gel-casting preparation of SiC bonded ZrB2 porous ceramics for high-performance thermal insulation
Marple et al. Mullite/alumina particulate composites by infiltration processing
CN104496484A (zh) 一种制备Si3N4/BAS复合陶瓷材料的方法
CN112062515B (zh) 一种利用碳化硅制备的高强地聚合物闭孔发泡材料及其制备方法
CN110862265A (zh) 一种莫来石晶须增强钙长石多孔陶瓷及其原位合成制备方法以及隔热瓦
CN111056846B (zh) 一种采用冷冻干燥和燃烧合成法快速制备的定向多孔氮化铝蜂窝陶瓷及其方法
Xue et al. Alumina hollow sphere-based ceramics bonded with preceramic polymer-filler derived ceramics
CN109133986B (zh) 一种基于发泡法的AlN-SiC多孔复合陶瓷及其制备方法
Ren et al. Preparation of porous Y2SiO5 ceramics with high porosity and extremely low thermal conductivity for radome applications
CN111606727B (zh) 高温透波隔热一体化纤维增强γ-(Y1-xHox)2Si2O7多孔固溶体及制备方法
CN112830810B (zh) 一种超高孔隙率铪钽铌三元碳化物超高温隔热材料及制备方法
CN107759240B (zh) 一种Si3N4/BAS复相陶瓷材料的制备方法
CN116396089B (zh) 一种三维碳化硅/碳化钼陶瓷骨架增强碳基复合材料及其制备方法和应用
Yang et al. Fabrication of in-situ self-reinforced Si3N4 ceramic foams for high-temperature thermal insulation by protein foaming method
CN114349516A (zh) 一种低温合成高致密SiC陶瓷的方法
CN115417669A (zh) 高硅氧玻璃纤维增强焦磷酸锆基复合材料及其制备方法
CN115231925A (zh) 一种微波制备六铝酸钙结合碳化硅陶瓷的方法
CN109320287B (zh) 高温强度优热导率低的多孔γ-(Y1-xHox)2Si2O7的制备方法
Ma et al. Preparation and characteristics of honeycomb mullite ceramics with controllable structure by stereolithography 3D printing and in-situ synthesis
CN112341227A (zh) 一种耐高温纳米隔热材料及其制备方法
Li et al. Preparation of low dielectric constant porous silicon nitride ceramics for radome application
Gang et al. Preparation and properties of calcium hexaaluminate porous ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination