CN111155039A - 一种碳纳米管增强钛基复合材料制备工艺 - Google Patents

一种碳纳米管增强钛基复合材料制备工艺 Download PDF

Info

Publication number
CN111155039A
CN111155039A CN202010064970.3A CN202010064970A CN111155039A CN 111155039 A CN111155039 A CN 111155039A CN 202010064970 A CN202010064970 A CN 202010064970A CN 111155039 A CN111155039 A CN 111155039A
Authority
CN
China
Prior art keywords
carbon nano
nano tube
composite material
carbon
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010064970.3A
Other languages
English (en)
Inventor
欧阳德来
胡满银
崔霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN202010064970.3A priority Critical patent/CN111155039A/zh
Publication of CN111155039A publication Critical patent/CN111155039A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/10Refractory metals
    • C22C49/11Titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种碳纳米管增强钛基复合材料制备工艺,所述方法包括以下步骤,步骤一、碳纳米管除杂、酸洗、化学镀铜;步骤二、按照一定比例将纯钛粉与镀铜碳纳米管机械球磨,使用无水乙醇为球磨介质,球磨一定时间后取出并真空干燥、过筛;步骤三、将步骤二获得的粉体放置石墨模具中进行低温快速放电等离子烧结,得到碳纳米管增强钛基复合材料。本发明通过碳纳米管表面镀覆一层表面均匀的铜颗粒,改善碳纳米管团聚问题,界面反应产生的TiC含量更多,同时生成Ti2Cu相,提高了复合材料力学性能。

Description

一种碳纳米管增强钛基复合材料制备工艺
技术领域
本发明涉及碳纳米管材料技术领域,具体涉及一种碳纳米管增强钛基复合材料制备工艺。
背景技术
钛基复合材料具有低密度、高比强度、耐高温、耐腐蚀等优良性能,在航空航天、先进武器系统和汽车工业中具有广阔的应用前景。同时原位技术被认为是制备非连续增强钛基复合材料的一种经济有效的方法,增强材料分布均匀,界面结合良好。因碳纳米管低密度、高杨氏模量、良好的导电性及导热性成为金属基复合材料的理想增强体,但由于碳纳米管极易团聚,与基体润湿性差等问题,阻碍了碳纳米管在金属基复合材料中的应用。
因此,在保持碳纳米管结构完整和性能稳定的基础上进行物理或化学改性,成为其应用中亟待解决的难题。
目前报道的碳纳米管增强钛基复合材料的主要是应用传统球磨工艺将钛粉与碳纳米管混合,后采用SPS技术烧结。该方法制备的复合材料中,虽然原位合成的TiC相使复合材料力学性能有所提高,但同时碳纳米管在钛基体中团聚严重,未达到钛基复合材料性能期望值。
但如果能够有效改善碳纳米管在基体中的团聚问题,增强与基体的润湿性与界面结合强度,那么就有望进一步推进碳纳米管在增强金属基复合材料的应用。
发明内容
本发明所要解决的问题是:提供一种碳纳米管增强钛基复合材料制备工艺,通过碳纳米管表面镀覆一层表面均匀的铜颗粒,改善碳纳米管团聚问题,界面反应产生的TiC含量更多,同时生成Ti2Cu相,提高了复合材料力学性能。
本发明为解决上述问题所提供的技术方案为:一种碳纳米管增强钛基复合材料制备工艺,其特征在于:所述方法包括以下步骤,
步骤一、碳纳米管除杂、酸洗、化学镀铜;
步骤二、按照一定比例将纯钛粉与镀铜碳纳米管机械球磨,使用无水乙醇为球磨介质,球磨一定时间后取出并真空干燥、过筛;
步骤三、将步骤二获得的粉体放置石墨模具中进行低温快速放电等离子烧结,得到碳纳米管增强钛基复合材料。
优选的,所述步骤一中碳纳米管为多壁碳纳米管,长度20~30nm,在350~450℃下保温1h除去表面不定形碳,后将0.5g碳纳米管与10~20ml浓硝酸放入水热反应釜至于干燥箱中,于100~180℃下反应1h。
优选的,所述步骤一中化学镀铜镀液所需的各浓度为Na2EDTA 20~30g/L、CuSO4·5H2O10~20g/L、NaOH 50~60g/L,控制PH在13~14之间,温度在50~70℃。
优选的,所述步骤二中纯钛粉粒径尺寸为300目,机械球磨为行星式球磨罐中进行,球料比为1:5,转速为200~400r/min,球磨时间6~10h。
优选的,所述步骤三种升温速率为100℃/min,烧结温度为850~1000℃,压力为30~60MPa,保温时间为5~10min。
优选的,此方法制备高性能的钛基复合材料,显微硬度高达627HV,摩擦系数0.2~0.3。
与现有技术相比,本发明的优点是:本发明采用原位合成技术生成TiC增强相,原位技术被认为是制备不连续增强钛基复合材料的一种经济有效方法,同时生成Ti2Cu相起到第二相强化作用,从而提高了材料的硬度;本发明通过机械球磨混粉工艺获得CNTs/Ti复合粉体,粉体具有较大的比表面积,粉体的接触面积增大。同时球磨过程中保留了碳纳米管完整的结构;本发明酸化过程将碳纳米管与浓硝酸置于反应釜中在100℃中反应1h,碳纳米管端口被打开,引入羟基、羰基、羧基等官能团,增强了碳纳米管与钛基体的润湿性;本发明选用放电等离子烧结技术,该技术具有升温速率快,烧结时间短,外加压力可控等优势。升温快、烧结时间短等特点可以保持碳纳米管结构完整性,同时减少碳纳米管与钛基体之间的界面反应和避免材料在烧结过程中氧化,通过调节外加压力可以提高材料的致密度;本发明所制备的材料具有高硬度和较低的摩擦系数。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1:碳纳米管酸化后红外分析图谱;
图2:实施例1中碳纳米管镀铜SEM图;
图3:实施例1中放电等离子烧结后XRD图;
图4:实施例2中在同种条件下烧结后硬度对比较图;
图5:实施例2中在同种条件下烧结后摩擦系数对比图。
具体实施方式
以下将配合附图及实施例来详细说明本发明的实施方式,藉此对本发明如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
实施例1
本实施例中一种碳纳米管增强钛基复合材料制备方法是按下述步骤进行的:
步骤一、将0.5g碳纳米管在350℃下保温1h,冷却至室温后取出,加入10ml浓硝酸置于水热反应釜中,于100℃反应1h冷却至室温取出,洗涤至中性后干燥。称量5gCuSO4·5H2O和10gNa2EDTA分别溶解于200ml的蒸馏水中,待完全溶解后混合静置生成白色沉淀,称为溶液A,称量10gNaOH溶解于200ml的蒸馏水中称为溶液B,将B溶液缓慢滴入A溶液中,直至白色沉淀消失,此时为蓝色澄清溶液C,将溶液C定容为500ml后加入甲醛调节PH至13,在水浴70℃环境下镀覆30min,镀覆过程不断加入溶液B维持PH恒定在13左右。镀覆后的碳纳米管抽滤用蒸馏水洗涤至中性,于60℃下真空干燥4h。
步骤二、按重量比Ti:CNTs=99:1配粉40g加入球墨罐中,球料比1:5,转速300r/min,加入30ml无水乙醇作为球磨介质球磨6h,之后使用60℃的真空干燥箱干燥10h,之后用200目的筛子过筛。
步骤三、将步骤二中得到的复合粉体装入
Figure BDA0002375688940000032
的石墨模具中,在升温速率为100℃/min,烧结温度为850℃,压力为30MPa,保温时间为6min,得到碳纳米管增强钛基复合材料。
实施例2
本实施例中一种碳纳米管增强钛基复合材料制备方法是按下述步骤进行的:
步骤一、将0.5g碳纳米管在,400℃下保温1h,冷却至室温后取出,加入20ml浓硝酸置于水热反应釜中,于100℃反应1h冷却至室温取出,洗涤至中性后干燥。称量10gCuSO4·5H2O和15gNa2EDTA分别溶解于200ml的蒸馏水中,待完全溶解后混合静置生成白色沉淀,称为溶液A,称量12gNaOH溶解于200ml的蒸馏水中称为溶液B,将B溶液缓慢滴入A溶液中,直至白色沉淀消失,此时为蓝色澄清溶液C,将溶液C定容为500ml后加入甲醛调节PH至13,在水浴75℃环境下镀覆30min,镀覆过程不断加入溶液B维持PH恒定在13左右。镀覆后的碳纳米管抽滤用蒸馏水洗涤至中性,于60℃下真空干燥4h。
步骤二、按重量比Ti:CNTs=99:1配粉40g加入球墨罐中,球料比1:5,转速200r/min,加入30ml无水乙醇作为球磨介质球磨4h,之后使用60℃的真空干燥箱干燥10h,之后用200目的筛子过筛。
步骤三、将步骤二中得到的复合粉体装入
Figure BDA0002375688940000031
的石墨模具中,在升温速率为100℃/min,烧结温度为900℃,压力为30MPa,保温时间为6min,得到碳纳米管增强钛基复合材料。
以上仅就本发明的最佳实施例作了说明,但不能理解为是对权利要求的限制。本发明不仅局限于以上实施例,其具体结构允许有变化。凡在本发明独立权利要求的保护范围内所作的各种变化均在本发明保护范围内。

Claims (6)

1.一种碳纳米管增强钛基复合材料制备工艺,其特征在于:所述方法包括以下步骤,
步骤一、碳纳米管除杂、酸洗、化学镀铜;
步骤二、按照一定比例将纯钛粉与镀铜碳纳米管机械球磨,使用无水乙醇为球磨介质,球磨一定时间后取出并真空干燥、过筛;
步骤三、将步骤二获得的粉体放置石墨模具中进行低温快速放电等离子烧结,得到碳纳米管增强钛基复合材料。
2.根据权利要求1所述的一种碳纳米管增强钛基复合材料制备工艺,其特征在于:所述步骤一中碳纳米管为多壁碳纳米管,长度20~30nm,在350~450℃下保温1h除去表面不定形碳,后将0.5g碳纳米管与10~20ml浓硝酸放入水热反应釜至于干燥箱中,于100~180℃下反应1h。
3.根据权利要求1所述的一种碳纳米管增强钛基复合材料制备工艺,其特征在于:所述步骤一中化学镀铜镀液所需的各浓度为Na2EDTA20~30g/L、CuSO4·5H2O 10~20g/L、NaOH50~60g/L,控制PH在13~14之间,温度在50~70℃。
4.根据权利要求1所述的一种碳纳米管增强钛基复合材料制备工艺,其特征在于:所述步骤二中纯钛粉粒径尺寸为300目,机械球磨为行星式球磨罐中进行,球料比为1:5,转速为200~400r/min,球磨时间6~10h。
5.根据权利要求1所述的一种碳纳米管增强钛基复合材料制备工艺,其特征在于:所述步骤三种升温速率为100℃/min,烧结温度为850~1000℃,压力为30~60MPa,保温时间为5~10min。
6.根据权利要求1所述的一种碳纳米管增强钛基复合材料制备工艺,其特征在于:此方法制备高性能的钛基复合材料,显微硬度高达627HV,摩擦系数0.2~0.3。
CN202010064970.3A 2020-01-20 2020-01-20 一种碳纳米管增强钛基复合材料制备工艺 Pending CN111155039A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010064970.3A CN111155039A (zh) 2020-01-20 2020-01-20 一种碳纳米管增强钛基复合材料制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010064970.3A CN111155039A (zh) 2020-01-20 2020-01-20 一种碳纳米管增强钛基复合材料制备工艺

Publications (1)

Publication Number Publication Date
CN111155039A true CN111155039A (zh) 2020-05-15

Family

ID=70564700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010064970.3A Pending CN111155039A (zh) 2020-01-20 2020-01-20 一种碳纳米管增强钛基复合材料制备工艺

Country Status (1)

Country Link
CN (1) CN111155039A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111659887A (zh) * 2020-06-08 2020-09-15 南昌航空大学 一种细化TiC颗粒增强钛基复合材料的制备方法
CN114807656A (zh) * 2022-03-16 2022-07-29 郑州航空工业管理学院 一种纳米级碳材料增强金属基复合材料的制备方法及其产品
CN115747552A (zh) * 2022-11-04 2023-03-07 上海交通大学 一种纳米铜修饰碳纳米管增强钛基复合材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031439A (zh) * 2011-01-12 2011-04-27 武汉理工大学 以镀铜碳纳米管增强受电弓滑板材料及其制备方法
CN105458292A (zh) * 2015-12-10 2016-04-06 北京理工大学 一种碳纳米管/铜粉体的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031439A (zh) * 2011-01-12 2011-04-27 武汉理工大学 以镀铜碳纳米管增强受电弓滑板材料及其制备方法
CN105458292A (zh) * 2015-12-10 2016-04-06 北京理工大学 一种碳纳米管/铜粉体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FU-CHI WANG等: "Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites", 《CARBON》 *
M. JAGANNATHAM等: "Microstructure and mechanical behavior of copper coated multiwall carbon nanotubes reinforced aluminum composites", 《MATERIALS SCIENCE & ENGINEERING A》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111659887A (zh) * 2020-06-08 2020-09-15 南昌航空大学 一种细化TiC颗粒增强钛基复合材料的制备方法
CN114807656A (zh) * 2022-03-16 2022-07-29 郑州航空工业管理学院 一种纳米级碳材料增强金属基复合材料的制备方法及其产品
CN114807656B (zh) * 2022-03-16 2022-11-22 郑州航空工业管理学院 一种纳米级碳材料增强金属基复合材料的制备方法及其产品
US11773027B1 (en) 2022-03-16 2023-10-03 Zhengzhou University Of Aeronautics Preparation method and product of metal-matrix composite reinforced by nanoscale carbon materials
CN115747552A (zh) * 2022-11-04 2023-03-07 上海交通大学 一种纳米铜修饰碳纳米管增强钛基复合材料的制备方法
CN115747552B (zh) * 2022-11-04 2023-09-26 上海交通大学 一种纳米铜修饰碳纳米管增强钛基复合材料的制备方法

Similar Documents

Publication Publication Date Title
CN111155039A (zh) 一种碳纳米管增强钛基复合材料制备工艺
CN110331318B (zh) 一种石墨烯及碳纳米管增强铝基复合材料及其制备方法
CN102719693A (zh) 石墨烯与碳纳米管混杂增强金属基复合材料及其制备方法
CN109554565B (zh) 一种碳纳米管增强铝基复合材料的界面优化方法
CN109261155B (zh) 一种碳纳米管/铜锌合金复合材料及其制备方法和应用
WO2017121204A1 (zh) 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN102732863B (zh) 一种磁场辅助石墨型碳材料化学镀磁性金属的制备方法
CN109852835B (zh) 一种石墨烯/铜纳米复合材料的制备方法
CN110983211A (zh) 一种碳纳米管增强铜基复合材料的制备方法
CN108213456B (zh) 一种立方体纳米铜粉的制备方法
CN104846231A (zh) 一种铜基石墨烯复合块体材料的制备方法
JP6027148B2 (ja) 金属および酸化物でハイブリッドコーティングされたナノカーボンの製造方法
CN107299237B (zh) 一种CNTs/TiO2纳米复合粉末增强Cu基复合材料的方法
CN110117732B (zh) 一种在空心微珠表面包覆MgO保护层的方法
CN110577209A (zh) 原位合成碳纳米管表面负载氧化铜纳米颗粒的制备方法
CN112008087A (zh) 一种提高碳纳米材料增强镍基高温合金综合性能的方法
CN111906329A (zh) 铜纳米材料结构的制备方法
CN111318688A (zh) 一种铝基导电粉体的制备方法及应用
CN101161338B (zh) 负载Cu2O微粒子的氧化石墨及其制备方法
CN115747551B (zh) 一种引入碳化钨界面相制备碳纳米管增强铜基复合材料的方法
Zhou et al. The effect of surface coating treatment on the properties of carbon nanotube reinforced copper matrix composites
KR20100134479A (ko) 금속나노입자가 코팅된 탄소나노튜브 분말 및 그의 제조 방법
CN111170317B (zh) 一种石墨烯改性金刚石/铜复合材料的制备方法
CN111893343B (zh) 改性纳米粒子弥散强化铜合金及其制备方法和应用、电子元件、机械元件
CN109732096B (zh) 一种金属纳米颗粒的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200515

WD01 Invention patent application deemed withdrawn after publication