CN114807656B - 一种纳米级碳材料增强金属基复合材料的制备方法及其产品 - Google Patents

一种纳米级碳材料增强金属基复合材料的制备方法及其产品 Download PDF

Info

Publication number
CN114807656B
CN114807656B CN202210258423.8A CN202210258423A CN114807656B CN 114807656 B CN114807656 B CN 114807656B CN 202210258423 A CN202210258423 A CN 202210258423A CN 114807656 B CN114807656 B CN 114807656B
Authority
CN
China
Prior art keywords
metal
carbon material
metal particles
nano
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210258423.8A
Other languages
English (en)
Other versions
CN114807656A (zh
Inventor
丁云鹏
施之爱
焦思佳
李志远
张义壮
王旭磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Aeronautics
Original Assignee
Zhengzhou University of Aeronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Aeronautics filed Critical Zhengzhou University of Aeronautics
Priority to CN202210258423.8A priority Critical patent/CN114807656B/zh
Publication of CN114807656A publication Critical patent/CN114807656A/zh
Application granted granted Critical
Publication of CN114807656B publication Critical patent/CN114807656B/zh
Priority to US18/121,072 priority patent/US11773027B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62842Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种纳米级碳材料增强金属基复合材料的制备方法及其产品,属于纳米级碳材料技术领域。本发明在纳米级碳材料表面镀覆金属层,然后加入金属颗粒进行球磨分散和烧结处理;纳米级碳材料的体积分数之和占复合材料的0.01~80%;纳米级碳材料和金属颗粒的尺寸要求为:K×单位体积中碳材料最大截面的面积之和≤单位体积中金属颗粒的表面积之和;其中,K为空间补偿系数。本发明方法实用、有效,能够使纳米级碳材料在金属基体中高效地均匀分散,且得到的复合材料还具有优异的力学、电学、热学性能,扩大了纳米碳材料在金属基复合材料、纳米电子器件以及生物传感器等领域的应用范围。

Description

一种纳米级碳材料增强金属基复合材料的制备方法及其产品
技术领域
本发明涉及纳米级碳材料技术领域,特别是涉及一种纳米级碳材料增强金属基复合材料的制备方法及其产品。
背景技术
采用纳米级碳材料(碳纳米管、石墨烯、C60)作为增强体的金属基复合材料具有高强度、高导热、高导电、耐磨、低热膨胀等优良特性,是现代工业高速发展不可缺少的关键共性材料,具有巨大的市场应用潜力。
然而,纳米级碳材料的表面能大,受到范德华力易发生团聚,无法充分发挥碳材料的性能优势,甚至因为团聚而成为弱相,阻碍复合材料性能的提高。因此,纳米级碳材料在金属基体中均匀分散问题成为困扰其技术发展的关键。
其传统分散方法包括加入表面活性剂、液体分散法、长时间球磨、原位合成法等。但是,加入的表面活性剂在后续制备过程中难以充分去除;液体分散法结束后容易出现二次团聚;长时间球磨破坏碳材料结构;原位合成法制备效率太低。这些因素阻碍了现有方法的应用。
发明内容
本发明所要解决的技术问题在于提供一种纳米级碳材料增强金属基复合材料的制备方法及其产品,以克服现有技术中存在的不足,从而促进纳米级碳材料在金属基复合材料等领域中的应用。本发明的方法能够使纳米级碳材料在金属基体中高效地均匀分散,且得到的复合材料还具有优异的力学、电学、热学性能。
为实现上述目的,本发明提供了如下方案:
本发明目的之一是提供一种纳米级碳材料增强金属基复合材料的制备方法,包括如下步骤:在纳米级碳材料表面镀覆金属层,然后加入金属颗粒进行球磨分散和烧结处理;
所述纳米级碳材料的体积之和占复合材料的0.01~80%;
所述纳米级碳材料和金属颗粒的尺寸要求(根据空间容量计算法确定)为:K×单位体积中碳材料最大截面的面积之和≤单位体积中金属颗粒的表面积之和;其中,K为空间补偿系数,K取1~9。
单位体积中碳材料最大截面的面积之和=碳材料所占体积分数/单个碳材料的平均体积×单个碳材料最大截面积的平均值;
单位体积中金属颗粒的表面积之和=(1-碳材料所占体积分数)/单个金属颗粒的平均体积×单个金属颗粒的平均表面积。
进一步地,所述纳米级碳材料为碳纳米管、石墨烯/石墨纳米片、C60中的一种或多种;所述镀覆金属层为镀覆镍、铜、锌、钨、银、钛、钴、铁中的任意一种,所述金属颗粒为铜、铝、镁、钛、银、镍、铁、钴金属/合金中的任意一种。
进一步地,所述碳纳米管的最大截面积为穿过轴线的纵截面的面积;所述石墨烯/石墨纳米片的最大截面积为其石墨层外表面的单面面积;所述金属颗粒和C60的体积=4/3πr3,表面积=4πr2
使用碳纳米管(CNT)时,球形颗粒(包括金属颗粒和C60)的最大粒度见表1:
表1
Figure BDA0003549297730000031
使用石墨烯/石墨纳米片时,球形颗粒(包括金属颗粒和C60)的最大粒度见表2:
表2
Figure BDA0003549297730000041
进一步地,所述镀覆采用化学镀、电镀、物理气相沉积或化学气相沉积的方法,使纳米级碳材料表面附着金属。
进一步地,所述球磨采用干混法和湿混法皆可,在二维球磨机或三维混料机中进行;所述球磨的转速为200~900r/min,球磨的时间为0.1~6h。
进一步地,所述烧结为热压烧结、预压+无压烧结、放电等离子烧结、振荡烧结、微波烧结中的任意一种。
进一步地,所述烧结的温度和时间要求如下:
所述金属颗粒为铜金属或合金:550~1000℃,0.5~3h;
所述金属颗粒为铝金属或合金:500~650℃,0.5~1.5h;
所述金属颗粒为镁金属或合金:500~550℃,0.25~1h;
所述金属颗粒为钛金属或合金:950~1200℃,1~3h;
所述金属颗粒为银金属或合金:750~1000℃,0.5~3h;
所述金属颗粒为镍金属或合金:900~1200℃,0.5~3h;
所述金属颗粒为铁金属或合金:1000~1200℃,0.5~3h;
所述金属颗粒为钴金属或合金:950~1200℃,0.5~3h。
本发明目的之二是提供一种纳米级碳材料增强金属基复合材料,采用所述的制备方法制备得到。
本发明公开了以下技术效果:
纳米级碳材料在金属中的分散主要是通过分散于金属颗粒的表面来实现。长时间球磨可以改变金属颗粒形状,从而增加金属颗粒表面积,但由于纳米级碳材料在长时间球磨过程中结构易受到破坏。因此,金属颗粒的原始表面积显得很重要。纳米级碳材料由于比表面积很大,导致即使是较小体积分数的碳材料的最大截面积总和也很大,易超过金属颗粒的表面积之和。从而使得金属粉末中无法均匀分散这些碳材料。金属颗粒的面积总和与碳材料的最大截面积总和的比值(K值)应该达到1到9倍时才能为纳米级碳材料提供足够的容纳空间,这是其均匀分散的前提。
本发明方法解决了纳米级碳材料易发生团聚的现象,无需加入表面活性剂等助剂,避免了后续助剂难以充分去除的问题,且该方法球磨时间较短,不会破坏碳材料结构。本发明方法实用、有效,通过合理调整纳米级碳材料和金属颗粒的尺寸,实现了纳米碳材料在金属基体中的均匀分散和良好的界面结合,能够使纳米级碳材料在金属基体中高效地均匀分散,且得到的纳米碳材料增强金属基复合材料还具有优异的力学、电学、热学性能,扩大了纳米碳材料在金属基复合材料、纳米电子器件以及生物传感器等领域的应用范围。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为表面镀镍碳纳米管的SEM形貌图;
图2为碳纳米管(CNT)在金属颗粒表面的分散情况,其中,(a)为CNT在铜金属颗粒表面的分散情况,(b)为CNT在镍金属颗粒表面的分散情况,(c)为CNT在银金属颗粒表面的分散情况,(d)为CNT在镁金属颗粒表面的分散情况;
图3为对比例1镁合金AZ91+0.5%CNT(镀镍)混合粉末中的CNT团聚体扫描照片;
图4为实施例1镁合金AZ91+0.5%CNT(镀镍)烧结试样断裂后CNT分布的扫描照片;
图5为实施例2细颗粒Cu+5%CNT混合粉末均匀分散的扫描图;
图6为对比例2细颗粒Cu+5%CNT混合粉末CNT团聚的扫描图;
图7为实施例2的CNT均匀分散的Cu+5%CNT复合材料较好的压缩力学性能曲线。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
实施例1
在碳纳米管表面采用化学镀的方式镀覆镍,碳纳米管的体积分数为0.5%,CNT外径为50nm,通过计算(计算过程见表3),镁合金AZ91的粒度要求为小于等于46.9μm;然后在氩气气氛下进行球磨分散,球磨的转速为400r/min,球磨的时间为3h,球磨后再进行真空热压烧结,温度为550℃,时间为1h,得到纳米碳材料增强金属基复合材料。其扫描照片如图4所示,从图中可以看出CNT均匀分布于复合材料之中,未发现CNT团聚现象,断口有CNT拔出的现象,证明CNT的桥联作用使得复合材料强度得以提高。该复合材料的抗拉强度为450MPa,伸长率为8%,导热率相比基体材料提高了28%,导电率提高了23%。
表3
Figure BDA0003549297730000081
实施例2
在碳纳米管表面采用化学镀的方式镀覆Cu,碳纳米管的体积分数为5%,CNT外径为20nm,通过计算(计算过程见表4),铜粉的粒度要求为小于等于0.199μm;然后在氩气气氛下进行球磨分散,球磨的转速为200r/min,球磨的时间为4h,球磨后两种粉末均匀混合在一起,其形貌如图5所示。球磨后再进行真空热压烧结,温度为800℃,时间为1h,得到纳米碳材料增强金属基复合材料。该复合材料抗拉强度为380MPa,伸长率为8%,导热率相比基体材料提高了39%,导电率提高了32%。
图7为本实施例的CNT均匀分散的Cu+5%CNT复合材料较好的压缩力学性能曲线,该复合材料强度高、塑性好、综合性能优越。
表4
Figure BDA0003549297730000091
对比例1(没有按照空间容量计算来确定金属粉末粒度)
在碳纳米管表面采用化学镀的方式镀覆镍,碳纳米管的体积分数为0.5%,CNT外径为50nm,镁合金AZ91的粒度要求为大于46.9μm;然后在氩气气氛下进行球磨分散,球磨的转速为400r/min,球磨的时间为3h,球磨后再进行真空热压烧结,温度为550℃,时间为1h,得到纳米碳材料增强金属基复合材料。其扫描照片如图3所示,图中明显可以看到CNT团聚现象,正是CNT团聚导致其成为复合材料变形时应力容易集中的区域,而使得复合材料过早的开裂,强度和塑性都下降。该复合材料的抗拉强度为320MPa,伸长率为4%,导热率相比基体材料提高了4%,导电率提高了3%。
对比例2(碳纳米管表面没有镀金属)
在碳纳米管表面没做任何处理,直接与铜粉混合,碳纳米管的体积分数为5%,CNT外径为50nm,通过计算(计算过程同实施例2的表4),铜粉的粒度要求为小于等于0.199μm;然后在氩气气氛下进行球磨分散,球磨的转速为200r/min,球磨的时间为4h,球磨后碳纳米管团聚依然非常严重,两种粉末没有均匀混合在一起,其形貌如图6所示。球磨后再进行真空热压烧结,温度为800℃,时间为1h,得到纳米碳材料增强金属基复合材料。该复合材料抗拉强度为276MPa,伸长率为1.8%,导热率相比基体材料降低了28%,导电率降低了25%。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (3)

1.一种纳米级碳材料增强金属基复合材料的制备方法,其特征在于,包括如下步骤:在纳米级碳材料表面镀覆金属层,然后加入金属颗粒进行球磨分散和烧结处理;
所述纳米级碳材料的体积之和占复合材料的0.01~30%;
所述纳米级碳材料和金属颗粒的尺寸要求为:K×单位体积中碳材料最大截面的面积之和≤单位体积中金属颗粒的表面积之和,其中,K为空间补偿系数,K取1~9;
所述单位体积中碳材料最大截面的面积之和=碳材料所占体积分数/单个碳材料的平均体积×单个碳材料最大截面积的平均值;
所述单位体积中金属颗粒的表面积之和=(1-碳材料所占体积分数)/单个金属颗粒的平均体积×单个金属颗粒的平均表面积;
所述纳米级碳材料为碳纳米管、石墨烯/石墨纳米片、C60中的一种或多种;所述镀覆金属层为镀覆镍、铜、锌、钨、银、钛、钴、铁中的任意一种,所述金属颗粒为铜、铝、镁、钛、银、镍、铁、钴金属中的任意一种;
所述碳纳米管的最大截面积为穿过轴线的纵截面的面积;所述石墨烯/石墨纳米片的最大截面积为其石墨层外表面的单面面积;
所述球磨的转速为400~900r/min,球磨的时间为3~6h;
所述烧结的温度和时间要求如下:
所述金属颗粒为铜金属:550~1000℃,0.5~3h;
所述金属颗粒为铝金属:500~650℃,0.5~1.5h;
所述金属颗粒为镁金属:500~550℃,0.25~1h;
所述金属颗粒为钛金属:950~1200℃,1~3h;
所述金属颗粒为银金属:750~1000℃,0.5~3h;
所述金属颗粒为镍金属:900~1200℃,0.5~3h;
所述金属颗粒为铁金属:1000~1200℃,0.5~3h;
所述金属颗粒为钴金属:950~1200℃,0.5~3h。
2.根据权利要求1所述的一种纳米级碳材料增强金属基复合材料的制备方法,其特征在于,所述镀覆采用化学镀、电镀、物理气相沉积或化学气相沉积的方法。
3.根据权利要求1所述的一种纳米级碳材料增强金属基复合材料的制备方法,其特征在于,所述烧结为热压烧结、预压+无压烧结、放电等离子烧结、振荡烧结、微波烧结中的任意一种。
CN202210258423.8A 2022-03-16 2022-03-16 一种纳米级碳材料增强金属基复合材料的制备方法及其产品 Active CN114807656B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210258423.8A CN114807656B (zh) 2022-03-16 2022-03-16 一种纳米级碳材料增强金属基复合材料的制备方法及其产品
US18/121,072 US11773027B1 (en) 2022-03-16 2023-03-14 Preparation method and product of metal-matrix composite reinforced by nanoscale carbon materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210258423.8A CN114807656B (zh) 2022-03-16 2022-03-16 一种纳米级碳材料增强金属基复合材料的制备方法及其产品

Publications (2)

Publication Number Publication Date
CN114807656A CN114807656A (zh) 2022-07-29
CN114807656B true CN114807656B (zh) 2022-11-22

Family

ID=82529571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210258423.8A Active CN114807656B (zh) 2022-03-16 2022-03-16 一种纳米级碳材料增强金属基复合材料的制备方法及其产品

Country Status (2)

Country Link
US (1) US11773027B1 (zh)
CN (1) CN114807656B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117226086B (zh) * 2023-11-15 2024-02-02 西安稀有金属材料研究院有限公司 一种高强塑多相异构钛基复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441662A (zh) * 2018-03-06 2018-08-24 昆明理工大学 一种金属包覆的碳纳米管增强金属基复合材料的制备方法
CN109338134A (zh) * 2018-09-08 2019-02-15 天津大学 一种镀镍碳纳米管增强铝基复合材料的制备方法
CN110560698A (zh) * 2019-09-11 2019-12-13 燕山大学 一种碳纳米管增强铜基复合材料的制备方法
CN111155039A (zh) * 2020-01-20 2020-05-15 南昌航空大学 一种碳纳米管增强钛基复合材料制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441662A (zh) * 2018-03-06 2018-08-24 昆明理工大学 一种金属包覆的碳纳米管增强金属基复合材料的制备方法
CN109338134A (zh) * 2018-09-08 2019-02-15 天津大学 一种镀镍碳纳米管增强铝基复合材料的制备方法
CN110560698A (zh) * 2019-09-11 2019-12-13 燕山大学 一种碳纳米管增强铜基复合材料的制备方法
CN111155039A (zh) * 2020-01-20 2020-05-15 南昌航空大学 一种碳纳米管增强钛基复合材料制备工艺

Also Published As

Publication number Publication date
CN114807656A (zh) 2022-07-29
US20230295052A1 (en) 2023-09-21
US11773027B1 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
Duan et al. Effect of CNTs content on the microstructures and properties of CNTs/Cu composite by microwave sintering
Nazeer et al. Thermal and mechanical properties of copper-graphite and copper-reduced graphene oxide composites
Xue et al. Preparation and elevated temperature compressive properties of multi-walled carbon nanotube reinforced Ti composites
CN104988438B (zh) 一种高强高导碳纳米管增强铜基复合材料及其制备方法
Liu et al. Well-dispersion of CNTs and enhanced mechanical properties in CNTs/Cu-Ti composites fabricated by Molecular Level Mixing
JP4593473B2 (ja) カーボンナノチューブ分散複合材料の製造方法
JPWO2005040066A1 (ja) カーボンナノチューブ分散複合材料とその製造方法並びにその適用物
CN109554565A (zh) 一种碳纳米管增强铝基复合材料的界面优化方法
Wang et al. An electrodeposition approach to obtaining carbon nanotubes embedded copper powders for the synthesis of copper matrix composites
CN110655413B (zh) 一种各向同性石墨材料的制备方法
CN114807656B (zh) 一种纳米级碳材料增强金属基复合材料的制备方法及其产品
Kang et al. Achieving highly dispersed nanofibres at high loading in carbon nanofibre–metal composites
Li et al. In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites
Wang et al. Simultaneous achievement of high strength and high ductility in copper matrix composites with carbon nanotubes/Cu composite foams as reinforcing skeletons
Darabi et al. The effect of sintering temperature on Cu-CNTs nano composites properties Produced by PM Method
Zhao et al. Fabrication of RGO/Cu composites based on electrostatic adsorption
Zhao et al. Achieving a better mechanical enhancing effect of carbonized polymer dots than carbon nanotubes and graphene in copper matrix
JP4593472B2 (ja) カーボンナノチューブ分散複合材料の製造方法並びにその適用物
Wang et al. Interface structure and properties of CNTs/Cu composites fabricated by electroless deposition and spark plasma sintering
CN110586938B (zh) 一种网络结构的纳米碳-钛基复合粉末及其应用
CN113088763A (zh) 一种石墨烯/铝合金复合材料及其制备方法
Guo et al. Influence of different preparation processes on the mechanical properties of carbon nanotube-reinforced copper matrix composites
CN109797306A (zh) 一种碳纳米管-铜复合材料的制备方法
CN112680636A (zh) 一种微纳复合构型铝基复合材料及其制备方法
Yan et al. Inhomogeneous copper matrix composites reinforced by RGO/Cu composite foams with high electrical conductivity, tensile strength and fracture elongation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant