WO2021227603A1 - 一种微波陶瓷介质滤波器及其加工成型方法 - Google Patents
一种微波陶瓷介质滤波器及其加工成型方法 Download PDFInfo
- Publication number
- WO2021227603A1 WO2021227603A1 PCT/CN2021/078050 CN2021078050W WO2021227603A1 WO 2021227603 A1 WO2021227603 A1 WO 2021227603A1 CN 2021078050 W CN2021078050 W CN 2021078050W WO 2021227603 A1 WO2021227603 A1 WO 2021227603A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic
- microwave
- ceramic dielectric
- temperature
- microwave ceramic
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 213
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000012545 processing Methods 0.000 title claims abstract description 26
- 239000000843 powder Substances 0.000 claims abstract description 49
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 36
- 238000001746 injection moulding Methods 0.000 claims abstract description 34
- 239000011230 binding agent Substances 0.000 claims abstract description 30
- 238000002156 mixing Methods 0.000 claims abstract description 29
- 238000000465 moulding Methods 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 238000005238 degreasing Methods 0.000 claims description 53
- 238000002347 injection Methods 0.000 claims description 47
- 239000007924 injection Substances 0.000 claims description 47
- 238000005245 sintering Methods 0.000 claims description 47
- 230000008569 process Effects 0.000 claims description 22
- 239000002253 acid Substances 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 17
- 238000004898 kneading Methods 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 16
- 239000004014 plasticizer Substances 0.000 claims description 15
- -1 polyethylene Polymers 0.000 claims description 15
- 239000004094 surface-active agent Substances 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 13
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- 238000005469 granulation Methods 0.000 claims description 9
- 230000003179 granulation Effects 0.000 claims description 9
- 239000004743 Polypropylene Substances 0.000 claims description 8
- 229920001155 polypropylene Polymers 0.000 claims description 8
- 239000005416 organic matter Substances 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 6
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 6
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 6
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 claims description 6
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000005642 Oleic acid Substances 0.000 claims description 6
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 claims description 6
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 6
- 239000000314 lubricant Substances 0.000 claims description 6
- 238000001465 metallisation Methods 0.000 claims description 6
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 6
- 150000007524 organic acids Chemical class 0.000 claims description 6
- 239000012188 paraffin wax Substances 0.000 claims description 6
- 229920001744 Polyaldehyde Polymers 0.000 claims description 5
- 239000002270 dispersing agent Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 150000007522 mineralic acids Chemical class 0.000 claims description 5
- 229920002545 silicone oil Polymers 0.000 claims description 5
- 229920001684 low density polyethylene Polymers 0.000 claims description 4
- 239000004702 low-density polyethylene Substances 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 235000021355 Stearic acid Nutrition 0.000 claims description 3
- 239000005084 Strontium aluminate Substances 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- PACGUUNWTMTWCF-UHFFFAOYSA-N [Sr].[La] Chemical compound [Sr].[La] PACGUUNWTMTWCF-UHFFFAOYSA-N 0.000 claims description 3
- 229910002113 barium titanate Inorganic materials 0.000 claims description 3
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims description 3
- ZFXVRMSLJDYJCH-UHFFFAOYSA-N calcium magnesium Chemical compound [Mg].[Ca] ZFXVRMSLJDYJCH-UHFFFAOYSA-N 0.000 claims description 3
- VHMOLMHQQMYDAL-UHFFFAOYSA-N calcium samarium Chemical compound [Ca][Sm] VHMOLMHQQMYDAL-UHFFFAOYSA-N 0.000 claims description 3
- 229960002380 dibutyl phthalate Drugs 0.000 claims description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 3
- 238000011068 loading method Methods 0.000 claims description 3
- 239000004200 microcrystalline wax Substances 0.000 claims description 3
- 235000019808 microcrystalline wax Nutrition 0.000 claims description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 3
- 235000021313 oleic acid Nutrition 0.000 claims description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920000193 polymethacrylate Polymers 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- 239000008117 stearic acid Substances 0.000 claims description 3
- 238000003825 pressing Methods 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 23
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 7
- 235000006408 oxalic acid Nutrition 0.000 description 7
- 229920006324 polyoxymethylene Polymers 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 229930040373 Paraformaldehyde Natural products 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229930182556 Polyacetal Natural products 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 238000000635 electron micrograph Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 235000021167 banquet Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62695—Granulation or pelletising
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63408—Polyalkenes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63448—Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63472—Condensation polymers of aldehydes or ketones
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63496—Bituminous materials, e.g. tar, pitch
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/88—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/2002—Dielectric waveguide filters
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6022—Injection moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the present invention relates to the field of communication technology, in particular to a method for processing and forming a microwave ceramic dielectric filter.
- Microwave dielectric ceramics are a new type of functional ceramic powder developed in the past two decades. It refers to ceramic powder used in microwave frequency (mainly 300MHz ⁇ 30GHz frequency band) circuits as a dielectric powder and completes one or more functions. It is a key powder for manufacturing microwave dielectric filters and resonators. It has excellent properties such as high dielectric constant, low dielectric loss, and low temperature coefficient. It is suitable for manufacturing a variety of microwave components and can meet the requirements of miniaturization, integration, high reliability and low cost of microwave circuits.
- microwave ceramic dielectric filters with the characteristics of small size, low transmission loss, stable frequency, and low temperature coefficient will replace traditional metal resonators.
- the mainstream molding method of microwave ceramic dielectric filters is dry. Compression molding. Different from structural ceramics, the dry-pressed ceramic body has uneven density distribution, inconsistent shrinkage, poor dimensional accuracy of the ceramic body, and large sintering deformation, resulting in more subsequent flat grinding and CNC processing, high production costs, and uneven density. The distribution also affects the dielectric properties of ceramics, such as the dielectric constant and Qf value, which in turn affects the performance indicators of microwave ceramic dielectric filters. At any time, the design of dielectric filters becomes more complicated, such as dielectric filtering with various special-shaped hole structures. The dry press molding of the device cannot meet the molding requirements.
- the injection molding of ceramic materials uses plastic materials to be injected into ceramic parts under pressure.
- This molding method currently has a relatively mature process in structural ceramics, but the ceramic medium in the microwave ceramic dielectric filter is a functional ceramic material At present, the injection molding process has not yet reached the requirements of functional ceramic parts.
- the purpose of the present invention is to provide a microwave ceramic dielectric filter processing and molding method, which solves the problem of inconsistent size shrinkage in dry pressing of microwave ceramic dielectric filters, complex shapes that cannot be molded, and uneven green density. problem.
- a microwave ceramic dielectric filter includes a ceramic dielectric body and a metal layer attached to the surface of the ceramic dielectric body.
- the ceramic dielectric body is injection molded by mixing microwave ceramic powder with a ceramic forming agent containing at least a binder.
- the amounts of the microwave ceramic powder and the ceramic forming agent of the present invention are respectively 75 wt% to 90 wt% and 10 wt% to 25 wt% according to mass percentages.
- the microwave ceramic powder of the present invention is one of calcium magnesium titanate, samarium calcium aluminate, barium titanate, and lanthanum strontium aluminate.
- the particle size does not exceed 1.5 ⁇ m, and the moisture content does not exceed 0.5%.
- the ceramic forming agent of the present invention further contains one or more of plasticizers, lubricants, dispersants, and surfactants.
- the ceramic forming agent of the present invention includes 50 wt% to 85 wt% of a binder; 5 wt% to 15 wt% of a plasticizer; and 3 wt% to 10 wt% of a surfactant.
- the binder of the present invention is paraffin wax, polyethylene, low-density polyethylene, ethylene-vinyl acetate copolymer, polypropylene, random polypropylene, polymethacrylate, polyaldehyde group One or a mixture of two or more; said plasticizer diethyl phthalate, dibutyl phthalate, dioctyl phthalate, di-n-butyl phthalate One or two or more of them are mixed; the surfactant is one or two or more of oleic acid, stearic acid, microcrystalline wax, white oil, and silicone oil.
- the acid described in the present invention is an organic acid or an inorganic acid.
- a method for processing and forming a microwave ceramic dielectric filter including
- Mixing and granulation step mixing the ceramic forming agent and the microwave ceramic powder evenly, placing it in an internal mixer for preheating and melting, kneading and mixing uniformly and granulating to obtain microwave ceramic feed;
- Injection molding step loading the above-mentioned microwave ceramic feed in an injection molding machine, and injection molding to obtain a ceramic medium body;
- Degreasing step removing the organic matter in the ceramic medium body
- Sintering and molding step placing the above-mentioned degreased ceramic medium body in a sintering furnace, and sintering by a stepwise temperature-rising sintering method, and a molded ceramic medium is obtained after the sintering is completed;
- Metallization treatment step metallize the above-mentioned ceramic dielectric to obtain a microwave ceramic dielectric filter.
- the stepwise heating sintering process is as follows: in the first stage, the temperature is increased from room temperature to 600-680°C after 1000-1300min, and the heating rate is 0.3-0.7°C. /min, and keep at 600-680°C for 200-250min; the second stage is heated from 600-680°C to 1400-1500°C, the heating rate is 3 ⁇ 5°C/min, and the third stage is at 1400-1500°C After keeping for 3-6 hours, the temperature will cool down naturally.
- the injection pressure is 55 MPa to 85 MPa, and the injection speed is 30 mm/s to 80 mm/s.
- the injection temperature is 135° C. to 200° C.
- the mold temperature is 40° C. to 150° C.
- the pressure holding speed is 20 mm/s to 40 mm/s.
- the degreasing process is one of thermal degreasing, solvent degreasing or catalytic degreasing.
- organic acid catalyzed degreasing is used, the degreasing temperature is 115°C to 155°C, the reaction time is 15h to 35h, and the acid feed rate is 1.5 to 4.5 g/min.
- the preheating temperature of the internal mixer is 150-165°C
- the temperature during kneading and mixing is 170°C to 200°C
- the kneading time is 30 minutes. ⁇ 120min
- the speed of the internal mixer is 5 ⁇ 15r/min.
- the processing and molding method of the microwave ceramic dielectric filter of the present invention further includes the processing step of microwave ceramic powder: drying the microwave ceramic powder at a temperature of 400-500°C, and drying at 120°C. Keep warm at -160°C.
- the present invention has the following beneficial effects:
- the microwave ceramic dielectric filter of the present invention has uniform density, excellent mechanical properties, stable and consistent dielectric constants of each part of the green body, and can be used for mass production of ceramic dielectric filters.
- the processing and forming method of the microwave dielectric filter of the present invention can obtain a ceramic dielectric filter body with uniform size shrinkage and small sintering deformation, which effectively reduces processing and reduces production costs.
- the processing and forming method of the dielectric filter of the present invention has superior technological conditions, can realize large-scale mass production, and the obtained ceramic material has superior performance and is suitable for being widely used in the communication field.
- Figure 1 is an electron micrograph of the surface of the ceramic dielectric body of the green body described in embodiment 2;
- FIG 2 is an electron microscope view of the surface of the sintered body of the ceramic dielectric body according to embodiment 2;
- FIG. 4 is an electron micrograph of the surface of the sintered ceramic dielectric body according to Comparative Example 1.
- FIG. 4 is an electron micrograph of the surface of the sintered ceramic dielectric body according to Comparative Example 1.
- the microwave ceramic dielectric filter of the present invention includes a ceramic dielectric body and a metal layer attached to the surface of the ceramic dielectric body.
- the ceramic dielectric body is made by mixing microwave ceramic powder with a ceramic forming agent containing at least a binder. Injection molding.
- the density of the ceramic medium body is not less than 3.0 g/cm 3 .
- the density of the ceramic medium body is 3.0-6.5 g/cm 3 .
- a method for processing and forming a microwave ceramic dielectric filter including
- Mixing and granulation step mixing the ceramic forming agent and the microwave ceramic powder evenly, placing it in an internal mixer for preheating and melting, kneading and mixing uniformly and granulating to obtain microwave ceramic feed;
- Injection molding step loading the above-mentioned microwave ceramic feed in an injection molding machine, and injection molding to obtain a ceramic medium body;
- Degreasing step removing the organic matter in the ceramic medium body
- Sintering and molding step placing the above-mentioned degreased ceramic medium body in a sintering furnace, and sintering by a stepwise temperature-rising sintering method, and a molded ceramic medium is obtained after the sintering is completed;
- Metallization treatment step metallize the above-mentioned ceramic dielectric to obtain a microwave ceramic dielectric filter.
- the order of addition will affect the uniformity of the mixing.
- the forming agent and the microwave ceramic powder are mixed uniformly, and then preheated and kneaded. During the heating process After the colloid is melted, the forming agent is evenly distributed in the microwave ceramic powder. Further considering that the forming agent with low melting point will volatilize under heating conditions, the forming agent with high melting point can be mixed with the microwave ceramic powder to reach the preheating temperature. Adding a low-melting forming agent later can effectively avoid the volatilization of the solvent.
- the blank appears irreversible pseudoplastic deformation.
- This pseudoplastic deformation is caused by the plastic deformation of the forming agent and the relative displacement of the powder particles; therefore, the large particles in the feed Promote small particles and ultra-fine particles to spread longitudinally and laterally, fine particles enter the gaps between coarse particles, and ultra-fine particles enter the gaps between fine particles and particles, so that the void ratio is gradually reduced.
- the injection pressure increases, the particles of the microwave ceramic powder become more compact, the moisture is compressed from the small pores to the atmosphere, and the air is further compressed and squeezed out. When the injection pressure reaches a certain limit value, the density of the green body rises and reaches a dense state.
- the injection pressure is controlled to be 55 MPa to 150 MPa. Further, the injection speed will also affect the density of the blank, and the injection speed is 30mm/s ⁇ 80mm/s.
- the degreasing process is one of thermal degreasing, solvent degreasing or catalytic degreasing.
- thermal degreasing is to heat the ceramic parts in an electric furnace to 500°C or higher to remove the remaining binder in the green body.
- gas molecules are transmitted to the surface of the molded body through diffusion or penetration, and thermal degreasing The process is proportional to the thickness of the green body, so thermal degreasing generally takes a long time.
- Solvent degreasing is the use of non-polar solvents, such as gasoline, chloroform, petroleum ether and other solvents for degreasing; solvent degreasing efficiency is higher, and the degreasing time is short, but poor process control is prone to swelling, causing the green body to crack.
- Catalytic degreasing is the degreasing of the ceramic body of the binder of the polymerized aldehyde-based system.
- acid vapor is used to catalyze the cracking reaction.
- the acid used in the degreasing step of the present invention is used as a catalyst, and the acid may be an organic acid or an inorganic acid.
- the inventor also found that because the molded ceramic medium body undergoes heating to a high temperature during the sintering process and is maintained for an appropriate time, through material migration and a series of physical and chemical changes, the enhanced bonding between powder particles and the growth of crystal grains are completed. A densification process such as the reduction of pores and grain boundaries will eventually form a solid.
- the moisture in the green body is discharged first. As the moisture in the capillary holes in the green body is discharged, the particles close together and the green body shrinks, forming internal stress.
- the heating speed is too fast and the temperature is too high, the water on the surface of the green body will evaporate violently, the surface layer shrinks to the maximum, the capillary of the surface layer is reduced or even closed, the internal moisture is difficult to migrate outwards, and the humidity difference between the inside and the outside increases.
- the surface layer of the body is under tensile stress and the inner layer is under compressive stress. If the internal stress is not uniform, it will cause the green body to deform. When the tensile stress exceeds the dry strength of the green body, it will cause the green body to crack. Therefore, in the present invention, before the sintering temperature rise of the ceramic medium body, it is heated in the sintering furnace from room temperature to 600-680°C for 1000-1300 minutes.
- the heating rate in the first stage is controlled to 0.3 ⁇ 0.7°C/min, and keep for 200-250min when the temperature reaches 600-680°C, this stage is equivalent to the debinding stage; the second stage is heated from 650°C to 1400-1500°C, this stage is to increase the strength of the green body In the densification process, a dense and strong ceramic body is formed through this stage.
- the heating rate is 3 ⁇ 5°C/min.
- the third stage is 1400-1500°C for 3-6 hours to ensure sufficient ceramic grains. Grow to complete the ceramic densification process.
- the feeding melting degree is low, which will cause the feeding to block the mold during the injection process; if the injection temperature is too high, the feeding material reaches a completely molten state, and the feeding is in the injection process The phenomenon of segregation and two-phase separation will occur; in addition, too high injection temperature will cause excessive volatilization of low melting point components in the molding agent, which will cause a large number of pores in the green body during the volatilization process, which affects the density of the green body. Therefore, in the present invention
- the middle injection temperature is 135°C to 200°C, and the preferred injection temperature is controlled at 140-160°C.
- the packing speed will also affect the density of the green body. If the packing speed is too fast, it will lead to insufficient packing time, resulting in excessively thick dimensions and uneven density of the green body. Therefore, in the present invention, in a preferred solution, the pressure holding speed needs to be controlled within the range of 20 mm/s to 40 mm/s. In order to avoid the deformation of the injection-molded body directly from high temperature to low temperature in the mold, the mold needs to be heated. In the present invention, the mold temperature is 40°C to 150°C. Preferably, the mold temperature is 90-120°C. °C.
- the preheating temperature of the banbury mixer is 150-165°C, and the kneading and mixing The temperature at the time is 170°C ⁇ 200°C, the kneading time is 30min ⁇ 120min, and the speed of the internal mixer is 5 ⁇ 15r/min.
- the processing and molding method of the microwave ceramic dielectric filter of the present invention also includes the processing step of microwave ceramic powder: drying the microwave ceramic powder at a temperature of 400-500°C, and drying it at 12 Keep warm at -160°C.
- the microwave ceramic powder and the ceramic forming agent are mixed in a certain proportion.
- the amount of the microwave ceramic powder and the ceramic forming agent according to the present invention is 75 wt% to 90 wt% and 10 wt%, respectively. % ⁇ 25wt%.
- the mass percentages are respectively 75 wt% to 80 wt% and 20 wt% to 25 wt%, and further the mass percentages may also be 78 wt% to 82 wt% and 18 wt% to 22 wt%, respectively.
- the ceramic powder of the present invention is one of calcium magnesium titanate, samarium calcium aluminate, barium titanate, and lanthanum strontium aluminate.
- the inventor found that the uniformity of the material distribution during mixing is largely determined by the ratio of the density of each component to the particle size of the powder. The closer the density and the particle size are, the more likely it is to obtain a homogeneous mixture. Therefore, in order to obtain a consistent microwave ceramic medium, preferably, the particle size of the microwave ceramic powder used in the present invention does not exceed 1.5 ⁇ m, and the moisture content does not exceed 0.5%.
- the binder in the injection molding process, is one of the key factors.
- the fluidity of the binder must be considered first, and the viscosity should be moderate, the viscosity is too high, and the ceramic powder It cannot be effectively dispersed in the binder, which increases the difficulty of mixing, and the obtained ceramic feed is uneven, and the viscosity is too low, which will cause delamination between the ceramic powder and the binder, which will affect the consistency of the ceramic body;
- we must consider the wettability of the binder to the split body, increase the fluidity of the powder, and facilitate injection molding; in addition, in order to ensure the thermal conductivity and thermal expansion coefficient of the functional ceramic, the added binder should be avoided due to thermal stress.
- the green body produces defects.
- the binder that can be selected in the present invention is one or two of paraffin wax, polyethylene, low-density polyethylene, ethylene-vinyl acetate copolymer, polypropylene, random polypropylene, polymethacrylate, polyaldehyde group, etc. Mix of the above.
- the preferred binder used contains at least a polyaldehyde-based binder.
- the polyaldehyde-based binder has good compatibility with the ceramic powder, and the strength of the molded body is relatively high. , To meet the performance requirements of functional ceramics, and at the same time the product has a high pass rate.
- the polyacetal-based binder can be specifically selected but not limited to polyacetal.
- the microwave ceramic filter of the present invention adopts an acid-catalyzed degreasing process during the molding process.
- it can be organic acid-catalyzed degreasing or inorganic acid degreasing.
- the listed organic acids can be selected From but not limited to oxalic acid; inorganic acid can be selected from but not limited to nitric acid.
- oxalic acid is preferably used as a catalyst for degreasing.
- the degreasing efficiency of oxalic acid is high and the time is short.
- the reaction temperature is lower than the melting point of the polyoxymethylene resin to avoid the generation of liquid phase, thereby avoiding the softening of the green body or the deformation due to gravity. Therefore, it will not affect the morphology of the formed ceramic body and the yield of sintering.
- the amount of acid is also a factor that affects the quality of the body. The larger the amount of acid, the faster the reaction rate. However, too much acid will affect the morphology of the ceramic body, and it will not significantly help the reaction of removing the binder.
- the acid catalyzes
- the degreasing temperature is 115°C ⁇ 155°C
- the reaction time is 15h ⁇ 35h
- the acid intake is 1.5 ⁇ 4.5g/min.
- the forming agent can improve the fluidity of the ceramic material during forming, increase the binding force between particles, and improve the mechanical strength of the green body. Therefore, in addition to the main function of the forming agent, in addition to the bonding effect (the bonding effect is realized by the adhesive), sometimes it is also necessary to increase its plasticizing effect. This effect is usually achieved by adding a plasticizer, but the adhesive and the The surface adsorption of plasticizer and microwave ceramic powder will be affected. In order to improve this effect, it can be solved by adding a small amount of surfactant. Therefore, the ceramic molding agent of the present invention contains not only a binder, but also a plasticizing agent. One or two or more of agents, lubricants, dispersants, and surfactants.
- the preferred combination of ceramic forming agents can be implemented, including binders, plasticizers, and surfactants; or better, there can also be a second combination including plasticizers, lubricants, and dispersants. , Or there may be a third combination method including binder, plasticizer, lubricant, dispersant, surfactant; the fourth combination method includes binder, plasticizer, lubricant, surfactant, etc.
- the plasticizer can be selected from one of diethyl phthalate, dibutyl phthalate, dioctyl phthalate, di-n-butyl phthalate, etc.
- the surfactant can be selected from one or two or more of oleic acid, stearic acid, microcrystalline wax, white oil, silicone oil, and the like.
- the ceramic forming agent of the present invention includes: 60 wt% to 85 wt% of binder; 5 wt% to 25 wt% of plasticizer; 3 wt% of surfactant. ⁇ 15wt%.
- the mass percentage of microwave ceramic powder is 75% to 90%
- the mass percentage of binder is 10% to 20%
- the mass percentage of plasticizer is 1% to 4%
- the mass percentage of surfactant is 0.5 % ⁇ 3%.
- a microwave ceramic dielectric filter includes a ceramic dielectric body and a metal layer attached to the surface of the ceramic dielectric body.
- the feed for preparing the ceramic dielectric body includes 24kg of microwave ceramic powder, 4.2kg of polyoxymethylene, 0.9kg of polypropylene, and 0.6 of paraffin wax. kg, dioctyl phthalate 0.012kg, oleic acid 0.06kg, silicone oil 0.06kg;
- the preparation method is as follows:
- the above microwave ceramic feed is installed in the injection molding machine, and the ceramic medium body is obtained by injection molding.
- the injection temperature is 155°C
- the mold temperature is 125°C
- the injection speed is 40mm/s
- the pressure holding speed is 20mm/ s;
- Degreasing step Use oxalic acid to catalyze the removal of organic matter in the ceramic medium body.
- the degreasing parameters are as follows: temperature is 125°C, time is 18h, acid intake: 1.8g/min;
- Metallization processing steps the above-mentioned ceramic medium is metallized, and a microwave ceramic dielectric filter is obtained after being qualified after debugging.
- the inventors used 5MPa as the step length interval to make green bodies, and found that the injection pressure was below 35MPa, the green body was not packed tightly, and about 23% of the size of the green body obtained could not meet the requirements. And more than 30% of the green body will collapse when it is sintered. In the morphology of the sample with a lower injection pressure, the surface will appear concave and uneven, and the section will obviously appear cracks, voids and other defects. Because the defective rate of green bodies and sintered bodies under lower injection pressure is too high, the green bodies with injection pressure below 35 MPa are no longer sintered, and their performance is not analyzed; similarly, it is found that the injection pressure exceeds 160 MPa.
- Table 1 The influence of injection pressure on the properties of microwave ceramic green bodies and sintered bodies
- the injection pressure when the injection pressure is in the range of 55-150MPa, whether it is a green body or a sintered body, it can meet the requirements in terms of density and bending strength.
- the injection pressure is 65-80MPa, the density and The flexural strength has excellent performance, and when the injection pressure is in the range of 55-150MPa, the obtained sintered body has excellent thermal conductivity. After being processed into a microwave dielectric filter, its Q value is excellent.
- a microwave ceramic dielectric filter includes a ceramic dielectric body and a metal layer attached to the surface of the ceramic dielectric body.
- the feed for preparing the ceramic dielectric body includes microwave ceramic powder 24.6kg, polyoxymethylene 3.51kg, and low-density polyethylene 1.08kg , Paraffin wax 0.54kg, dioctyl phthalate 0.108kg, oleic acid 0.081kg, sorbitan monostearate 0.054kg, polyamide 0.027kg;
- the preparation method is as follows:
- Microwave ceramic powder pretreatment Dry the microwave ceramic powder at 500°C for 2h, and keep it at 150°C;
- Mixing banburying granulation step After mixing the ceramic forming agent and the microwave ceramic powder evenly, place it in a banbury mixer for preheating and melting, the preheating temperature is 165°C, the speed is 5r/min, and the preheating temperature is reached, and then the temperature is raised and kneaded. Kneading, kneading temperature is 180 °C, rotating speed is 25r/min, kneading and mixing uniformly to form milky white mud mass, and then granulating with a granulator to obtain microwave ceramic feed;
- the above-mentioned microwave ceramic feed is installed in the injection molding machine, and the ceramic medium body is obtained by injection molding.
- the injection temperature is 195°C
- the injection pressure is 65MPa
- the mold temperature is 120°C
- the injection speed is 40mm/s.
- the pressing speed is 25mm/s;
- Degreasing step Use oxalic acid to catalyze the removal of organic matter in the ceramic medium body.
- the degreasing parameters are as follows: temperature is 125°C, time is 18h, acid intake: 1.8g/min;
- Sintering molding step Put the above-mentioned degreased ceramic dielectric body in a sintering furnace, and heat it from room temperature to 650°C after 1300min, then heat it up to 680°C at a heating rate of 0.3°C/min, and keep it at 680°C After 240 minutes, the temperature is increased from 680°C to 1480°C at a rate of 3°C/min, and the temperature is increased to the highest temperature and the temperature is maintained for 5 hours. After the sintering is completed, the formed ceramic medium is obtained;
- Metallization processing steps the above-mentioned ceramic medium is metallized, and a microwave ceramic dielectric filter is obtained after being qualified after debugging.
- the inventor observed the surface of the green body and the sintered body of the ceramic dielectric body of Example 2 with an electron microscope, and the results of the electron microscope are shown in FIG. 1 and FIG. 2.
- the results of Fig. 1 and Fig. 2 show that the green body and the sintered body have the characteristics of compactness and consistency.
- a microwave ceramic dielectric filter includes a ceramic dielectric body and a metal layer attached to the surface of the ceramic dielectric body.
- the feed for preparing the ceramic dielectric body includes microwave ceramic powder 24kg, polyacetal 4.2kg, polypropylene 0.9kg, and paraffin wax. 0.6kg, dioctyl phthalate 0.012kg, oleic acid 0.06kg, silicone oil 0.06kg;
- the preparation method is as follows:
- Injection molding step the above microwave ceramic feed is installed in the injection molding machine, and the ceramic medium body is obtained by injection molding.
- the injection temperature is 195°C
- the injection pressure is 65
- the injection pressure is 65MPa
- the mold temperature is 125°C
- the injection speed is 40mm. /s
- the pressure holding speed is 20mm/s;
- Degreasing step Use oxalic acid to catalyze the removal of organic matter in the ceramic medium body.
- the degreasing parameters are as follows: temperature is 145°C, time is 12h, acid intake: 3.5g/min;
- Metallization processing steps the above-mentioned ceramic medium is metallized, and a microwave ceramic dielectric filter is obtained after being qualified after debugging.
- This comparative example mainly compares the sintering and forming steps, and the influence of the setting of the sintering temperature program on the performance of the green body, sintered body and microwave ceramic filter.
- the same steps as in Example 4 are used, with the difference being ,
- the sintering molding step adopts vacuum sintering directly in the sintering furnace, and the sintering temperature is 1480°C.
- the sintered body extracted in the comparative example was observed by the surface electron microscope, and the surface electron microscope diagram is shown in Fig. 3.
- Example 2 The performances of the green bodies, sintered bodies, and microwave ceramic dielectric filters obtained in Example 2, Example 3 and the comparative example were compared, and the performance items and results of the comparison are shown in Table 3. Among them, the number of samples in each group in Example 2 and Example 3 and Comparative Example 1 is 20 pieces.
- the sintering temperature program mainly affects the pass rate of the sintered body, the sintered density, the density and the flexural strength of the sintered body. It can be seen from the performance that the pass rate, sintered density, density and flexural strength of the sintered body of Example 2 and Example 3 are significantly higher than those of Comparative Example 1. Figure 3 shows that the surface of the sintered body has holes and depressions.
- Example 3 According to the raw material ratio of Example 3, the influence of the order of addition of ceramic powder and ceramic forming agent on the performance of the green, sintered body and microwave ceramic dielectric filter in the mixing and granulation step was investigated.
- the other steps are the same as in Example 3.
- the difference is that the mixing and banquet granulation step is: firstly mix the ceramic forming agent and the microwave ceramic powder uniformly, and then follow the same steps as in Example 3 for kneading.
- the green body of Comparative Example 2 was observed with an electron microscope, and the electron microscope diagram is shown in FIG. 4.
- Example 3 The performances of the green bodies, sintered bodies, and microwave ceramic dielectric filters of the foregoing Example 2, Example 3, and Comparative Example 2 were compared, and the performance items and results of the comparison are shown in Table 4. Among them, the number of samples in each group in Example 2 and Example 3 and Comparative Example 2 is 20 pieces.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Filtering Materials (AREA)
Abstract
本发明公开了一种微波陶瓷介质滤波器的加工成型方法和通过该方法制备的微波陶瓷介质滤波器,所述微波陶瓷介质滤波器包括陶瓷介质本体和附着在陶瓷介质本体表面的金属层,所述陶瓷介质本体是通过将微波陶瓷粉料与至少包含粘结剂的陶瓷成型剂混合后注射成型。本发明能够解决微波陶瓷介质滤波器干压成型尺寸收缩不一致,局部介电常数差异、复杂形状不能成型,坯体密度不均匀等问题。
Description
本发明涉及通信技术领域,尤其涉及一种微波陶瓷介质滤波器加工成型方法。
滤波器是微波通信领域的重要器件,其主要功能是抑制不需要的信号,让需要的信号顺利通过,微波介质陶瓷是近二十多年来发展起来的一种新型的功能陶瓷粉料。它是指应用于微波频率(主要是300MHz~30GHz频段)电路中作为介质粉料并完成一种或多种功能的陶瓷粉料,是制造微波介质滤波器和谐振器的关键粉料。它具有高介电常数、低介电损耗、温度系数小等优良性能,适用于制造多种微波元器件,能满足微波电路小型化、集成化、高可靠性和低成本的要求。
随着5G时代的到来,体积小、传输损耗少、频率稳定、温度系数小等特点的微波陶瓷介质滤波器代替传统的金属谐振腔已成发展定局,微波陶瓷介质滤波器的主流成型方式为干压成型。与结构陶瓷不同的是干压成型的陶瓷体密度分布不均匀,收缩不一致,陶瓷体的尺寸精度差,烧结变形大,导致后续平磨与CNC加工较多,生产成本大,而密度的不均匀分布也会影响陶瓷的介电性能,如影响介电常数和Qf值,进而影响微波陶瓷介质滤波器的性能指标,随时介质滤波器的设计复杂化,例如对于各种异型孔槽结构的介质滤波器采用干压成型无法满足成型要求。
陶瓷材料的注射成型是利用塑性材料在压力下注射成陶瓷件,这种成型方式目前在结构陶瓷中已有相对成熟的工艺,但是微波陶瓷介质滤波器中的陶瓷介质是一种功能性陶瓷材料,目前注射成型工艺还未能达到功能性陶瓷部件的 要求。
发明内容
为了克服现有技术的不足,本发明的发明目的在于提供一种微波陶瓷介质滤波器加工成型方法,解决微波陶瓷介质滤波器干压成型尺寸收缩不一致,复杂形状不能成型,坯体密度不均匀等问题。
为了实现上述目的,本发明所采用的技术方案内容具体如下:
一种微波陶瓷介质滤波器,包括陶瓷介质本体和附着在陶瓷介质本体表面的金属层,所述陶瓷介质本体是通过将微波陶瓷粉料与至少包含粘结剂的陶瓷成型剂混合后注射成型。
作为进一步优选的方案,本发明所述的微波陶瓷粉料与陶瓷成型剂的用量按照质量百分比分别为75wt%~90wt%和10wt%~25wt%。
作为进一步优选的方案,本发明所述的微波陶瓷粉料为钛酸钙镁系、铝酸钐钙系、钛酸钡系、铝酸镧锶系中的一种,所述微波陶瓷粉料的粒径不超过1.5μm,含水率不超过0.5%。
作为进一步优选的方案,本发明所述的陶瓷成型剂还包含增塑剂、润滑剂、分散剂、表面活性剂中的一种或两种以上。
作为进一步优选的方案,本发明所述的陶瓷成型剂按照质量百分比计算包括:粘结剂50wt%~85wt%;增塑剂5wt%~15wt%;表面活性剂3wt%~10wt%。
作为进一步优选的方案,本发明所述的粘结剂为石蜡、聚乙烯、低密度聚乙烯、乙烯-乙酸乙烯共聚物、聚丙烯、无规聚丙烯、聚甲基丙烯酸酯、聚醛基中的一种或两种以上混合;所述为增塑剂邻苯二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二正丁酯中的一种或两种以上混合;所述表面活性剂为油酸、硬脂酸、微晶石蜡、白油、硅油中的一种或两种以上混合。
作为进一步优选的方案,本发明所述的酸为有机酸或无机酸。
一种微波陶瓷介质滤波器的加工成型方法,包括
混料造粒步骤:将陶瓷成型剂与微波陶瓷粉料混合均匀后置于密炼机中预热熔融,揉炼混合均匀后造粒,得到微波陶瓷喂料;
注射成型步骤:将上述微波陶瓷喂料装于注射成型机中,注射成型得到陶瓷介质坯体;
脱脂步骤:脱除上述陶瓷介质坯体中有机物;
烧结成型步骤:将上述经过脱脂后的陶瓷介质坯体置于烧结炉中,采用分段升温的烧结方式进行烧结,烧结完成后得到成型的陶瓷介质;
金属化处理步骤:将上述陶瓷介质金属化,即获得微波陶瓷介质滤波器。
作为进一步优选的方案,本发明所述的烧结成型步骤中,分段升温的烧结方式的流程如下:第一个阶段经过1000-1300min从室温升温至600-680℃,升温速率为0.3~0.7℃/min,并在600-680℃保留200-250min;第二阶段从600-680℃升温至1400-1500℃,升温速率为3~5℃/min的速率升温,第三阶段在1400-1500℃保温3-6小时后自然降温。
作为进一步优选的方案,本发明所述的注射成型步骤中,注射压力为55MPa~85MPa,注射速度为30mm/s~80mm/s。
作为进一步优选的方案,本发明所述的注射成型步骤中,注射温度为135℃~200℃,模具温度为40℃~150℃,保压速度为20mm/s~40mm/s。
作为进一步优选的方案,本发明所述的脱脂步骤中,脱脂的工艺为热脱脂、溶剂脱脂或催化脱脂中的一种脱脂工艺。
作为进一步优选的方案,本发明所述的脱脂步骤中,采用有机酸催化脱脂,脱脂温度为115℃~155℃,反应时间为15h~35h,进酸量为1.5~4.5g/min。
作为进一步优选的方案,本发明所述的混料密炼造粒步骤,密炼机预热的温度为150-165℃,揉炼混合时的温度为170℃~200℃,揉炼时间为30min~120min,密炼机转速为5~15r/min。
作为进一步优选的方案,本发明所述的微波陶瓷介质滤波器的加工成型方法还包括微波陶瓷粉料的处理步骤:将微波陶瓷粉料在400-500℃温度下烘干, 烘干后在120-160℃温度下保温。
相对于现有技术,本发明的有益效果在于:
1.本发明所述的微波陶瓷介质滤波器密度均匀,机械性能优异,坯体各部分介电常数稳定一致,可以用于陶瓷介质滤波器的批量生产。
2.本发明所述的微波介质滤波器的加工成形方法可以得到尺寸收缩一致,烧结变形小的陶瓷介质滤波器坯体,有效的减小加工,降低生产成本。
3.本发明所述的介质滤波器的加工成型方法具有工艺条件优越,可以实现大规模的批量生产,得到的陶瓷材料性能优越,适合广泛应用于通信领域。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,详细说明如下。
图1为实施例2所述的陶瓷介质本体生坯表面电镜图;
图2为实施例2所述的陶瓷介质本体烧结体表面电镜图;
图3为对比例1所述的陶瓷介质本体生坯表面电镜图;
图4为对比例1所述的陶瓷介质本体烧结体表面电镜图。
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合实施例,对依据本发明的具体实施方式、结构、特征及其方法、功效,详细说明如下:
本发明所述的微波陶瓷介质滤波器,包括陶瓷介质本体和附着在陶瓷介质本体表面的金属层,所述陶瓷介质本体是通过将微波陶瓷粉料与至少包含粘结剂的陶瓷成型剂混合后注射成型。所述陶瓷介质本体的密度不小于3.0g/cm
3。优选的,所述陶瓷介质本体的密度为3.0-6.5g/cm
3。
一种微波陶瓷介质滤波器的加工成型方法,包括
混料造粒步骤:将陶瓷成型剂与微波陶瓷粉料混合均匀后置于密炼机中预热熔融,揉炼混合均匀后造粒,得到微波陶瓷喂料;
注射成型步骤:将上述微波陶瓷喂料装于注射成型机中,注射成型得到陶瓷介质坯体;
脱脂步骤:脱除上述陶瓷介质坯体中有机物;
烧结成型步骤:将上述经过脱脂后的陶瓷介质坯体置于烧结炉中,采用分段升温的烧结方式进行烧结,烧结完成后得到成型的陶瓷介质;
金属化处理步骤:将上述陶瓷介质金属化,即获得微波陶瓷介质滤波器。
上述方法中,混料造粒步骤中,加料顺序会影响混合的均匀性,在本发明中,通过将成型剂与微波陶瓷粉料先混合均匀,然后再预热、揉炼,在加热过程中胶体熔化后成型剂混均匀分布在微波陶瓷粉料中,进一步的考虑到低熔点的成型剂在加热条件下会挥发,可以先将熔点高的成型剂与微波陶瓷粉料混合,达到预热温度后再加入低熔点的成型剂,可以有效因避免溶剂的挥发。
发明人在研究中发现,在注射成型过程中,注射的压力和注射的速度对坯体的成型产生重要影响。主要表现为:由于微波陶瓷喂料中存在多种不规则的颗粒,这些颗粒之间存在空隙,由于空隙的存在,会使坯体中存在空气,注射压力太小,可能会导致坯体的密度达不到介质滤波器的要求,注射压力过小还会延长喂料注模时间,影响充模过程的完整性,造成注模不满;在一定注射压力下,坯料受应力的影响先产生弹性变形,随着应力增大,达到流变极限时,坯料则出现不可逆的假塑性变形,这种假塑性变形由成型剂的塑性变形和粉末颗粒的相对位移所致;也因此喂料中的大颗粒推动小颗粒及超细颗粒在纵向和横向铺展,细颗粒进入粗颗粒之间的空隙,超细颗粒进入细颗粒和颗粒之间的空隙,使得空隙率逐渐缩小。随着注射压力的增加微波陶瓷粉料颗粒更加紧密,水分被从小气孔压缩到大气,空气受到进一步压缩被挤出,当注射压力达到某个极限值后,坯体的密度上升且达到致密状态,再增加注射压力超过极限值, 坯体的密度不再升高,会引起流纹和气泡,而此时突然撤去压力后,陶瓷坯体将产生弹性后效引起层裂使密度下降。可见注射压力的控制对于陶瓷坯体密度的影响相当重要,为了满足微波介质滤波器对陶瓷介质密度的要求,本发明所述的注射成型步骤中,注射压力控制为55MPa~150MPa。进一步的,注射速度也会影响坯体的密度,注射速度为30mm/s~80mm/s。
在具体的实施方案中,本发明所述的脱脂步骤中,脱脂的工艺为热脱脂、溶剂脱脂或催化脱脂中的一种脱脂工艺。其中,热脱脂是将陶瓷件置于电炉中加热至500℃以上脱除坯体中剩余的粘结剂,热脱脂过程中,气体分子通过扩散或者渗透的方式传输到成型坯体表面,热脱脂过程与坯体的厚度成正比,因此一般情况热脱脂需要较长的时间。溶剂脱脂是采用非极性的溶剂,例如汽油、氯仿、石油醚等溶剂进行脱脂;溶剂脱脂效率较高,脱脂时间短,但是工艺控制不好容易出现溶胀现象,造成坯体开裂。催化脱脂是针对聚合醛基体系的粘结剂的陶瓷坯体脱脂,在脱脂过程中利用酸蒸汽催化进行裂解反应。作为进一步优选的方案,本发明脱脂步骤中采用的酸作为催化剂,所述酸可以为有机酸或无机酸。
发明人还发现由于成型的陶瓷介质坯体在烧结过程中,成型坯体经历加热至高温并保持适当时间,通过物质迁移和一系列的物理化学变化,完成粉末颗粒间增强结合、晶粒长大、气孔和晶界减少这样的一个致密化过程,最终形成坚固的。烧结过程中,首先是坯体中的水分排出,随着坯体中毛细孔内水分的排出,颗粒靠拢,坯体产生收缩,形成内应力。这个过程如果升温的速度过快,温度过高,坯体表面水分蒸发剧烈,表面层收缩达到最大,表面层的毛细管被缩小甚至封闭,内部水分向外迁移困难,内外湿度差增大,结果坯体表面层受张应力、内层受压应力。若内应力不均匀,将导致坯体变形当张应力超过坯体的干燥强度时会引起坯体开裂。因此在本发明中,陶瓷介质坯体在烧结升温前,在烧结炉中通过1000-1300min从室温升至600-680℃,该阶段是排胶阶段,让坯体中的残余的除粘胶剂外的有机物脱出,为防止升温过快、粘胶剂裂解过于 剧烈,失重过快,导致整个坯体烧结不均匀,需要控制升温速率,在本发明中,第一阶段的升温速率控制为0.3~0.7℃/min,并在达到600-680℃温度下保留200-250min,这个阶段相当于排胶阶段;第二阶段从650℃升温至1400-1500℃,该阶段是为了增加坯体的强度的致密化过程,通过该阶段以形成致密、坚固的陶瓷体,升温速率为3~5℃/min的速率升温,第三阶段是1400-1500℃保温3-6小时,保证瓷体晶粒充分生长,完成陶瓷致密化过程。
作为进一步优选的方案,本发明所述的注射成型步骤中,喂料熔融程度低,会导致注射过程中喂料堵塞模具;如果注射温度过高,喂料达到完全熔融状态,喂料在注射过程中会产生偏析、两相分离的现象;此外注射温度过高还会导致成型剂中的低熔点成分过度挥发,在挥发过程中导致坯体产生大量气孔,影响坯体的密度,因此在本发明中注射温度为135℃~200℃,优选的注射温度控制在140-160℃。另外,通过进一步的实验发现保压速度也会影响坯体的密度,保压速度过快,会导致保压时间不足,从而导致坯体的尺寸过厚、密度不均匀,因此在本发明中,优选的方案,需要将保压速度控制在20mm/s~40mm/s的范围内。为了避免注射成型的坯体在模具中直接由高温到低温导致的形变,需要对模具进行加热,在本发明中模具温度为40℃~150℃,优选的,所述模具的温度为90-120℃。
作为进一步优选的方案,本发明所述的混料密炼造粒步骤,为了防止低熔点的成型剂成分在加热效应下挥发严重,密炼机预热的温度为150-165℃,揉炼混合时的温度为170℃~200℃,揉炼时间为30min~120min,密炼机转速为5~15r/min。
作为进一步优选的方案,本发明所述的微波陶瓷介质滤波器的加工成型方法还包括微波陶瓷粉料的处理步骤:将微波陶瓷粉料在400-500℃温度下烘干,烘干后在12-160℃温度下保温。
在本发明中,微波陶瓷粉料与陶瓷成型剂按照一定的比例混合,优选的,本发明所述的微波陶瓷粉料与陶瓷成型剂的用量按照质量百分比分别为75 wt%~90wt%和10wt%~25wt%。进一步优选的,所述质量百分比分别为75wt%~80wt%和20wt%~25wt%,进一步的所述质量百分比分别还可以是78wt%~82wt%和18wt%~22wt%。
作为进一步优选的方案,本发明所述的陶瓷粉料为钛酸钙镁系、铝酸钐钙系、钛酸钡系、铝酸镧锶系中的一种。
在本发明中,发明人发现混合时物料分布的均匀程度很大程度上取决于各个组元的密度和粉料颗粒大小之比,密度和颗粒大小越接近,获得质量均匀的混合的可能性越大,因此为了获得一致性的微波陶瓷介质,优选的,本发明所述采用微波陶瓷粉料的粒径不超过1.5μm,含水率不超过0.5%。
在本发明中,注射成型工艺中,粘结剂是其中关键的因素之一,在选择粘结剂时,首先需要考虑粘结剂的流动性,及粘度要适中,粘度太高,陶瓷粉料不能在粘结剂中有效分散,增加了混炼的难度,得到的陶瓷喂料不均匀,粘度太低会造成陶瓷粉料与粘结剂之间出现分层,影响陶瓷坯体的一致性;其次还要考虑粘结剂对分体的浸润性,增加粉料的流动性,便于注射成型;此外,为了保证功能性陶瓷的导热性能和热膨胀系数,添加的粘结剂应避免因热应力致使坯体产生缺陷。本发明可以选用的粘结剂为石蜡、聚乙烯、低密度聚乙烯、乙烯-乙酸乙烯共聚物、聚丙烯、无规聚丙烯、聚甲基丙烯酸酯、聚醛基中等中的一种或两种以上混合。在本发明中,优选的所采用的粘结剂中至少含有聚醛基粘结剂,聚醛基粘结剂与陶瓷粉体之间具有良好的相容性,成型的坯体的强度较高,满足功能陶瓷性能的要求,同时产品的合格率较高。聚醛基粘结剂具体可以选择但不限于聚甲醛。在采用聚甲醛粘结剂时,本发明所述的微波陶瓷滤波器在成型过程中,采用酸催化脱脂工艺,具体可以是有机酸催化脱脂也可以是无机酸脱脂,可以列举的有机酸可以选自但不限于草酸;无机酸可以选自但不限于硝酸在本发明优选采用草酸作为催化剂脱脂。在本发明中,草酸脱脂效率较高、时间短、其采用草酸催化过程中,反应的温度低于聚甲醛树脂的熔点,避免液相产生,从而也就避免了生坯软化或因重力产生变形和缺陷,因此 不会影响已成型陶瓷坯体的形貌和烧结的成品率,在本发明中,进酸量也是影响坯体质量的一个因素,进酸量越大,反应速率会越快,但是进酸量太大会影响陶瓷坯体的形貌,且对脱除粘结剂的反应并无明显的帮助。另外,脱脂时间短会脱脂不完全,陶瓷在烧结时开裂,脱脂时间太长对会造成生产效率低。在本发明中,通过控制脱脂反应的时间和进酸量,使两个影响因素之间相互协同,达到最优的效果,因此,作为优选的方案,本发明所述的脱脂步骤中,酸催化脱脂温度为115℃~155℃,反应时间为15h~35h,进酸量为1.5~4.5g/min。
在本发明中,成型剂的可以提高陶瓷料成型时的流动性,增加颗粒间的结合力,提高坯体的机械强度。因此成型剂的主要作用除了粘结作用(粘结作用有粘结剂实现),有时候还需要增加其增塑作用,这种作用通常是通过添加增塑剂来实现,但是粘结剂和增塑剂与微波陶瓷粉末表面吸附作用会受到影响,为了改善这种影响,可以通过增加少量的表面活性剂来解决,因此,本发明所述的陶瓷成型剂除了含有粘结剂,还包含增塑剂、润滑剂、分散剂、表面活性剂中的一种或两种以上。在本发明中,可以实施的陶瓷成型剂组成的优选组合方式,包括粘结剂、增塑剂、表面活性剂;或者好也可以有第二种组合方式包括增塑剂、润滑剂、分散剂,或者还可以有第三种组合方式包括粘结剂、增塑剂、润滑剂、分散剂、表面活性剂;第四种组合方式包括粘结剂、增塑剂、润滑剂、表面活性剂等不同的组合方式,当然本发明并不限于上述几种组合方式。具体的方案中,所述增塑剂可以选自邻苯二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二正丁酯等中的一种或两种以上混合;所述表面活性剂可以选自油酸、硬脂酸、微晶石蜡、白油、硅油等中的一种或两种以上混合。
在具体的实施过程中,作为一种实施方式,本发明所述的陶瓷成型剂按照质量百分比计算包括:粘结剂60wt%~85wt%;增塑剂5wt%~25wt%;表面活性剂3wt%~15wt%。作为另一种实施方式,微波陶瓷粉末质量百分比为75%~90%,粘结剂质量百分比为10%~20%,增塑剂质量百分比为1%~4%,表面活性剂质量 百分比为0.5%~3%。
以下我们通过具体优选的实施例对本发明进行进一步详细的解释和说明,但是本发明的保护范围不限于下述实施例的内容。
实施例1
一种微波陶瓷介质滤波器,包括陶瓷介质本体和附着在陶瓷介质本体表面的金属层,制备所述陶瓷介质本体的喂料包括微波陶瓷粉末24kg、聚甲醛4.2kg、聚丙烯0.9kg、石蜡0.6kg、邻苯二甲酸二辛酯0.012kg、油酸0.06kg、硅油0.06kg;
其制备方法如下:
混料密炼造粒步骤:将陶瓷成型剂置于密炼机中预热熔融,密炼温度165℃,转速5r/min,加入微波陶瓷粉料进行揉炼,揉炼温度为185℃,转速为25r/min,揉炼混合均匀形成乳白色泥团状,然后用造粒机造粒,得到微波陶瓷喂料;
注射成型步骤:将上述微波陶瓷喂料装于注射成型机中,注射成型得到陶瓷介质坯体,注射温度为155℃,模具温度为125℃,注射速度为40mm/s,保压速度为20mm/s;
脱脂步骤:采用草酸催化脱除上述陶瓷介质坯体中有机物,脱脂参数如下:温度为125℃,时间为18h,进酸量:1.8g/min;
烧结成型步骤:将上述经过脱脂后的陶瓷介质坯体置于烧结炉中,以升温速率为0.5℃/min升温至650℃,并在650℃温度下保留240min后,然后以5℃/min的速率从650℃升温至1480℃,升至最高温后保温5h的升温制度进行烧结,烧结完成后得到成型的陶瓷介质;
金属化处理步骤:将上述陶瓷介质金属化,经过调试合格后即获得微波陶瓷介质滤波器。
在该实施例中,为了进一步验证注射压力对坯体以及成型后微波陶瓷介质的影响,考察注射压力为10-100MPa范围内,不同注射压力下坯体及微波陶瓷介质的性能影响,具体实验结果见表1。
在注射压力为10-100MPa范围内,发明人分别以5MPa作为步长区间制作 生坯,发现注射压力在35MPa以下,生坯的填充不紧密,得到的生坯有23%左右尺寸不能满足要求,而且超过30%的生坯烧结时候会出现塌陷,在较低注射压力的样品的形貌,表面出现凹陷和不平整,断面明显出现开裂、空洞等缺陷。由于较低注射压力下生坯和烧结体出现的次品率过高,于是对注射压力在35MPa以下的生坯不再进行烧结,也未对其性能进行分析;同样,发现在注射压力超过160MPa以后,由于压力过大,生坯冷却过快,有25%左右的坯体会产生变形,烧结后,烧结体中有21%会出现裂纹,因此对注射压力超过95MPa以上的坯体不再进行烧结和性能分析。
表1:注射压力对微波陶瓷生坯体和烧结体性能的应影响
结合上表1的数据可知,其中当注射压力在55-150MPa范围内,无论是生坯还是烧结体,在密度、抗弯强度上均能满足要求,其中注射压力为65-80MPa时,密度和抗弯强度都具有优异的表现,并且在注射压力在55-150MPa范围内, 得到的烧结体具有优良的导热率,加工成微波介质滤波器之后,其Q值均表现优异。
实施例2
一种微波陶瓷介质滤波器,包括陶瓷介质本体和附着在陶瓷介质本体表面的金属层,制备所述陶瓷介质本体的喂料包括微波陶瓷粉末24.6kg、聚甲醛3.51kg、低密度聚乙烯1.08kg、石蜡0.54kg、邻苯二甲酸二辛酯0.108kg、油酸0.081kg、山梨醇酐单硬脂酸酯0.054kg、聚酰胺0.027kg;
其制备方法如下:
微波陶瓷粉料预处理:将微波陶瓷粉料在500℃下烘干2h,在150℃保温;
混料密炼造粒步骤:将陶瓷成型剂与微波陶瓷粉料混合均匀后,置于密炼机中预热熔融,预热温度165℃,转速5r/min,达到预热温度后进行升温揉炼,揉炼温度为180℃,转速为25r/min,揉炼混合均匀形成乳白色泥团状,然后用造粒机造粒,得到微波陶瓷喂料;
注射成型步骤:将上述微波陶瓷喂料装于注射成型机中,注射成型得到陶瓷介质坯体,注射温度为195℃,注射压力为65MPa,模具温度为120℃,注射速度为40mm/s,保压速度为25mm/s;
脱脂步骤:采用草酸催化脱除上述陶瓷介质坯体中有机物,脱脂参数如下:温度为125℃,时间为18h,进酸量:1.8g/min;
烧结成型步骤:将上述经过脱脂后的陶瓷介质坯体置于烧结炉中,经过1300min从室温升温至650℃,然后以升温速率为0.3℃/min升温至680℃,并在680℃温度下保留240min后,然后以3℃/min的速率从680℃升温至1480℃,升至最高温后保温5h,烧结完成后得到成型的陶瓷介质;
金属化处理步骤:将上述陶瓷介质金属化,经过调试合格后即获得微波陶瓷介质滤波器。
发明人对实施例2的陶瓷介质本体的生坯和烧结体表面用电镜进行观察, 电镜结果图参见图1和图2。图1和图2的结果表明生坯和烧结体的表明都具有致密性和一致性的特征。
实施例3
一种微波陶瓷介质滤波器,包括陶瓷介质本体和附着在陶瓷介质本体表面的金属层,制备所述陶瓷介质本体的喂料包括微波陶瓷粉末24kg、聚醛基4.2kg、聚丙烯0.9kg、石蜡0.6kg、邻苯二甲酸二辛酯0.012kg、油酸0.06kg、硅油0.06kg;
其制备方法如下:
混料密炼造粒步骤:将陶瓷成型剂置于密炼机中预热熔融,密炼温度165℃,转速5r/min,加入微波陶瓷粉料进行揉炼,揉炼温度为185℃,转速为25r/min,揉炼混合均匀形成乳白色泥团状,然后用造粒机造粒,得到微波陶瓷喂料;
注射成型步骤:将上述微波陶瓷喂料装于注射成型机中,注射成型得到陶瓷介质坯体,注射温度为195℃,注射压力为65注射压力为65MPa,模具温度为125℃,注射速度为40mm/s,保压速度为20mm/s;
脱脂步骤:采用草酸催化脱除上述陶瓷介质坯体中有机物,脱脂参数如下:温度为145℃,时间为12h,进酸量:3.5g/min;
烧结成型步骤:将上述经过脱脂后的陶瓷介质坯体置于烧结炉中,经过1300min从室温升温至650℃,然后以升温速率为0.7℃/min升温至650℃,并在650℃温度下保留240min后,然后以5℃/min的速率从650℃升温至1480℃,升至最高温后保温5h的升温制度进行烧结,烧结完成后得到成型的陶瓷介质;
金属化处理步骤:将上述陶瓷介质金属化,经过调试合格后即获得微波陶瓷介质滤波器。
对比例1
在该对比例中主要比较烧结成型步骤,烧结温度程序的设置对坯体、烧结体以及微波陶瓷滤波器性能的影响,在该对比例中,采用与实施例4相同的步骤,其区别在于是,烧结成型步骤中采用直接在烧结炉中真空烧结,烧结的温 度为1480℃。对比例中抽取的其中烧结体,对其进行表面电镜观察,表面电镜图参见图3。
性能对比
对实施例2、实施例3以及对比例得到的生坯、烧结体、微波陶瓷介质滤波器的性能进行对比,比较的性能项及结果参见表3。其中实施例2和实施例3以及对比例1中每组样品数量均为20件。
表3:实施例2、3与对比例1的性能比较结果
项目 | 实施例2 | 实施例3 | 对比例1 |
生坯合格率 | 93.2% | 95.7% | 93.7% |
生坯体密度(g/cm 3) | 3.16 | 3.18 | 3.16 |
烧结体合格率 | 91.8% | 93.1% | 78.3% |
烧结体密度(g/cm 3) | 5.26 | 5.25 | 4.17 |
烧结体的致密度(%) | 91.5 | 92.6 | 81.2 |
烧结体膨胀系数(ppm/℃) | 8.9 | 8.8 | 9.6 |
烧结体抗弯强度(MPa) | 247 | 241 | 183 |
微波陶瓷滤波器的介电常数 | 20.66 | 20.61 | 20.18 |
根据上表2的结果可知,烧结温度程序主要影响烧结体的合格率、烧结密度、烧结体的致密度以及抗弯强度。从性能上可以看出,实施例2和实施例3的合格率、烧结密度、烧结体的致密度以及抗弯强度明显高于对比例1。图3可以看到烧结体的表面具有孔洞和凹陷。
对比例2
按照上述实施例3原料配比,考察混料密炼造粒步骤中陶瓷粉料与陶瓷成型剂的加料顺序对坯、烧结体、微波陶瓷介质滤波器性能的影响。在该对比例中,其他步骤与实施例3相同,区别在于混料密炼造粒步骤为:先将陶瓷成型 剂与微波陶瓷粉料混合均匀后再按照实施例3相同的步骤进行揉炼。将对比例2的生坯用电镜进行观察,电镜图参见图4。
性能对比
对上述实施例2、实施例3及对比例2的生坯、烧结体、微波陶瓷介质滤波器的性能进行对比,比较的性能项及结果参见表4。其中实施例2和实施例3以及对比例2中每组样品数量均为20件。
表4:实施例2、3与对比例2的性能比较结果
项目 | 实施例2 | 实施例3 | 对比例2 |
生坯合格率 | 93.2% | 95.7% | 79.3% |
生坯体密度(g/cm 3) | 3.16 | 3.18 | 2.18 |
烧结体合格率 | 91.8% | 93.1% | 74.1% |
烧结体密度(g/cm 3) | 5.26 | 5.25 | 4.17 |
烧结体的致密度(%) | 91.5 | 92.6 | 78.5 |
上述表3的结果可以看出,实施例2和实施例3的生坯合格率、生坯密度、烧结体的合格率以及烧结体密度、烧结体的致密性都明显高于对比例2。从图4中也可以看出生坯的表面不平整,颗粒分布不均匀。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
Claims (16)
- 一种微波陶瓷介质滤波器,包括陶瓷介质本体和附着在陶瓷介质本体表面的金属层,其特征在于,所述陶瓷介质本体是通过将微波陶瓷粉料与至少包含粘结剂的陶瓷成型剂混合注射成型。
- 根据权利要求1所述的微波陶瓷介质滤波器,其特征在于,所述微波陶瓷粉料与陶瓷成型剂的用量按照质量百分比分别为75wt%~90wt%和10wt%~25wt%。
- 根据权利要求1所述的微波陶瓷介质滤波器,其特征在于,所述微波陶瓷粉料为钛酸钙镁系、铝酸钐钙系、钛酸钡系、铝酸镧锶系中的一种,所述微波陶瓷粉料的粒径不超过1.5μm,含水率不超过0.5%。
- 根据权利要求1所述的微波陶瓷介质滤波器,其特征在于,所述陶瓷成型剂还包含增塑剂、润滑剂、分散剂、表面活性剂中的一种或两种以上。
- 根据权利要求4所述的微波陶瓷介质滤波器,其特征在于,所述陶瓷成型剂按照质量百分比计算包括:粘结剂50wt%~85wt%;增塑剂5wt%~15wt%;表面活性剂3wt%~10wt%。
- 根据权利要求4或5所述的微波陶瓷介质滤波器,其特征在于,所述粘结剂为石蜡、聚乙烯、低密度聚乙烯、乙烯-乙酸乙烯共聚物、聚丙烯、无规聚丙烯、聚甲基丙烯酸酯、聚醛基中的一种或两种以上混合;所述为增塑剂邻苯二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二正丁酯中的一种或两种以上混合;所述表面活性剂为油酸、硬脂酸、微晶石蜡、白油、硅油中的一种或两种以上混合。
- 根据权利要求1所述的微波陶瓷介质滤波器,其特征在于,所述陶瓷介质本体的密度为3.0-6.5g/cm 3。
- 根据权利要求1所述的微波陶瓷介质滤波器,其特征在于,所述酸为有机酸或无机酸。
- 一种如权利要求1-8任一项所述的微波陶瓷介质滤波器的加工成型方法, 其特征在于,包括混料造粒步骤:将陶瓷成型剂与微波陶瓷粉料混合均匀后置于密炼机中预热熔融,揉炼混合均匀后造粒,得到微波陶瓷喂料;注射成型步骤:将上述微波陶瓷喂料装于注射成型机中,注射成型得到陶瓷介质坯体;脱脂步骤:脱除上述陶瓷介质坯体中有机物;烧结成型步骤:将上述经过脱脂后的陶瓷介质坯体置于烧结炉中,采用分段升温的烧结方式进行烧结,烧结完成后得到成型的陶瓷介质;金属化处理步骤:将上述陶瓷介质金属化,即获得微波陶瓷介质滤波器。
- 根据权利要求9所述的加工成型方法,其特征在于,所述烧结成型步骤中,分段升温的烧结方式的流程如下:第一个阶段经过1000-1300min从室温升温至600-680℃,升温速率为0.3~0.7℃/min,并在600-680℃保留200-250min;第二阶段从600-680℃升温至1400-1500℃,升温速率为3~5℃/min的速率升温,第三阶段在1400-1500℃保温3-6小时后自然降温。
- 根据权利要求9所述的加工成型方法,其特征在于,所述注射成型步骤中,注射压力为55MPa~150MPa,注射速度为30mm/s~80mm/s。
- 根据权利要求9所述的加工成型方法,其特征在于,所述注射成型步骤中,注射温度为135℃~200℃,模具温度为40℃~150℃,保压速度为20mm/s~40mm/s。
- 根据权利要求9所述的加工成型方法,其特征在于,所述混料密炼造粒步骤,密炼机预热的温度为150-165℃,揉炼混合时的温度为170℃~200℃,揉炼时间为30min~120min,密炼机转速为5~15r/min。
- 根据权利要求9所述的加工成型方法,其特征在于,所述脱脂步骤中,脱脂的工艺为热脱脂、溶剂脱脂或酸脱脂中的一种脱脂工艺。
- 根据权利要求14所述的加工成型方法,其特征在于,所述脱脂步骤中,采用有机酸催化脱脂,脱脂温度为115℃~155℃,反应时间为15h~35h,进酸量 为1.5~4.5g/min。
- 根据权利要求9-15任一项所述的加工成型方法,其特征在于,还包括微波陶瓷粉料的处理步骤:将微波陶瓷粉料在400-500℃温度下烘干,烘干后在120-160℃温度下保温。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010392307.6A CN111423239A (zh) | 2020-05-11 | 2020-05-11 | 一种微波陶瓷介质滤波器及其加工成型方法 |
CN202010392307.6 | 2020-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021227603A1 true WO2021227603A1 (zh) | 2021-11-18 |
Family
ID=71555219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/078050 WO2021227603A1 (zh) | 2020-05-11 | 2021-02-26 | 一种微波陶瓷介质滤波器及其加工成型方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111423239A (zh) |
WO (1) | WO2021227603A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114371054A (zh) * | 2021-12-28 | 2022-04-19 | 山东国瓷功能材料股份有限公司 | 一种用于pcb板填充的陶瓷粉介电性能评价方法 |
CN115894046A (zh) * | 2022-11-30 | 2023-04-04 | 福建华清电子材料科技有限公司 | 一种注射成型制备氮化铝陶瓷的方法 |
CN115894013A (zh) * | 2022-11-18 | 2023-04-04 | 潮州三环(集团)股份有限公司 | 一种陶瓷插芯成型用喂料及其制备方法和应用 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111423239A (zh) * | 2020-05-11 | 2020-07-17 | 深圳顺络电子股份有限公司 | 一种微波陶瓷介质滤波器及其加工成型方法 |
CN112072261A (zh) * | 2020-08-06 | 2020-12-11 | 安徽蓝讯新材料科技有限公司 | 一种陶瓷介质滤波器制造工艺 |
CN112266253A (zh) * | 2020-09-21 | 2021-01-26 | 深圳顺络电子股份有限公司 | 注射成型用微波介质材料的粒料及微波介质器件制造方法 |
CN114685160A (zh) * | 2020-12-30 | 2022-07-01 | 北京中科三环高技术股份有限公司 | 粘结剂组合物和微波介质陶瓷颗粒料、陶瓷及陶瓷滤波器 |
CN112979304B (zh) * | 2021-04-25 | 2021-08-27 | 北京中科三环高技术股份有限公司 | 一种微波介质陶瓷及其制备方法与微波器件 |
CN114276132B (zh) * | 2022-01-07 | 2023-04-28 | 超瓷材料技术(深圳)有限公司 | 一种高固相含量微波介质陶瓷注射成型喂料及其制备方法和应用 |
CN115108757B (zh) * | 2022-07-13 | 2023-07-25 | 成都顺康三森电子有限责任公司 | 一种5g基站用陶瓷滤波器生产方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0577213A (ja) * | 1991-05-23 | 1993-03-30 | Alps Electric Co Ltd | 誘電体セラミツクの製造方法 |
JP2000117714A (ja) * | 1998-08-13 | 2000-04-25 | Murata Mfg Co Ltd | 無機粉末射出成形用組成物および無機焼結体の製造方法 |
CN101882703A (zh) * | 2010-07-02 | 2010-11-10 | 深圳市大富科技股份有限公司 | 通信设备、腔体滤波器、谐振管及其制造方法 |
CN205194818U (zh) * | 2015-12-11 | 2016-04-27 | 厦门松元电子有限公司 | 一种陶瓷介质滤波器 |
CN105622093A (zh) * | 2015-12-30 | 2016-06-01 | 深圳市大富科技股份有限公司 | 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备 |
CN105732021A (zh) * | 2015-12-30 | 2016-07-06 | 深圳市大富科技股份有限公司 | 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备 |
CN109320255A (zh) * | 2018-11-09 | 2019-02-12 | 厦门钜瓷科技有限公司 | 芯片用高导热陶瓷散热器的制备方法 |
CN111423239A (zh) * | 2020-05-11 | 2020-07-17 | 深圳顺络电子股份有限公司 | 一种微波陶瓷介质滤波器及其加工成型方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0746012A (ja) * | 1993-07-28 | 1995-02-14 | Sony Corp | 誘電体共振器コアの製造方法 |
JP2003252676A (ja) * | 2002-03-05 | 2003-09-10 | Murata Mfg Co Ltd | 射出成形用組成物 |
CN105084886B (zh) * | 2015-08-21 | 2017-08-25 | 深圳顺络电子股份有限公司 | 压敏电阻坯体及其制备方法、压敏电阻及其制备方法 |
WO2017113223A1 (zh) * | 2015-12-30 | 2017-07-06 | 深圳市大富科技股份有限公司 | 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备 |
CN107915490A (zh) * | 2017-12-21 | 2018-04-17 | 洛阳名力科技开发有限公司 | 一种氮化铝陶瓷的注射成形方法 |
-
2020
- 2020-05-11 CN CN202010392307.6A patent/CN111423239A/zh active Pending
-
2021
- 2021-02-26 WO PCT/CN2021/078050 patent/WO2021227603A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0577213A (ja) * | 1991-05-23 | 1993-03-30 | Alps Electric Co Ltd | 誘電体セラミツクの製造方法 |
JP2000117714A (ja) * | 1998-08-13 | 2000-04-25 | Murata Mfg Co Ltd | 無機粉末射出成形用組成物および無機焼結体の製造方法 |
CN101882703A (zh) * | 2010-07-02 | 2010-11-10 | 深圳市大富科技股份有限公司 | 通信设备、腔体滤波器、谐振管及其制造方法 |
CN205194818U (zh) * | 2015-12-11 | 2016-04-27 | 厦门松元电子有限公司 | 一种陶瓷介质滤波器 |
CN105622093A (zh) * | 2015-12-30 | 2016-06-01 | 深圳市大富科技股份有限公司 | 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备 |
CN105732021A (zh) * | 2015-12-30 | 2016-07-06 | 深圳市大富科技股份有限公司 | 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备 |
CN109320255A (zh) * | 2018-11-09 | 2019-02-12 | 厦门钜瓷科技有限公司 | 芯片用高导热陶瓷散热器的制备方法 |
CN111423239A (zh) * | 2020-05-11 | 2020-07-17 | 深圳顺络电子股份有限公司 | 一种微波陶瓷介质滤波器及其加工成型方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114371054A (zh) * | 2021-12-28 | 2022-04-19 | 山东国瓷功能材料股份有限公司 | 一种用于pcb板填充的陶瓷粉介电性能评价方法 |
CN114371054B (zh) * | 2021-12-28 | 2024-05-31 | 山东国瓷功能材料股份有限公司 | 一种用于pcb板填充的陶瓷粉介电性能评价方法 |
CN115894013A (zh) * | 2022-11-18 | 2023-04-04 | 潮州三环(集团)股份有限公司 | 一种陶瓷插芯成型用喂料及其制备方法和应用 |
CN115894013B (zh) * | 2022-11-18 | 2023-08-01 | 潮州三环(集团)股份有限公司 | 一种陶瓷插芯成型用喂料及其制备方法和应用 |
CN115894046A (zh) * | 2022-11-30 | 2023-04-04 | 福建华清电子材料科技有限公司 | 一种注射成型制备氮化铝陶瓷的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111423239A (zh) | 2020-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021227603A1 (zh) | 一种微波陶瓷介质滤波器及其加工成型方法 | |
CN112759414A (zh) | 一种多孔陶瓷雾化芯及其制备方法和电子烟 | |
CN107200599B (zh) | 多孔氧化铝陶瓷及其制备方法和应用 | |
JPS6150912B2 (zh) | ||
WO2017121204A1 (zh) | 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法 | |
CN101648808B (zh) | 一种石墨材料的制备方法 | |
CN110002888B (zh) | 一种短纤维制备碳纤维保温毡的方法 | |
CN111574226A (zh) | 一种高密度低游离硅含量反应烧结碳化硅陶瓷材料的制备方法 | |
CN113878113B (zh) | 一种陶瓷-不锈钢复合材料及其制备方法 | |
CN112430123A (zh) | 一种窄孔径分布、大尺寸堇青石汽油颗粒过滤器及其制备方法 | |
CN113563058A (zh) | 雾化芯、多孔陶瓷及多孔陶瓷的制备方法 | |
CN113277859A (zh) | 一种纳米包覆氧化铝颗粒及用其制备的高纯抗热震氧化铝陶瓷材料 | |
CN113788701A (zh) | 3d打印木质纤维素衍生碳化硅陶瓷的制备方法及产品 | |
JP2010516608A (ja) | SiC系セラミック多孔質体の製造方法 | |
CN107619282B (zh) | 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件的制备方法 | |
US5001088A (en) | Method for producing porous form bodies | |
CN116275106A (zh) | 一种多孔结构锆钒铁吸气剂及其制备方法 | |
KR100434830B1 (ko) | 다중 입도분포 분말의 균일 원심성형체 제조방법 | |
US4126653A (en) | Method of manufacturing silicon nitride products | |
CN113149626A (zh) | 一种石英陶瓷注射成型用喂料及其制备方法 | |
CN107573076B (zh) | 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件 | |
CN107352781B (zh) | 一种氮化硅多孔陶瓷材料快速固化成型的制备方法 | |
JPS5935011A (ja) | 多孔質炭素成形品およびその製造方法 | |
CN111230095A (zh) | 一种高密度纯铼材料及其制备方法 | |
JP2614749B2 (ja) | 金属多孔質体の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21805246 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202237071242 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT 1205A DATED 31/03/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21805246 Country of ref document: EP Kind code of ref document: A1 |