WO2017113990A1 - 具有亚磷酸基团的混凝土超塑化剂的制备方法和应用 - Google Patents

具有亚磷酸基团的混凝土超塑化剂的制备方法和应用 Download PDF

Info

Publication number
WO2017113990A1
WO2017113990A1 PCT/CN2016/104952 CN2016104952W WO2017113990A1 WO 2017113990 A1 WO2017113990 A1 WO 2017113990A1 CN 2016104952 W CN2016104952 W CN 2016104952W WO 2017113990 A1 WO2017113990 A1 WO 2017113990A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
concrete
reaction
group
added
Prior art date
Application number
PCT/CN2016/104952
Other languages
English (en)
French (fr)
Inventor
冉千平
王涛
刘加平
马建峰
亓帅
范士敏
杨勇
Original Assignee
江苏苏博特新材料股份有限公司
博特新材料泰州有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏苏博特新材料股份有限公司, 博特新材料泰州有限公司 filed Critical 江苏苏博特新材料股份有限公司
Priority to SG11201805638SA priority Critical patent/SG11201805638SA/en
Priority to MYPI2018001176A priority patent/MY190927A/en
Priority to EP16880781.6A priority patent/EP3398979A4/en
Priority to US16/067,012 priority patent/US10647803B2/en
Publication of WO2017113990A1 publication Critical patent/WO2017113990A1/zh
Priority to ZA2018/05070A priority patent/ZA201805070B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/243Phosphorus-containing polymers
    • C04B24/246Phosphorus-containing polymers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/3804Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
    • C07F9/3808Acyclic saturated acids which can have further substituents on alkyl
    • C07F9/3817Acids containing the structure (RX)2P(=X)-alk-N...P (X = O, S, Se)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/308Slump-loss preventing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/32Superplasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages

Definitions

  • the invention belongs to the technical field of concrete admixtures, and relates to a concrete superplasticizer with a phosphorous acid group and a preparation method thereof.
  • high performance polymeric dispersants are primarily polycarboxylate polymer superplasticizers. These polycarboxylate polymers can increase the fluidity of the cement, thereby reducing the amount of water used to make the concrete material have higher mechanical strength. Such polycarboxylate polymers are also commonly referred to as polycarboxylate water reducers.
  • Patent document CN102439063B discloses a compound having at least one phosphonic acid end containing linear polyglycerol.
  • the use of such a compound as a water reducing agent can effectively maintain the slump spread of concrete.
  • such a water reducing agent is expensive to produce and can cause a delay in solidification, and the solidification delay is prolonged as the amount of the additive increases.
  • Patent document CN103596993A discloses a copolymer having a bismuth diphosphate group which has a low sensitivity to clays and basic sulfides in cement relative to polycarboxylate superplasticizers.
  • this method uses PCl 3 as a reaction raw material, and PCl 3 is a substance which is easily hydrolyzed and oxidized, is not easily exposed to the air, and is difficult to store. Therefore, the phosphate water reducing agent produced by the method is difficult to be industrially produced on a large scale.
  • Patent document CN101128495A discloses a cement dispersant of a phosphorus-containing vinyl polymer.
  • the phosphoric acid water reducing agent is formed by aqueous radical polymerization of a vinyl poly(oxyalkylene) compound and a phosphate-containing unsaturated monomer.
  • This phosphoric acid water reducing agent does not delay the setting time of the concrete and maintains a good initial water reducing capacity.
  • the monomer used in the phosphoric acid water reducing agent is mainly a phosphate group monomer, and the monomer generates a hydrolysis reaction under alkaline environmental conditions of the cement.
  • the preparation process of the phosphate ester monomer is complicated, and is also disadvantageous for industrial application.
  • Patent document CN101061151A discloses a process for the preparation of a polycondensation phosphate polymer based on an aromatic or heterocyclic aromatic compound and the use of cement dispersion.
  • the polycondensate is obtained by polycondensation of an aromatic phosphate compound, an aldehyde, and an aromatic compound having an alkoxy polyether under acidic conditions.
  • the polycondensate has a good water reducing effect.
  • the polycondensate water reducing agent aqueous solution contains a large amount of free formaldehyde, causing environmental pollution.
  • the polymer main chain is mainly a hydrophobic aromatic ring, and the water reducing agent has a strong air entraining effect. When the water-reducing agent has a high air entrainment, it is very detrimental to the development of concrete strength.
  • the appeal patent discloses different types of phosphate-based water reducers, which improve the compatibility of the concrete to a certain extent and improve the resistance of the superplasticizer to clay and alkaline sulfide.
  • the existing concrete high-efficiency polycarboxylate water-reducing agent has the problem of compatibility with concrete, and the preparation process of the existing phosphate group-related water-reducing agent has many disadvantages.
  • the present invention provides a phosphite group.
  • the concrete superplasticizer having the phosphite group of the invention can effectively improve the fluidity of the concrete and can maintain the good working performance of the concrete; the method is simple and economical, especially industrial production;
  • the concrete superplasticizer of the phosphite group has a stable gas content.
  • the concrete superplasticizer having a phosphite group according to the present invention is an aqueous dispersion of a comb polymer, wherein the main chain of the comb polymer is a phosphorous acid adsorption group, and the side chain is a polyether. .
  • the method for preparing a superplasticizer for concrete having a phosphite group according to the present invention is obtained by radical copolymerization of a phosphorus-containing monomer A and a polyether macromonomer B, wherein:
  • R 1 is H or CH 3
  • n is an integer of 0 to 6
  • M is a hydrogen atom, an alkali metal ion, an alkaline earth metal ion, an ammonium ion or an organic amine group.
  • Monomer B is represented by the general formula (2):
  • R 2 represents H or CH 3 ;
  • X O, CH 2 O, CH 2 CH 2 O; and
  • p is an average addition mole number of ethylene oxide, which is an integer of from 20 to 90.
  • Monomer A monomer B molar ratio is 3-8:1
  • the molecular weight requirement of the phosphorous acid type concrete superplasticizer according to the present invention is the same as the conventional molecular weight range of the polycarboxylate water reducing agent of the comb structure of the prior art.
  • the weight average molecular weight (M W ) of the phosphorous acid concrete superplasticizer according to the present invention is from 20,000 to 80,000.
  • the monomer A of the formula (1) in the invention can be obtained by a known method, specifically, by a chloroolefin and an amine compound in an aqueous phase reaction.
  • the chloroolefin described therein is selected from the group consisting of allyl chloride and/or methallyl chloride.
  • the amine compound mainly includes any one of ammonia water, ethylene diamine, diethylene triamethylene, triethylenetetramine, tetraethylene pentamine, pentaethylene hexamine, hexaethylene heptaamine, and polyethene polyamine.
  • the synthetic route of monomer A is as follows:
  • the first step is a classical nucleophilic substitution reaction, which is a well-known basic type of organic chemistry. Those skilled in the art can infer from the reaction mechanism that the main products of the substitution reaction are as shown in the above figure.
  • the second step is a phosphorylation reaction of an amino group which is all amino groups to which a H atom is bonded, including a primary amino group and a secondary amino group.
  • the phosphorylation reaction is also a well-known reaction type, and the reaction has been reported in several patent documents (CN102439063B, WO94/08913).
  • the obtained product is the raw material list of the polymerization reaction Body A.
  • the monomer B according to the general formula (2) of the present invention is an ether unsaturated polyether macromonomer, which is generally used in the art and is selected from the group consisting of vinyl polyglycol ether and allyl polyglycol ether. Any one of 3-buten-1-ol polyglycol ether, methallyl polyglycol ether, 3-methyl-3-buten-1-ol polyglycol ether The above is mixed in any ratio.
  • the monomer B and the oxidizing agent are added to the reaction vessel before the start of the reaction, thereby increasing the conversion rate and copolymerization activity of the monomer B; the aqueous solution of the monomer A, the chain transfer agent and the reducing agent is added in the form of dropwise addition after the start of the reaction.
  • the reaction vessel Into the reaction vessel.
  • the oxidizing agent and the reducing agent are water-soluble and constitute a redox initiator system; the oxidizing agent is hydrogen peroxide having a mass concentration of not more than 30%, and the reducing agent is selected from the group consisting of sodium hydrogen sulfite, sodium metabisulfite, and sodium bisphosphonate. Any one of Mohr's salt, L-ascorbic acid, isoascorbic acid or sodium formaldehyde sulfoxylate,
  • the chain transfer agent is one of thioglycolic acid, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid or a mixture of two or more of them in any ratio.
  • the amount of the oxidizing agent, the reducing agent, and the chain transfer agent is 2 to 10%, 0.5 to 5%, and 0.5 to 5%, respectively, based on the total moles of the monomer (A+B).
  • the polymerization concentration is controlled to be 30 to 60% by weight and the polymerization temperature is 30 to 60 ° C, and the dropping time of the monomer and the reducing agent solution is controlled to be 2 to 6 hours. After the completion of the dropwise addition, the polymerization reaction time was controlled at 4 to 8 hours.
  • the polymerization concentration is the sum of the mass percentage concentrations of all the monomers in the mixed solution.
  • the reaction product can be directly used as a main component of the cement dispersant, and more preferably after neutralization with a basic compound to enhance the stability of product storage.
  • the amount of the alkaline substance used is preferably such that the pH of the reaction product is adjusted to 6 to 8.
  • the phosphite group contained in the above structural formula may be partially or completely converted into a phosphite. Since neutralization has little influence on the molecular weight of the superplasticizer having a phosphite group, the present invention ignores it.
  • the conventional dosage (pure solid content) of the concrete superplasticizer having the phosphite group of the present invention is 0.05% to 0.3% of the total mass of the cement concrete rubber, and the optimum amount thereof must be according to the actual work of the project. On-site concrete mixing experiments are required for verification.
  • the concrete superplasticizer having the phosphite group of the present invention may be used singly or at least one selected from the group consisting of sulfamic acid-based water reducing agents and lignin-based ordinary water reducing agents known in the prior art.
  • a polycarboxylate water reducing agent is used in combination to improve the slump retention ability of the prior art water reducing agent product.
  • the concrete superplasticizer having the phosphite group of the invention can effectively improve the fluidity of the concrete, maintain the good working performance of the concrete, and at the same time, the amount of the solidification is lower.
  • the preparation method is simple and effective, and can be industrially produced.
  • the number average molecular weight of the polymer was measured by a Wyatt technology corporation gel permeation chromatography.
  • gel column Shodex SB806+803 two columns in series; eluent: 0.1M NaNO3 solution; mobile phase velocity: 0.8ml/min; injection: 20 ⁇ l 0.5% aqueous solution; detector: Shodex RI-71 type refractive index Detector; standard: polyethylene glycol GPC standard (Sigma-Aldrich, molecular weight 1010000, 478000, 263000, 118000, 44700, 18600, 6690, 1960, 628, 232)
  • the cement used is the reference cement (P.042.5)
  • the stone is the continuous grading with the particle size of 5-20 mm. gravel.
  • the test method of gas content and water reduction rate shall be carried out in accordance with the relevant provisions of GB8076-2008 "Concrete admixture”.
  • the slump and slump loss shall be implemented in accordance with the relevant provisions of JC473-2001 "Concrete Pumping Agent”.
  • a 1000 mL three-necked flask was placed at the top with a condenser and inerted with nitrogen, and placed in a constant temperature oil bath, and 1 mol of methylallyl chloride, 5 mol of ethylenediamine and 500 mL of water were added while magnetic stirring. The mixture was heated to 100 ° C while stirring. After 12 hours of reaction, the solution formed a homogeneous phase. The excess ethylenediamine and water were distilled off by a rotary evaporator. After cooling, a methanol solution was added and the ammonium salt was removed by filtration. The methanol was distilled off under reduced pressure. An approximately pure unsaturated amine is obtained.
  • a condenser was placed at the top and inerted with nitrogen, and placed in a constant temperature oil bath, and 1 mol of methylallyl chloride, 2 mol of diethylenetriamine and 500 mL of water were added while magnetic stirring was performed. .
  • the mixture was heated to 100 ° C while stirring. After 12 hours of reaction, the solution formed a homogeneous phase.
  • the mixture was cooled to room temperature, and 6 mol of HCl was added thereto at room temperature, followed by raising the temperature to 80 ° C. After adding 8 mol of H 3 PO 3 solid and 8 mol of aqueous formaldehyde solution (37%), the mixture was heated to 110 ° C for 12 hours.
  • the phosphite monomer was precipitated by adding an excess of hot methanol, and after separation, the product was recrystallized from water to obtain a pure unsaturated phosphite monomer A-2.
  • the yield was 54%.
  • a condenser was placed at the top and inerted with nitrogen, and placed in a constant temperature oil bath, and 1 mol of methylallyl chloride, 1 mol of hexamethyleneheptaamine and 500 mL of water were added while magnetic stirring was performed. .
  • the mixture was heated to 100 ° C while stirring. After 12 hours of reaction, the solution formed a homogeneous phase.
  • the mixture was cooled to room temperature, and 7 mol of HCl was added thereto at room temperature, followed by raising the temperature to 80 ° C.
  • the addition time is about 2 h
  • the reaction is kept for 2 h, cooled to room temperature, neutralized to pH 6.8 with alkali, and a yellow transparent liquid having a solid content of 30.7% is obtained, and the molecular weight is 30,000.
  • Coagulation time, gas content and slump test Refer to the relevant test method of GB8076-2008 "Concrete admixture" for the determination of gas content; refer to JC473-2001 "Concrete pumping agent” related methods to determine the product of the invention and two The slump of fresh concrete prepared by a commercially available high-performance sputum agent and the change of slump at 30 min, the blending amount of the copolymer was fixed to 0.12% of the amount of cement. The experimental results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

具有亚磷酸基团的混凝土超塑化剂的制备方法及其应用,其中由含磷单体A、聚醚大单体B进行自由基共聚反应得到该混凝土超塑化剂,该混凝土超塑化剂可有效改善混凝土的流动性,且可以保持混凝土的良好的工作性能。

Description

具有亚磷酸基团的混凝土超塑化剂的制备方法和应用 技术领域
本发明属于混凝土外加剂技术领域,涉及一种具有亚磷酸基团的混凝土超塑化剂及其制备方法。
背景技术
随着我国经济的快速发展,现代建筑物呈现出超大跨度、超高层的发展趋势,对混凝土的强度和耐久性等性能提出了更高的要求。混凝土掺加高性能聚合物分散剂是降低水泥用量、提高工业废渣利用率、实现混凝土高耐久性和性能提升最有效、最经济、最简便的技术途径。
就目前而言,高性能聚合物分散剂主要是聚羧酸聚合物超塑化剂。这些聚羧酸聚合物可以增加水泥的流动性,进而减少用水量,使混凝土材料具有更高的机械强度,这种聚羧酸聚合物也通常被称为聚羧酸减水剂。
在过去的十年里发展了一系列基于聚羧酸减水剂的技术(CN200910045437,CN200910154139,CN201110001233,CN201110109261,CN201110297153,CN201110377946,CN201110448681,CN201110460995,CN201210104362,CN201210528905)。
然而理论研究和工程应用表明聚羧酸减水剂与混凝土材料存在相容性问题。这些相容性问题主要表现在混凝土坍落度损失快,出现异常凝结,强度增加较慢,收缩增加、易开裂等现象。
为了解决混凝土相容性问题,工程技术人员和研究者基于上述研究理论从减水剂分子构筑的层面上,引入具有高吸附性的磷酸基团。一方面提高减水剂本身在水泥浆体系中对钙离子的容忍度,另一方面磷酸基本身较羧基有更强的电荷吸引力。目前已有多篇专利公开了相关具有磷酸基团的减水剂的制备方法。
专利文献CN102439063B公开了一种含有直链聚甘油的具有至少一个膦酸末端的化合物。这种化合物用作减水剂可以有效地保持混凝土的坍落扩展度,然而这种减水剂制备成本较高,且能够引起凝固延迟,且凝固延迟随着添加剂的用量的增加而延长。
专利文献CN103596993A公开了一种具有偕双磷酸酯基的共聚物,该类聚合物相对于聚羧酸减水剂而言对水泥中的粘土和碱性硫化物具有低的敏感性。然而该方法用PCl3作为反应原料,PCl3是一种易水解和氧化的物质,不易暴露在空气中,难以储存。所以该方法生产的磷酸盐减水剂难以大规模的工业化生产。
专利文献CN101128495A公开了一种含磷的乙烯基聚合物的水泥分散剂。这种磷酸减水剂是由乙烯基聚(氧化亚烷基)化合物和含有磷酸盐的不饱和单体通过水性自由基聚合而成。这种磷酸类减水剂不延缓混凝土的凝结时间并可保持较好的初始减水能力。然而该磷酸减水剂所用单体主要为磷酸酯基单体,该类单体在水泥的碱性环境条件下会产生水解反应。且这种磷酸酯单体制备工艺复杂,也不利于工业化的应用。
专利文献CN101061151A公开了一种基于芳族或杂环芳族化合物的缩聚磷酸酯聚合物的制备方法和水泥分散的应用。该类缩聚物是由芳香族磷酸酯化合物、醛和带有烷氧基聚醚的芳香族化合物在酸的条件下缩聚而成。该缩聚物具有较好的减水效果。然而该缩聚物减水剂水溶液中含有大量的游离甲醛,造成环境的污染。另外该聚合物主链主要是疏水的芳香环,该减水剂有强烈的引气作用。当减水剂引气量较高时,非常不利于混凝土强度的发展。
上诉专利公开了不同的类型磷酸基减水剂,从一定程度上改善了混凝土的相容性,提高了超塑化剂对粘土和碱性硫化物的抗性。
发明内容
现有混凝土高效聚羧酸减水剂存在与混凝土相容性问题,而现有磷酸基团相关的减水剂的制备工艺又存在诸多不足,针对上述问题,本发明提供一种具有亚磷酸基团的混凝土超塑化剂及其制备方法。本发明所述具有亚磷酸基团的混凝土超塑化剂可有效地改善混凝土的流动性,且可以保持混凝土的良好的工作性能;所述方法简单经济有效,尤其是可以工业化生产;同时所获得的亚磷酸基团的混凝土超塑化剂含气量稳定。
本发明所述的具有亚磷酸基团的混凝土超塑化剂,是一种梳型聚合物的水分散液,所述梳型聚合物的主链为亚磷酸吸附基团,侧链为聚醚。
本发明所述的具有亚磷酸基团的混凝土超塑化剂的制备方法,由含磷单体A、聚醚大单体B进行自由基共聚反应得到,其中:
单体A对应的结构如下述通式1所示:
Figure PCTCN2016104952-appb-000001
通式(1)中,R1为H或者CH3,n为0到6的整数,M为氢原子、碱金属离子、碱土金属离子、铵离子或有机胺基团。
单体B用通式(2)表示:
Figure PCTCN2016104952-appb-000002
通式(2)中,R2代表H或者CH3;X=O、CH2O、CH2CH2O;p为环氧乙烷的平均加成摩尔数,其为20~90的整数。
单体A:单体B的摩尔比为3~8:1
本发明所述的亚磷酸型混凝土超塑化剂的分子量要求同现有技术中梳型结构的聚羧酸减水剂的常用分子量范围。本发明所述的亚磷酸混凝土超塑化剂的重均分子量(MW)为20000~80000。
该发明中通式(1)所述的单体A可通过公知方法制得,具体的讲是由氯代烯烃和胺类化合物在水相反应中得到。
其中所述的氯代烯烃选自烯丙基氯和/或甲基烯丙基氯。
所述的胺类化合物主要包括氨水、乙二胺、二乙烯三安、三乙烯四胺、四乙烯五胺、五乙烯六胺,六乙烯七胺,多乙烯多胺中的任意一种。
单体A的合成路线如下所示:
Figure PCTCN2016104952-appb-000003
其中第一步为经典的亲核取代反应,此为公知的有机化学基本反应类型,本领域技术人员可根据反应机理推知取代反应的主要产物如上图所示。
第二步为氨基的亚磷酸化反应,所述的氨基为连接有H原子的所有氨基,包括伯氨基和仲胺基。所述的亚磷酸化反应亦为公知的反应类型,该反应已有多篇专利文献报道(CN102439063B,WO94/08913)。所得到的产物即为该聚合反应的原料单 体A。
本发明通式(2)所述的单体B为醚类不饱和聚醚大单体,为本领域常用物质,其选自:乙烯基聚乙二醇醚、烯丙基聚乙二醇醚、3-丁烯-1-醇基聚乙二醇醚、甲代烯丙基聚乙二醇醚、3-甲基-3-丁烯-1-醇基聚乙二醇醚的任意一种以上以任意比例混合。
本领域的技术人员可以根据单体的聚合活性及目标产物的分子量,结合现有技术选择具体的自由基聚合反应条件。同时为了尽可能形成单体A所成链段和单体B所成链段在聚合物中更均匀分布(通常认为这样的产品性能更优),非常建议采用下述反应物添加方式,亦即本发明所述具有亚磷酸基团的混凝土超塑化剂的制备方法,其具体工艺如下:
单体B和氧化剂则在反应开始前加入到反应容器中,从而提高单体B的转化率和共聚活性;单体A、链转移剂和还原剂的水溶液在反应开始后以滴加的形式加入到反应容器中。
所述氧化剂和还原剂为水溶性,构成氧化还原引发剂体系;氧化剂为质量浓度不高于30%的过氧化氢,还原剂选自亚硫酸氢钠、焦亚硫酸氢钠、连二磷酸钠、莫尔盐、L-抗坏血酸、异抗坏血酸或甲醛次硫酸氢钠中的任意一种,
所述的链转移剂为巯基乙醇、巯基乙酸、2-巯基丙酸、3-巯基丙酸的一种或者两种以上任意比例的混合物。
氧化剂、还原剂、链转移剂的用量分别为单体(A+B)总摩尔数的2~10%、0.5~5%、0.5~5%。
在实施本发明时,控制聚合浓度为30~60wt%和聚合温度为30~60℃下进行,单体和还原剂溶液滴加时间控制在2~6h。滴加结束后,聚合反应时间控制在4~8h。在这里,所述的聚合浓度为混合溶液中所有单体的质量百分比浓度之和。
聚合反应结束后,反应产物可直接用作水泥分散剂的主要使用成分,更优选的是用碱性化合物中和后使用,以增强产品储存的稳定性。这为本领域的公知技术。碱性物质的用量以调节反应产物的pH值为6~8为宜。中和后,上述结构通式中所含亚磷酸基会部分或全部转化为亚磷酸盐。由于中和对所述具有亚磷酸基团的超塑化剂的分子量影响很小,本发明对之进行忽略。
在本发明的另一方面,还提供了具有亚磷酸基团的混凝土超塑化剂的作为水泥分散剂的应用。
本发明所述的具有具有亚磷酸基团的混凝土超塑化剂的常规掺量(纯固体掺量)为水泥混凝土胶材总质量的0.05%~0.3%,其最佳用量必须根据工程的实际需要进行现场混凝土拌制实验进行验证。
本发明所述具有亚磷酸基团的混凝土超塑化剂可以单独使用,也可以与至少一种选自现有技术中已知氨基磺酸系减水剂、木质素系普通减水剂以及现有聚羧酸盐减水剂相混合使用,以提高现有技术减水剂产品的坍落度保持能力。另外,除上面提到的已知混凝土减水剂外,其中也可以根据实际需要加入引气剂、膨胀剂、缓凝剂、早强剂、增粘剂、减缩剂和消泡剂等功能型外加剂等。
本发明所述具有亚磷酸基团的混凝土超塑化剂可有效地改善混凝土的流动性、保持混凝土的良好的工作性能,同时折固掺量在较低。所述制备方法简单有效,可以工业化生产。
具体实施方案
下面通过实例详细地描述本发明,这些实例仅仅是说明性的,不代表限制本发明的适用范围,根据本文的公开,本领域技术人员能在本发明范围内对试剂、催化剂和反应工艺条件进行改变。凡根据本发明精神实质所做的等效变化或者修改,都应涵盖在本发明的保护范围之内。
本发明实施例中,聚合物的数均分子量采用Wyatt technology corporation凝胶渗透色谱仪测定。(凝胶柱:Shodex SB806+803两根色谱柱串联;洗提液:0.1M NaNO3溶液;流动相速度:0.8ml/min;注射:20μl 0.5%水溶液;检测器:Shodex RI-71型示差折光检测器;标准物:聚乙二醇GPC标样(Sigma-Aldrich,分子量1010000,478000,263000,118000,44700,18600,6690,1960,628,232)
本发明应用实施例中,除特别说明,所采用的水泥均为基准水泥(P.042.5),砂为细度模数Mx=2.6的中砂,石子为粒径为5~20mm连续级配的碎石。含气量、减水率试验方法参照GB8076-2008《混凝土外加剂》的相关规定执行。坍落度及坍落度损失参照JC473-2001《混凝土泵送剂》相关规定执行。
本发明合成例中所述的单体A的化合物代号及其对应结构式如下所示:
Figure PCTCN2016104952-appb-000004
合成例1:制备单体A-1
Figure PCTCN2016104952-appb-000005
1000mL的三颈瓶中,在其顶设置有冷凝器并用氮气惰性化,且设置在恒温的油浴,在进行磁力搅拌的同时加入1mol甲基烯丙基氯,5mol乙二胺和500mL水。将混合物在搅拌的同时加热至100℃。反应12小时后,溶液形成均相。再将多余的乙二胺和水用旋转蒸发仪蒸除,冷却后加入甲醇溶液,过滤除去铵盐。再将甲醇减压蒸馏除去。得到近似纯品的不饱和胺。在室温条件下加入2molHCl和500mL水,随后升温至80℃,加入3mol的H3PO3固体和3mol甲醛水溶液(37%)后,升温至110℃反应12小时。反应结束后,将亚磷酸单体通过加入过量的热甲醇沉淀,在分离后,将产物用水重结晶可得到纯品不饱和亚磷酸单体A-1。产率85%。
合成例2:制备单体A-2
Figure PCTCN2016104952-appb-000006
1000mL的三颈瓶中,在其顶设置有冷凝器并用氮气惰性化,且设置在恒温的油浴,在进行磁力搅拌的同时加入1mol甲基烯丙基氯,2mol二乙烯三胺和500mL水。将混合物在搅拌的同时加热至100℃。反应12小时后,溶液形成均相。将混合 物冷却至室温,在室温条件下加入6molHCl,随后升温至80℃,在加入8mol的H3PO3固体和8mol甲醛水溶液(37%)后,升温至110℃反应12小时。反应结束后,将亚磷酸单体通过加入过量的热甲醇沉淀,在分离后,将产物用水重结晶可得到纯品不饱和亚磷酸单体A-2。产率54%。
合成例3:制备单体A-6
Figure PCTCN2016104952-appb-000007
1000mL的三颈瓶中,在其顶设置有冷凝器并用氮气惰性化,且设置在恒温的油浴,在进行磁力搅拌的同时加入1mol甲基烯丙基氯,1mol六乙烯七胺和500mL水。将混合物在搅拌的同时加热至100℃。反应12小时后,溶液形成均相。将混合物冷却至室温,在室温条件下加入7molHCl,随后升温至80℃,在加入8mol的H3PO3固体和8mol甲醛水溶液(37%)后,升温至110℃反应12小时。反应结束后,将亚磷酸单体通过加入过量的热甲醇沉淀,在分离后,将产物用水重结晶可得到纯品不饱和亚磷酸单体A-6。产率87%。
表1实施例单体B化合物代号:
Figure PCTCN2016104952-appb-000008
实施例1
在装有温度计、搅拌器、滴液漏斗和氮气导入管的玻璃反应器中,加入40g去离子水,同时加入20g B-2(0.01mol),边搅拌边用氮气吹扫反应容器,并升温至30℃溶解,后加入过氧化氢(质量浓度为30%)0.091g,搅拌均匀。然后将11.07gA-1(0.03mol)、0.184g巯基乙酸、水15g相混,搅拌制成均匀的单体水溶液,将其滴加入反应器,滴加时间为2h,并同时滴加15g含有0.035g L-抗坏血酸的水溶液,滴加时间约2h,滴加完毕后保温反应2h,冷却至室温,加碱中和到pH值6.8,得到固含量为30.7%的黄色透明液体,分子量为30,000。
实施例2
在装有温度计、搅拌器、滴液漏斗和氮气导入管的玻璃反应器中,加入50g去离子水,同时加入30g B-3(0.01mol),边搅拌边用氮气吹扫反应容器,并升温至45℃溶解,后加入过氧化氢(质量浓度为30%)0.31g,搅拌均匀。然后将41.54gA-2(0.08mol)、0.212g 2-巯基丙酸、0.190g巯基乙酸、水20g相混,搅拌制成均匀的单体水溶液,将其滴加入反应器,滴加时间为6h,并同时滴加20g含有0.053g甲醛次硫酸钠的水溶液,滴加时间约6h,滴加完毕后保温反应2h,冷却至室温,加碱中和到pH值7.2,得到固体含量为44.4%的黄色透明液体,分子量为38,000。
实施例3
在装有温度计、搅拌器、滴液漏斗和氮气导入管的玻璃反应器中,加入50g去离子水,同时加入40gB-4(0.01mol)边搅拌边用氮气吹扫反应容器,并升温50℃溶解,后加入过氧化氢(质量浓度为30%)0.23g,搅拌均匀。然后将35.60g A-3(0.04mol)、0.184g巯基乙酸、水20g相混,搅拌制成均匀的单体水溶液,将其滴加入反应器,滴加时间为4h,并同时滴加20g含有0.18g L-抗坏血酸的水溶液,滴加时间约4h,滴加完毕后保温反应2h,冷却至室温,加碱中和到pH值7.0,得到固含量为45.8%的黄色透明液体,分子量为71,000。
实施例4
在装有温度计、搅拌器、滴液漏斗和氮气导入管的玻璃反应器中,加入30g去离子水,同时加入10g B-1(0.01mol),边搅拌边用氮气吹扫反应容器,并升温至60℃溶解,后加入过氧化氢(质量浓度为30%)0.34g,搅拌均匀。然后将39.67g A-4(0.05mol)、0.223g 3-巯基丙酸、水10g相混,搅拌制成均匀的单体水溶液,将其滴加入反应器,滴加时间为5h,并同时滴加10g含有0.22g甲醛次硫酸钠的水溶液,滴加时间约5h,滴加完毕后保温反应2h,冷却至室温,加碱中和到pH值6.5,得到固含量为50.2%的黄色透明液体,分子量为42,000。
实施例5
在装有温度计、搅拌器、滴液漏斗和氮气导入管的玻璃反应器中,加入40g去离子水,同时加入20g B-2(0.01mol),边搅拌边用氮气吹扫反应容器,并升温至60℃溶解,后加入过氧化氢(质量浓度为30%)0.47g,搅拌均匀。然后将56.67gA-5(0.06mol)、0.193g巯基乙酸、水10g相混,搅拌制成均匀的单体水溶液,将其滴加入反应器,滴加时间为4h,并同时滴加10g含有0.29g甲醛次硫酸钠的水 溶液,滴加时间约4h,滴加完毕后保温反应2h,冷却至室温,加碱中和到pH值7.1,得到固含量为54.5%的黄色透明液体,分子量为22,000。
实施例6
在装有温度计、搅拌器、滴液漏斗和氮气导入管的玻璃反应器中,加入50g去离子水,同时加入30g B-3(0.01mol),边搅拌边用氮气吹扫反应容器,并升温至40℃溶解,后加入过氧化氢(质量浓度为30%)0.63g,搅拌均匀。然后将75.71gA-6(0.07mol)、0.170g 2-巯基丙酸、水20g相混,搅拌制成均匀的单体水溶液,将其滴加入反应器,滴加时间为3h,并同时滴加10g含有0.63g L-抗坏血酸的水溶液,滴加时间约3h,滴加完毕后保温反应2h,冷却至室温,加碱中和到pH值7.4,得到固含量为57.25%的黄色透明液体,分子量为69,000。
实施例7
在装有温度计、搅拌器、滴液漏斗和氮气导入管的玻璃反应器中,加入50g去离子水,同时加入40g B-4(0.01mol),边搅拌边用氮气吹扫反应容器,并升温至40℃溶解,后加入过氧化氢(质量浓度为30%)0.54g,搅拌均匀。然后将19.8gA-1(0.05mol)、0.064g 3-巯基丙酸、水20g相混,搅拌制成均匀的单体水溶液,将其滴加入反应器,滴加时间为5h,并同时滴加15g含有0.42g L-抗坏血酸的水溶液,滴加时间约5h,滴加完毕后保温反应2h,冷却至室温,加碱中和到pH值7.5,得到固含量为41.7%的黄色透明液体,分子量为55,000。
实施例8
在装有温度计、搅拌器、滴液漏斗和氮气导入管的玻璃反应器中,加入40g去离子水,同时加入10g B-1(0.01mol),边搅拌边用氮气吹扫反应容器,并升温至40℃溶解,后加入过氧化氢(质量浓度为30%)0.56g,搅拌均匀。然后将20.77gA-2(0.04mol)、0.027g 3-巯基丙酸、水10g相混,搅拌制成均匀的单体水溶液,将其滴加入反应器,滴加时间为5h,并同时滴加10g含有0.44g L-抗坏血酸的水溶液,滴加时间约5h,滴加完毕后保温反应2h,冷却至室温,加碱中和到pH值7.5,得到固含量为34.63%的黄色透明液体,分子量为21,000。
对比例1
在装有温度计、搅拌器、滴液漏斗和氮气导入管的玻璃反应器中,加入30g去离子水,同时加入40g B-4(0.01mol),边搅拌边用氮气吹扫反应容器,并升温至40℃溶解,后加入过氧化氢(质量浓度为30%)0.54g,搅拌均匀。然后将 7.92gA-1(0.02mol)、0.223g 3-巯基丙酸、水20g相混,搅拌制成均匀的单体水溶液,将其滴加入反应器,滴加时间为5h,并同时滴加15g含有0.37g L-抗坏血酸的水溶液,滴加时间约5h,滴加完毕后保温反应2h,冷却至室温,加碱中和到pH值7.5,得到固含量为42.9%的黄色透明液体,分子量为43,000。
对比例2
在装有温度计、搅拌器、滴液漏斗和氮气导入管的玻璃反应器中,加入50g去离子水,同时加入)30g B-3(0.01mol),边搅拌边用氮气吹扫反应容器,并升温至45℃溶解,后加入过氧化氢(质量浓度为30%)0.17g,搅拌均匀。然后将46.73gA-2(0.09mol、0.0368g巯基乙酸、水20g相混,搅拌制成均匀的单体水溶液,将其滴加入反应器,滴加时间为6h,并同时滴加20g含有0.047g甲醛次硫酸钠的水溶液,滴加时间约6h,滴加完毕后保温反应2h,冷却至室温,加碱中和到pH值7.2,得到固体含量为46.1%的黄色透明液体,分子量为52,000。
对比例3
在装有温度计、搅拌器、滴液漏斗和氮气导入管的玻璃反应器中,加入200g去离子水,同时加入30g B-3(0.01mol)43.26gA-6(0.04mol),边搅拌边用氮气吹扫反应容器,并升温至30℃溶解,后加入过氧化氢(质量浓度为30%)0.28g,搅拌均匀。然后将43.26gA-6(0.04mol)、0.16g 3-巯基丙酸、水40g相混,搅拌制成均匀的单体水溶液,将其滴加入反应器,滴加时间为3h,并同时滴加40g含有0.352g L-抗坏血酸的水溶液,滴加时间约3h,滴加完毕后保温反应2h,加碱中和到pH值6.8,得到固含量为20.89%的黄色透明液体,分子量为18,000。
应用实施例1
凝结时间、含气量及坍落度测试:参照GB8076-2008《混凝土外加剂》的相关试验方法进行了含气量的测定;参照JC473-2001《混凝土泵送剂》相关方法测定了本发明产品和两种市售高性能保坍剂配制的新拌混凝土的坍落度及30min的经时坍落度变化,共聚物的掺量固定为水泥用量的0.12%,实验结果见表2。
表2混凝土试验
Figure PCTCN2016104952-appb-000009
Figure PCTCN2016104952-appb-000010
上述实验表明,本发明的具有亚磷酸基团的混凝土超塑化剂在较低掺量下可以获得优异的混凝土工作性能。超出本发明范围的对比例1~3则存在掺量提高,混凝土保坍性能不足等不利因素。

Claims (7)

  1. 一种具有亚磷酸基团的混凝土超塑化剂的制备方法,其特征在于,由含磷单体A、聚醚大单体B进行自由基共聚反应得到,
    单体A对应的结构如下述通式1所示:
    Figure PCTCN2016104952-appb-100001
    通式(1)中,R1为H或者CH3,n为0到6的整数,M为氢原子、碱金属离子、碱土金属离子、铵离子或有机胺基团;
    单体B用通式(2)表示:
    Figure PCTCN2016104952-appb-100002
    通式(2)中,R2代表H或者CH3;X=O、CH2O、CH2CH2O;p为环氧乙烷的平均加成摩尔数,其为20~90的整数;
    单体A:单体B的摩尔比为3~8:1。
  2. 根据权利要求1所述方法,其特征在于,所述的具有亚磷酸混凝土超塑化剂的重均分子量(MW)为20000~80000。
  3. 根据权利要求1或2所述的方法,其特征在于,所述单体A是由氯代烯烃和胺类化合物在水相反应中得到;
    其中所述的氯代烯烃选自烯丙基氯和/或甲基烯丙基氯;
    所述的胺类化合物包括氨水、乙二胺、二乙烯三安、三乙烯四胺、四乙烯五胺、五乙烯六胺,六乙烯七胺,多乙烯多胺中的任意一种。
  4. 根据权利要求3所述方法,其特征在于,单体A的合成路线如下所示:
    Figure PCTCN2016104952-appb-100003
    其中第一步为经典的亲核取代反应;
    第二步为氨基的亚磷酸化反应,所述的氨基为连接有H原子的所有氨基,包括 伯氨基和仲胺基。
  5. 根据权利要求1或2所述的方法,其特征在于,所述的单体B为醚类不饱和聚醚大单体,选自:乙烯基聚乙二醇醚、烯丙基聚乙二醇醚、3-丁烯-1-醇基聚乙二醇醚、甲代烯丙基聚乙二醇醚、3-甲基-3-丁烯-1-醇基聚乙二醇醚的任意一种以上以任意比例混合。
  6. 根据权利要求1-5中的任一项所述的方法,其特征在于,具体包括下述步骤:
    单体B和氧化剂则在反应开始前加入到反应容器中,单体A、链转移剂和还原剂的水溶液在反应开始后以滴加的形式加入到反应容器中;
    所述氧化剂和还原剂为水溶性,构成氧化还原引发剂体系;氧化剂为质量浓度不高于30%的过氧化氢,还原剂选自亚硫酸氢钠、焦亚硫酸氢钠、连二磷酸钠、莫尔盐、L-抗坏血酸、异抗坏血酸或甲醛次硫酸氢钠中的任意一种;
    所述的链转移剂为巯基乙醇、巯基乙酸、2-巯基丙酸、3-巯基丙酸的一种或者两种以上任意比例的混合物;
    氧化剂、还原剂、链转移剂的用量分别为单体(A+B)总摩尔数的2~10%、0.5~5%、0.5~5%;
    控制聚合浓度为30~60wt%和聚合温度为30~60℃下进行,单体和还原剂溶液滴加时间控制在2~6h;所述的聚合浓度为混合溶液中所有单体的质量百分比浓度之和;
    滴加结束后,聚合反应时间控制在4~8h;
    聚合反应结束后,即得所述具有亚磷酸基团的混凝土超塑化剂。
  7. 权利要求1-5中的任一项所述的方法所得具有亚磷酸基团的混凝土超塑化剂的应用,其特征在于,以纯固体掺量为基准,具有亚磷酸基团的混凝土超塑化剂的掺量为水泥混凝土胶材总质量的0.05%~0.3%。
PCT/CN2016/104952 2015-12-31 2016-11-07 具有亚磷酸基团的混凝土超塑化剂的制备方法和应用 WO2017113990A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201805638SA SG11201805638SA (en) 2015-12-31 2016-11-07 Method for preparing concrete superplasticizer having phosphorous acid group and use thereof
MYPI2018001176A MY190927A (en) 2015-12-31 2016-11-07 Method for preparing concrete superplasticizer having phosphorous acid group and use thereof
EP16880781.6A EP3398979A4 (en) 2015-12-31 2016-11-07 PROCESS FOR THE PREPARATION OF A CONCRETE SUPERPLASTIFIANT HAVING A PHOSPHOROUS ACIDIC GROUP AND USE THEREOF
US16/067,012 US10647803B2 (en) 2015-12-31 2016-11-07 Method for preparing concrete superplasticizer having phosphorous acid group and use thereof
ZA2018/05070A ZA201805070B (en) 2015-12-31 2018-07-27 Method for preparing concrete superplasticizer having phosphorous acid group and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511028479.0A CN105713151A (zh) 2015-12-31 2015-12-31 具有亚磷酸基团的混凝土超塑化剂的制备方法和应用
CN201511028479.0 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017113990A1 true WO2017113990A1 (zh) 2017-07-06

Family

ID=56146989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104952 WO2017113990A1 (zh) 2015-12-31 2016-11-07 具有亚磷酸基团的混凝土超塑化剂的制备方法和应用

Country Status (7)

Country Link
US (1) US10647803B2 (zh)
EP (1) EP3398979A4 (zh)
CN (1) CN105713151A (zh)
MY (1) MY190927A (zh)
SG (1) SG11201805638SA (zh)
WO (1) WO2017113990A1 (zh)
ZA (1) ZA201805070B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108373522A (zh) * 2018-02-12 2018-08-07 中交二航武汉港湾新材料有限公司 改性环糊精侧链结构的聚羧酸减水剂及其制备方法
CN108373523A (zh) * 2018-02-12 2018-08-07 中交二航武汉港湾新材料有限公司 有机无机杂化的聚羧酸减水剂及其制备方法
CN111234128A (zh) * 2020-01-09 2020-06-05 昆明承曜建材有限公司 一种聚羧酸减水剂的高效制备方法
CN114075316A (zh) * 2020-08-21 2022-02-22 博特新材料泰州有限公司 一种超高性能混凝土用超塑化剂及其制备方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713151A (zh) * 2015-12-31 2016-06-29 江苏苏博特新材料股份有限公司 具有亚磷酸基团的混凝土超塑化剂的制备方法和应用
CN107337749B (zh) * 2016-12-29 2020-04-24 江苏苏博特新材料股份有限公司 一种耐高温膦酸基混凝土缓凝剂及其制备方法
CN107556446B (zh) * 2017-10-18 2020-12-29 江苏苏博特新材料股份有限公司 一种胺化中间体、其胺化聚醚及磷酸化星型产物和制备方法以及应用
CN107602870B (zh) * 2017-10-19 2020-10-23 江苏苏博特新材料股份有限公司 一种胺化聚醚,其含亚磷酸基团的缩聚物的制备方法及其作为水泥分散剂的应用
CN108046643B (zh) * 2017-12-11 2020-10-23 江苏苏博特新材料股份有限公司 一种新型抗泥土磷酸基超塑化剂的制备方法及应用
CN108558259B (zh) * 2017-12-29 2020-02-28 广东红墙新材料股份有限公司 一种高减水耐泥型减水剂在建筑固废再生骨料混凝土中的应用
CN108299603B (zh) * 2017-12-29 2020-02-28 广西红墙新材料有限公司 一种高减水耐泥型减水剂在高含泥量混凝土中的应用
CN108102045B (zh) * 2017-12-29 2020-02-28 广西红墙新材料有限公司 一种高减水耐泥型减水剂及其制备方法
CN109880035B (zh) * 2018-09-28 2023-05-05 江苏苏博特新材料股份有限公司 一种中低坍落度混凝土专用磷酸基保坍剂及其制备方法
CN111377642B (zh) * 2018-12-31 2021-09-28 江苏苏博特新材料股份有限公司 一种多元吸附聚羧酸减水剂及其制备方法和应用
CN110283329B (zh) * 2019-06-06 2022-04-22 江苏苏博特新材料股份有限公司 一种机制砂混凝土专用超塑化剂及其制备方法
CN111019064A (zh) * 2019-12-26 2020-04-17 河北铁园科技发展有限公司 一种聚羧酸减水剂及其制备方法
CN113072665A (zh) * 2020-01-06 2021-07-06 江苏苏博特新材料股份有限公司 一种含膦酸基聚羧酸减水剂及其制备方法
CN111333361A (zh) * 2020-03-10 2020-06-26 刘翠芬 一种高贝利特硫铝酸盐水泥混凝土外加剂
CN113929832B (zh) * 2020-06-29 2023-02-14 博特建材(天津)有限公司 一种超高性能混凝土用多官能团超塑化剂及其制备方法
CN111607031A (zh) * 2020-07-07 2020-09-01 四川恒泽建材有限公司 一种碳六单体合成减水剂的制备方法
CN114685728B (zh) * 2020-12-29 2023-09-08 南京博特新材料有限公司 一种羧酸-膦酸基齐聚物、其制备方法及其作为减水剂的应用
CN114685729B (zh) * 2020-12-30 2023-08-08 南京博特新材料有限公司 一种含磷酸基固体聚羧酸减水剂的制备方法
CN114685296A (zh) * 2020-12-30 2022-07-01 南京博特新材料有限公司 一种含醛基和胺基的聚醚中间体的制备方法和在磷酸基减水剂中的应用
CN112939509B (zh) * 2021-04-14 2022-06-07 石家庄市长安育才建材有限公司 一种混凝土阻泥剂及其制备方法和使用方法
CN114369208B (zh) * 2021-12-29 2023-07-25 科之杰新材料集团有限公司 一种抗泥高吸附减水型聚羧酸减水剂的制备方法和应用
CN114933679A (zh) * 2022-05-25 2022-08-23 苏州市兴邦化学建材有限公司 一种用于预拌混凝土车载外加剂及其制备方法
CN117164770A (zh) * 2023-08-08 2023-12-05 长江三峡技术经济发展有限公司 具有减缩功能的高分散型减水剂及其制备方法
CN117683226B (zh) * 2024-02-02 2024-05-07 石家庄市长安育才建材有限公司 含膦酸基的季铵盐型降黏剂的制备方法和降黏剂

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2157279A (en) * 1984-04-12 1985-10-23 Dow Chemical Co Well treating composition
EP0444542A1 (en) * 1990-03-02 1991-09-04 BASF Corporation Cementing compositions containing polyethyleneimine phosphonate derivatives as dispersants
WO1994008913A1 (fr) * 1992-10-12 1994-04-28 Chryso (S.A.) Fluidifiants pour suspensions aqueuses de particules minerales et pates de liant hydraulique
CN101346345A (zh) * 2005-12-26 2009-01-14 住友化学株式会社 制备伯胺化合物的方法
US20130231415A1 (en) * 2012-03-05 2013-09-05 Ruetgers Polymers Ltd. Slump Retaining and Dispersing Agent for Hydraulic Compositions
CN103641963A (zh) * 2013-09-16 2014-03-19 南京瑞迪高新技术有限公司 一种适用于含泥骨料的聚羧酸系减水剂及其制备方法
CN105713151A (zh) * 2015-12-31 2016-06-29 江苏苏博特新材料股份有限公司 具有亚磷酸基团的混凝土超塑化剂的制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012769A1 (de) * 1990-04-21 1991-10-24 Hoechst Ag Stabile peroxicarbonsaeuregranulate
DE102004050395A1 (de) 2004-10-15 2006-04-27 Construction Research & Technology Gmbh Polykondensationsprodukt auf Basis von aromatischen oder heteroaromatischen Verbindungen, Verfahren zu seiner Herstellung und dessen Verwendung
DE102005008671A1 (de) 2005-02-25 2006-08-31 Construction Research & Technology Gmbh Phosphor-haltige Copolymere, Verfahren zu ihrer Herstellung und deren Verwendung
DE102005022843A1 (de) * 2005-05-18 2006-11-23 Construction Research & Technology Gmbh Phosphor-haltige Monomere, Verfahren zu ihrer Herstellung sowie deren Verwendung
EP2411346B1 (fr) * 2009-03-25 2013-07-24 Lafarge Gypsum International Fluidifiant pour liant à base de sulfate de calcium
FR2944022B1 (fr) 2009-04-02 2011-06-10 Chryso Fluidifiants pour suspensions aqueuses de particules minerales et pates de liant hydraulique
FR2974090B1 (fr) 2011-04-15 2013-05-31 Chryso Copolymeres a groupements gem-bisphosphones
CN104231182B (zh) * 2014-09-22 2017-06-09 科之杰新材料集团有限公司 一种酯类保坍型聚羧酸减水剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2157279A (en) * 1984-04-12 1985-10-23 Dow Chemical Co Well treating composition
EP0444542A1 (en) * 1990-03-02 1991-09-04 BASF Corporation Cementing compositions containing polyethyleneimine phosphonate derivatives as dispersants
WO1994008913A1 (fr) * 1992-10-12 1994-04-28 Chryso (S.A.) Fluidifiants pour suspensions aqueuses de particules minerales et pates de liant hydraulique
CN101346345A (zh) * 2005-12-26 2009-01-14 住友化学株式会社 制备伯胺化合物的方法
US20130231415A1 (en) * 2012-03-05 2013-09-05 Ruetgers Polymers Ltd. Slump Retaining and Dispersing Agent for Hydraulic Compositions
CN103641963A (zh) * 2013-09-16 2014-03-19 南京瑞迪高新技术有限公司 一种适用于含泥骨料的聚羧酸系减水剂及其制备方法
CN105713151A (zh) * 2015-12-31 2016-06-29 江苏苏博特新材料股份有限公司 具有亚磷酸基团的混凝土超塑化剂的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3398979A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108373522A (zh) * 2018-02-12 2018-08-07 中交二航武汉港湾新材料有限公司 改性环糊精侧链结构的聚羧酸减水剂及其制备方法
CN108373523A (zh) * 2018-02-12 2018-08-07 中交二航武汉港湾新材料有限公司 有机无机杂化的聚羧酸减水剂及其制备方法
CN108373522B (zh) * 2018-02-12 2020-07-03 中交二航武汉港湾新材料有限公司 改性环糊精侧链结构的聚羧酸减水剂及其制备方法
CN108373523B (zh) * 2018-02-12 2020-07-03 中交二航武汉港湾新材料有限公司 有机无机杂化的聚羧酸减水剂及其制备方法
CN111234128A (zh) * 2020-01-09 2020-06-05 昆明承曜建材有限公司 一种聚羧酸减水剂的高效制备方法
CN114075316A (zh) * 2020-08-21 2022-02-22 博特新材料泰州有限公司 一种超高性能混凝土用超塑化剂及其制备方法
CN114075316B (zh) * 2020-08-21 2024-05-03 博特新材料泰州有限公司 一种超高性能混凝土用超塑化剂及其制备方法

Also Published As

Publication number Publication date
SG11201805638SA (en) 2018-07-30
EP3398979A1 (en) 2018-11-07
CN105713151A (zh) 2016-06-29
US10647803B2 (en) 2020-05-12
EP3398979A4 (en) 2019-08-21
ZA201805070B (en) 2019-05-29
US20190002614A1 (en) 2019-01-03
MY190927A (en) 2022-05-20

Similar Documents

Publication Publication Date Title
WO2017113990A1 (zh) 具有亚磷酸基团的混凝土超塑化剂的制备方法和应用
CN107337767B (zh) 一种含磷酸基团的减水剂的制备方法
CN102027028B (zh) 制造聚羧酸共聚物的方法和水泥掺合剂用共聚物组合物
CN100430429C (zh) 水泥外加剂和水泥组合物
CA2936567C (en) Additive for hydraulically setting compositions
CN109957103B (zh) 一种中低坍落度混凝土专用双齿型膦酸基减水剂及其制备方法
CN105601839A (zh) 含磷酸类基团的聚羧酸减水剂的制备方法及应用
US20230278926A1 (en) Multifunctional superplasticizer for ultra-high performance concrete and preparation method therefor
CN102421722B (zh) 水泥分散剂用聚合物组合物及其制造方法
CN107043227A (zh) 一种抗粘土型聚合物分散剂及其制备方法
US11377392B2 (en) Additive for hydraulically setting compositions
KR100578944B1 (ko) 시멘트 분산제, 그 제조방법 및 그것을 이용한 시멘트조성물
CN109320714B (zh) 一种中低坍落度混凝土专用小分子超塑化剂及其制备方法
SG171999A1 (en) Semi-continuously operated method for producing copolymers
JP5107789B2 (ja) セメント混和剤とその製造方法
JP2023134481A (ja) 重合体及びセメント混和剤
CN111378111B (zh) 一种不含卤素离子的膦酸盐减水剂及其制备方法和应用
CN111087422B (zh) 一种(2-膦酸-亚丙基)丙二酸的制备方法
CN111065661A (zh) 共聚物、分散剂、分散体组合物
JP3914131B2 (ja) セメント分散剤、その製造方法およびそれを用いたセメント組成物
CN114685729B (zh) 一种含磷酸基固体聚羧酸减水剂的制备方法
JP6541952B2 (ja) マクロモノマー及びその製造方法
CN114685296A (zh) 一种含醛基和胺基的聚醚中间体的制备方法和在磷酸基减水剂中的应用
CN117659377A (zh) 一种不饱和支化聚醚及其制备方法和其制备磷酸基减水剂的应用
CN107548384A (zh) 含石膏的组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880781

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201805638S

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016880781

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016880781

Country of ref document: EP

Effective date: 20180731