JP6541952B2 - マクロモノマー及びその製造方法 - Google Patents
マクロモノマー及びその製造方法 Download PDFInfo
- Publication number
- JP6541952B2 JP6541952B2 JP2014197199A JP2014197199A JP6541952B2 JP 6541952 B2 JP6541952 B2 JP 6541952B2 JP 2014197199 A JP2014197199 A JP 2014197199A JP 2014197199 A JP2014197199 A JP 2014197199A JP 6541952 B2 JP6541952 B2 JP 6541952B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- macromonomer
- monomer
- unsaturated
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 CN(*)N(*)COC Chemical compound CN(*)N(*)COC 0.000 description 3
Images
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
なお、特許文献1には、本発明の構造のマクロモノマーは記載されていない。
本発明はまた、上記マクロモノマーを製造する方法であって、該製造方法は、該製造方法は、メルカプト基と、下記一般式(1):
以下に本発明を詳述する。なお、以下において記載する本発明の個々の好ましい形態を2つ又は3つ以上組み合わせたものもまた、本発明の好ましい形態である。
本発明のマクロモノマーは、エチレン性不飽和単量体由来の不飽和部位と、該エチレン性不飽和単量体とは異なる不飽和単量体由来の構成単位とを含む。これら含有部位・単位は、それぞれ1種又は2種以上であってもよく、分子中の各含有部位・単位の数もそれぞれ1又は2以上であればよい。
本明細書中、マクロモノマーやポリマーの分子量は、後述する実施例に記載の分析法(LS−GPC、GPCとはゲルパーミーエーションクロマトグラフィーを意味する。)により求めることができる。
上記マクロモノマーが有するエチレン性不飽和単量体由来の不飽和部位としては、例えば、下記一般式(1):
なお、マクロモノマーが一般式(1)で表される不飽和部位を2以上有する場合、R1、Xは、それぞれ同一であってもよいし異なっていてもよい。
上記マクロモノマーは、上述した不飽和部位を与えるエチレン性不飽和単量体とは異なる不飽和単量体由来の構成単位(単に「不飽和単量体由来の構成単位」とも称す)を含む。当該不飽和単量体由来の構成単位は、マクロモノマーや本発明由来のポリマーに要求される性能に応じた官能基を含むことが好適である。要求性能に応じた各種官能基を導入することによって、本発明のマクロモノマーや本発明由来のポリマーは、当該官能基による性能を発揮することができる。不飽和単量体由来の構成単位の1単位中に2種以上の官能基を有していてもよいし、また、マクロモノマーが、官能基を含む構成単位を2単位以上有する場合、それぞれの構成単位が有する官能基は、同一であってもよいし、異なっていてもよい。構成単位自体も同一であってもよいし、異なっていてもよい。
このように本発明では、マクロモノマーに複数の同一又は異なる官能基を導入することができ、この場合、マクロモノマーや本発明由来のポリマーは、それぞれの官能基に由来する性能を同時に発揮することができる。本発明は、この点でも有利な効果を有する。
なお、一般式(3)において、硫黄原子の−(Y)d−とは反対側の結合手は、任意である。
ノニオン基の場合、特にアルキレンオキシド鎖であれば立体障害による無機粒子の分散効果を期待することができる。また、アルキル基であれば無機粒子を含む組成物(例えば、コンクリート等のセメント組成物)の状態を改善する効果を期待することができる。
カチオン基の場合、アミノ基由来のカチオン性基が好ましく、コンクリート等のセメント組成物の強度向上、状態改良改善効果等が期待できる。
アニオン基の場合、カルボン酸基、スルホン酸基、リン酸基等のアニオン基を導入することで、電気反発効果により無機粒子を分散させることが期待できる。
ベタイン基の場合、水中あるいは塩水中でベタイン基同士の反発によりベタイン基を有するポリマー鎖が大きく広がることから、立体反発により無機粒子を効果的に分散させることが期待でき、また水溶性に優れることから水中での起泡性が低い(水中での空気連行性が低い)ことが期待できる。
官能基含有単量体由来の構成単位とは、官能基含有単量体が有する不飽和二重結合部分(C=C)が、単結合(−C−C−)となった構造を意味する。
このような観点から、上記マクロモノマーは、上記エチレン性不飽和単量体とは異なる不飽和単量体由来の構成単位として、下記一般式(4):
なお、官能基含有単量体として、2種以上の官能基を含む単量体を用いてもよいことは言うまでもない。
以下に、官能基含有単量体として好適なノニオン系単量体、カチオン系単量体、アニオン系単量体及びベタイン系単量体について、更に説明する。
ノニオン系単量体は、不飽和二重結合(炭素炭素二重結合)とノニオン基とを含む化合物である。ノニオン基(非イオン基、ノニオン性基とも称す)としては、例えば、エーテル基、ヒドロキシル基、アミド基、芳香族ビニル基、N−ビニルラクタム基、アルキル基等が挙げられる。エーテル基として具体的には、(アルコキシ)(ポリ)アルキレングリコール基、アルキルエーテル基等が挙げられ、ヒドロキシル基としては、ヒドロキシエチル基、ヒドロキシプロピル基等のヒドロキシアルキル基が挙げられる。
これらのノニオン系単量体について、以下、更に説明する。
不飽和(ポリ)アルキレングリコール系単量体としては、例えば、下記一般式(I):
上記「C(R9)H=C(R10)−(CH2)p−」で表されるアルケニル基として具体的には、例えば、ビニル基、アリル基、メタリル基、3−ブテニル基、3−メチル−3−ブテニル基等が挙げられる。これらの中でも、ビニル基、アリル基、メタリル基、3−メチル−3−ブテニル基が好ましい。
なお、R9及びR10としては、R9が水素原子であり、かつR10がメチル基であることが特に好適である。
炭化水素基としては、例えば、アルキル基(直鎖、分岐鎖又は環状)、フェニル基、アルキル置換フェニル基、アルケニル基、アルキニル基、アリール基等が好適である。中でも、アルキル基(直鎖、分岐鎖又は環状)がより好ましい。
R11として特に好ましくは、水素原子、炭素数1〜3の直鎖状若しくは分岐鎖状アルキル基、又は、炭素数3の脂環式アルキル基であり、最も好ましくは、水素原子、メチル基又はエチル基である。
ヒドロキシル基含有単量体としては、ヒドロキシル基(水酸基)を含む(メタ)アクリレートが好適であり、例えば、ヒドロキシメチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、多価アルコールのモノ(メタ)アクリレート(例えば、グリセロールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等)、カプロラクトン変成(メタ)アクリレート等が挙げられる。また、各種(メタ)アクリレートのアルキルエーテル(例えば、2−エトキシエチル(メタ)アクリレート、2−エトキシプロピル(メタ)アクリレート、カルビトール(メタ)アクリレート等)も挙げられる。これらの中でも、ヒドロキシメチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートが好ましく、中でもメタクリレートが好ましい。
アミド系単量体としては、例えば、(メタ)アクリルアミド又はその4級塩(塩酸、硫酸、スルホン酸、酢酸等の酸性物質との4級塩、塩化メチル、ヨウ化メチル等のハロゲン化アルキルとの4級塩等);N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド等のN−アルキル(メタ)アクリルアミド又はその4級塩(塩酸、硫酸、スルホン酸、酢酸等の酸性物質との4級塩、塩化メチル、ヨウ化メチル等のハロゲン化アルキルとの4級塩等);N−メチロール(メタ)アクリルアミド等のヒドロキシアルキル(メタ)アクリルアミド;N−メトキシメチル(メタ)アクリルアミド、N−エトキシメチル(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド等のアルコキシアルキル(メタ)アクリルアミド;N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド等のN,N−ジアルキル(メタ)アクリルアミド;ジアセトン(メタ)アクリルアミド;N−ビニルホルムアミド;N−ビニルアセトアミド;(メタ)アクリルアミドのアルキレンオキシド付加物;等が挙げられる。中でも特に、メタクリル系アミド化合物が好ましい。
芳香族ビニル系単量体としては、例えば、スチレン、ビニルトルエン、α−メチルスチレン、メトキシスチレン等が挙げられる。
N−ビニルラクタム系単量体としては、例えば、N−ビニルピロリドン、N−ビニルカプロラクタム、N−ビニルイミダゾリン等が挙げられる。
エステル系単量体としては、例えば、(メタ)アクリル酸と、炭素数1〜18の直鎖若しくは分岐状の飽和又は不飽和アルコールとのエステル;(メタ)アクリル酸と、芳香環又は複素環を有するアルコールとのエステル;等を挙げることができる。炭素数1〜18のアルコールとしては、例えば、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブタノール、sec−ブタノール、ter−ブタノール等の低級アルコール;オクチルアルコール、ドデシルアルコール、セチルアルコール等の高級アルコール;を挙げることができる。芳香環を有するアルコールとしては、例えば、フェノール、ナフトール、ベンジルアルコール等を挙げることができる。
カチオン系単量体は、不飽和二重結合(炭素炭素二重結合)とカチオン基とを含む化合物である。カチオン基としては、例えば、第3級アミン塩基、第4級アンモニウム塩基、ヒドラジド基、ピリジニウム塩基等が好適である。中でも、第3級アミン塩基、第4級アンモニウム塩基が好ましい。
アニオン系単量体は、不飽和二重結合(炭素炭素二重結合)とアニオン基とを含む化合物である。アニオン基としては、例えば、カルボキシル基、スルホン酸基、リン酸基、炭酸基、ケイ酸基、ホスホン酸基、硝酸基、硫酸基等が挙げられる。これらの中でも、より優れた分散性能を発揮できる観点から、カルボキシル基、スルホン酸基、リン酸基等の1種又は2種以上が好適であり、より好ましくはスルホン酸基である。
なお、アニオン基が塩の形態になっていてもよい。このようなアニオン塩の基も、「アニオン基」(アニオン性基とも称す)に含むものとする。
カルボン酸系単量体は、不飽和二重結合(炭素炭素二重結合)と、カルボキシル基及び/又はカルボン酸塩とを含む化合物である。
カルボキシル基及び/又はカルボン酸塩を含むとは、−COOR(Rは、水素原子、金属原子、アンモニウム基又は有機アミン基を表す)で表される基を、1分子中に1又は2以上有することを意味する。金属原子としては、例えば、ナトリウム、リチウム、カリウム、ルビジウム、セシウム等の1価金属;マグネシウム、カルシウム、ストロンチウム、バリウム等の2価金属;アルミニウム等の3価金属;鉄等のその他の金属;等が挙げられる。有機アミン基としては、例えば、モノエタノールアミン基、ジエタノールアミン基、トリエタノールアミン基等のアルカノールアミン基;モノエチルアミン基、ジエチルアミン基、トリエチルアミン基等のアルキルアミン基;エチレンジアミン基、トリエチレンジアミン基等のポリアミン基;等が挙げられる。カルボン酸塩として好ましくは、アンモニウム塩、ナトリウム塩又はカリウム塩であり、より好ましくはナトリウム塩である。
なお、アクリル酸及びメタクリル酸を総称して「(メタ)アクリル酸」という。
スルホン酸系単量体は、不飽和二重結合(炭素炭素二重結合)と、スルホン酸基及び/又はスルホン酸塩とを含む化合物である。
スルホン酸基及び/又はスルホン酸塩を含むとは、−SO3R(Rは、水素原子、金属原子、アンモニウム基又は有機アミン基を表す)で表される基を、1分子中に1又は2以上有することを意味する。スルホン酸塩として好ましくは、アンモニウム塩、ナトリウム塩又はカリウム塩であり、より好ましくはナトリウム塩である。
リン酸系単量体は、不飽和二重結合(炭素炭素二重結合)と、リン酸基及び/又はリン酸塩とを含む化合物である。
リン酸基及び/又はリン酸塩を含むとは、−(PO4)m(R)n(Rは、水素原子、金属原子、アンモニウム基又は有機アミン基を表し、異なる2種以上でもよい。mはPO4の価数、nはRの価数である。)で表される基を、1分子中に1又は2以上有することを意味する。リン酸塩として好ましくは、アンモニウム塩、ナトリウム塩又はカリウム塩であり、より好ましくはナトリウム塩である。
具体的には、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、1,4−ブタンジオールモノ(メタ)アクリレート等の水酸基含有(メタ)アクリレートとリン酸とのエステル化物;ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレートとリン酸とのエステル化物等が好適である。これらの中でも、メタクリレートが特に好ましい。
ベタイン系単量体は、不飽和二重結合(炭素炭素二重結合)とベタイン基とを含む化合物である。ベタイン基(双性イオン基とも称す)とは、カチオンとアニオンとを含む基を意味し、したがって、ベタイン系単量体とは、不飽和二重結合と、カチオン基と、アニオン基とを含む化合物ともいえる。カチオン基及びアニオン基としては、それぞれ上述した基が好ましく、また、これらの基は、それぞれ1分子中に1個であることが好ましい。
官能基含有単量体以外の不飽和単量体とは、特に限定されるものではなく、任意の不飽和単量体の1種又は2種以上を使用することができる。
本発明のマクロモノマーは、メルカプト基と不飽和部位とを有するチオール化合物に、官能基含有単量体を反応させて得られるものが好適である。具体的にいうと、マクロモノマー合成には、チオール化合物の不飽和部位とメルカプト基との反応性の違いを利用すれば、効率よくマクロモノマーを合成することができる。合成戦略の一例を挙げると、チオール化合物に、該チオール化合物の不飽和部位と共重合しない官能基含有単量体を反応させることができれば、チオール化合物のメルカプト基から連鎖移動重合が進行し、その結果、チオール化合物の不飽和部位を残存させ、かつ官能基含有単量体の重合鎖を導入したマクロモノマーを収率よく良好に合成することができる。
上記反応に使用される官能基含有単量体については上述したとおりであるが、官能基含有単量体とともに、官能基含有単量体以外の不飽和単量体を併用してもよい。例えば、上記反応に使用される全ての不飽和単量体の総量100質量%のうち、官能基含有単量体の割合が50質量%以上とすることが好適である。これによって、官能基に由来する各種性能がより一層発揮される。より好ましくは70質量%以上、更に好ましくは90質量%以上、特に好ましくは100質量%である。
なお、官能基含有単量体以外の不飽和単量体についても上述したとおりである。
チオール化合物は、メルカプト基と不飽和部位とを有する化合物である。不飽和部位とは、エチレン性不飽和単量体由来のものが好ましく、より好ましくは上記一般式(1)で表されるものである。したがって、チオール化合物としては、メルカプト基と上記一般式(1)で表される不飽和部位とを有する化合物であることが特に好適である。これにより、生成したマクロモノマー中に当該不飽和部位が残存しやすく、この不飽和部位が、所望のポリマーを得る際の各種単量体との反応に利用されやすくなる。
具体的には、上記一般式(1)中、R1はメチル基が特に好ましく、一般式(1)で表される不飽和部位は、メタリル基又は3−メチル−3−ブテニル基であることが特に好ましいが、例えば、このような不飽和部位を有するチオール化合物に、官能基含有単量体としてメタクリル酸系単量体を反応(好ましくは重合反応)させると、メタクリル系単量体は、メタリル基や3−メチル−3−ブテニル基とは重合せずに、メルカプト基に選択的に反応し、該メタリル基や3−メチル−3−ブテニル基をマクロモノマー中に容易に残存させることができる。その結果、得られたマクロモノマーに、該マクロモノマーの不飽和部位(残存した不飽和部位)と重合可能な各種単量体を重合させることにより、所望のポリマーを更に良好に得ることができる。
以下に、製法(i)及び(ii)の好ましい形態を更に説明する。
上記ジスルフィド結合含有ジカルボン酸を得る方法として好ましくは、上述したメルカプト基含有カルボン酸をジスルフィド化反応させて得る方法である。ジスルフィド化反応は、通常の手法で行えばよく、特に限定されるものではない。
上記チオール化合物と官能基含有単量体との反応では、チオール化合物が有するメルカプト基から熱や光、放射線等を使用して発生したラジカル、又は、必要に応じて別に使用した重合開始剤によって発生したラジカルが、メルカプト基に連鎖移動し、その硫黄原子を介して、官能基含有単量体が次々に付加反応することが好適であり、これによりマクロモノマーが形成されることが好適である。
なお、この反応では、官能基含有単量体とともに、必要に応じて、官能基含有単量体以外の不飽和単量体を併用してもよい。
溶液重合は、回分式でも連続式でも行うことができ、その際に使用される溶媒としては、例えば、水;メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール;ベンゼン、トルエン、キシレン、シクロヘキサン、n−ヘキサン等の芳香族又は脂肪族炭化水素;酢酸エチル等のエステル化合物;アセトン、メチルエチルケトン等のケトン化合物;テトラヒドロフラン、ジオキサン等の環状エーテル化合物;等の1種又は2種以上を使用することができる。中でも、原料成分及び得られる重合体(マクロモノマー)の溶解性の観点から、水及び炭素数1〜4の低級アルコールからなる群より選択される少なくとも1種を用いることが好ましい。
なお、2−メタリル−3−メルカプトプロパノエートの不飽和結合と、メトキシポリエチレングリコールメタクリレート等のメタクリル2重結合とは、重合性が悪くほとんど重合しない。このチオール化合物の不飽和結合とチオール基との反応性の違いを利用して、より一層効率的に、所望のマクロモノマーを得ることができる。具体的には、2−メタリル−3−メルカプトプロパノエートのチオール部位からメタクリレートとの連鎖移動重合が始まり、2−メタリル−3−メルカプトプロパノエートの不飽和結合を残存させたマクロモノマーを得ることができる。
本発明のマクロモノマーは、ポリマー原料として用いられることが好ましい。例えば、マクロモノマーに、不飽和二重結合部分(C=C)を含む各種単量体を反応させることで、幹部分(幹ポリマー鎖)中に枝部分(枝ポリマー鎖)に繋がる三叉分岐点を有し、しかも該枝部分自体も、主鎖中に側鎖に繋がる三叉分岐点を有するという、極めて特殊な櫛型構造のポリマーを得ることができる。このような櫛型ポリマーでは、マクロモノマーに由来して枝部分が生成され、マクロモノマーに反応させる各種単量体に由来して幹部分が構成されることになる。
以下に、マクロモノマーに反応させる各種単量体として好適なアニオン性基含有単量体、エステル基含有単量体について、更に説明する。
アニオン性基含有単量体は、不飽和二重結合部分(C=C)とアニオン性基とを含む化合物である。アニオン性基としては、上述した各種のアニオン基が挙げられる。中でも、より優れた分散性能を発揮できる観点から、カルボキシル基、スルホン酸基、リン酸基等の1種又は2種以上が好適であり、より好ましくは、少なくともカルボキシル基を有することである。
なお、アニオン性基が塩の形態になっていてもよい。このようなアニオン塩の基も、「アニオン性基」に含むものとする。
なお、アニオン性基含有単量体として、1分子中に2種以上のアニオン性基を有する単量体を用いてもよいことは言うまでもない。
エステル基含有単量体は、不飽和二重結合部分(C=C)とエステル基とを含む化合物である。エステル基としては、例えば、カルボン酸エステル基、スルホン酸エステル基、リン酸エステル基、炭酸エステル基、ケイ酸エステル基、ホスホン酸エステル基、硝酸エステル基、硫酸エステル基等が挙げられる。これらの中でも、より優れた分散性能を発揮できる観点から、カルボン酸エステル基、スルホン酸エステル基、リン酸エステル基等の1種又は2種以上が好適であり、より好ましくは、少なくともカルボン酸エステル基を有することである。
カルボン酸エステル系単量体とは、不飽和二重結合(炭素炭素二重結合)を有し、かつカルボン酸エステル基(−COOR;Rは炭化水素基を表す)を1分子中に1又は2以上有する化合物であり、スルホン酸エステル系単量体とは、不飽和二重結合(炭素炭素二重結合)を有し、かつスルホン酸エステル基(−SO3R;Rは炭化水素基を表す)を1分子中に1又は2以上有する化合物であり、リン酸エステル系単量体とは、不飽和二重結合(炭素炭素二重結合)を有し、かつリン酸エステル基(−(PO4)m(R)n(Rは炭化水素基を表し、異なる2種以上でもよい。mはPO4の価数、nはRの価数である。)を1分子中に1又は2以上有する化合物である。これらは特に限定されるものではないが、各エステル基を構成するRは、例えば、炭素数1〜18のアルキル基であることが好適である。これらエステル基含有単量体の中でも、カルボン酸エステル系単量体が好ましく、特に好ましくはアクリル酸エステルである。
なお、エステル基含有単量体として、1分子中に2種以上のエステル基を有する単量体を用いてもよいことは言うまでもない。
なお、マクロモノマーが有するメタリル2重結合と良好な共重合性を有するアクリル酸系単量体を用いることで、より一層良好な共重合性及び収率で櫛型ポリマーを得ることができる。
本発明のマクロモノマーは、新規な化合物ゆえ種々様々な用途に用いることができるが、中でも、セメント、石炭微粉末等の他、炭酸カルシウム、酸化チタン、酸化鉄、酸化ジルコニア等の金属酸化物等の無機粒子に加える添加剤(無機粒子添加剤)用途に特に適している。中でも、無機粒子分散剤用途に用いることが好ましく、より好ましくはセメント分散剤用途である。本発明のマクロモノマーを用いて得られるポリマーもまた、無機粒子添加剤用途に適しているため、本発明のマクロモノマーは、無機粒子添加剤の調製に用いられることが好ましい。中でも、セメント混和剤の調製に用いられることがより好ましく、上記マクロモノマーがセメント混和剤の調製に用いられる形態は、本発明の好適な形態の1つである。更に好ましくは無機粒子分散剤の調製に用いられることであり、特に好ましくはセメント分散剤の調製に用いられることである。このように上記マクロモノマーがセメント混和剤用原料、セメント分散剤用原料、無機粒子添加剤用原料又は無機粒子分散剤用原料である形態は、いずれも本発明の好適な形態である。また、上記マクロモノマーを含むセメント混和剤用原料;上記マクロモノマーを含むセメント分散剤用原料;上記マクロモノマーを含む無機粒子添加剤用原料;上記マクロモノマーを含む無機粒子分散剤用原料;のいずれも、本発明の好適な形態である。
<分子量測定条件・測定方法(LS−GPC分析)>
使用カラム:東ソー社製、TSKguardcolumn α+TSKgel α−5000+TSKgel α−4000+TSKgel α−3000各1本ずつ連結。
使用溶離液:ホウ酸:49.46g、NaOH16.00gをイオン交換水7934.54gに溶解させた溶液に、アセトニトリル2000gを混合した溶液を用いる。
検出器:Viscotek社製トリプル検出器Model302
光散乱検出器:直角光散乱:90°散乱角度、低角度光散乱:7°散乱角度、セル容量:18μL、波長:670nm
標準試料:東ソー社製ポリエチレングリコールSE−8(Mw107000)を用い、そのdn/dCを0.135ml/g、使用溶離液の屈折率を1.333として装置定数を決定する。
標準試料:測定対象物の濃度が0.2vol%(体積%)になるように上記溶離液で溶解させた溶液を250μL注入
サンプル:測定対象物の濃度が1.0vol%になるように上記溶離液で溶解させた溶液を250μL注入
流速:0.8ml/min
カラム温度:40℃
<NMR測定条件>
1、チオール化合物のNMR測定条件
測定装置:バリアン社製 VNMRS600
観測周波数:600MHz
測定溶媒:CD3Cl
測定温度:25.0℃
積算回数:8回
化学シフト基準:TMS(0.00ppm)
測定装置:バリアン社製 VNMRS600
観測周波数:600MHz
測定溶媒:CD3Cl
測定温度:25.0℃
積算回数:8回
化学シフト基準:TMS(0.00ppm)
測定装置:バリアン社製 VNMRS600
観測周波数:600MHz
測定溶媒:CD3CN
測定温度:25.0℃
積算回数:8回
化学シフト基準:CH3CN(1.94ppm)
<TOC測定条件>
測定装置:全有機炭素計(SHIMADZU社製、TOC-L)
測定解析ソフト:TOC−ControlV Ver.2.00
検出器: 高感度NDIR(赤外線ガス分析)
キャリアガス: 高純度空気(住友精化社製、Air ZERO−F)
流量:150ml/分
燃焼管カラム温度:680℃
検量線用標準試料:フタル酸水素カリウムを100ppm、500ppmに調整
検量線用標準試料の作成方法:フタル酸水素カリウム(特級試薬)を2.125g秤量し、1Lメスフラスコを用い、イオン交換水を加え1000mgC/Lに調整した標準原液を2倍希釈、10倍希釈した希釈液を500ppm、100ppm検量線用調製液とし使用した。
メルカプトプロピオン酸ジスルフィドを出発物質として用い、チオール化合物(1)(2−メタリル−3−メルカプトプロパノエート)を合成した。
具体的には、まずメルカプトプロピオン酸ジスルフィド(20g、95mmol)、メタリルアルコール(13.7g、209mmol)及びジメチルアミノピリジン(4.7g、 38mmol)のジクロロメタン溶液(60mL)に対して、10℃、窒素雰囲気下にてジシクロヘキシルカルボジイミド(DCC)(43.2g、209mmol)−ジクロロメタン溶液(40mL)をゆっくりと滴下した。次いで、室温で1時間攪拌した後、濾過操作にて析出してきた固体を除去した。得られた濾液にジクロロメタンを加え、総重量200gになるように調整し、トリエチルアミン(TEA)を18g加えた後、ジチオトレイトール(DTT)18.6gを加え1.5時間程度室温で撹拌した。分液漏斗を用いて反応系を0.1M塩酸で2回程度洗浄し、有機相を回収し、真空ラインを用いて溶媒を除去し淡黄色透明液体を得た。
この反応生成物の1H−NMRチャート図を図1に示す。この1H−NMRチャートより、反応生成物が下記式(a)で表されるチオール化合物(1)(2−メタリル−3−メルカプトプロパノエート)であることを確認した。
温度計、攪拌機、滴下ライン、窒素導入管及び還流冷却器を備えたガラス製反応容器に、イソプロパノール68.75gを仕込み、80℃に昇温した。30分間80℃に維持した後、下記式(b)で表されるメトキシポリエチレングリコール(エチレンオキシド:9モル)メタクリレート(PGM9E)112.5gと、合成例1で得たチオール化合物(1)7.2gと、イソプロパノール23.99gとの混合物を反応容器内に4時間かけて滴下し、それと同時に、イソプロパノール37.39gに2,2’−アゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業社製の「V−65」、以下「V−65」とも称す)0.1125gを溶解させた水溶液を5時間かけて滴下した。その後、1時間引き続いて80℃に温度を維持した後、重合反応を終了した。重合成分濃度(全単量体成分の全原料に対する重量%濃度)は40%であった。
得られた生成物(マクロモノマー(1))をLS−GPCで分析すると、Mw=9000、Mn=5800、分散度(=Mw/Mn)=1.55であり、PGM9Eの消費率は81%、P純分(ポリマー純分)は81%であった。
また図2−2の1H−NMRチャートより、反応生成物が、下記式(c)で表されるマクロモノマー(1)であることを確認した。式(c)中、ncは、括弧内の構成単位の平均繰り返し数を表し、Rcは、水素原子、開始剤残基、連鎖移動剤残基等を表す。
温度計、攪拌機、滴下ライン、窒素導入管及び還流冷却器を備えたガラス製反応容器に、製造例A−1で得たマクロモノマー(1)のイソプロパノール48%溶液69.8gを仕込み、80℃に昇温した。30分間80℃に維持した後、アクリル酸6.431gとイオン交換水5.635gとの混合物を反応容器内に1時間かけて滴下し、それと同時に、イオン交換水7.465gに2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロライド(和光純薬工業社製の「V−50」、以下「V−50」とも称す)0.5332gを溶解させた水溶液を1.5時間かけて滴下した。その後、1時間引き続いて80℃に温度を維持した後、重合反応を終了した。重合成分濃度(全単量体成分の全原料に対する重量%濃度)は40%であった。その後、重合反応温度以下の温度で水酸化ナトリウム水溶液を用いて反応溶液をpH7に中和し、櫛型ポリマー(1)を得た。
得られたポリマーをLS−GPCで分析すると、Mw=33000、 Mn=20000、分散度(=Mw/Mn)=1.65であり、アクリル酸の消費率は96%、マクロモノマー(1)の消費率は64%、P純分(ポリマー純分)は75%であった。
この反応生成物(櫛型ポリマー(1))の1H−NMRチャート図を図3に示す。
温度計、攪拌機、滴下ライン、窒素導入管及び還流冷却器を備えたガラス製反応容器に、イソプロパノール61.34gを仕込み、80℃に昇温した。30分間80℃に維持した後、メタクリル酸2−ヒドロキシエチル(HEMA)112.5gと、合成例1で得たチオール化合物(1)9.0gと、イソプロパノール6.37gとの混合物を反応容器内に4時間かけて滴下し、それと同時に、イソプロパノール60.32gにV−65を0.4294g溶解させた水溶液を5時間かけて滴下した。その後、1時間引き続いて80℃に温度を維持した後、重合反応を終了した。重合成分濃度(全単量体成分の全原料に対する重量%濃度)は40%であった。
得られた生成物(マクロモノマー(2))をLS−GPCで分析すると、Mw=10200、Mn=5600であった。
また図4−2の1H−NMRチャートより、反応生成物が下記式(d)で表されるマクロモノマー(2)であることを確認した。式(d)中、ndは、括弧内の構成単位の平均繰り返し数を表し、Rdは、水素原子、開始剤残基、連鎖移動剤残基等を表す。
製造例A−2で得たマクロモノマー(2)イソプロパノール溶液104.38gをジエチルエーテル500gに滴下し、沈殿物を濾過により回収した後、イオン交換水を加え、全量を83.56gにした(得られたものを「マクロモノマー(2)水溶液」と称す)。
温度計、攪拌機、滴下ライン、窒素導入管及び還流冷却器を備えたガラス製反応容器に、マクロモノマー(2)水溶液83.56gを仕込み、80℃に昇温した。30分間80℃に維持した後、アクリル酸2.225gとイオン交換水8.267gとの混合物を反応容器内に1時間かけて滴下し、それと同時に、イオン交換水9.150gにV−50を0.208g溶解させた水溶液を1.5時間かけて滴下した。その後、1時間引き続いて80℃に温度を維持した後、重合反応を終了した。重合成分濃度(全単量体成分の全原料に対する重量%濃度)は40%であった。その後、重合反応温度以下の温度で水酸化ナトリウム水溶液を用いて反応溶液をpH7に中和し、櫛型ポリマー(2)を得た。
得られたポリマーをLS−GPCで分析すると、Mw=49000、Mn=26400であり、アクリル酸の消費率は98.81%、マクロモノマー(2)の消費率は74.28%であった。
この反応生成物(櫛型ポリマー(2))の1H−NMRチャート図を図5に示す。
温度計、攪拌機、滴下ライン、窒素導入管及び還流冷却器を備えたガラス製反応容器に、イソプロパノール68.75gを仕込み、80℃に昇温した。30分間80℃に維持した後、メタクリル酸2−ヒドロキシエチル(HEMA)112.0gと、合成例1で得たチオール化合物(1)9.0gと、イソプロパノール22.26gとの混合物を反応容器内に4時間かけて滴下し、それと同時に、イソプロパノール63.77gにV−65を4.28g溶解させた水溶液を5時間かけて滴下した。その後、1時間引き続いて80℃に温度を維持した後、重合反応を終了した。重合成分濃度(全単量体成分の全原料に対する重量%濃度)は40%であった。
得られた生成物(マクロモノマー(3))をLS−GPCで分析すると、Mw=28900、Mn=12900であった。
温度計、攪拌機、滴下ライン、窒素導入管及び還流冷却器を備えたガラス製反応容器に、イソプロパノール61.38gを仕込み、80℃に昇温した。30分間80℃に維持した後、メタクリル酸2−ヒドロキシエチル(HEMA)100.0gと、合成例1で得たチオール化合物(1)8.0gと、イソプロパノール19.87gとの混合物を反応容器内に4時間かけて滴下し、それと同時に、イソプロパノール56.93gにV−65を3.82g溶解させた水溶液を5時間かけて滴下した。その後、1時間引き続いて80℃に温度を維持した後、重合反応を終了した。重合成分濃度(全単量体成分の全原料に対する重量%濃度)は40%であった。
得られた生成物(マクロモノマー(4))をLS−GPCで分析すると、Mw=6980、Mn=4300であった。
製造例A−2で得たマクロモノマー(2)イソプロパノール溶液79.04gをジエチルエーテル500gに滴下し、沈殿物を濾過により回収した後、イオン交換水を加え、全量を79.04gにした(得られたものを「マクロモノマー(2)水溶液」と称す)。
温度計、攪拌機、滴下ライン、窒素導入管及び還流冷却器を備えたガラス製反応容器に、マクロモノマー(2)水溶液79.04gを仕込み、80℃に昇温した。30分間80℃に維持した後、アクリル酸3.138gとイオン交換水9.825gとの混合物を反応容器内に1時間かけて滴下し、それと同時に、イオン交換水4.780gにV−50を0.3414g溶解させた水溶液を1.5時間かけて滴下した。その後、1時間引き続いて80℃に温度を維持した後、重合反応を終了した。重合成分濃度(全単量体成分の全原料に対する重量%濃度)は40%であった。その後、重合反応温度以下の温度で水酸化ナトリウム水溶液を用いて反応溶液をpH7に中和し、櫛型ポリマー(3)を得た。
得られたポリマーをLS−GPCで分析すると、Mw=197500、Mn=50800であり、アクリル酸の消費率は99.24%、マクロモノマー(2)の消費率は95.61%であった。
温度計、攪拌機、滴下ライン、窒素導入管及び還流冷却器を備えたガラス製反応容器に、メタリルアルコールEO150モル付加物149.29g及びアクリル酸1.35gを仕込み水で総重量287.70gとし、58℃に昇温した。2%過酸化水素水溶液を33.80g加え、30分間58℃に維持した後、メタリルアルコールEO150モル付加物597.16gと水729.86gとの混合物を反応容器内に1時間かけて滴下し、それと同時に、アクリル酸62.20gと水15.55gとの混合物を反応容器内に3時間かけて滴下し、更にL−アスコルビン酸4.38gとメルカプトプロピオン酸4.96gと水64.40gとの混合物を3.5時間かけて滴下した。その後、1時間引き続いて58℃に温度を維持した後、重合反応を終了した。重合成分濃度(全単量体成分の全原料に対する重量%濃度)は45%であった。
得られた生成物(比較重合体1)をLS−GPCで分析すると、Mw=77300、Mn=28500であった。
以下の試験条件の下、櫛型ポリマー(2)を添加剤として用いて減水性(セメント分散性)を評価した(試験例1)。また、比較のため、添加剤としてリグニンスルホン酸塩(アルドリッチ社製:平均Mw8000、平均Mn3000)を用いた例(比較試験例1)、及び、プレーン(イオン交換水のみ。添加剤なし)(比較試験例2)についても、各々減水性を評価した。結果を図6に示す。
セメント(太平洋セメント社製、普通ポルトランドセメント)500gに、添加剤を含むイオン交換水250g(水/セメント比(重量比)=0.50)を加え、ホバート型モルタルミキサー(ホバート社製、型番N−50)を用いて30秒間低速で混練した後、ISO砂1350gを30秒間かけて加えた。その後30秒間中速で混練し、1分30秒間静置した後、更に1分間中速で混練することにより、セメントモルタルを調製した。
注水から5分半後のフロー値を、ミニスランプコーンを用いて測定した。
なお、試験例1では、セメントに対する櫛型ポリマーの使用量(固形分(不揮発分)の量、重量%)を0.2%として試験を行い、比較試験例1では、セメントに対するリグニンスルホン酸塩の使用量(固形分(不揮発分)の量、重量%)を0.2%及び0.4%として試験を行った。
以下の試験条件の下、櫛型ポリマー(2)又は(3)それぞれを添加剤として用いてクレイへの吸着性を評価した(試験例2、3)。また、比較のため、添加剤として比較製造例1で得た比較重合体1(メタリルアルコールEO付加物とアクリル酸との共重合体)を用いた例(比較試験例3)についても、クレイへの吸着性を評価した。結果を図7に示す。
添加剤を含むセメント摸擬濾液(10mM CaSO4・49mM Na2SO4・27mM K2SO4 in 0.13M KOH水溶液)27gに、クニゲルV1(クニミネ工業社製)0.27gを加え、マグネチックスターラーを用いて10分間撹拌した後、メンブレンフィルター(粒径4.5μm)を用いて溶液を濾過しクレイを取り除いた。その後TOC(全有機体炭素計、SHIMADZU社製、測定条件は上述のとおり。)を用いてクレイ混入前後の炭素濃度を測定することにより、添加剤のクレイへの吸着量を算出した。
各試験例では、ポリマーの添加量(クレイに対するポリマーの添加量(固形分(不揮発分)の量、重量%)を、0%、25%及び50%として試験を行った。
Claims (5)
- 前記一般式(5)中、R5及びR6は水素原子を表し、R7はメチル基を表すことを特徴とする請求項1に記載のマクロモノマー。
- 前記マクロモノマーは、セメント混和剤の調製に用いられることを特徴とする請求項1又は2に記載のマクロモノマー。
- 請求項1〜3に記載のマクロモノマーを含むことを特徴とするセメント混和剤用原料。
- 請求項1〜3のいずれかに記載のマクロモノマーを製造する方法であって、
該製造方法は、下記一般式(6):
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014197199A JP6541952B2 (ja) | 2014-09-26 | 2014-09-26 | マクロモノマー及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014197199A JP6541952B2 (ja) | 2014-09-26 | 2014-09-26 | マクロモノマー及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016069413A JP2016069413A (ja) | 2016-05-09 |
JP6541952B2 true JP6541952B2 (ja) | 2019-07-10 |
Family
ID=55864031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014197199A Active JP6541952B2 (ja) | 2014-09-26 | 2014-09-26 | マクロモノマー及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6541952B2 (ja) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2716601B2 (ja) * | 1991-06-26 | 1998-02-18 | 富士写真フイルム株式会社 | 平版印刷用原版の製造方法 |
US5247040A (en) * | 1991-06-27 | 1993-09-21 | Rohm And Haas Company | Graft copolymers prepared by two staged aqueous emulsion polymerization |
JP2000247706A (ja) * | 1998-12-28 | 2000-09-12 | Toagosei Co Ltd | セメント用分散剤 |
JP5594708B2 (ja) * | 2010-12-22 | 2014-09-24 | 江蘇博特新材料有限公司 | ハイパーブランチ型ポリカルボン酸系ポリマー・セメント分散剤の調製方法 |
JP2016069412A (ja) * | 2014-09-26 | 2016-05-09 | 株式会社日本触媒 | (ポリ)アニオン系櫛型ポリマー及びその用途 |
-
2014
- 2014-09-26 JP JP2014197199A patent/JP6541952B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016069413A (ja) | 2016-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100615378B1 (ko) | 폴리카르복실산계 공중합체 및 그의 제조 방법, 및 그의용도 | |
WO2017113990A1 (zh) | 具有亚磷酸基团的混凝土超塑化剂的制备方法和应用 | |
US7902310B2 (en) | Copolymers based on phosphorous-containing monomers, methods for the production thereof and their use | |
EP1767564B2 (en) | Polymer, a method for producing the polymer, and a cement admixture using the same | |
KR101507263B1 (ko) | 젬-비스포스포네이트 기를 갖는 코폴리머들 | |
WO2006006732A1 (ja) | リン酸エステル系重合体 | |
JP2015209534A (ja) | (ポリ)アルキレングリコール化合物及び(ポリ)アルキレングリコール系重合体 | |
CA2718409A1 (en) | Semi continuous operational method for producing copolymers | |
JP6145381B2 (ja) | (ポリ)アルキレングリコール系ブロック共重合体及びその用途 | |
JP5707165B2 (ja) | セメント混和剤及びこれを含むセメント組成物 | |
JP2019143151A (ja) | 無機バインダー組成物のレオロジー制御用の櫛型ポリマーの使用 | |
JP6557005B2 (ja) | 無機粒子添加剤用櫛型ポリマー及びその用途 | |
JP2015127270A (ja) | セメント添加剤 | |
JP6541952B2 (ja) | マクロモノマー及びその製造方法 | |
JP2016069412A (ja) | (ポリ)アニオン系櫛型ポリマー及びその用途 | |
JP5620201B2 (ja) | ポリアルキレングリコール系単量体の製造方法 | |
JP6649810B2 (ja) | ポゾラン性物質含有水硬性組成物用強度向上剤、ポゾラン性物質含有水硬性組成物用添加剤、およびコンクリート組成物 | |
JP6626376B2 (ja) | 水硬性組成物用強度向上剤、水硬性組成物用添加剤、およびコンクリート組成物 | |
JP2016069346A (ja) | チオール化合物 | |
KR101648255B1 (ko) | 시멘트 혼화제용 공중합체, 이의 제조방법 및 이를 포함하는 시멘트 혼화제 | |
JP6145382B2 (ja) | (ポリ)アルキレングリコール系ブロック共重合体およびその用途 | |
JP2002121058A (ja) | 水硬性組成物用混和剤 | |
JP6228739B2 (ja) | オキシアルキレン基含有カルボン酸系重合体、及び、分散剤 | |
JP5992790B2 (ja) | セメント混和剤用ポリアルキレングリコール系ブロック共重合体、ポリアルキレングリコール系ブロック共重合体、分散剤、セメント混和剤、及び、セメント組成物 | |
JP5311891B2 (ja) | 水硬性組成物用添加剤組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190612 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6541952 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |