WO2017113819A1 - 高电压锂离子电池电解液及其制备方法及应用 - Google Patents

高电压锂离子电池电解液及其制备方法及应用 Download PDF

Info

Publication number
WO2017113819A1
WO2017113819A1 PCT/CN2016/096165 CN2016096165W WO2017113819A1 WO 2017113819 A1 WO2017113819 A1 WO 2017113819A1 CN 2016096165 W CN2016096165 W CN 2016096165W WO 2017113819 A1 WO2017113819 A1 WO 2017113819A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
lithium ion
solvent
battery electrolyte
high voltage
Prior art date
Application number
PCT/CN2016/096165
Other languages
English (en)
French (fr)
Inventor
刘鹏
田丽霞
梅银平
Original Assignee
石家庄圣泰化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄圣泰化工有限公司 filed Critical 石家庄圣泰化工有限公司
Priority to JP2017509780A priority Critical patent/JP6674947B2/ja
Publication of WO2017113819A1 publication Critical patent/WO2017113819A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion battery electrolytes, and particularly relates to a high voltage lithium ion battery electrolyte, a preparation method thereof and an application thereof.
  • the electrolyte of the invention has good stability and simple preparation method, and can be effectively applied to the battery to effectively improve the cycle life and high temperature performance of the high voltage lithium ion battery.
  • Lithium-ion batteries have become the fastest growing and most valued new high-energy batteries due to their high specific energy, small size, light weight, no memory effect and long cycle life.
  • portable electronic devices have been rapidly developed, but the increase in hardware configuration, the increase in screen size, and the diversification of functions have placed increasing demands on the energy density of lithium-ion batteries.
  • Conventional lithium-ion batteries have been unable to meet the requirements. the needs of the people.
  • lithium-ion batteries In order to improve the energy density of lithium-ion batteries, researchers usually develop high-capacity, high-voltage positive electrode materials to solve this problem, such as increasing the working voltage of lithium-cobalt composite oxides and lithium-manganese composite oxides, and developing high operating voltages. Lithium nickel manganese composite oxide and the like. However, these positive electrode materials undergo a structural change in a solvent at a high voltage, the transition metal is easily dissolved, and is deposited on the negative electrode. In addition, a commonly used electrolyte usually decomposes at a voltage higher than 4 V to produce gas. Will result in a decrease in battery performance.
  • the invention provides a high-voltage lithium ion battery electrolyte, a preparation method thereof and an application thereof, in order to improve the energy density of the lithium ion battery and to solve the damage of the battery cycle performance caused by the electrolyte solution for increasing the voltage in the prior art.
  • a high voltage lithium ion battery electrolyte comprising an organic solvent, a lithium salt and an additive, the organic solvent being composed of a cyclic carbonate solvent, a fluorinated solvent and a carbonate solvent, the additive being 3-cyano- 1,3 propene sultone, the content of the additive in the lithium ion battery electrolyte is 0.5%-10%.
  • the concentration of the lithium salt in the organic solvent is 1-1.5 mol/L, and the mass percentage of the fluorinated solvent in the electrolyte is 2-50%.
  • the cyclic carbonate solvent is selected from one or more of ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, and ⁇ -valerolactone.
  • the fluorinated solvent is selected from the structural formula Fluorocarbonate, structural formula Fluorocarbonate and structural formula At least one of the fluoroethers; wherein R 1 to R 6 are both C x F y H z , 1 ⁇ x ⁇ 6, y>0, z ⁇ 0.
  • the carbonate solvent is selected from one or more of dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propionate, ethyl propionate, and propyl propionate.
  • the lithium salt is one or more selected from the group consisting of LiPF 6 , LiBF 4 , LiSO 3 CF 3 , LiClO 4 , LiN(CF 3 SO 2 ) 2 , and LiC(CF 3 SO 2 ) 3 .
  • a method for preparing a high-voltage lithium ion battery electrolyte which comprises mixing a cyclic carbonate solvent, a fluorinated solvent and a carbonate solvent, removing impurities, removing water, and dissolving the lithium salt in the above mixed state at room temperature.
  • the mixture was stirred uniformly, and then 3-cyano-1,3 propene sultone was added, and the solution was filtered and filtered to obtain the high-voltage lithium ion battery electrolyte.
  • the above high voltage lithium ion battery electrolyte is used in the preparation of a high voltage lithium ion battery.
  • the addition of a fluorinated solvent to the electrolyte solvent can reduce the decomposition of the electrolyte at a high voltage and improve the oxidation resistance of the electrolyte.
  • the fluorinated solvent has good wettability and improves the wetting property of the electrolyte.
  • 3-cyano-1,3 propane sultone can effectively protect the positive electrode, reduce the dissolution of the transition metal on the positive electrode material, and form the SEI film on the negative electrode to inhibit the deposition and reduction of the transition metal on the negative electrode. Thereby effectively protecting the negative electrode. It is beneficial to improve the cycle stability performance and high temperature cycle performance of the battery at high voltage.
  • the preparation method of the high-voltage lithium ion battery electrolyte of the invention is simple, and the interface property between the positive electrode and the negative electrode of the battery and the electrolyte is improved at the same time, the stability of the electrolyte is good, and the cycle life and high temperature performance of the high-voltage lithium ion battery can be effectively improved.
  • the high voltage lithium ion battery prepared by the high voltage lithium ion battery electrolyte of the invention has long cycle life, low air expansion rate and good high temperature performance, and the working voltage of the battery can be higher than 4.5V.
  • 3-cyano-1,3 propane sultone can also inhibit the oxidation or reductive decomposition of the electrolyte on the surface of the electrode material, reduce the damage to the electrode, and improve the compatibility of the electrolyte with the electrode.
  • Figure 1 is a graph showing the cycle performance of the present invention in comparison with a base electrolyte.
  • the preparation method of the above high voltage lithium ion battery electrolyte is:
  • the above 3-cyano-1,3 propene sultone is prepared by dissolving 1 mol of 1,3-propene sultone in 800 mL of dichloromethane using 1,3-propene sultone as a raw material. Adding 1.08 mol of NBS in portions at 35 ° C for 7.5 h to obtain the intermediate 3-bromo-1,3-propene sultone, and then placing the obtained intermediate with sodium cyanide in dichloromethane. The exchange reaction was carried out in the presence of 15-crown-5 to give the product 3-cyano-1,3-propene sultone.
  • the high-voltage lithium ion battery electrolyte of the present embodiment is used for a lithium cobaltate/graphite soft-package battery, and the cycle performance of the lithium cobaltate/graphite flexible packaging battery under the normal temperature environment of 3.0 to 4.95 V, 1 C rate charge and discharge is tested. After 200 weeks of cycle, the capacity retention rate was above 94%. After 300 weeks of cycling, the capacity retention rate was above 91%. After 400 weeks of cycle, the capacity retention rate was around 90%. After 500 cycles, the capacity retention rate was still 85. %the above.
  • the preparation method of the above high voltage lithium ion battery electrolyte is:
  • the high-voltage lithium ion battery electrolyte of the present embodiment is used for a lithium cobaltate/graphite soft-package battery, and the cycle performance of the lithium cobaltate/graphite flexible packaging battery under the normal temperature environment of 3.0 to 4.95 V, 1 C rate charge and discharge is tested. After 200 weeks of cycle, the capacity retention rate was 94%. After 300 weeks of cycle, the capacity retention rate was 91%. After 400 cycles, the capacity retention rate was 90%. After 500 cycles, the capacity retention rate was still above 85%.
  • the preparation method of the above high voltage lithium ion battery electrolyte is:
  • the high voltage lithium ion battery electrolyte of the embodiment is used for a lithium cobalt oxide/graphite soft pack battery, and the measurement is performed. Test the lithium cobalt oxide / graphite flexible packaging battery in the normal temperature environment 3.0 ⁇ 4.95V, 1C rate charge and discharge cycle performance. After 200 weeks of cycle, the capacity retention rate is 94%. After 300 weeks of cycle, the capacity retention rate is 91%. After 400 weeks of cycle, the capacity retention rate is 90%. After 500 cycles, the capacity retention rate can still reach 85% or more. .
  • the preparation method of the above high voltage lithium ion battery electrolyte is:
  • the high-voltage lithium ion battery electrolyte of the present embodiment is used for a lithium cobaltate/graphite soft-package battery, and the cycle performance of the lithium cobaltate/graphite flexible packaging battery under the normal temperature environment of 3.0 to 4.95 V, 1 C rate charge and discharge is tested.
  • the capacity retention rate is 94%.
  • the capacity retention rate is 91%.
  • the capacity retention rate is 90%.
  • the capacity retention rate can still reach 85% or more. .
  • a high-voltage lithium ion battery electrolyte mainly comprises the following raw materials: an organic solvent, a conductive lithium salt and a functional additive;
  • the conductive lithium salt is LiPF 6 having a concentration of 1.2 mol/L in an organic solvent; and the functional additive is 2 wt.% of propylene-1,3-sultone (PES).
  • the preparation method of the above high voltage lithium ion battery electrolyte is:
  • the high voltage lithium ion battery electrolyte of the present embodiment was used for a lithium nickel manganese oxide (LiNi 0.5 Mn 1.5 O 4 ) battery.
  • the cycle performance of LiNi 0.5 Mn 1.5 O 4 battery under normal temperature environment of 3.5 to 4.95 V, 1 C rate charge and discharge was tested. After 200 weeks of cycle, the capacity retention rate was 92%. After 300 weeks of cycle, the capacity retention rate was 90%. After 400 cycles, the capacity retention rate was 88%. After 500 cycles, the capacity retention rate reached 80%.
  • the conductive lithium salt LiPF 6 has a concentration of 1.0 mol/L in an organic solvent, and the usual additive is 1.0 wt.% of vinylene carbonate and 1.0 wt.% of propane sultone.
  • the additive was 1.0 wt.% of tetrafluoroterephthalonitrile and 2.0 wt.% of 3-fluorobenzonitrile.
  • the preparation method of the above electrolyte solution is:
  • the high-voltage lithium ion battery electrolyte of the invention is applied to a lithium cobaltate/graphite flexible packaging battery, and the cycle performance of the lithium cobaltate/graphite flexible packaging battery in a normal temperature environment of 3.0-4.5 V, 1 C rate charge and discharge is tested.
  • the capacity retention rate was 90%.
  • the capacity retention rate was 85%.
  • the capacity retention rate was 80%.
  • the capacity retention rate reached 70%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

一种高电压锂离子电池电解液、制备方法及其应用,属于锂离子电池电解液的技术领域,该电解液包括有机溶剂、锂盐和添加剂,所述的有机溶剂由环状碳酸酯溶剂、氟代溶剂和碳酸酯溶剂组成,所述的添加剂为3-氰基-1,3丙烯磺酸内酯,所述锂离子电池电解液中添加剂的含量为0.5%-10%。该电解液稳定性良好,制备方法简单,应用到电池中能有效提高高电压锂离子电池的循环寿命和高温性能。

Description

高电压锂离子电池电解液及其制备方法及应用 技术领域
本发明属于锂离子电池电解液的技术领域,具体涉及高电压锂离子电池电解液及其制备方法及应用。本发明的电解液稳定性良好,制备方法简单,应用到电池中能有效提高高电压锂离子电池的循环寿命和高温性能。
背景技术
锂离子电池因其比能量高、体积小、质量轻、无记忆效应、循环寿命长等优点而成为目前发展最快亦最受重视的新型高能蓄电池。近年来,便携式电子设备得到快速发展,但硬件配置的攀升,屏幕尺寸的增大,功能的多样化等方面对锂离子电池的能量密度提出越来越高的要求,常规锂离子电池已经不能满足人们的需求。
目前为了提高锂离子电池的能量密度,研究者通常采用开发高容量、高工作电压的正极材料来解决此问题,如提高锂钴复合氧化物、锂锰复合氧化物的工作电压,开发高工作电压的锂镍锰复合氧化物等。然而,这些正极材料在高电压下溶剂发生结构改变,过渡金属容易发生溶解,并且会在负极上沉积,另外,常用的电解液,通常会在高于4V的电压下发生分解,产气,从而会导致电池性能的降低。为了解决以上问题,研究者通常会对正极材料进行表面保护包覆或者掺杂来提高高电压下的循环性能,但是这些方法往往会伴随着电池可容量的损失,而且制作工艺繁琐,制造成本增加。通过开发新型高电压电解液取代目前常用的电解液体系是实现高电压锂离子电池商业化的改善途径之一。目前由于常用的提高电压的电解液, 往往是增大FEC(氟代碳酸乙烯酯)的用量来提高耐受电压,然而当电压提高到4.5V以上时,继续增加FEC的用量,反而电池循环性能下降的更快,因而开发高电压用的电解液添加剂已经刻不容缓。
发明内容
本发明为了提高锂离子电池的能量密度,以及解决现有技术中为提高电压的电解液而造成电池循环性能的损害,提供了一种高电压锂离子电池电解液及其制备方法及应用。
本发明为实现其目的采用的技术方案是:
一种高电压锂离子电池电解液,包括有机溶剂、锂盐和添加剂,所述的有机溶剂由环状碳酸酯溶剂、氟代溶剂和碳酸酯溶剂组成,所述的添加剂为3-氰基-1,3丙烯磺酸内酯,所述锂离子电池电解液中添加剂的含量为0.5%-10%。
所述锂盐在有机溶剂中的浓度为1-1.5mol/L,氟代溶剂在电解液中质量百分比为2-50%。
所述的环状碳酸酯溶剂选自碳酸乙烯酯、碳酸丙烯酯、γ-丁内酯、γ-戊内酯中一种或多种。
所述的氟代溶剂选自结构式为
Figure PCTCN2016096165-appb-000001
的氟代碳酸酯、结构式为
Figure PCTCN2016096165-appb-000002
的氟代碳酸酯和结构式为
Figure PCTCN2016096165-appb-000003
的氟代醚中的至少一种;其中R1~R6均为CxFyHz,1≤x≤6,y>0,z≥0。
所述的碳酸酯溶剂选自碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯中的一种或多种。
所述的锂盐选自LiPF6、LiBF4、LiSO3CF3、LiClO4、LiN(CF3SO2)2、LiC(CF3SO2)3中的一种或多种。
一种制备述高电压锂离子电池电解液的方法,将环状碳酸酯溶剂、氟代溶剂、碳酸酯溶剂混合均匀后,除杂质,除水,于室温下将锂盐溶解在上述混合后的溶剂中,搅拌均匀,然后加入3-氰基-1,3丙烯磺酸内酯,溶清后过滤,即得所述高电压锂离子电池电解液。
将环状碳酸酯溶剂、氟代溶剂、碳酸酯溶剂混合均匀后,用
Figure PCTCN2016096165-appb-000004
分子筛、氢化锂除杂质,除水。
上述高电压锂离子电池电解液在制备高电压锂离子电池中的应用。
添加剂3-氰基-1,3丙烯磺酸内酯的化学结构式如下:
Figure PCTCN2016096165-appb-000005
本发明的有益效果是:
在电解液溶剂中加入了氟代溶剂,可以减少电解液在高电压下的分解,提高了电解液的抗氧化性能,同时,氟代溶剂具有良好的浸润性,改善电解液的浸润性能,加入了3-氰基-1,3丙烯磺酸内酯,可以有效的保护正极,减少过渡金属在正极材料上的溶出,同时能够在负极形成SEI膜,抑制过渡金属在负极上的沉积和还原,从而有效的保护负极。有利于提高电池在高电压下的循环稳定性能和高温循环性能。而且可有效阻止锂电池过充造成的起火、爆炸等安全问题的发生,增加了电池的安全性;充放效率高、循环性能好,能满足500次大于85%的充放要求,尤其可改善锂电池的高温 循环性能;可增加电池的储存性能,不影响锂电池的其他性能。
本发明高电压锂离子电池电解液制备方法简单,能同时改善电池正极及负极与电解液的界面性质,电解液的稳定性良好,能有效提高高电压锂离子电池的循环寿命和高温性能。
本发明高电压锂离子电池电解液制得的高电压锂离子电池循环寿命长、气胀率低、高温性能良好,电池工作电压可高于4.5V。
其中,3-氰基-1,3丙烯磺酸内酯还可以抑制电解液在电极材料表面的氧化或者还原分解,减小对电极的破坏,提高电解液与电极的兼容性。
附图说明
图1是本发明与基础电解液对比的循环性能图。
图中,▲表示基础电解液:EC:DMC=1:2,1M LiPF6,FEC1%;■表示本发明电解液。
具体实施方式
下面结合具体实施例对本发明作进一步的说明。
实施例1
一种高电压锂离子电池电解液,包括有机溶剂、LiPF6和3-氰基1,3-丙烯磺酸内酯,所述有机溶剂由碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、氟代碳酸乙烯酯(FEC)和氟代醚(CF2HCF2CH2-O-CF2CF2H)组成,EC和EMC的重量比为EC:EMC=1:2,FEC用量为10wt.%,氟代醚CF2HCF2CH2-O-CF2CF2H用量为5wt.%,本电解液中加入的3-氰基1,3-丙烯磺酸内酯的添加量为2wt.%,有机溶剂中的浓度为1.2mol/L。
上述高电压锂离子电池电解液的制备方法是:
1)将有机溶剂混合均匀后,用
Figure PCTCN2016096165-appb-000006
分子筛、氢化锂除杂质,除水;
2)于室温下将锂盐溶解在上述混合后的溶剂中,搅拌均匀;
3)然后加入3-氰基-1,3丙烯磺酸内酯,溶清后过滤,即得所述高电压锂离子电池电解液。
上述3-氰基-1,3丙烯磺酸内酯的制备方法是:以1,3-丙烯磺酸内酯为原料,将1mol的1,3-丙烯磺酸内酯用800mL二氯甲烷溶解,在35℃下分批加入1.08mol的NBS,反应7.5h,得到中间体3-溴-1,3-丙烯磺酸内酯,然后将所得中间体与氰化钠置于二氯甲烷中,在15-冠醚-5存在下进行交换反应,得到产品3-氰基-1,3-丙烯磺酸内酯。
将本实施例的高电压锂离子电池电解液用于钴酸锂/石墨软包电池,测试钴酸锂/石墨软包装电池在常温环境下3.0~4.95V,1C倍率充放电的循环性能。循环200周后,容量保持率在94%以上,循环300周后,容量保持率在91%以上,循环400周后,容量保持率在90%左右,循环500周后,容量保持率依然达85%以上。
实施例2
一种高电压锂离子电池电解液,包括有机溶剂、LiN(CF3SO2)2和3-氰基1,3-丙烯磺酸内酯,所述有机溶剂由碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、氟代碳酸乙烯酯(FEC)和氟代醚(CF2HCF2CH2-O-CF2CF2H)组成,EC和EMC的重量比为EC:EMC=1:2,FEC用量为15wt.%,氟代醚CF2HCF2CH2-O-CF2CF2H用量为10wt.%,本电解液中加入的3-氰基1,3-丙烯磺酸内酯的添加量为4wt.%,有机溶剂中的浓度为1.2mol/L。
上述高电压锂离子电池电解液的制备方法是:
1)将有机溶剂混合均匀后,用
Figure PCTCN2016096165-appb-000007
分子筛、氢化锂除杂质,除水;
2)于室温下将锂盐溶解在上述混合后的溶剂中,搅拌均匀;
3)然后加入3-氰基-1,3丙烯磺酸内酯,溶清后过滤,即得所述高电压锂离子电池电解液。
将本实施例的高电压锂离子电池电解液用于钴酸锂/石墨软包电池,测试钴酸锂/石墨软包装电池在常温环境下3.0~4.95V,1C倍率充放电的循环性能。循环200周后,容量保持率在94%,循环300周后,容量保持率在91%,循环400周后,容量保持率在90%,循环500周后,容量保持率依然达85%以上。
实施例3
一种高电压锂离子电池电解液,包括有机溶剂、LiClO4和3-氰基1,3-丙烯磺酸内酯,所述有机溶剂由碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、氟代碳酸乙烯酯(FEC)和氟代醚(CF2HCF2CH2-O-CF2CF2H)组成,EC和EMC的重量比为EC:EMC=1:2,FEC用量为12wt.%,氟代醚CF2HCF2CH2-O-CF2CF2H用量为6wt.%,本电解液中加入的3-氰基1,3-丙烯磺酸内酯的添加量为3wt.%,有机溶剂中的浓度为1.2mol/L。
上述高电压锂离子电池电解液的制备方法是:
1)将有机溶剂混合均匀后,用
Figure PCTCN2016096165-appb-000008
分子筛、氢化锂除杂质,除水;
2)于室温下将锂盐溶解在上述混合后的溶剂中,搅拌均匀;
3)然后加入3-氰基-1,3丙烯磺酸内酯,溶清后过滤,即得所述高电压锂离子电池电解液。
将本实施例的高电压锂离子电池电解液用于钴酸锂/石墨软包电池,测 试钴酸锂/石墨软包装电池在常温环境下3.0~4.95V,1C倍率充放电的循环性能。循环200周后,容量保持率在94%,循环300周后,容量保持率在91%,循环400周后,容量保持率在90%,循环500周后,容量保持率依然可以达到85%以上。
实施例4
一种高电压锂离子电池电解液,包括有机溶剂、LiSO3CF3和3-氰基1,3-丙烯磺酸内酯,所述有机溶剂由碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、氟代碳酸酯(CH3-OCOO-CH2CF3)和氟代醚(CF2HCF2CH2-O-CF2CF2H)组成,EC和EMC的重量比为EC:EMC=1:2,氟代碳酸酯用量为14wt.%,氟代醚CF2HCF2CH2-O-CF2CF2H用量为7wt.%,本电解液中加入的3-氰基1,3-丙烯磺酸内酯的添加量为1wt.%,有机溶剂中的浓度为1.2mol/L。
上述高电压锂离子电池电解液的制备方法是:
1)将有机溶剂混合均匀后,用
Figure PCTCN2016096165-appb-000009
分子筛、氢化锂除杂质,除水;
2)于室温下将锂盐溶解在上述混合后的溶剂中,搅拌均匀;
3)然后加入3-氰基-1,3丙烯磺酸内酯,溶清后过滤,即得所述高电压锂离子电池电解液。
将本实施例的高电压锂离子电池电解液用于钴酸锂/石墨软包电池,测试钴酸锂/石墨软包装电池在常温环境下3.0~4.95V,1C倍率充放电的循环性能。循环200周后,容量保持率在94%,循环300周后,容量保持率在91%,循环400周后,容量保持率在90%,循环500周后,容量保持率依然可以达到85%以上。
对比实施例1
一种高电压锂离子电池电解液,主要包含如下原料:有机溶剂、导电锂盐和功能添加剂;所述有机溶剂由碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、氟代碳酸乙烯酯(FEC)和氟代醚(CF2HCF2CH2-O-CF2CF2H)组成,EC和EMC的重量比为EC:EMC=1:2,FEC用量为10wt.%,氟代醚CF2HCF2CH2-O-CF2CF2H用量为5wt.%。所述导电锂盐为LiPF6,其在有机溶剂中的浓度为1.2mol/L;所述功能添加剂为用量2wt.%的丙烯基-1,3-磺酸内酯(PES)。
上述高电压锂离子电池电解液的制备方法是:
(1)将有机溶剂按比例混合后用
Figure PCTCN2016096165-appb-000010
分子筛、氢化钙、氢化锂纯化除杂、除水;
(2)在室温条件下,将导电锂盐溶解在上述有机溶剂中,并搅拌均匀;
(3)加入功能添加剂PES,即得所述高电压锂离子电池电解液。
将本实施例的高电压锂离子电池电解液用于镍锰酸锂(LiNi0.5Mn1.5O4)电池。测试LiNi0.5Mn1.5O4电池在常温环境下3.5~4.95V,1C倍率充放电的循环性能。循环200周后,容量保持率在92%,循环300周后,容量保持率在90%,循环400周后,容量保持率在88%,循环500周后,容量保持率达80%。
对比实施例2
一种高电压锂离子电池电解液,主要包含有机溶剂、导电锂盐和添加剂,所述有机溶剂由环状碳酸酯溶剂(碳酸乙烯酯EC)和线型碳酸酯溶剂(碳酸甲乙酯EMC和碳酸二乙酯DEC)组成,EC及线型碳酸酯的重量比为EC:EMC:DEC=1:1:1。所述导电锂盐LiPF6在有机溶剂中的浓度为1.0mol/L,所述常用添加剂为1.0wt.%用量的碳酸亚乙烯酯和用量为 1.0wt.%的丙磺酸内酯,所述添加剂为四氟对苯二甲腈用量1.0wt.%,3-氟苯甲腈用量为2.0wt.%。
上述电解液的配制方法是:
(1)将有机溶剂按比例混合后用
Figure PCTCN2016096165-appb-000011
分子筛、氢化钙、氢化锂纯化除杂、除水;
(2)在室温条件下,将导电锂盐溶解在上述有机溶剂中,并搅拌均匀;
(3)加入常用添加剂碳酸亚乙烯酯和丙磺酸内酯,并搅拌均匀。
(4)加入添加剂四氟对苯二甲腈和3-氟苯甲腈,即得本实施例所述高电压锂离子电池电解液。
将本发明的高电压锂离子电池电解液用于钴酸锂/石墨软包装电池,测试钴酸锂/石墨软包装电池在常温环境下3.0-4.5V,1C倍率充放电的循环性能。循环200周后,容量保持率在90%,循环300周后,容量保持率在85%,循环400周后,容量保持率在80%,循环500周后,容量保持率达70%。

Claims (9)

  1. 一种高电压锂离子电池电解液,包括有机溶剂、锂盐和添加剂,所述的有机溶剂由环状碳酸酯溶剂、氟代溶剂和碳酸酯溶剂组成,其特征在于:所述的添加剂为3-氰基-1,3丙烯磺酸内酯,所述锂离子电池电解液中添加剂的含量为0.5%-10%。
  2. 根据权利要求1所述的一种高电压锂离子电池电解液,其特征在于:所述锂盐在有机溶剂中的浓度为1-1.5mol/L,氟代溶剂在电解液中质量百分比为2-50%。
  3. 根据权利要求1所述的一种高电压锂离子电池电解液,其特征在于:所述的环状碳酸酯溶剂选自碳酸乙烯酯、碳酸丙烯酯、γ-丁内酯、γ-戊内酯中一种或多种。
  4. 根据权利要求1所述的一种高电压锂离子电池电解液,其特征在于:所述的氟代溶剂选自结构式为
    Figure PCTCN2016096165-appb-100001
    的氟代碳酸酯、结构式为
    Figure PCTCN2016096165-appb-100002
    的氟代碳酸酯和结构式为
    Figure PCTCN2016096165-appb-100003
    的氟代醚中的至少一种;其中R1~R6均为CxFyHz,1≤x≤6,y>0,z≥0。
  5. 根据权利要求1所述的一种高电压锂离子电池电解液,其特征在于:所述的碳酸酯溶剂选自碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯中的一种或多种。
  6. 根据权利要求1所述的一种高电压锂离子电池电解液,其特征在于:所述的锂盐选自LiPF6、LiBF4、LiSO3CF3、LiClO4、LiN(CF3SO2)2、LiC(CF3SO2)3中的一种或多种。
  7. 一种制备如权利要求1所述高电压锂离子电池电解液的方法,其特 征在于:将环状碳酸酯溶剂、氟代溶剂、碳酸酯溶剂混合均匀后,除杂质,除水,于室温下将锂盐溶解在上述混合后的溶剂中,搅拌均匀,然后加入3-氰基-1,3丙烯磺酸内酯,溶清后过滤,即得所述高电压锂离子电池电解液。
  8. 根据权利要求7所述的一种制备高电压锂离子电池电解液的方法,其特征在于,将环状碳酸酯溶剂、氟代溶剂、碳酸酯溶剂混合均匀后,用
    Figure PCTCN2016096165-appb-100004
    分子筛、氢化锂除杂质,除水。
  9. 根据权利要求1-6任意一项所述高电压锂离子电池电解液在制备高电压锂离子电池中的应用。
PCT/CN2016/096165 2015-12-31 2016-08-22 高电压锂离子电池电解液及其制备方法及应用 WO2017113819A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509780A JP6674947B2 (ja) 2015-12-31 2016-08-22 高電圧リチウムイオン電池の電解液、その調製方法及びその応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511023506.5A CN105390742A (zh) 2015-12-31 2015-12-31 高电压锂离子电池电解液及其制备方法及应用
CN201511023506.5 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017113819A1 true WO2017113819A1 (zh) 2017-07-06

Family

ID=55422766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096165 WO2017113819A1 (zh) 2015-12-31 2016-08-22 高电压锂离子电池电解液及其制备方法及应用

Country Status (3)

Country Link
JP (1) JP6674947B2 (zh)
CN (1) CN105390742A (zh)
WO (1) WO2017113819A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782835A (zh) * 2021-08-27 2021-12-10 华中科技大学 一种全氟溶剂高电压电解液及其在锂离子电池中的应用
CN116613383A (zh) * 2023-07-17 2023-08-18 湖南法恩莱特新能源科技有限公司 一种用于高压锂二次电池的非水电解液及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY197345A (en) * 2015-11-25 2023-06-14 Visterra Inc Antibody molecules to april and uses thereof
CN105390742A (zh) * 2015-12-31 2016-03-09 石家庄圣泰化工有限公司 高电压锂离子电池电解液及其制备方法及应用
CN106450462B (zh) * 2016-12-27 2019-01-08 石家庄圣泰化工有限公司 高电压宽温锂离子电池电解液
CN110998956B (zh) * 2017-11-22 2021-12-10 株式会社Lg化学 锂二次电池用非水性电解质溶液和包含其的锂二次电池
CN116259835A (zh) * 2019-12-13 2023-06-13 张家港市国泰华荣化工新材料有限公司 一种锂离子电池电解液及锂电池
CN111092264A (zh) * 2019-12-27 2020-05-01 安普瑞斯(无锡)有限公司 一种高电压电解液及含有该电解液的锂离子电池
CN111509232B (zh) * 2020-05-29 2022-10-25 蜂巢能源科技有限公司 正极片及其制备方法和应用
CN112300117A (zh) * 2020-10-30 2021-02-02 山东海科新源材料科技股份有限公司 新型添加剂及其在锂离子电池电解液中的应用
CN113461848B (zh) * 2021-06-08 2022-07-29 杭州师范大学 一种锂电池负极保护聚甲基丙烯磺酸锂的制备及应用
WO2024090573A1 (ja) * 2022-10-27 2024-05-02 京セラ株式会社 非水電解液及びそれを用いたリチウムイオン二次電池
CN117393854A (zh) * 2023-11-20 2024-01-12 广东技术师范大学 一种提高富锂电极材料高温和高电压循环稳定性的电解液添加剂及电解液

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101263627A (zh) * 2005-09-15 2008-09-10 株式会社Lg化学 用于改善性能的非水性电解质及包含该电解质的锂二次电池
CN103456993A (zh) * 2013-09-30 2013-12-18 东莞市杉杉电池材料有限公司 一种高电压锂离子电池电解液
CN103633371A (zh) * 2013-12-13 2014-03-12 深圳新宙邦科技股份有限公司 一种用于锂离子电池的非水电解液和锂离子电池
CN103972588A (zh) * 2014-05-20 2014-08-06 中国科学院宁波材料技术与工程研究所 非水电解液与锂离子电池
CN103985906A (zh) * 2014-06-06 2014-08-13 东莞市杉杉电池材料有限公司 一种兼顾高低温性能的锂离子电池电解液
CN105047992A (zh) * 2015-07-21 2015-11-11 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN105390742A (zh) * 2015-12-31 2016-03-09 石家庄圣泰化工有限公司 高电压锂离子电池电解液及其制备方法及应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070031584A (ko) * 2005-09-15 2007-03-20 주식회사 엘지화학 비수 전해액 첨가제 및 이를 이용한 이차 전지
JP4807072B2 (ja) * 2005-12-28 2011-11-02 株式会社Gsユアサ 非水電解質二次電池
US8697293B2 (en) * 2008-04-25 2014-04-15 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery having the same
CN103044384B (zh) * 2011-10-17 2014-10-22 张家港市国泰华荣化工新材料有限公司 一种3-氟-1,3 -丙烷磺酸内酯的制备方法
CN102522590B (zh) * 2011-12-26 2014-09-17 华为技术有限公司 一种非水有机电解液、包含它的锂离子二次电池及其制备方法和终端通讯设备
CN103000944B (zh) * 2012-12-03 2015-02-25 湖州创亚动力电池材料有限公司 一种兼顾高低温性能的锂离子电池电解液
CN103956517A (zh) * 2014-05-14 2014-07-30 华南师范大学 一种高电压锂离子电池电解液及其制备方法与应用
CN105161753B (zh) * 2014-05-26 2017-12-26 宁德时代新能源科技股份有限公司 锂离子电池及其电解液
CN104900915A (zh) * 2015-05-25 2015-09-09 宁德时代新能源科技有限公司 锂离子电池电解液及使用它的锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101263627A (zh) * 2005-09-15 2008-09-10 株式会社Lg化学 用于改善性能的非水性电解质及包含该电解质的锂二次电池
CN103456993A (zh) * 2013-09-30 2013-12-18 东莞市杉杉电池材料有限公司 一种高电压锂离子电池电解液
CN103633371A (zh) * 2013-12-13 2014-03-12 深圳新宙邦科技股份有限公司 一种用于锂离子电池的非水电解液和锂离子电池
CN103972588A (zh) * 2014-05-20 2014-08-06 中国科学院宁波材料技术与工程研究所 非水电解液与锂离子电池
CN103985906A (zh) * 2014-06-06 2014-08-13 东莞市杉杉电池材料有限公司 一种兼顾高低温性能的锂离子电池电解液
CN105047992A (zh) * 2015-07-21 2015-11-11 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN105390742A (zh) * 2015-12-31 2016-03-09 石家庄圣泰化工有限公司 高电压锂离子电池电解液及其制备方法及应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782835A (zh) * 2021-08-27 2021-12-10 华中科技大学 一种全氟溶剂高电压电解液及其在锂离子电池中的应用
CN113782835B (zh) * 2021-08-27 2023-07-04 华中科技大学 一种全氟溶剂高电压电解液及其在锂离子电池中的应用
CN116613383A (zh) * 2023-07-17 2023-08-18 湖南法恩莱特新能源科技有限公司 一种用于高压锂二次电池的非水电解液及其制备方法和应用
CN116613383B (zh) * 2023-07-17 2023-10-10 湖南法恩莱特新能源科技有限公司 一种用于高压锂二次电池的非水电解液及其制备方法和应用

Also Published As

Publication number Publication date
JP2018526763A (ja) 2018-09-13
CN105390742A (zh) 2016-03-09
JP6674947B2 (ja) 2020-04-01

Similar Documents

Publication Publication Date Title
WO2017113819A1 (zh) 高电压锂离子电池电解液及其制备方法及应用
WO2017113820A1 (zh) 高电压宽温锂离子电池电解液及其制备方法及应用
CN109950621B (zh) 一种锂离子电池非水电解液及锂离子电池
JP5425504B2 (ja) 非水電解質電池
CN108847501B (zh) 一种锂离子电池非水电解液及锂离子电池
CN104009255B (zh) 一种非水电解液及其制备方法以及一种锂离子电池
JP2009140919A (ja) 非水電解質二次電池
CN107579280B (zh) 含环状二磺酸硅基酯的锂二次电池电解液和锂二次电池
WO2020140923A1 (zh) 一种锂离子电池非水电解液及锂离子电池
CN108258297B (zh) 电解液及锂离子电池
WO2019200656A1 (zh) 锂二次电池电解液及其锂二次电池
WO2018149211A1 (zh) 含有吡啶环磺酰亚胺锂的电解液及使用该电解液的电池
WO2022262232A1 (zh) 非水电解液及其二次电池
WO2017185703A1 (zh) 一种高温锂离子电池电解液及其制备方法和高温锂离子电池
WO2024104049A1 (zh) 电解液及锂离子电池
CN110911748B (zh) 一种锂二次电池电解液和锂二次电池
CN106997959A (zh) 添加剂、非水电解液与锂离子电池
CN109390629B (zh) 一种电解液以及电池
US20200136183A1 (en) Electrolyte and lithium ion battery
WO2021238531A1 (zh) 一种非水电解液及锂离子电池
WO2022141283A1 (zh) 电解液、电化学装置及电子装置
CN109873201B (zh) 一种非水电解液及锂离子电池
CN112531207A (zh) 高电压锂离子电池用电解液及含该电解液的锂离子电池
CN110323492A (zh) 一种非水电解液及其在锂电池中的应用
CN109659618A (zh) 一种电解液添加剂、电解液及其制备方法、锂离子电池和设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017509780

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/09/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16880612

Country of ref document: EP

Kind code of ref document: A1