WO2017185703A1 - 一种高温锂离子电池电解液及其制备方法和高温锂离子电池 - Google Patents

一种高温锂离子电池电解液及其制备方法和高温锂离子电池 Download PDF

Info

Publication number
WO2017185703A1
WO2017185703A1 PCT/CN2016/104038 CN2016104038W WO2017185703A1 WO 2017185703 A1 WO2017185703 A1 WO 2017185703A1 CN 2016104038 W CN2016104038 W CN 2016104038W WO 2017185703 A1 WO2017185703 A1 WO 2017185703A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
lithium ion
group
battery electrolyte
high temperature
Prior art date
Application number
PCT/CN2016/104038
Other languages
English (en)
French (fr)
Inventor
许国成
谢封超
许瑞
李慧
Original Assignee
华为技术有限公司
东莞市爱思普能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 东莞市爱思普能源科技有限公司 filed Critical 华为技术有限公司
Priority to EP16900211.0A priority Critical patent/EP3442071B1/en
Publication of WO2017185703A1 publication Critical patent/WO2017185703A1/zh
Priority to US16/171,983 priority patent/US10862167B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to a high temperature lithium ion battery electrolyte, a preparation method thereof and a high temperature lithium ion battery.
  • lithium ion secondary batteries are widely used in various fields due to their advantages of high energy density, high voltage, low self-discharge rate, and light weight.
  • high-tech fields such as notebook computers, mobile phones, mobile tools, electric vehicles, base station backup power, and drilling have increasingly demanded battery performance, and their use environment has become more and more demanding.
  • the current commercial lithium ion secondary battery can not meet the requirements of use.
  • Lithium-ion secondary batteries have serious deterioration in battery performance due to their special chemical system and unique design.
  • the temperature is higher than 60 °C, the battery performance deteriorates severely, such as capacity attenuation, internal resistance increase, power characteristics deteriorate, and cycle life becomes shorter.
  • the lithium ion secondary battery electrolyte will self-catalyze the production of H 2 O, and H 2 O will be rapidly converted into HF in the electrolyte, resulting in the following side reactions: (1) Positive active material Will cause side reactions with HF in the electrolyte, causing the transition metal ions in the positive electrode active material to dissolve into the electrolyte, so that part of the positive electrode active material loses activity; (2) the metal ions dissolved in the electrolyte migrate to the negative electrode and The surface of the negative electrode is deposited, resulting in clogging of the SEI film of the negative electrode, while it further catalytically decomposes the electrolyte on the surface of the negative electrode to increase the polarization of the electrochemical reaction.
  • the existing methods for improving the high-temperature performance of lithium ion batteries mainly include: adding a negative electrode film-forming additive to the electrolyte to effectively form a film on the surface of the negative electrode, and the SEI film can improve the high-temperature performance of the lithium ion battery to some extent, but The improvement is not significant. Because the existing method does not consider the stability of the interface between the positive electrode and the electrolyte, and the electrolyte itself spontaneously generates H 2 O at high temperature, H 2 O will be rapidly converted into HF in the electrolyte, and HF further rapidly destroys the positive electrode/electrolysis. The liquid interface causes a series of interlocking side reactions such as dissolution of the positive transition metal ions to rapidly deteriorate the performance of the lithium ion battery.
  • the first aspect of the present invention aims to provide a high-temperature lithium ion battery electrolyte, which can effectively eliminate residual trace water introduced in the battery production process and trace water generated in the subsequent high temperature process, and suppress the formation of HF.
  • the present invention provides a high temperature lithium ion battery electrolyte comprising a lithium salt, an organic solvent and a water removal additive, the water removal additive being a phosphate cyclic anhydride compound of the formula (1):
  • R 1 is a -NCH-(CH 2 ) n -CN group, 0 ⁇ n ⁇ 20, and n is an integer;
  • R 2 is a -R 11 -CO-NR 12 R 13 group
  • R 11 is a -(CH 2 ) m - group, 0 ⁇ m ⁇ 19
  • R 12 and R 13 are independently selected from H and -(CH, respectively. 2 ) one of the x -CH 3 groups, 0 ⁇ x ⁇ 19-m; m, x are integers;
  • R 3 is selected from any one of H, F, Cl and Br.
  • n may be 1-10, 1-6, 2-5 or 4-7; the value of m may be 1-12, 1-8. 2-6 or 3-5.
  • the R 1 is a -NCH-(CH 2 ) 2 -CN group
  • the R 2 is a -CH 2 -CO-NHCH 3 group
  • the R 3 is F.
  • R 1 is a -NCH-(CH 2 ) 4 -CN group
  • R 2 is a -CH 2 -CO-NHCH 3 group
  • R 3 is F.
  • R 1 is a -NCH-(CH 2 ) 3 -CN group
  • R 2 is a -(CH 2 ) 2 -CO-NHCH 3 group
  • R 3 is Cl.
  • R 1 is a -NCH-(CH 2 ) 3 -CN group
  • R 2 is a -(CH 2 ) 2 -CO-NHCH 3 group
  • R 3 is F.
  • R 1 is a -NCH-(CH 2 ) 2 -CN group
  • R 2 is a -(CH 2 ) 2 -CO-NHCH 2 CH 3 group
  • R 3 is Cl.
  • R 1 is a -NCH-(CH 2 ) 2 -CN group
  • R 2 is a -CH 2 -CO-NHCH 3 group
  • R 3 is H.
  • the water removal additive accounts for 0.5 to 5% of the total weight of the high temperature lithium ion battery electrolyte.
  • the electrolyte further includes a positive electrode film forming additive and/or a negative film forming additive
  • the positive film forming additive is selected from the group consisting of a self dinitrile (ADN, molecular formula: C 6 H 8 N 2 ), At least one of lithium difluorooxalate borate (LiDFOB, molecular formula: C 2 BF 2 LiO 4 ) and ethylene carbonate (VEC), the negative electrode film-forming additive is selected from lithium difluorooxalate borate (LiDFOB, molecular formula) It is at least one of C 2 BF 2 LiO 4 ), vinylene carbonate (VC), ethylene carbonate (VEC), and 1,3-(1-propenyl)sultone (PS).
  • ADN self dinitrile
  • LiDFOB lithium difluorooxalate borate
  • VEC ethylene carbonate
  • the negative electrode film-forming additive is selected from lithium difluorooxalate borate (LiDFOB, mole
  • the positive electrode film forming additive accounts for 1-3% of the total weight of the high temperature lithium ion battery electrolyte
  • the negative electrode film forming additive accounts for 0.5% of the total weight of the high temperature lithium ion battery electrolyte. -4%.
  • the organic solvent is selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC). At least one of them.
  • the lithium salt is at least one selected from the group consisting of lithium hexafluorophosphate (LiPF 6 ), lithium difluorooxalate borate (LiDFOB), and lithium bisfluorosulfonimide (LiFSI).
  • LiPF 6 lithium hexafluorophosphate
  • LiDFOB lithium difluorooxalate borate
  • LiFSI lithium bisfluorosulfonimide
  • the high-temperature lithium ion battery electrolyte provided by the first aspect of the invention can effectively eliminate residual trace water introduced in the battery production process and trace water generated in the subsequent high-temperature process by adding a water-removing additive having a specific structure, thereby eliminating
  • the trace amount of water can basically eliminate HF, thereby effectively avoiding a series of interlocking side reactions caused by HF, well protecting the electrochemical system in the lithium ion battery, and significantly improving the high temperature performance of the lithium ion battery.
  • the present invention provides a method for preparing a high temperature lithium ion battery electrolyte, comprising the steps of:
  • the organic solvent is purified and purified under a closed environment condition of water ⁇ 10 ppm, and a lithium salt and a water-removing additive are added and uniformly mixed to obtain a high-temperature lithium ion battery electrolyte;
  • the water-removing additive is of a structural formula such as formula (1) Phosphate cyclic anhydride compounds:
  • R 1 is a -NCH-(CH 2 ) n -CN group, 0 ⁇ n ⁇ 20, and n is an integer;
  • R 2 is a -R 11 -CO-NR 12 R 13 group
  • R 11 is a -(CH 2 ) m - group, 0 ⁇ m ⁇ 19
  • R 12 and R 13 are independently selected from H and -(CH 2 a kind of one of x -CH 3 groups, 0 ⁇ x ⁇ 19-m
  • m, x are integers;
  • R 3 is selected from any one of H, F, Cl and Br.
  • the water-removing additive accounts for 0.5 to 5% of the total weight of the high-temperature lithium ion battery electrolyte.
  • the preparation method further includes adding a positive electrode film forming additive and/or a negative electrode film forming additive to the organic solvent, the positive film forming additive being selected from the group consisting of dinitrile and lithium difluorooxalate borate And at least one of ethylene carbonate; the negative film forming additive is selected from the group consisting of lithium difluorooxalate borate, vinylene carbonate, ethylene carbonate, and 1,3-(1-propenyl) sultone At least one of them.
  • the positive electrode film-forming additive accounts for 1-3% of the total weight of the high-temperature lithium ion battery electrolyte
  • the negative electrode film-forming additive accounts for 0.5% of the total weight of the high-temperature lithium ion battery electrolyte. -4%.
  • the preparation method provided by the second aspect of the invention is simple and feasible, and is suitable for expanding production.
  • the present invention provides a high temperature lithium ion battery comprising a positive electrode, a negative electrode, a separator and an electrolyte, the electrolyte being a high temperature lithium ion battery electrolyte according to the first aspect of the invention.
  • the high temperature lithium ion battery provided by the third aspect of the invention has good high temperature storage performance and high temperature cycle performance.
  • the metal ions dissolved in the electrolyte migrate to the SEI film in which the negative electrode blocks the negative electrode, and at the same time, it further catalyzes the decomposition of the electrolyte on the surface of the negative electrode to increase the polarization of the electrochemical reaction. .
  • the SEI film is unstable at high temperatures, the decomposition reaction easily occurs, so that the SEI film loses the role of passivating the coated anode.
  • the embodiment of the invention provides a high temperature lithium ion battery electrolyte, which can effectively eliminate the residual trace water introduced in the battery production process and the subsequent high temperature process. Trace water, inhibit the formation of HF, protect the electrochemical system in lithium-ion batteries, thereby effectively improving the high-temperature storage performance and high-temperature cycle performance of lithium-ion batteries.
  • the high temperature lithium ion battery electrolyte provided by the embodiment of the invention includes a lithium salt, an organic solvent and a water removal additive, and the water removal additive is a phosphate cyclic anhydride compound represented by the formula (1):
  • R 1 is a -NCH-(CH 2 ) n -CN group, 0 ⁇ n ⁇ 20, and n is an integer;
  • R 2 is a -R 11 -CO-NR 12 R 13 group
  • R 11 is a -(CH 2 ) m - group, 0 ⁇ m ⁇ 19
  • R 12 and R 13 are each independently selected from H and -(CH). 2 ) one of the x -CH 3 groups, 0 ⁇ x ⁇ 19-m; m, x are integers;
  • R 3 is selected from any one of H, F, Cl and Br.
  • the high-temperature lithium ion battery electrolyte provided by the embodiment of the invention can be used as a water removal additive by adding a phosphate cyclic anhydride compound having the above specific structure, and the phosphate cyclic anhydride compound can be complexed with water, thereby effectively eliminating the battery production process.
  • the residual trace water introduced in the process and the trace water generated in the subsequent high temperature process inhibit the formation of HF, effectively avoid a series of interlocking side reactions caused by HF, and well protect the electrochemical system in the lithium ion battery, significantly Improve the high temperature performance of lithium ion batteries.
  • n may be 1-10, 1-6, 2-5 or 4-7; the value of m may be 1-12, 1-8, 2-6 or 3 -5.
  • the R 1 is a -NCH-(CH 2 ) 2 -CN group
  • the R 2 is a -CH 2 -CO-NHCH 3 group
  • the R 3 is F
  • the molecular formula of the water removal additive is (P 3 O 6 )(C 4 H 5 N 2 )(C 3 H 6 ON)F, which is referred to as SPFACA.
  • the R 1 is a -NCH-(CH 2 ) 4 -CN group
  • the R 2 is a -CH 2 -CO-NHCH 3 group
  • the R 3 is F
  • the molecular formula of the water-removing additive is (P 3 O 6 )(C 6 H 9 N 2 )(C 3 H 6 ON)F.
  • the R 1 is a -NCH-(CH 2 ) 3 -CN group
  • the R 2 is a -(CH 2 ) 2 -CO-NHCH 3 group
  • the R 3 It is Cl
  • the molecular formula of the water removal additive at this time is (P 3 O 6 )(C 5 H 7 N 2 )(C 4 H 8 ON)Cl.
  • R 1 is a -NCH-(CH 2 ) 3 -CN group
  • R 2 is a -(CH 2 ) 2 -CO-NHCH 3 group
  • R 3 is F.
  • the molecular formula of the water removal additive is (P 3 O 6 )(C 5 H 7 N 2 )(C 4 H 8 ON)F.
  • R 1 is a -NCH-(CH 2 ) 2 -CN group
  • R 2 is a -(CH 2 ) 2 -CO-NHCH 2 CH 3 group
  • R 3 is Cl
  • the molecular formula of the water removal additive is (P 3 O 6 )(C 4 H 5 N 2 )(C 5 H 10 ON)Cl.
  • the R 1 is a -NCH-(CH 2 ) 2 -CN group
  • the R 2 is a -CH 2 -CO-NHCH 3 group
  • the R 3 is H
  • the molecular formula of the water-removing additive is (P 3 O 6 )(C 4 H 5 N 2 )(C 4 H 8 ON)H.
  • the water removal additive accounts for 0.5-5% or 0.5-2% of the total weight of the high-temperature lithium ion battery electrolyte.
  • a suitable addition amount can effectively improve the high temperature performance of the battery without affecting the low temperature discharge performance of the battery.
  • the electrolyte further includes a positive film forming additive and/or a negative film forming additive
  • the positive film forming additive is selected from the group consisting of a self dinitrile (ADN, molecular formula: C 6 H 8 N 2 ), At least one of lithium difluorooxalate borate (LiDFOB, molecular formula: C 2 BF 2 LiO 4 ) and ethylene carbonate (VEC), the negative electrode film-forming additive is selected from lithium difluorooxalate borate (LiDFOB, molecular formula) It is at least one of C 2 BF 2 LiO 4 ), vinylene carbonate (VC), ethylene carbonate (VEC), and 1,3-(1-propenyl)sultone (PS).
  • ADN self dinitrile
  • LiDFOB lithium difluorooxalate borate
  • VEC ethylene carbonate
  • the negative electrode film-forming additive is selected from lithium difluorooxalate borate (LiDFOB, molecular
  • the positive electrode film forming additive accounts for 1-3% of the total weight of the high temperature lithium ion battery electrolyte
  • the negative electrode film forming additive accounts for 0.5- of the total weight of the high temperature lithium ion battery electrolyte. 4%.
  • the high-temperature lithium ion battery electrolyte provided by the embodiment of the invention can effectively eliminate the trace amount in the battery system by further adding a certain amount of the positive electrode film-forming additive and/or the negative electrode film-forming additive on the basis of adding the water-removing additive. Water, inhibits the formation of HF; at the same time, it can form a high-temperature stable SEI protective film on the positive and negative electrodes to isolate the positive and negative materials from direct contact with the electrolyte, thereby obtaining more excellent high-temperature storage performance and high-temperature cycle performance.
  • the organic solvent is selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC). At least one of them.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the organic solvent accounts for 70-93% of the total weight of the high temperature lithium ion battery electrolyte.
  • the lithium salt is at least one selected from the group consisting of lithium hexafluorophosphate (LiPF 6 ), lithium difluorooxalate borate (LiDFOB), and lithium bisfluorosulfonimide (LiFSI).
  • LiPF 6 lithium hexafluorophosphate
  • LiDFOB lithium difluorooxalate borate
  • LiFSI lithium bisfluorosulfonimide
  • the embodiment of the invention further provides a preparation method of the above high temperature lithium ion battery electrolyte, comprising the following steps:
  • the organic solvent is purified and purified under a closed environment condition of water ⁇ 10 ppm, and a lithium salt and a water-removing additive are added and uniformly mixed to obtain a high-temperature lithium ion battery electrolyte;
  • the water-removing additive is of a structural formula such as formula (1) Phosphate cyclic anhydride compounds:
  • R 1 is a -NCH-(CH 2 ) n -CN group, 0 ⁇ n ⁇ 20, and n is an integer;
  • R 2 is a -R 11 -CO-NR 12 R 13 group
  • R 11 is a -(CH 2 ) m - group, 0 ⁇ m ⁇ 19
  • R 12 and R 13 are independently selected from H and -(CH 2 a kind of x -CH 3 group, 0 ⁇ x ⁇ 19-m
  • m, x are integers;
  • R 3 is selected from any one of H, F, Cl and Br.
  • n may be 1-10, 1-6, 2-5 or 4-7; the value of m may be 1-12, 1-8, 2-6 or 3- 5.
  • the water-removing additive has a molecular formula of (P 3 O 6 )(C 4 H 5 N 2 )(C 3 H 6 ON)F, that is, R 1 in the formula (1) is -NCH a -(CH 2 ) 2 -CN group, R 2 is a -CH 2 -CO-NHCH 3 group, and R 3 is F.
  • the water-removing additive has a molecular formula of (P 3 O 6 )(C 6 H 9 N 2 )(C 3 H 6 ON)F, that is, R 1 in the formula (1) is - NCH-(CH 2 ) 4 -CN group, R 2 is a -CH 2 -CO-NHCH 3 group, and R 3 is F.
  • the water-removing additive has a molecular formula of (P 3 O 6 )(C 5 H 7 N 2 )(C 4 H 8 ON)Cl, that is, R 1 in the formula (1) is - NCH-(CH 2 ) 3 -CN group, R 2 is a -(CH 2 ) 2 -CO-NHCH 3 group, and R 3 is Cl.
  • the molecular formula of the water removal additive is (P 3 O 6 )(C 5 H 7 N 2 )(C 4 H 8 ON)F, that is, R 1 in the formula (1) is a -NCH-(CH 2 ) 3 -CN group, R 2 is a -(CH 2 ) 2 -CO-NHCH 3 group, and R 3 is F.
  • the water-removing additive has a molecular formula of (P 3 O 6 )(C 4 H 5 N 2 )(C 5 H 10 ON)Cl, that is, R 1 in the formula (1) is - NCH-(CH 2 ) 2 -CN group, R 2 is a -(CH 2 ) 2 -CO-NHCH 2 CH 3 group, and R 3 is Cl.
  • the water-removing additive has a molecular formula of (P 3 O 6 )(C 4 H 5 N 2 )(C 4 H 8 ON)H, that is, R 1 in the formula (1) is - NCH-(CH 2 ) 2 -CN group, R 2 is a -CH 2 -CO-NHCH 3 group, and R 3 is H.
  • the water removal additive accounts for 0.5-5% of the total weight of the high temperature lithium ion battery electrolyte.
  • the preparation method further includes adding a positive electrode film forming additive and/or a negative electrode film forming additive to the organic solvent, wherein the positive film forming additive is selected from the group consisting of dinitrile, lithium difluorooxalate borate and carbonic acid. At least one of ethylene ethylene carbonate; the negative electrode film forming additive is selected from the group consisting of lithium difluorooxalate borate, vinylene carbonate, ethylene carbonate, and 1,3-(1-propenyl)sultone At least one.
  • the positive electrode film forming additive accounts for 1-3% of the total weight of the high temperature lithium ion battery electrolyte
  • the negative electrode film forming additive accounts for 0.5-4 of the total weight of the high temperature lithium ion battery electrolyte. %.
  • the organic solvent is selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC). At least one of them.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the organic solvent is selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC). At least one of them.
  • the organic solvent is two or more kinds, the organic solvent is separately purified and purified, and then mixed in a certain ratio.
  • the lithium salt is at least one selected from the group consisting of lithium hexafluorophosphate (LiPF 6 ), lithium difluorooxalate borate (LiDFOB), and lithium bisfluorosulfonimide (LiFSI).
  • LiPF 6 lithium hexafluorophosphate
  • LiDFOB lithium difluorooxalate borate
  • LiFSI lithium bisfluorosulfonimide
  • the components may be uniformly mixed by a stirring operation, and the stirring time may be 30 min.
  • the above preparation method provided by the embodiment of the invention is simple and feasible, and is suitable for expanding production.
  • the embodiment of the invention further provides a high-temperature lithium ion battery, comprising a positive electrode, a negative electrode, a separator and an electrolyte, wherein the electrolyte is the above-mentioned high-temperature lithium ion battery electrolyte provided by the embodiment of the invention.
  • the positive electrode includes a positive electrode active material capable of intercalating or deintercalating lithium ions, and the positive electrode active materials are LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiFeO 4 , and Li ( At least one of Co x Ni y Mn 1-xy )O 2 (0 ⁇ x+y ⁇ 1);
  • the negative electrode includes a negative active material capable of inserting or extracting lithium ions, and the active material of the negative electrode is graphite, At least one of hard carbon, soft carbon, lithium titanate, and silicon alloy;
  • the separator is at least one of PP, PE, PP/PE/PP, and a ceramic separator.
  • the high-temperature lithium ion battery provided by the embodiment of the invention has good high-temperature storage performance and high-temperature cycle performance.
  • the high-temperature lithium-ion battery can be applied to high-tech fields such as notebook computers, mobile phones, mobile tools, electric vehicles, base station backup power, and drilling.
  • a preparation method of a high temperature lithium ion battery electrolyte comprising the following steps:
  • PS 3%
  • LiDFOB 1%
  • SPFACA 2%
  • ADN 1% additives
  • Lithium nickel cobalt manganese ternary material LiNi 0.5 Co 0.2 Mn 0.3 O 2
  • conductive carbon powder SP
  • polyvinylidene fluoride PVDF
  • NMP N-methylpyrrolidone
  • negative electrode tab graphite, conductive carbon powder (SP), polyvinylidene fluoride (PVDF) are uniformly mixed according to the weight ratio of 97.5:1.0:1.5, and mixed with NMP to obtain a negative electrode slurry with certain fluidity;
  • the negative electrode slurry was coated on a 9 um thick copper foil, and the coating weight was 0.0182 g/cm 2 , and dried to a negative electrode sheet having a certain degree of flexibility; finally, it was processed by cold pressing, slitting, welding, and the like. Winded negative pole piece.
  • the cylindrical high-temperature lithium ion battery is prepared by injecting the high-temperature lithium ion battery electrolyte prepared in the above embodiment, top sealing, chemical conversion, and volume separation.
  • a preparation method of a high temperature lithium ion battery electrolyte comprising the following steps:
  • a preparation method of a high temperature lithium ion battery electrolyte comprising the following steps:
  • the SPFACA (1.5%) additive was finally dissolved in 1.0 mol/L of LiPF 6 and 0.1 mol/L of LiDFOB, and the mixture was uniformly mixed to finally obtain the high-temperature lithium ion battery electrolyte required in the present example.
  • a preparation method of a high temperature lithium ion battery electrolyte comprising the following steps:
  • High temperature lithium ion battery electrolyte is required.
  • a preparation method of a high temperature lithium ion battery electrolyte comprising the following steps:
  • SPFACA (1%), ADN (2%) additive, finally dissolved in 0.8 mol / L of LiPF 6 , 0.2 mol / L of LiFSI, mixed uniformly, and finally obtained the high temperature lithium ion battery electrolyte required in the examples of the present invention.
  • a preparation method of a high temperature lithium ion battery electrolyte comprising the following steps:
  • a preparation method of a high temperature lithium ion battery electrolyte comprising the following steps:
  • a preparation method of a high temperature lithium ion battery electrolyte comprising the following steps:
  • 1% SPFACA (0.8%), LiTFSI (1%), LiBF4 (2%) additive, and finally dissolved into 0.6 mol/L of LiPF 6 , uniformly mixed, and finally obtained the high-temperature lithium ion battery electrolysis required in the examples of the present invention. liquid.
  • a preparation method of a high temperature lithium ion battery electrolyte comprising the following steps:
  • a preparation method of a high temperature lithium ion battery electrolyte comprising the following steps:
  • Lithium ion battery was prepared by using electrolyte prepared in Comparative Example 1. The preparation method is the same as that of the first embodiment.
  • Lithium Ion Battery A lithium ion battery was prepared by using the electrolyte prepared in Comparative Example 2, and the specific preparation method was the same as in Example 1.
  • the high-temperature lithium ion battery prepared in the embodiment 1-8 of the present invention and the lithium ion battery prepared in the comparative example 1-2 were respectively subjected to a high temperature storage test and a high temperature cycle test, and the specific test operations are as follows:
  • the solution was cooled to room temperature (23 ° C ⁇ 3 ° C), and then discharged to 3.0 V at 0.5 C, and then the lithium ion battery was charged to 4.2 V with a charging current of 0.5 C.
  • the above procedure was repeated for two weeks.
  • the recoverable capacity of the corresponding sample after high temperature storage was calculated using the ratio between the reversible capacities, and the results are shown in Table 1.
  • Table 1 shows the capacity recovery rate data obtained by performing the charge and discharge test on the high-temperature lithium ion battery prepared in Example 1-8 and the lithium ion battery prepared in Comparative Example 1-2 at 60 ° C for different days. It can be seen from Table 1 that when the electrolyte contains SPFACA, the high-temperature storage performance of the lithium-ion battery is greatly improved, especially when the positive and negative additives are used together with the water-removing additive, the improvement effect is better. .
  • Table 2 shows the data obtained by performing the charge and discharge test at 60 ° C of the high-temperature lithium ion battery prepared in Example 1-8 and the lithium ion battery obtained in Comparative Example 1-2. It can be seen from Table 2 that when the electrolyte contains SPFACA, the high-temperature storage performance of the lithium-ion battery is greatly improved, especially when the positive and negative additives are used together with the water-removing additive, the improvement effect is better. .
  • the high-temperature lithium ion battery provided by the invention has good high-temperature electrochemical performance, and the high-temperature lithium ion battery can be charged and discharged after being fully charged at 60 ° C for 90 days, and the capacity recovery rate can reach 87% or more. Charging and discharging at 0.5C/0.5C, 3.0-4.2V under conditions of 60 °C ⁇ 3 °C, the capacity retention rate can still reach 87% or more after 500 cycles, which is due to the high-temperature lithium ion battery of the embodiment of the present invention.
  • the electrolyte in which a water-removing additive having a specific structure is added, and a certain amount of a positive film-forming additive and/or a negative film-forming additive are added, can not only effectively eliminate the inside of the battery system Trace water can inhibit the formation of HF; at the same time, a high temperature stable SEI protective film can be formed on the surface of the positive and negative electrodes to prevent direct contact between the positive and negative materials and the electrolyte, thereby reducing the occurrence of side reactions, thereby significantly improving the high temperature storage of the lithium ion battery. Performance and high temperature cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种高温锂离子电池电解液、该电解液的制备方法以及包含该电解液的高温锂离子电池。所述高温锂离子电池电解液包括锂盐、有机溶剂和除水添加剂,除水添加剂的结构式如式(1)所示。R1为-NCH-(CH 2) n-CN基团,0<n≤20;R2为-R11-CO-NR12R13基团,R11为-(CH2) m-基团,0≤m<19,R12、R13独立地选自H和-(CH2) x-CH3基团中一种,0≤x≤19-m;m,n,x均为整数;R3选自H、F、Cl和Br中的任意一种。该高温锂离子电池电解液能有效消除电池体系中的痕量水,抑制HF的生成,保护电池中的电化学体系,显著提高锂离子电池的高温存储性能和高温循环性能。

Description

一种高温锂离子电池电解液及其制备方法和高温锂离子电池
本申请要求了2016年4月29日提交中国专利局的,申请号201610284298.2,发明名称为“一种高温锂离子电池电解液及其制备方法和高温锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及锂离子电池技术领域,特别是涉及一种高温锂离子电池电解液及其制备方法和高温锂离子电池。
背景技术
与传统的铅酸、镍氢二次电池相比,锂离子二次电池由于具有高能量密度、高电压、低自放电率和重量轻等优点,在各领域被广泛应用。然而,笔记本电脑、手机、移动工具、电动汽车、基站备电、钻井等高科技领域对电池的性能要求日益提高,其使用环境越来越苛刻。尤其在高温恶劣环境下,如室外基站备电、钻井钻头监控等领域,目前商业化的锂离子二次电池不能满足使用要求。
锂离子二次电池因为其特殊的化学体系及独特设计,当使用温度高于60℃时,电池性能恶化严重,如其容量衰减、内阻增加、功率特性变差、循环寿命变短等。这是由于,在高温条件下,锂离子二次电池电解液会自催化产生H2O,H2O在电解液中将迅速转化成HF,从而导致如下副反应活跃:(1)正极活性物质会与电解液中的HF发生副反应,导致正极活性物质中的过渡金属离子溶入电解液中,从而部分正极活性物质失去活性;(2)溶入电解液的金属离子会迁移到负极并在负极表面沉积,导致堵塞负极的SEI膜,同时其在负极表面会进 一步催化分解电解液使得电化学反应极化增大。此外,由于负极SEI膜在高温下很不稳定,容易发生分解反应,使得SEI膜失去钝化包覆负极的作用。而所有这些副反应都会加剧锂离子电池性能的恶化。
目前,现有改善锂离子电池高温性能的方法主要有:在电解液中添加负极成膜添加剂以有效地在负极表面成膜,此SEI膜可以在一定程度上改善锂离子电池的高温性能,但改善效果并不显著。因为现有方法未考虑正极与电解液界面的稳定性,以及电解液自身在高温下会自催化产生H2O,H2O在电解液中将迅速转化成HF,HF进一步迅速破坏正极/电解液界面,使得正极过渡金属离子溶出等产生一系列连锁副反应迅速恶化锂离子电池性能。
发明内容
鉴于此,本发明第一方面旨在提供一种高温锂离子电池电解液,其能够有效消除电池生产工艺中引入的残留痕量水及后续高温过程中产生的痕量水,抑制HF的生成,保护锂离子电池中的电化学体系,以解决现有锂离子电池高温性能不佳的问题。
第一方面,本发明提供了一种高温锂离子电池电解液,包括锂盐、有机溶剂和除水添加剂,所述除水添加剂为结构式如式(1)所示的磷酸环酐类化合物:
Figure PCTCN2016104038-appb-000001
其中,R1为-NCH-(CH2)n-CN基团,0<n≤20,n为整数;
R2为-R11-CO-NR12R13基团,R11为-(CH2)m-基团,0≤m<19,R12、R13分别独 立地选自H和-(CH2)x-CH3基团中的一种,0≤x≤19-m;m,x均为整数;
R3选自H、F、Cl和Br中的任意一种。
在本发明第一方面中,所述n的取值范围可为1-10,1-6,2-5或4-7;所述m的取值范围可为1-12,1-8,2-6或3-5。
在本发明第一方面中,所述R1为-NCH-(CH2)2-CN基团,所述R2为-CH2-CO-NHCH3基团,所述R3为F。
在本发明第一方面中,所述R1为-NCH-(CH2)4-CN基团,R2为-CH2-CO-NHCH3基团,R3为F。
在本发明第一方面中,所述R1为-NCH-(CH2)3-CN基团,R2为-(CH2)2-CO-NHCH3基团,R3为Cl。
在本发明第一方面中,所述R1为-NCH-(CH2)3-CN基团,R2为-(CH2)2-CO-NHCH3基团,R3为F。
在本发明第一方面中,所述R1为-NCH-(CH2)2-CN基团,R2为-(CH2)2-CO-NHCH2CH3基团,R3为Cl。
在本发明第一方面中,所述R1为-NCH-(CH2)2-CN基团,R2为-CH2-CO-NHCH3基团,R3为H。
在本发明第一方面中,所述除水添加剂占所述高温锂离子电池电解液总重量的0.5-5%。
在本发明第一方面中,所述电解液还包括正极成膜添加剂和/或负极成膜添加剂,所述正极成膜添加剂选自己二腈(ADN,分子式为:C6H8N2)、二氟草酸硼酸锂(LiDFOB,分子式为:C2BF2LiO4)和碳酸乙烯亚乙酯(VEC)中的至少一种,所述负极成膜添加剂选自二氟草酸硼酸锂(LiDFOB,分子式为:C2BF2LiO4)、碳酸亚乙烯酯(VC)、碳酸乙烯亚乙酯(VEC)和1,3-(1-丙烯基)磺内酯(PS)中的至少一 种。
在本发明第一方面中,所述正极成膜添加剂占所述高温锂离子电池电解液总重量的1-3%,所述负极成膜添加剂占所述高温锂离子电池电解液总重量的0.5-4%。
在本发明第一方面中,所述有机溶剂选自碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)中的至少一种。
在本发明第一方面中,所述锂盐选自六氟磷酸锂(LiPF6)、二氟草酸硼酸锂(LiDFOB)和双氟磺酰亚胺锂(LiFSI)中的至少一种。
本发明第一方面提供的高温锂离子电池电解液,通过加入具有特定结构的除水添加剂,可有效消除电池生产工艺中引入的残留痕量水及后续高温过程中产生的痕量水,而消除了痕量水就基本上可以消除HF,从而可有效避免由HF带来的一系列连锁副反应,很好地保护锂离子电池中的电化学体系,显著改善锂离子电池的高温性能。
第二方面,本发明提供了一种高温锂离子电池电解液的制备方法,包括以下步骤:
在水分≤10ppm的封闭环境条件下,将有机溶剂进行精制提纯,并加入锂盐和除水添加剂,混合均匀,得到高温锂离子电池电解液;所述除水添加剂为结构式如式(1)所示的磷酸环酐类化合物:
Figure PCTCN2016104038-appb-000002
其中,R1为-NCH-(CH2)n-CN基团,0<n≤20,n为整数;
R2为-R11-CO-NR12R13基团,R11为-(CH2)m-基团,0≤m<19,R12、R13独立地选自H和-(CH2)x-CH3基团中的一种,0≤x≤19-m;m,x均为整数;
R3选自H、F、Cl和Br中的任意一种。
在本发明第二方面中所述除水添加剂占所述高温锂离子电池电解液总重量的0.5-5%。
在本发明第二方面中,所述的制备方法进一步包括向所述有机溶剂中加入正极成膜添加剂和/或负极成膜添加剂,所述正极成膜添加剂选自己二腈、二氟草酸硼酸锂和碳酸乙烯亚乙酯中的至少一种;所述负极成膜添加剂选自二氟草酸硼酸锂、碳酸亚乙烯酯、碳酸乙烯亚乙酯和1,3-(1-丙烯基)磺内酯中的至少一种。
在本发明第二方面中,所述正极成膜添加剂占所述高温锂离子电池电解液总重量的1-3%,所述负极成膜添加剂占所述高温锂离子电池电解液总重量的0.5-4%。
本发明第二方面提供的制备方法简易可行,适于扩大化生产。
第三方面,本发明提供了一种高温锂离子电池,包括正极、负极、隔离膜和电解液,所述电解液采用如本发明第一方面所述的高温锂离子电池电解液。
本发明第三方面提供的高温锂离子电池,具有良好的高温存储性能和高温循环性能。
本发明的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
具体实施方式
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进 和润饰,这些改进和润饰也视为本发明实施例的保护范围。
通常,当锂离子电池使用温度高于60℃时,电池性能将严重恶化,如其容量衰减、内阻增加、功率特性变差、循环寿命变短等。这是由于在高温条件下,电解液会自催化产生H2O,H2O在电解液中将迅速转化成HF,从而导致副反应活跃,正极活性物质会与电解液中的HF发生副反应,导致正极活性物质中的过渡金属离子溶出;同时,溶入电解液的金属离子会迁移到负极堵塞负极的SEI膜,同时其在负极表面会进一步催化分解电解液使得电化学反应极化增大。此外,由于SEI膜在高温下很不稳定,容易发生分解反应,使得SEI膜失去钝化包覆阳极的作用。而上述这些副反应都会加剧锂离子电池性能的恶化。
为了解决上述问题,有效提高锂离子电池的高温性能,本发明实施例提供了一种高温锂离子电池电解液,其能够有效消除电池生产工艺中引入的残留痕量水及后续高温过程中产生的痕量水,抑制HF的生成,保护锂离子电池中的电化学体系,从而有效提高锂离子电池的高温存储性能和高温循环性能。
具体地,本发明实施例提供的高温锂离子电池电解液,包括锂盐、有机溶剂和除水添加剂,所述除水添加剂为结构式如式(1)所示的磷酸环酐类化合物:
Figure PCTCN2016104038-appb-000003
其中,R1为-NCH-(CH2)n-CN基团,0<n≤20,n为整数;
R2为-R11-CO-NR12R13基团,R11为-(CH2)m-基团,0≤m<19,R12、R13分别独立地选自H和-(CH2)x-CH3基团中的一种,0≤x≤19-m;m,x均为整数;
R3选自H、F、Cl和Br中的任意一种。
本发明实施例提供的高温锂离子电池电解液,通过加入具有上述特定结构的磷酸环酐类化合物作为除水添加剂,磷酸环酐类化合物可以与水进行络合反应,从而可有效消除电池生产工艺中引入的残留痕量水及后续高温过程中产生的痕量水,抑制HF的生成,有效避免由HF带来的一系列连锁副反应,很好地保护锂离子电池中的电化学体系,显著改善锂离子电池的高温性能。
在本发明实施方式中,n的取值范围可为1-10,1-6,2-5或4-7;m的取值范围可为1-12,1-8,2-6或3-5。
本发明一具体实施方式中,所述R1为-NCH-(CH2)2-CN基团,所述R2为-CH2-CO-NHCH3基团,所述R3为F,此时除水添加剂的分子式为(P3O6)(C4H5N2)(C3H6ON)F,记为SPFACA。
本发明另一具体实施方式中,所述R1为-NCH-(CH2)4-CN基团,所述R2为-CH2-CO-NHCH3基团,所述R3为F,此时除水添加剂的分子式为(P3O6)(C6H9N2)(C3H6ON)F。
本发明另一具体实施方式中,所述R1为-NCH-(CH2)3-CN基团,所述R2为-(CH2)2-CO-NHCH3基团,所述R3为Cl,此时除水添加剂的分子式为(P3O6)(C5H7N2)(C4H8ON)Cl。
本发明另一具体实施方式中,所述R1为-NCH-(CH2)3-CN基团,R2为-(CH2)2-CO-NHCH3基团,R3为F,此时除水添加剂的分子式为(P3O6)(C5H7N2)(C4H8ON)F。
本发明另一具体实施方式中,所述R1为-NCH-(CH2)2-CN基团,R2为-(CH2)2-CO-NHCH2CH3基团,R3为Cl,此时除水添加剂的分子式为(P3O6)(C4H5N2)(C5H10ON)Cl。
本发明另一具体实施方式中,所述R1为-NCH-(CH2)2-CN基团,所述R2为 -CH2-CO-NHCH3基团,所述R3为H,此时除水添加剂的分子式为(P3O6)(C4H5N2)(C4H8ON)H。
本发明实施方式中,可选地,所述除水添加剂占所述高温锂离子电池电解液总重量的0.5-5%或0.5-2%。适合的添加量可有效提高电池的高温性能,同时不影响电池的低温放电性能。
本发明一优选实施方式中,所述电解液还包括正极成膜添加剂和/或负极成膜添加剂,所述正极成膜添加剂选自己二腈(ADN,分子式为:C6H8N2)、二氟草酸硼酸锂(LiDFOB,分子式为:C2BF2LiO4)和碳酸乙烯亚乙酯(VEC)中的至少一种,所述负极成膜添加剂选自二氟草酸硼酸锂(LiDFOB,分子式为:C2BF2LiO4)、碳酸亚乙烯酯(VC)、碳酸乙烯亚乙酯(VEC)和1,3-(1-丙烯基)磺内酯(PS)中的至少一种。在该优选实施方式中,所述正极成膜添加剂占所述高温锂离子电池电解液总重量的1-3%,所述负极成膜添加剂占所述高温锂离子电池电解液总重量的0.5-4%。
本发明实施例提供的高温锂离子电池电解液,在加入除水添加剂的基础上,通过进一步加入一定量的正极成膜添加剂和/或负极成膜添加剂,不但可以有效消除电池体系内的痕量水,抑制HF的生成;同时可以在正负极表面形成高温稳定的SEI保护膜隔绝正负极材料与电解液直接接触,从而获得更为优异的高温存储性能和高温循环性能。
本发明实施方式中,所述有机溶剂选自碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)中的至少一种。所述有机溶剂占所述高温锂离子电池电解液总重量的70-93%。
本发明实施方式中,所述锂盐选自六氟磷酸锂(LiPF6)、二氟草酸硼酸锂(LiDFOB)和双氟磺酰亚胺锂(LiFSI)中的至少一种。所述锂盐占所述高温锂离子 电池电解液总重量的5-18%。
相应地,本发明实施例还提供了上述高温锂离子电池电解液的制备方法,包括以下步骤:
在水分≤10ppm的封闭环境条件下,将有机溶剂进行精制提纯,并加入锂盐和除水添加剂,混合均匀,得到高温锂离子电池电解液;所述除水添加剂为结构式如式(1)所示的磷酸环酐类化合物:
Figure PCTCN2016104038-appb-000004
其中,R1为-NCH-(CH2)n-CN基团,0<n≤20,n为整数;
R2为-R11-CO-NR12R13基团,R11为-(CH2)m-基团,0≤m<19,R12、R13独立地选自H和-(CH2)x-CH3基团中一种,0≤x≤19-m;m,x均为整数;
R3选自H、F、Cl和Br中的任意一种。
本发明实施方式中,n的取值范围可为1-10,1-6,2-5或4-7;m的取值范围可为1-12,1-8,2-6或3-5。
本发明一具体实施方式中,所述除水添加剂的分子式为(P3O6)(C4H5N2)(C3H6ON)F,即式(1)中R1为-NCH-(CH2)2-CN基团,R2为-CH2-CO-NHCH3基团,R3为F。
本发明另一具体实施方式中,所述除水添加剂的分子式为(P3O6)(C6H9N2)(C3H6ON)F,即式(1)中R1为-NCH-(CH2)4-CN基团,R2为-CH2-CO-NHCH3基团,R3为F。
本发明另一具体实施方式中,所述除水添加剂的分子式为 (P3O6)(C5H7N2)(C4H8ON)Cl,即式(1)中R1为-NCH-(CH2)3-CN基团,R2为-(CH2)2-CO-NHCH3基团,R3为Cl。
本发明另一具体实施方式中,所述除水添加剂的分子式为(P3O6)(C5H7N2)(C4H8ON)F,,即式(1)中R1为-NCH-(CH2)3-CN基团,R2为-(CH2)2-CO-NHCH3基团,R3为F。
本发明另一具体实施方式中,所述除水添加剂的分子式为(P3O6)(C4H5N2)(C5H10ON)Cl,即式(1)中R1为-NCH-(CH2)2-CN基团,R2为-(CH2)2-CO-NHCH2CH3基团,R3为Cl。
本发明另一具体实施方式中,所述除水添加剂的分子式为(P3O6)(C4H5N2)(C4H8ON)H,即式(1)中R1为-NCH-(CH2)2-CN基团,R2为-CH2-CO-NHCH3基团,R3为H。
本发明实施方式中,所述除水添加剂占所述高温锂离子电池电解液总重量的0.5-5%。
本发明实施方式中,所述的制备方法进一步包括向所述有机溶剂中加入正极成膜添加剂和/或负极成膜添加剂,所述正极成膜添加剂选自己二腈、二氟草酸硼酸锂和碳酸乙烯亚乙酯中的至少一种;所述负极成膜添加剂选自二氟草酸硼酸锂、碳酸亚乙烯酯、碳酸乙烯亚乙酯和1,3-(1-丙烯基)磺内酯中的至少一种。
本发明实施方式中,所述正极成膜添加剂占所述高温锂离子电池电解液总重量的1-3%,所述负极成膜添加剂占所述高温锂离子电池电解液总重量的0.5-4%。
本发明实施方式中,所述有机溶剂选自碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)中的至少一种。当所述有机溶剂为两种或两种以上时,将有机溶剂分别精制提纯后按一定比例混合。
本发明实施方式中,所述锂盐选自六氟磷酸锂(LiPF6)、二氟草酸硼酸锂 (LiDFOB)和双氟磺酰亚胺锂(LiFSI)中的至少一种。
本发明实施方式中,可通过搅拌操作使各组分混合均匀,搅拌时间可以为30min。
本发明实施例提供的上述制备方法简易可行,适合扩大化生产。
此外,本发明实施例还提供了一种高温锂离子电池,包括正极、负极、隔离膜和电解液,其电解液采用本发明实施例提供的上述高温锂离子电池电解液。
本发明实施方式中,所述正极包括能嵌入或脱出锂离子的正极活性材料,所述正极活性材料为LiCoO2、LiNiO2、LiMn2O4、LiNi0.5Mn1.5O4、LiFeO4和Li(CoxNiyMn1-x-y)O2(0<x+y<1)中的至少一种;所述负极包括能嵌入或脱出锂离子的负极活性材料,所述负极的活性材料为石墨、硬碳、软碳、钛酸锂和硅合金中的至少一种;所述隔离膜为PP、PE、PP/PE/PP和陶瓷隔离膜中的至少一种。
本发明实施例提供的高温锂离子电池,具有良好的高温存储性能和高温循环性能。该高温锂离子电池可应用于笔记本电脑、手机、移动工具、电动汽车、基站备电、钻井等高科技领域。
下面以圆柱形电池(型号18650,标称容量2500mAh)的制作和测试为例,分多个实施例对本发明实施例进行进一步的说明。其中,本发明实施例不限定于以下的具体实施例。在不变主权利的范围内,可以适当的进行变更实施。
实施例1
一种高温锂离子电池电解液的制备方法,包括以下步骤:
在水分含量≤10ppm的封闭环境中,将碳酸酯类有机溶剂精制提纯后按一定比例混合均匀EC:EMC:DMC=2:3:5(V%),再按重量比加入VC(1%)、PS(3%),LiDFOB(1%)、SPFACA(2%)、ADN(2%)添加剂,最后溶入1.15mol/L的LiPF6,搅拌混合均匀,得到本实施例所需高温锂离子电池电解液。
高温锂离子电池的制备
正极极片的制备:将锂镍钴锰三元材料(LiNi0.5Co0.2Mn0.3O2)、导电碳粉(SP)、聚偏氟乙烯(PVDF)按照重量比97:1.5:1.5混合均匀,加入N-甲基吡咯烷酮(NMP)混合搅拌均匀得到具有一定流动性的正极浆料;然后,将正极浆料涂布在12um厚的铝箔上,涂布重量为0.0244g/cm2,烘干成具有一定柔韧度的正极片;最后经过冷压、分条、焊接等工艺制成待卷绕的正极极片。
负极极片的制备:将石墨、导电碳粉(SP)、聚偏氟乙烯(PVDF)按照重量比97.5:1.0:1.5混合均匀,加入NMP混合搅拌均匀得到具有一定流动性的负极浆料;然后,将负极浆料涂布在9um厚的铜箔上,涂布重量为0.0182g/cm2,烘干成具有一定柔韧度的负极片;最后经过冷压、分条、焊接等工艺制成待卷绕的负极极片。
电池组装:将上述制备的待卷绕正极极片、待卷绕负极极片以及陶瓷隔离膜(总厚度为16um,陶瓷层厚度为4um)一起经过卷绕、入壳、焊接、滚槽、干燥、注入本实施例上述制备得到的高温锂离子电池电解液、顶封、化成、分容等工序制得圆柱形高温锂离子电池。
实施例2
一种高温锂离子电池电解液的制备方法,包括以下步骤:
在水分含量≤10ppm的封闭环境中,将碳酸酯类有机溶剂精制提纯后按一定比例混合均匀EC:EMC:DMC:PC=3:3:3:1(V%),再按重量比加入VC(1%)、SPFACA(1.8%)、LiFSI(1%)、ADN(3%)添加剂,最后溶入1.0mol/L的LiPF6,混合均匀,最终得到本实施例所需高温锂离子电池电解液。
高温锂离子电池的制备:与实施例1中的制备方法完全相同。
实施例3
一种高温锂离子电池电解液的制备方法,包括以下步骤:
在水分含量≤10ppm的封闭环境中,将碳酸酯类溶剂精制提纯后按一定比例混合均匀EC:EMC:DMC=1:1:1(V%),再按重量比加入VC(0.5%)、SPFACA(1.5%)添加剂,最后溶入1.0mol/L的LiPF6、0.1mol/L的LiDFOB,混合均匀,最终得到本实施例所需高温锂离子电池电解液。
高温锂离子电池的制备:与实施例1中的制备方法完全相同。
实施例4
一种高温锂离子电池电解液的制备方法,包括以下步骤:
在水分含量≤10ppm的封闭环境中,将碳酸酯类有机溶剂精制提纯后按一定比例混合均匀EC:EMC:DMC:DEC:PC=2:2:4:1:1(V%),再按重量比加入VC(1.5%)、SPFACA(1.2%)、ADN(3%)添加剂,最后溶入0.8mol/L的LiPF6、0.2mol/L的LiFSI,混合均匀,最终得到本发明实施例所需高温锂离子电池电解液。
高温锂离子电池的制备:与实施例1中的制备方法完全相同。
实施例5
一种高温锂离子电池电解液的制备方法,包括以下步骤:
在水分含量≤10ppm的封闭环境中,将碳酸酯类溶剂精制提纯后按一定比例混合均匀EC:EMC:DMC=2:2:4(V%),再按重量比加入LiDFOB(1%)、SPFACA(1%)、ADN(2%)添加剂,最后溶入0.8mol/L的LiPF6、0.2mol/L的LiFSI,混合均匀,最终得到本发明实施例所需高温锂离子电池电解液。
高温锂离子电池的制备:与实施例1中的制备方法完全相同。
实施例6
一种高温锂离子电池电解液的制备方法,包括以下步骤:
在水分含量≤10ppm的封闭环境中,将碳酸酯类溶剂精制提纯后按一定比例混合均匀EC:EMC:DMC:PC=2:2:4:1(V%),再按重量比加入PS(2%)、SPFACA(0.8%)、LiDFOB(1%)添加剂,最后溶入0.8mol/L的LiPF6,混合均匀,最终得到本发明实施例所需高温锂离子电池电解液。
高温锂离子电池的制备:与实施例1中的制备方法完全相同。
实施例7
一种高温锂离子电池电解液的制备方法,包括以下步骤:
在水分含量≤10ppm的封闭环境中,将碳酸酯类溶剂精制提纯后按一定比例混合均匀EC:EMC:DMC:DEC=2:3:4:1(V%),再按重量比加入PS(1%)、SPFACA(0.6%)、LiDFOB(2%)添加剂,最后溶入0.6mol/L的LiPF6,混合均匀,最终得到本发明实施例所需高温锂离子电池电解液。
高温锂离子电池的制备:与实施例1中的制备方法完全相同。
实施例8
一种高温锂离子电池电解液的制备方法,包括以下步骤:
在水分含量≤10ppm的封闭环境中,将碳酸酯类溶剂精制提纯后按一定比例混合均匀EC:EMC:DMC:DEC=2:3:4:1(V%),再按重量比加入VEC(1%)、SPFACA(0.8%)、LiTFSI(1%)、LiBF4(2%)添加剂,最后溶入0.6mol/L的LiPF6, 混合均匀,最终得到本发明实施例所需高温锂离子电池电解液。
高温锂离子电池的制备:与实施例1中的制备方法完全相同。
实施例9
一种高温锂离子电池电解液的制备方法,包括以下步骤:
在水分含量≤10ppm的封闭环境中,将碳酸酯类有机溶剂精制提纯后按一定比例混合均匀EC:EMC:DMC=2:3:5(V%),再按重量比加入VC(1%)、PS(3%),LiDFOB(1%)、(P3O6)(C6H9N2)(C3H6ON)F(2%)、ADN(2%)添加剂,最后溶入1.15mol/L的LiPF6,搅拌混合均匀,得到本实施例所需高温锂离子电池电解液。
实施例10
一种高温锂离子电池电解液的制备方法,包括以下步骤:
在水分含量≤10ppm的封闭环境中,将碳酸酯类有机溶剂精制提纯后按一定比例混合均匀EC:EMC:DMC=2:3:5(V%),再按重量比加入VC(1%)、PS(3%),LiDFOB(1%)、(P3O6)(C5H7N2)(C4H8ON)Cl(2%)、ADN(2%)添加剂,最后溶入1.15mol/L的LiPF6,搅拌混合均匀,得到本实施例所需高温锂离子电池电解液。
对比例1
电解液的配置:在水分含量≤10ppm的封闭环境中,将碳酸酯类溶剂精制提纯后按一定比例混合均匀EC:EMC:DMC=2:3:5(V%),再按重量比加入VC(1%)、PS(3%)添加剂,最后溶入1.15mol/L的LiPF6,混合均匀,最终得到对比例1所需锂离子电池电解液。
锂离子电池的制备:采用对比例1配制的电解液制备锂离子电池,具体制 备方法与实施例1相同。
对比例2
电解液的配置:在水分含量≤10ppm的封闭环境中,将碳酸酯类溶剂精制提纯后按一定比例混合均匀EC:EMC:DMC:PC=3:3:3:1(V%),再按重量比加入VC(1%)、PS(1%)、LiFSI(1%)、ADN(3%)添加剂,最后溶入1.0mol/L的LiPF6,混合均匀,最终得到对比例2所需锂离子电池电解液。
锂离子电池的制备:采用对比例2配制的电解液制备锂离子电池,具体制备方法与实施例1相同。
效果实施例
为对本发明实施例技术方案带来的有益效果进行有力支持,特提供以下性能测试:
对本发明实施例1-8制得的高温锂离子电池与对比例1-2制得的锂离子电池分别进行高温存储测试和高温循环测试,具体测试操作如下:
(1)高温存储测试:将实施例1-8制得的高温锂离子电池与对比例1-2制得的锂离子电池在室温(23℃±3℃)下以0.5C放电至3.0V,之后再以0.5C的充电电流将锂离子电池充至4.2V,上述步骤循环两周,之后将满充的锂离子电池放入60℃±3℃烘箱中烘烤一段时间(30d,60d,90d),取出冷却至室温(23℃±3℃),再以0.5C放电至3.0V,之后以0.5C的充电电流将锂离子电池充至4.2V,上述步骤循环两周。利用可逆容量之间的比值计算出对应样品高温存储后的可恢复容量,结果如表1所示。
表1
表1为实施例1-8制得的高温锂离子电池与对比例1-2制得的锂离子电池满充60℃存储不同天数再进行充放电测试所得容量恢复率数据。从表1中可以看出,当电解液中含有除水添加剂SPFACA时,锂离子电池的高温存储性能都有较大的提高,尤其是正、负极添加剂与除水添加剂同时使用时,改善效果更佳。
(2)高温循环测试:将实施例1-8制得的高温锂离子电池与对比例1-2制得的锂离子电池在60℃±3℃条件下以0.5C/0.5C,3.0~4.2V做循环测试,测得循环100周、300周、500周的容量保持率数据如表2所示。
表2
Figure PCTCN2016104038-appb-000006
表2为实施例1-8制得的高温锂离子电池与对比例1-2制得的锂离子电池60℃下进行充放电测试所得数据。从表2中可以看出,当电解液中含有除水添加剂SPFACA时,锂离子电池的高温存储性能都有较大的提高,尤其是正、负极添加剂与除水添加剂同时使用时,改善效果更佳。
由上述测试数据可以说明,本发明提供的高温锂离子电池具有良好的高温电化学性能,该高温锂离子电池满充60℃存储90天后再进行充放电测试容量恢复率可达到87%以上,在60℃±3℃条件下以0.5C/0.5C,3.0~4.2V进行充放电,循环500周后容量保持率仍可达到87%以上,这是由于本发明实施例的高温锂离子电池采用的电解液,其中加入了具有特定结构的除水添加剂,以及加入了一定量的正极成膜添加剂和/或负极成膜添加剂,不但可以有效消除电池体系内的 痕量水,抑制HF的生成;同时可以在正负极表面形成高温稳定的SEI保护膜隔绝正负极材料与电解液直接接触,减少副反应的发生,从而显著改善了锂离子电池的高温存储性能和高温循环性能。
需要说明的是,根据上述说明书的揭示和和阐述,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些等同修改和变更也应当在本发明的权利要求的保护范围之内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (16)

  1. 一种高温锂离子电池电解液,其特征在于,包括锂盐、有机溶剂和除水添加剂,所述除水添加剂为结构式如式(1)所示的磷酸环酐类化合物:
    Figure PCTCN2016104038-appb-100001
    其中,R1为-NCH-(CH2)n-CN基团,0<n≤20,n为整数;
    R2为-R11-CO-NR12R13基团,R11为-(CH2)m-基团,0≤m<19,R12、R13分别独立地选自H和-(CH2)x-CH3基团中的一种,0≤x≤19-m;m,x均为整数;
    R3选自H、F、Cl和Br中的任意一种。
  2. 如权利要求1所述的高温锂离子电池电解液,其特征在于,所述n的取值范围为1-10,所述m的取值范围为1-12。
  3. 如权利要求1或2所述的高温锂离子电池电解液,其特征在于,所述n的取值范围为1-6,所述m的取值范围为1-8。
  4. 如权利要求1-3任一项所述的高温锂离子电池电解液,其特征在于,所述R1为-NCH-(CH2)2-CN基团,所述R2为-CH2-CO-NHCH3基团,所述R3为F。
  5. 如权利要求1-3任一项所述的高温锂离子电池电解液,其特征在于,所 述R1为-NCH-(CH2)4-CN基团,所述R2为-CH2-CO-NHCH3基团,所述R3为F。
  6. 如权利要求1-3任一项所述的高温锂离子电池电解液,其特征在于,所述R1为-NCH-(CH2)3-CN基团,所述R2为-(CH2)2-CO-NHCH3基团,所述R3为Cl。
  7. 如权利要求1-6任一项所述的高温锂离子电池电解液,其特征在于,所述除水添加剂占所述高温锂离子电池电解液总重量的0.5-5%。
  8. 如权利要求1-7任一项所述的高温锂离子电池电解液,其特征在于,所述电解液还包括正极成膜添加剂和/或负极成膜添加剂,所述正极成膜添加剂选自己二腈、二氟草酸硼酸锂和碳酸乙烯亚乙酯中的至少一种,所述负极成膜添加剂选自二氟草酸硼酸锂、碳酸亚乙烯酯、碳酸乙烯亚乙酯和1,3-(1-丙烯基)磺内酯中的至少一种。
  9. 如权利要求8所述的高温锂离子电池电解液,其特征在于,所述正极成膜添加剂占所述高温锂离子电池电解液总重量的1-3%,所述负极成膜添加剂占所述高温锂离子电池电解液总重量的0.5-4%。
  10. 如权利要求1-9任一项所述的高温锂离子电池电解液,其特征在于,所述有机溶剂选自碳酸丙烯酯、碳酸乙烯酯、碳酸二甲酯、碳酸甲乙酯和碳酸二乙酯中的至少一种。
  11. 如权利要求1-10任一项所述的高温锂离子电池电解液,其特征在于,所述锂盐选自六氟磷酸锂、二氟草酸硼酸锂和双氟磺酰亚胺锂中的至少一种。
  12. 一种高温锂离子电池电解液的制备方法,其特征在于,包括以下步骤:
    在水分≤10ppm的封闭环境条件下,将有机溶剂进行精制提纯,并加入锂盐和除水添加剂,混合均匀,得到高温锂离子电池电解液;所述除水添加剂为结构式如式(1)所示的磷酸环酐类化合物:
    Figure PCTCN2016104038-appb-100002
    其中,R1为-NCH-(CH2)n-CN基团,0<n≤20,n为整数;
    R2为-R11-CO-NR12R13基团,R11为-(CH2)m-基团,0≤m<19,R12、R13独立地选自H和-(CH2)x-CH3基团中的一种,0≤x≤19-m;m,x均为整数;
    R3选自H、F、Cl和Br中的任意一种。
  13. 如权利要求12所述的制备方法,其特征在于,所述n的取值范围为1-10,所述m的取值范围为1-12。
  14. 如权利要求12或13所述的制备方法,其特征在于,所述除水添加剂占所述高温锂离子电池电解液总重量的0.5-5%。
  15. 如权利要求12-14任一项所述的制备方法,其特征在于,所述制备方法 进一步包括向所述有机溶剂中加入正极成膜添加剂和/或负极成膜添加剂,所述正极成膜添加剂选自己二腈、二氟草酸硼酸锂和碳酸乙烯亚乙酯中的至少一种,所述负极成膜添加剂选自二氟草酸硼酸锂、碳酸亚乙烯酯、碳酸乙烯亚乙酯和1,3-(1-丙烯基)磺内酯中的至少一种。
  16. 一种高温锂离子电池,其特征在于,包括正极、负极、隔离膜和电解液,所述电解液采用如权利要求1-11任一项所述的高温锂离子电池电解液。
PCT/CN2016/104038 2016-04-29 2016-10-31 一种高温锂离子电池电解液及其制备方法和高温锂离子电池 WO2017185703A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16900211.0A EP3442071B1 (en) 2016-04-29 2016-10-31 High-temperature lithium-ion battery electrolyte solution and preparation method therefor and high-temperature lithium-ion battery
US16/171,983 US10862167B2 (en) 2016-04-29 2018-10-26 High-temperature lithium-ion battery electrolyte and production method thereof, and high-temperature lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610284298.2A CN107331893B (zh) 2016-04-29 2016-04-29 一种高温锂离子电池电解液及其制备方法和高温锂离子电池
CN201610284298.2 2016-04-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/171,983 Continuation US10862167B2 (en) 2016-04-29 2018-10-26 High-temperature lithium-ion battery electrolyte and production method thereof, and high-temperature lithium-ion battery

Publications (1)

Publication Number Publication Date
WO2017185703A1 true WO2017185703A1 (zh) 2017-11-02

Family

ID=60161836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104038 WO2017185703A1 (zh) 2016-04-29 2016-10-31 一种高温锂离子电池电解液及其制备方法和高温锂离子电池

Country Status (4)

Country Link
US (1) US10862167B2 (zh)
EP (1) EP3442071B1 (zh)
CN (1) CN107331893B (zh)
WO (1) WO2017185703A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557678A1 (en) * 2018-04-20 2019-10-23 Contemporary Amperex Technology Co., Limited Electrolyte and battery
EP3754775A4 (en) * 2018-02-16 2022-03-16 Daikin Industries, Ltd. ELECTROLYTIC SOLUTION, ELECTROCHEMICAL DEVICE, LITHIUM-ION SECONDARY BATTERY AND MODULE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742455B (zh) * 2018-12-24 2022-01-18 深圳市量能科技有限公司 一种锂离子电池的制作方法
CN110931873B (zh) * 2019-12-11 2022-08-16 中国科学院山西煤炭化学研究所 一种适用于高镍三元/硅碳体系的锂离子电池电解液
CN113871692A (zh) * 2020-06-30 2021-12-31 东营市海科新源化工有限责任公司 一种锂离子电池
CN114335925B (zh) * 2022-03-15 2022-06-03 瑞浦能源有限公司 高功率型二次动力电池的二次注液的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130528A (ja) * 2006-11-27 2008-06-05 Sony Corp 非水電解質組成物及び非水電解質二次電池
CN103779607A (zh) * 2014-01-17 2014-05-07 中南大学 一种电解液和锂离子二次电池
CN104638293A (zh) * 2015-01-23 2015-05-20 深圳新宙邦科技股份有限公司 一种高压实密度负极锂离子电池和电解液
CN104934636A (zh) * 2015-06-17 2015-09-23 宁德时代新能源科技有限公司 电解液以及包含该电解液的锂离子电池
CN105047992A (zh) * 2015-07-21 2015-11-11 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN105070947A (zh) * 2015-09-22 2015-11-18 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326461B1 (ko) * 2000-01-21 2002-02-28 김순택 리튬 이차 전지용 전해액
DE10333042B4 (de) * 2003-07-21 2005-09-29 Clariant Gmbh Verfahren zur Herstellung von cyclischen Phosphonsäureanhydriden und deren Verwendung
JP4396675B2 (ja) 2006-06-16 2010-01-13 ソニー株式会社 非水電解質二次電池
CN102403534A (zh) 2011-12-01 2012-04-04 香河昆仑化学制品有限公司 一种高温锂离子电池电解液及制备方法
CN105226321A (zh) * 2015-09-14 2016-01-06 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN105047994B (zh) * 2015-09-22 2018-02-23 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130528A (ja) * 2006-11-27 2008-06-05 Sony Corp 非水電解質組成物及び非水電解質二次電池
CN103779607A (zh) * 2014-01-17 2014-05-07 中南大学 一种电解液和锂离子二次电池
CN104638293A (zh) * 2015-01-23 2015-05-20 深圳新宙邦科技股份有限公司 一种高压实密度负极锂离子电池和电解液
CN104934636A (zh) * 2015-06-17 2015-09-23 宁德时代新能源科技有限公司 电解液以及包含该电解液的锂离子电池
CN105047992A (zh) * 2015-07-21 2015-11-11 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN105070947A (zh) * 2015-09-22 2015-11-18 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3754775A4 (en) * 2018-02-16 2022-03-16 Daikin Industries, Ltd. ELECTROLYTIC SOLUTION, ELECTROCHEMICAL DEVICE, LITHIUM-ION SECONDARY BATTERY AND MODULE
EP3557678A1 (en) * 2018-04-20 2019-10-23 Contemporary Amperex Technology Co., Limited Electrolyte and battery
US11121406B2 (en) 2018-04-20 2021-09-14 Contemporary Amperex Technology Co., Limited Electrolyte and battery

Also Published As

Publication number Publication date
US20190067742A1 (en) 2019-02-28
EP3442071A4 (en) 2019-03-20
CN107331893B (zh) 2020-03-10
EP3442071B1 (en) 2023-06-21
EP3442071A1 (en) 2019-02-13
US10862167B2 (en) 2020-12-08
CN107331893A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
WO2020063371A1 (zh) 正极极片及锂离子二次电池
KR101211127B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
US10862167B2 (en) High-temperature lithium-ion battery electrolyte and production method thereof, and high-temperature lithium-ion battery
WO2018099097A1 (zh) 电解液及二次锂电池
CN111640985A (zh) 一种非水电解液及含有该非水电解液的高电压锂离子电池
CN114342143B (zh) 一种硅氰基磺酸内酯化合物、锂离子电池电解液和锂离子二次电池
CN110752406B (zh) 电解液及其应用
CN112635835B (zh) 高低温兼顾的非水电解液及锂离子电池
CN109786832B (zh) 电解液添加剂、电解液及锂离子二次电池
KR100984134B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2022262232A1 (zh) 非水电解液及其二次电池
CN113381072A (zh) 电解液和含有电解液的电池
CN109390629B (zh) 一种电解液以及电池
CN109004274B (zh) 电解液及二次电池
WO2018113268A1 (zh) 锂离子电池及其电解液
CN112928328A (zh) 一种含有硅烷基磺酰胺化合物的锂离子电池电解液和锂离子二次电池
CN110783628A (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
KR20020003123A (ko) 비수 전해액
CN106340671B (zh) 锂离子电池及其电解液
CN108400382B (zh) 电解液及二次电池
CN110649317B (zh) 硅基锂离子电池电解液和锂离子二次电池
CN106941191B (zh) 锂离子电池及其非水电解液
US20230411689A1 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
CN105514495B (zh) 锂离子电池及其电解液
CN109494402B (zh) 电解液及锂电池

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016900211

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016900211

Country of ref document: EP

Effective date: 20181109

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900211

Country of ref document: EP

Kind code of ref document: A1