WO2017104815A1 - フェライト系耐熱鋼用溶接材料、フェライト系耐熱鋼用溶接継手及びフェライト系耐熱鋼用溶接継手の製造方法 - Google Patents

フェライト系耐熱鋼用溶接材料、フェライト系耐熱鋼用溶接継手及びフェライト系耐熱鋼用溶接継手の製造方法 Download PDF

Info

Publication number
WO2017104815A1
WO2017104815A1 PCT/JP2016/087585 JP2016087585W WO2017104815A1 WO 2017104815 A1 WO2017104815 A1 WO 2017104815A1 JP 2016087585 W JP2016087585 W JP 2016087585W WO 2017104815 A1 WO2017104815 A1 WO 2017104815A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
resistant steel
welding
less
weld metal
Prior art date
Application number
PCT/JP2016/087585
Other languages
English (en)
French (fr)
Inventor
平田 弘征
佳奈 浄徳
友彰 浜口
敏秀 小野
克樹 田中
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020187020361A priority Critical patent/KR102058602B1/ko
Priority to JP2017556473A priority patent/JP6338028B2/ja
Priority to ES16875789T priority patent/ES2828466T3/es
Priority to US16/060,121 priority patent/US11090755B2/en
Priority to CN201680073523.6A priority patent/CN108367396B/zh
Priority to EP16875789.6A priority patent/EP3391989B1/en
Publication of WO2017104815A1 publication Critical patent/WO2017104815A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the present invention relates to a welding material, a welded joint, and a welded joint manufacturing method, and more particularly, to a ferritic heat resistant steel welding material, a ferritic heat resistant steel welded joint, and a ferritic heat resistant steel welded joint manufacturing method.
  • Ferritic heat resistant steel is less expensive than austenitic heat resistant steel or Ni-based heat resistant steel. Ferritic heat resistant steel further has an advantage as a heat resistant steel having a small thermal expansion coefficient. For this reason, ferritic heat resistant steels are widely used in high temperature and high pressure environments.
  • JP-A-4-371551 Patent Document 1
  • JP-A-4-371552 Patent Document 2
  • JP-A-2002-241903 Patent Document 3
  • the ferritic heat-resistant steel disclosed in Patent Document 1 and Patent Document 2 optimizes the W and Mo contents and contains Co and B. Thereby, the ferritic heat resistant steels of these documents have high strength.
  • the ferritic heat-resistant steel material disclosed in Patent Document 3 has high strength by actively utilizing M 23 C 6 carbide and intermetallic compound phases precipitated at the martensitic lath interface.
  • ferritic heat-resistant steel may be welded and used for structures as welded joints.
  • HAZ weld heat affected zone
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-300532
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2010-7094
  • Patent Document 6 International Publication No. 2008/149703
  • the ferritic heat resistant steels disclosed in Patent Document 5 and Patent Document 6 contain a large amount of B and adjust the C content according to the welding heat input or the B content. Thereby, while suppressing the strength fall in HAZ, the liquefaction crack at the time of welding is suppressed.
  • welding materials are generally used.
  • a weld metal formed using a commercially available welding material for Ni-based heat-resistant alloys (for example, JIS Z 3334 (2011) SNi6082) has high creep strength and toughness.
  • B flows from the base material into the weld metal. In this case, solidification cracks may occur. Therefore, the welding material used for welding the ferritic heat resistant steel containing B is required not only to have high creep strength and toughness in the weld metal, but also to suppress solidification cracking during welding.
  • Patent Document 7 Japanese Patent Application Laid-Open No. 8-187592
  • Patent Document 8 Japanese Patent Application Laid-Open No. 9-308989
  • Patent Document 9 Japanese Patent Application Laid-Open No. 9-122971
  • the welding material of Patent Document 7 contains 0.0005 to 0.006% by mass of B, and (Mo + W) / (Ni + Co) is 0.045 to 2.0.
  • the welding material of Patent Document 8 optionally contains B in an amount of 0.0005 to 0.006% by mass, and (Mo + W) / (Ni + Co) and (0.5 ⁇ Co + 0.5 ⁇ Mn + Ni) are within a predetermined range. Furthermore, the Cr equivalent is within a predetermined range.
  • the welding material of Patent Document 9 can optionally contain 0.02% by mass or less of B, and the Mn content is (0.0925-12.5 [% S])% to 2.0%, (Al + O) is 0.02% or less.
  • An object of the present invention is to weld a ferritic heat resistant steel welding material capable of forming a weld metal having high creep strength and toughness when welding a ferritic heat resistant steel containing B, a weld joint for ferritic heat resistant steel, and It is providing the manufacturing method of the welded joint for ferritic heat-resistant steel.
  • the welding material for ferritic heat resistant steel according to the present invention is, in mass%, C: 0.06 to 0.10%, Si: 0.1 to 0.4%, Mn: 0.3 to 0.7%, P : 0.01% or less, S: 0.003% or less, Co: 2.6 to 3.4%, Ni: 0.01 to 1.10%, Cr: 8.5 to 9.5%, W: 2.5 to 3.5%, Mo: less than 0.01%, Nb: 0.02 to 0.08%, V: 0.1 to 0.3%, Ta: 0.02 to 0.08%, B: 0.007 to 0.015%, N: 0.005 to 0.020%, Al: 0.03% or less, O: 0.02% or less, Cu: 0 to 1%, Ti: 0 to 0 0.3%, Ca: 0 to 0.05%, Mg: 0 to 0.05%, and rare earth elements: 0 to 0.1%, with the balance being Fe and impurities, Has a chemical composition to satisfy.
  • a welded joint according to the present invention includes a weld metal for ferritic heat resistant steel having the above-described chemical composition and a base material made of ferritic heat resistant steel containing B.
  • gas tungsten arc welding is performed on a base metal made of ferritic heat-resistant steel using the above-described ferritic heat-resistant steel welding material at a welding heat input of 6 to 20 kJ / cm.
  • the process to implement is provided.
  • the welding material for ferritic heat resistant steel according to the present invention can form a weld metal having high creep strength and toughness when ferritic heat resistant steel containing B is welded.
  • the present inventors investigated and examined in order to solve the above-mentioned problem. As a result, the present inventors obtained the following knowledge.
  • M 23 C 6 carbide (M is an alloying element) is finely dispersed at the prior austenite grain boundaries and martensitic lath boundaries. This M 23 C 6 carbide delays the recovery of martensite lath and increases the creep strength.
  • B content of the base metal is 0.005 to 0.020%, if the B content of the weld metal is 0.007% or more, a creep strength equal to or higher than that of the base material can be obtained.
  • the B content in the weld metal is too high, high creep strength can be obtained, but toughness decreases.
  • the reason is considered as follows. If the B content is too high, a rapid extension of martensite occurs during the martensitic transformation. This increases the packet size and increases the unit of destruction for impact. Furthermore, since B is a ferrite-forming element, the formation of ⁇ ferrite in the weld metal is promoted, and the area ratio of ⁇ ferrite in the weld metal increases. Therefore, it is thought that the toughness of the weld metal decreases.
  • (B) In the chemical composition of the weld metal, it is defined as F1 Cr + 6Si + 1.5W + 11V + 5Nb + 10B-40C-30N-4Ni-2Co-2Mn. If F1 is 10.0 or less, the formation of ⁇ ferrite is suppressed, and the area ratio of ⁇ ferrite in the weld metal is 0.5% or less.
  • the weld material for ferritic heat resistant steel of the present embodiment completed based on the above knowledge is C: 0.06 to 0.10%, Si: 0.1 to 0.4%, Mn: 0 in mass%. 0.3 to 0.7%, P: 0.01% or less, S: 0.003% or less, Co: 2.6 to 3.4%, Ni: 0.01 to 1.10%, Cr: 8.
  • the chemical composition of the welding material may contain one or more elements selected from the first group to the third group.
  • First group Cu: 0.05 to 1.00%
  • Second group Ti: 0.02 to 0.30%
  • Group 3 Ca: 0.001 to 0.050%
  • Mg 0.001 to 0.050%
  • rare earth elements 0.001 to 0.10% or less
  • the area ratio of ⁇ ferrite in the welding material is preferably 0.5% or less.
  • a welded joint according to the present invention includes a weld metal having the above-described chemical composition and a base material made of ferritic heat resistant steel.
  • the base material has a chemical composition containing, by mass%, Cr: 8 to 10%, Co: 2 to 4%, W: 2 to 4%, and B: 0.005 to 0.020%.
  • the base material has a chemical composition of mass%, C: 0.04 to 0.12%, Si: 0.05 to 0.60%, Mn: 0.1 to 0.8%, P: 0.02. %: S: 0.01% or less, Co: 2-4%, Ni: 0-0.4%, Cr: 8-10%, W: 2-4%, Nb and / or Ta: 0 in total 0.02 to 0.18%, V: 0.05 to 0.40%, B: 0.005 to 0.020%, Nd: 0.01 to 0.06%, N: 0.002 to 0.025 %, Al: 0.03% or less, and O: 0.02% or less, and the balance may be Fe and impurities.
  • the chemical composition of the base material may contain Ni: 0.05 to 0.4%.
  • the area ratio of ⁇ ferrite in the weld metal is, for example, 0.5% or less.
  • the method for producing a welded joint according to the present invention comprises a chemical containing, by mass%, Cr: 8-10%, Co: 2-4%, W: 2-4%, and B: 0.005-0.020%.
  • a base metal made of ferritic heat resistant steel having a composition is subjected to gas tungsten arc welding with a welding heat input of 6 to 20 kJ / cm to form a weld metal using the above-mentioned welding material for ferritic heat resistant steel.
  • the chemical composition of the welding material for ferritic heat resistant steel of this embodiment contains the following elements.
  • C 0.06 to 0.10% Carbon (C) suppresses the formation of ⁇ ferrite in the weld metal, and makes the main structure of the weld metal a martensite structure. Furthermore, C produces fine carbides (M 23 C 6 carbides) when used at high temperatures, and increases the creep strength. If the C content is too low, these effects cannot be obtained. On the other hand, if the C content is too high, a large amount of coarse carbides are precipitated, and the toughness of the weld metal is lowered. Therefore, the C content is 0.06 to 0.10%. A preferable lower limit of the C content is 0.07%. The upper limit with preferable C content is 0.09%.
  • Si 0.1 to 0.4% Silicon (Si) deoxidizes steel. Si further enhances the steam oxidation resistance of the weld metal. If the Si content is too low, these effects cannot be obtained. On the other hand, if the Si content is too high, the formation of ⁇ ferrite is accelerated, the toughness of the weld metal is lowered, and the creep ductility is also lowered. Therefore, the Si content is 0.1 to 0.4%. A preferable lower limit of the Si content is 0.25%. The upper limit with preferable Si content is 0.35%.
  • Mn 0.3 to 0.7%
  • Manganese (Mn) deoxidizes steel in the same way as Si. Mn further promotes the martensitic transformation of the weld metal structure. If the Mn content is too low, these effects cannot be obtained. On the other hand, if the Mn content is too high, creep embrittlement tends to occur in the weld metal. Therefore, the Mn content is 0.3 to 0.7%. A preferable lower limit of the Mn content is 0.4%. The upper limit with preferable Mn content is 0.6%.
  • P 0.01% or less Phosphorus (P) is an impurity. P decreases the toughness of the weld metal. Therefore, the P content is 0.01% or less.
  • the upper limit with preferable P content is 0.008%.
  • the P content is preferably as low as possible. However, from the viewpoint of material cost, the preferable lower limit of the P content is 0.0005%.
  • S 0.003% or less Sulfur (S) is an impurity. S segregates at the prior austenite grain boundaries and the lath interface in the weld metal containing B, and reduces the adhesion between the grain boundaries and the lath interface. Therefore, the toughness of the weld metal decreases. Therefore, the S content is 0.003% or less.
  • the upper limit with preferable S content is less than 0.002%, More preferably, it is less than 0.0015%.
  • the S content is preferably as low as possible. However, from the viewpoints of effects and material costs, the preferable lower limit of the S content is 0.0002%.
  • Co 2.6-3.4%
  • Co Cobalt
  • the weld metal is not tempered, so the lower limit of the Co content for sufficiently obtaining the above effect is 2.6%.
  • the Co content is too high, the creep strength is lowered and the creep ductility is also lowered.
  • the material cost increases. Therefore, the Co content is 2.6 to 3.4%.
  • a preferable lower limit of the Co content is 2.8%.
  • the upper limit with preferable Co content is 3.3%.
  • Nickel (Ni) is effective in suppressing the formation of ⁇ ferrite and obtaining a martensite structure. Ni further increases the toughness of the weld metal. If the Ni content is too low, these effects cannot be obtained. On the other hand, if the Ni content is too high, creep ductility decreases. Furthermore, since Ni is an expensive element, the material cost increases. Therefore, the Ni content is 0.01 to 1.10%. A preferable lower limit of the Ni content is 0.04%. The upper limit with preferable Ni content is 1.00%.
  • Chromium (Cr) improves the steam oxidation resistance and corrosion resistance of the weld metal. Further, Cr precipitates as a carbide during use at a high temperature, increasing the creep strength. If the Cr content is too low, these effects cannot be obtained. On the other hand, if the Cr content is too high, the stability of the carbide decreases and the creep strength decreases. If the Cr content is too high, the formation of ⁇ ferrite is further promoted and the toughness is lowered. Therefore, the Cr content is 8.5 to 9.5%. A preferable lower limit of the Cr content is 8.7%. The upper limit with preferable Cr content is 9.3%.
  • W 2.5-3.5% Tungsten (W) is solid-solved in the matrix or precipitated during long-term use as an intermetallic compound, and increases the creep strength of the weld metal at high temperatures. If the W content is too low, this effect cannot be obtained. On the other hand, if the W content is too high, a large amount of precipitates are generated. Furthermore, the formation of ⁇ ferrite is promoted, and the toughness of the weld metal decreases. Accordingly, the W content is 2.5 to 3.5%. A preferable lower limit of the W content is 2.7%. The upper limit with preferable W content is 3.3%.
  • Mo Molybdenum
  • Mo Molybdenum
  • Mo is an impurity in the welding material of the present invention. Mo dissolves in the matrix and increases the creep strength of the weld metal. However, Mo is easily solidified and segregated, and lowers the long-term stability of W-containing intermetallic compounds and carbides. Accordingly, the Mo content is preferably as low as possible, and is less than 0.01%.
  • Niobium (Nb) precipitates in the grains as fine carbonitride during use at high temperatures, and increases the creep strength of the weld metal. If the Nb content is too low, this effect cannot be obtained. On the other hand, if the Nb content is too high, a large amount of coarse carbonitride precipitates and the creep strength and creep ductility are reduced. Furthermore, the formation of ⁇ ferrite is promoted, and the toughness of the weld metal decreases. Therefore, the Nb content is 0.02 to 0.08%. A preferable lower limit of the Nb content is 0.03%. The upper limit with preferable Nb content is 0.07%.
  • V 0.1-0.3% Vanadium (V), like Nb, precipitates in the grains as fine carbonitride during use at high temperatures, and increases the creep strength of the weld metal. If the V content is too low, this effect cannot be obtained. On the other hand, if the V content is too high, a large amount of coarse carbonitride precipitates, and the creep strength and creep ductility deteriorate. Furthermore, the formation of ⁇ ferrite is promoted, and the toughness of the weld metal decreases. Therefore, the V content is 0.1 to 0.3%. The minimum with preferable V content is 0.15%. The upper limit with preferable V content is 0.25%.
  • Ta 0.02 to 0.08% Tantalum (Ta), like Nb and V, precipitates in the grains as fine carbonitride during use at high temperatures, and increases the creep strength of the weld metal. If the Ta content is too low, this effect cannot be obtained. On the other hand, if the Ta content is too high, a large amount of coarse carbonitride precipitates and the creep strength and creep ductility deteriorate. Therefore, the Ta content is 0.02 to 0.08%. A preferable lower limit of the Ta content is 0.03%. The upper limit with preferable Ta content is 0.07%.
  • B 0.007 to 0.015% Boron (B) increases the hardenability and is effective in obtaining a martensite structure in the weld metal. Furthermore, B finely disperses carbides on the prior austenite boundary and martensitic lath boundary during use at high temperatures, thereby suppressing the recovery of the structure and increasing the creep strength. If the B content is too low, these effects cannot be obtained. On the other hand, if the B content is too high, the martensite lath will expand rapidly during the martensitic transformation, and the fracture unit will increase. Furthermore, the formation of ⁇ ferrite is promoted. Therefore, the toughness of the weld metal is extremely reduced. Therefore, the B content is 0.007 to 0.015%. A preferable lower limit of the B content is 0.009%. The upper limit with preferable B content is 0.012%.
  • N 0.005 to 0.020% Nitrogen (N) precipitates finely in the grains as fine nitride during use at high temperature, and increases the creep strength. N further suppresses the formation of ⁇ ferrite. If the N content is too low, these effects cannot be obtained. On the other hand, if the N content is too high, coarse nitrides crystallize during solidification of the weld metal, and the toughness of the weld metal decreases. Therefore, the N content is 0.005 to 0.020%. A preferable lower limit of the N content is 0.008%. The upper limit with preferable N content is 0.015%.
  • Al 0.03% or less Aluminum (Al) deoxidizes steel. If the Al content is too low, this effect cannot be obtained. On the other hand, if the Al content is too high, the cleanliness is lowered, and the workability of the welding material and the toughness of the weld metal are lowered. Furthermore, the creep strength of the weld metal is reduced. Therefore, the Al content is 0.03% or less.
  • the upper limit with preferable Al content is 0.01%. Considering the production cost, the preferable lower limit of the Al content is 0.001%.
  • the Al content is sol. Al (acid-soluble Al) is meant.
  • Oxygen (O) is an impurity. If the O content is too high, the workability of the welding material and the toughness of the weld metal are reduced. Therefore, the content of O is 0.02% or less.
  • the upper limit with preferable O content is 0.01%. Considering the effect and the manufacturing cost, the preferable lower limit of the O content is 0.001%.
  • the balance of the chemical composition of the weld material for ferritic heat resistant steel according to the present embodiment is composed of Fe and impurities.
  • the impurities are those mixed from ore, scrap, or production environment as raw materials when industrially manufacturing a welding material for ferritic heat resistant steel, and the ferritic heat resistant steel of this embodiment. It means that it is allowed as long as it does not adversely affect the welding material.
  • the above-mentioned welding material may further contain one or more elements selected from the following first group to third group. Hereinafter, these elements will be described in detail.
  • Cu 0 to 1% Copper (Cu) is an optional element and may not be contained. When contained, Cu is effective for generating a martensite structure. However, if the Cu content is too high, the creep ductility of the weld metal decreases. Therefore, the Cu content is 0 to 1%. The upper limit with preferable Cu content is 0.8%. The minimum with preferable Cu content is 0.05%, More preferably, it is 0.2%.
  • Titanium (Ti) is an optional element and may not be contained. When contained, Ti, like Nb, V, and Ta, precipitates in the grains as fine carbonitride during use at high temperature, and increases the creep strength of the weld metal. However, if the Ti content is too high, it crystallizes out as coarse nitrides during welding, or precipitates in large quantities as coarse nitrides during use at high temperatures, reducing the toughness of the weld metal. Therefore, the Ti content is 0 to 0.3%. The minimum with preferable Ti content is 0.02%, More preferably, it is 0.05%.
  • Ca 0 to 0.05%
  • Mg 0 to 0.05%
  • Rare earth element (REM) 0 to 0.1%
  • Calcium (Ca), magnesium (Mg), and rare earth element (REM) are optional elements and may not be contained. When contained, these elements enhance the hot workability during the production of the welding material. However, if the content of these elements is too high, these elements are combined with oxygen and the cleanliness of the weld metal is lowered. In this case, the hot workability of the weld metal is reduced. Therefore, the Ca content is 0 to 0.05%, the Mg content is 0 to 0.05%, and the REM content is 0 to 0.1%.
  • the minimum with preferable Ca content and Mg content is 0.001%, respectively, More preferably, it is 0.002%, respectively.
  • the upper limit with preferable Ca content and Mg content is 0.02%, respectively.
  • the minimum with preferable REM content is 0.001%, More preferably, it is 0.003%.
  • the upper limit with preferable REM content is 0.06%.
  • REM in this specification contains at least one of Sc, Y, and lanthanoid (La of atomic number 57 to Lu of 71).
  • the REM content means the total content of these elements.
  • the chemical composition further satisfies formula (1).
  • F1 Cr + 6Si + 1.5W + 11V + 5Nb + 10B-40C-30N-4Ni-2Co-2Mn.
  • F1 is an indicator of creep strength and ⁇ ferrite content. Specifically, if F1 is too low, sufficient creep strength cannot be obtained, and the creep strength is low. On the other hand, if F1 is too high, the amount of ⁇ ferrite produced increases, and the area ratio of ⁇ ferrite in the structure of the weld metal exceeds 0.5%. In this case, the toughness of the weld metal decreases. Therefore, F1 is 0.5 to 10.0.
  • a preferred lower limit of F1 is 1.0.
  • the preferable upper limit of F1 is 9.0.
  • the welding material for ferritic heat resistant steel of the present invention is manufactured by a known manufacturing method.
  • the welding material is processed into a filler rod, a filler wire for gas tungsten arc welding, a core wire of a welding rod for covering arc welding, or the like.
  • the structure of the welding material mainly consists of a tempered martensite structure, but the area ratio of ⁇ ferrite in the structure needs to be 0.5% or less.
  • the area ratio of ⁇ ferrite is high, that is, when the amount of ⁇ ferrite is large, structures having different deformability are mixed when the welding material is processed at a high temperature. As a result, workability is reduced.
  • the area ratio of ⁇ ferrite of the weld metal obtained using the welding material of the present invention is 0.5% or less, high toughness can be obtained.
  • the upper limit of the area ratio of ⁇ ferrite is preferably 0.3%, more preferably 0.1%.
  • the area ratio of ⁇ ferrite is measured by the following method.
  • a cross-section sample is taken from any location of the welding material.
  • the surface of the collected sample is polished.
  • the polished sample surface is etched using a Villela reagent.
  • ⁇ -ferrite on the etched surface is specified in any five fields.
  • known image processing software is used. Since the contrast of each etched structure (martensite, ⁇ ferrite, etc.) is different, ⁇ ferrite is specified based on the contrast.
  • a value obtained by dividing the total area of ⁇ ferrite specified in each visual field by the total area of five visual fields (observation visual field 650 ⁇ m ⁇ 860 ⁇ m ⁇ 5) is defined as the area ratio (%) of ⁇ ferrite in the welding material.
  • the base material is made of ferritic heat resistant steel.
  • the chemical composition of the base material contains the following elements.
  • Chromium (Cr) improves the steam oxidation resistance and corrosion resistance of the base material at high temperatures, as in the case of the welding material. Further, Cr precipitates as carbide during use at a high temperature, and increases the creep strength of the base material. If the Cr content is too low, these effects cannot be obtained. However, unlike the weld metal, the base metal has solidification segregation suppressed and is used after being tempered. Therefore, the above effect can be obtained even if the Cr content is lower than that of the welding material. On the other hand, if the Cr content is too high, the stability of the carbide decreases and the creep strength of the base material decreases. Therefore, the Cr content is 8 to 10%. A preferable lower limit of the Cr content is 8.5%. The upper limit with preferable Cr content is 9.5%.
  • Co 2-4% Cobalt (Co) is effective in increasing the creep strength by making the matrix structure a martensite structure. If the Co content is too low, this effect cannot be obtained. However, unlike the weld metal, the base metal has solidification segregation suppressed and is used after being tempered. Therefore, the above effect can be obtained even when the Co content is lower than that of the welding material. On the other hand, if the Co content is too high, the creep strength and creep ductility of the base material are lowered. Furthermore, since Co is an expensive element, the material cost increases. Therefore, the Co content is 2 to 4%. The preferable lower limit of the Co content is 2.5%, and the preferable upper limit of the Co content is 3.5%.
  • W 2-4%
  • tungsten (W) is dissolved in the matrix of the base material or precipitated during long-time use as an intermetallic compound, thereby increasing the creep strength at high temperatures. If the W content is too low, this effect cannot be obtained.
  • the base metal has solidification segregation suppressed and is used after being tempered. Therefore, the above effect can be obtained even when the W content is lower than that of the welding material. On the other hand, if the W content is too high, the above effect is saturated. Accordingly, the W content is W: 2 to 4%.
  • a preferred lower limit of the W content is 2.5%.
  • the upper limit with preferable W content is 3.5%.
  • B 0.005 to 0.020% Boron (B) is effective in improving the hardenability and obtaining a martensite structure, as in the case of the welding material. Furthermore, B finely disperses carbides on the prior austenite boundary and martensitic lath boundary during use at high temperatures, thereby suppressing the recovery of the structure and increasing the creep strength. If the B content is too low, this effect cannot be obtained. However, unlike the weld metal, the base metal has solidification segregation suppressed and is used after being tempered. Therefore, the above effect can be obtained even when the B content is lower than that of the welding material. On the other hand, if the B content is too high, the toughness decreases as in the case of the weld metal. Therefore, the B content is 0.005 to 0.020%. A preferable lower limit of the B content is 0.007%. The upper limit with preferable B content is 0.015%.
  • the base material contains the above-described elements, the base material has high creep strength and toughness at high temperatures.
  • the chemical composition of the base material further contains the following elements, with the balance being Fe and impurities.
  • the impurities are those mixed from ore, scrap, or production environment as raw materials when industrially manufacturing a welding material for ferritic heat resistant steel, and the ferritic heat resistant steel of this embodiment. It means that it is allowed as long as it does not adversely affect the base material.
  • C 0.04 to 0.12% Carbon (C) is effective for obtaining a martensite structure. Furthermore, C produces fine carbides when used at high temperatures, and increases the creep strength of the base material. If the C content is too low, these effects cannot be obtained. However, unlike the weld metal, the base metal has solidification segregation suppressed and is used after being tempered. Therefore, even if the C content is lower than that of the welding material, the above effect can be obtained. On the other hand, if the C content is too high, the effect of improving the creep strength is saturated. Therefore, the C content is 0.04 to 0.12%. A preferable lower limit of the C content is 0.06%. The upper limit with preferable C content is 0.10%.
  • Si 0.05 to 0.60% Silicon (Si) deoxidizes steel. Si further enhances the steam oxidation resistance of the base material. If the Si content is too low, these effects cannot be obtained. However, unlike the weld metal, the base metal has solidification segregation suppressed and is used after being tempered. Therefore, the above effect can be obtained even if the Si content is lower than that of the welding material. On the other hand, if the Si content is too high, the creep ductility and toughness of the base material are lowered. Therefore, the Si content is 0.05 to 0.60%. A preferable lower limit of the Si content is 0.10%. The upper limit with preferable Si content is 0.40%.
  • Mn 0.1 to 0.8%
  • Manganese (Mn) like Si, deoxidizes steel. Further, Mn makes the base material structure martensite. If the Mn content is too low, these effects cannot be obtained. However, unlike the weld metal, the base metal has solidification segregation suppressed and is used after being tempered. Therefore, the above effect can be obtained even if the Mn content is lower than that of the welding material. On the other hand, if the Mn content is too high, creep embrittlement tends to occur. Therefore, the Mn content is 0.1 to 0.8%. A preferable lower limit of the Mn content is 0.2%. The upper limit with preferable Mn content is 0.7%.
  • P 0.02% or less Phosphorus (P) is an impurity. If the P content is too high, the creep ductility decreases. Therefore, the P content is 0.02% or less.
  • the upper limit with preferable P content is 0.018%.
  • the P content is preferably as low as possible. However, considering the material cost, the preferable lower limit of the P content is 0.0005%.
  • S 0.01% or less Sulfur (S) is an impurity. If the S content is too high, creep ductility decreases. Therefore, the S content is 0.01% or less.
  • the upper limit with preferable S content is 0.005%.
  • the S content is preferably as low as possible. However, considering the material cost, the preferable lower limit of the P content is 0.0002%.
  • Nb and / or Ta Total 0.02 to 0.18% Niobium (Nb) and tantalum (Ta) precipitate in the grains as fine carbonitrides during use at high temperatures, as in the case of welding materials, and increase the creep strength. If the Nb and / or Ta content is too low, this effect cannot be obtained. However, unlike the weld metal, the base metal has solidification segregation suppressed and is used after being tempered. Therefore, even if the content of these elements is lower than that of the welding material, the above effect can be obtained. On the other hand, if the Nb and / or Ta content is too high, a large amount of coarse carbonitride precipitates and the creep strength and creep ductility deteriorate.
  • the total content of Nb and / or Ta is 0.02 to 0.18%.
  • a preferable lower limit of the total content of Nb and / or Ta is 0.05%.
  • a preferable upper limit of the total content of Nb and / or Ta is 0.12%.
  • V 0.05 to 0.40% Vanadium (V), like Nb and Ta, precipitates in the grains as fine carbonitride during use at a high temperature and increases the creep strength. If the V content is too low, this effect cannot be obtained. However, unlike the weld metal, the base metal has solidification segregation suppressed and is used after being tempered. Therefore, the above effect can be obtained even when the V content is lower than that of the welding material. On the other hand, if the V content is too high, a large amount of coarse carbonitride precipitates and the creep strength and creep ductility are reduced. Therefore, the V content is 0.05 to 0.40%. The minimum with preferable V content is 0.10%. The upper limit with preferable V content is 0.30%.
  • Nd 0.01 to 0.06%
  • Neodymium (Nd) improves the creep ductility of the base material. If the Nd content is too low, this effect cannot be obtained. In a base material that does not have to be reduced as slag during welding, the above effect of Nd can be effectively utilized. On the other hand, if the Nd content is too high, the hot workability decreases. Therefore, the Nd content is 0.01 to 0.06%.
  • a preferable lower limit of the Nd content is 0.02%.
  • the upper limit with preferable Nd content is 0.05%.
  • N 0.002 to 0.025%
  • Nitrogen (N) precipitates finely in the grains as fine nitride during use at high temperature, and increases the creep strength. If the N content is too low, this effect cannot be obtained. However, unlike the weld metal, the base metal has solidification segregation suppressed and is used after being tempered. Therefore, the above effect can be obtained even if the N content is lower than that of the welding material. On the other hand, if the N content is too high, the nitride becomes coarse and the creep ductility decreases. Therefore, the N content is 0.002 to 0.025%. A preferable lower limit of the N content is 0.005%. The upper limit with preferable N content is 0.015%.
  • Al 0.03% or less
  • Aluminum (Al) deoxidizes steel as in the case of welding materials. However, if the Al content is too high, the cleanliness of the base material is lowered and workability is lowered. If the Al content is too high, the creep strength further decreases. Therefore, the Al content is 0.03% or less.
  • the upper limit with preferable Al content is 0.01%. Considering the production cost, the preferable lower limit of the Al content is 0.001%.
  • the Al content is sol. Al (acid-soluble Al) is meant.
  • Oxygen (O) is an impurity as in the case of the welding material. If the O content is too high, the workability of the base material is lowered. Therefore, the O content is 0.02% or less.
  • the upper limit with preferable O content is 0.01%. Considering the material cost, the preferable lower limit of the O content is 0.001%.
  • the above base material may further contain Ni instead of a part of Fe.
  • Ni 0 to 0.4%
  • Nickel (Ni) is an optional element and may not be contained. When contained, Ni is effective for obtaining a martensite structure. However, if the Ni content is too high, the above effect is saturated. Therefore, the Ni content is 0 to 0.4%.
  • the upper limit with preferable Ni content is 0.2%.
  • the minimum with preferable Ni content is 0.05%, More preferably, it is 0.1%.
  • the base material having the above chemical composition has excellent ductility and creep strength even in a high temperature region of 700 ° C. or higher.
  • the weld metal is formed by welding by the method described later using the above-described ferritic heat-resistant steel welding material.
  • the weld metal of the present invention has excellent creep strength and toughness.
  • the chemical composition of the weld metal is within the range of the content of each element described in the chemical composition of the above-described weld material for ferritic heat-resistant steel at any site in the weld metal.
  • the structure of the weld metal after welding is mainly composed of martensite.
  • the area ratio of ⁇ ferrite in the weld metal structure needs to be 0.5% or less.
  • the area ratio of ⁇ ferrite in the structure of the weld metal of the present invention is as low as 0.5% or less. Therefore, the weld metal has high toughness.
  • the upper limit with preferable area ratio of (delta) ferrite is 0.3%, More preferably, it is 0.1%.
  • the area ratio of ⁇ ferrite is measured by the following method.
  • a sample is taken from any position of the weld metal.
  • the surface of the collected sample is polished.
  • the polished sample surface is etched using a Villela reagent.
  • ⁇ -ferrite on the etched surface is specified in any five fields.
  • known image processing software is used. Since the contrast of each etched structure (martensite, ⁇ ferrite, etc.) is different, ⁇ ferrite is specified based on the contrast.
  • a value obtained by dividing the total area of ⁇ ferrite specified in each visual field by the total area of five visual fields (observation visual field 650 ⁇ m ⁇ 860 ⁇ m ⁇ 5) is defined as the area ratio (%) of ⁇ ferrite in the weld metal.
  • the above-described welded joint manufacturing method includes a step of welding the base metal using the ferritic heat-resistant steel welding material (welding step) and a step of performing heat treatment on the weld metal after welding (heat treatment). Step).
  • welding step a step of welding the base metal using the ferritic heat-resistant steel welding material
  • heat treatment a step of performing heat treatment on the weld metal after welding
  • the shape of the base material is not particularly limited.
  • the base material may be a steel plate or a steel pipe.
  • gas tungsten arc welding is less mixed with oxygen during welding and suppresses a decrease in the cleanliness of the weld metal.
  • the welding conditions during gas tungsten arc welding are as follows.
  • Weld heat input range 6-20kJ / cm
  • the welding heat input is 6 to 20 kJ / cm.
  • a preferable lower limit of the welding heat input is 8 kJ / cm.
  • the upper limit with preferable welding heat input is 18 kJ / cm. If the welding heat input range satisfies this condition, excellent toughness can be easily obtained.
  • Heat treatment process After forming the weld metal, heat treatment is performed on the weld metal. Heat treatment reduces the hardness of the weld metal and increases toughness.
  • a heat treatment apparatus such as a band heater and an induction heater is disposed in a welded portion including a weld metal portion to perform heat treatment.
  • the entire welded structure is heated in a heating furnace.
  • the heat treatment temperature in the heat treatment and the holding time (heat treatment time) at the heat treatment temperature are as follows.
  • Heat treatment temperature 740-780 ° C
  • Heat treatment time 0.5 to 4.0 hours per 25.4 mm thickness of the base material
  • the unit thickness of the base material is 25.4 mm (1 inch), which is often specified by welding construction standards, etc. . If the heat treatment temperature is too low, or if the heat treatment time per unit thickness of the base material is too short, the tempering of the martensite structure becomes insufficient and sufficient toughness cannot be obtained. On the other hand, if the heat treatment temperature is too high, part of the weld metal exceeds the austenite transformation temperature and the toughness decreases. Further, if the heat treatment time per unit thickness of the base material is too long, tempering becomes excessive and the creep strength is lowered.
  • the heat treatment temperature is 740 to 780 ° C.
  • the heat treatment time is 0.5 to 4.0 hours per 25.4 mm thickness of the base material.
  • the thickness of the base material is the thickness when the base material is a steel plate, and the thickness when the base material is a steel pipe.
  • a preferable lower limit of the heat treatment time is 1.0 hour per 25.4 mm of the thickness of the base material, and a preferable upper limit is 3.0 hours. If the heat treatment temperature and the heat treatment time satisfy these conditions, for example, the creep rupture time of the weld metal produced using the above-mentioned ferritic heat-resistant steel welding material can be set to 3000 hours or more, and excellent toughness can be obtained. Easy to obtain.
  • Welded joints were manufactured with various chemical compositions and manufacturing conditions, and creep strength and toughness were evaluated.
  • the steel sheet was manufactured by performing hot forging and hot rolling on the ingot.
  • the steel plate was quenched and tempered to produce a base steel plate (hereinafter simply referred to as a base material) having a plate thickness of 12 mm, a width of 50 mm, and a length of 200 mm.
  • a base steel plate hereinafter simply referred to as a base material
  • the steel sheet was held at 1100 ° C. for 1 hour and then air-cooled (air-cooled quenching).
  • tempering the quenched steel plate was held at 770 ° C. for 1.5 hours.
  • a cross-sectional micro specimen was taken from the filler wire described above. This micro test piece was polished and corroded in the same manner as the area ratio of the amount of ⁇ ferrite in the above-mentioned welding material to reveal a structure. Arbitrary five visual fields were observed at a magnification of 100 to determine the area ratio of ⁇ ferrite.
  • a V groove having an angle of 30 ° and a root thickness of 1 mm was processed in the longitudinal direction of the base material.
  • the V grooves of the pair of base materials were butted together, and welding was performed using the above-described welding material.
  • welding metal was laminated and welded in the groove by gas tungsten arc welding using Ar as a shielding gas to form a weld metal, and weld joints having test numbers shown in Table 3 were manufactured.
  • the heat input of the first layer welding and the heat input of the lamination welding at the time of welding were as shown in Table 3.
  • the composition was measured for the weld metal of the obtained welded joint.
  • the method for measuring the elemental composition of the weld metal was as follows. Chip test pieces were collected so that the base metal was not mixed from the weld metal. The collected chips were analyzed using inductively coupled plasma emission spectroscopy, high frequency combustion, or the like. The elemental compositions of the obtained weld metal are shown in Tables 4 and 5. In addition, REM content in Table 5 shows the total content of REM excluding Nd.
  • Heat treatment was performed on the welded joint after welding at the heat treatment temperature and heat treatment time shown in Table 3. Specifically, the heat treatment time shown in Table 3 was maintained for a heat treatment time, and then air cooling was performed.
  • a round bar creep rupture test piece (referred to as a joint test piece) was collected so that the weld metal was in the center of the parallel part. Furthermore, a round bar creep rupture test piece (referred to as a welded test piece) was also collected from all the deposited metals. For each test piece, a creep rupture test was performed on the welded joint and all-welded metal round bar creep rupture test pieces under the test conditions of 650 ° C. and 147 MPa with the target creep rupture time of the base material being about 3000 hours. did. From the test results, the creep strength was determined by the following evaluation.
  • the joint specimen was broken with the base material (HAZ), and the molten metal specimen with a creep rupture time of 5000 hours or more was evaluated as “good”.
  • a joint test piece that was broken at the weld metal part or a creep rupture time of the molten metal test piece was less than 3000 hours was defined as “failed”.
  • a cross-sectional micro test piece was taken from the above-mentioned all-welded metal.
  • the micro test piece taken from all the deposited metal was polished and corroded by the above-described method to reveal the structure.
  • Arbitrary five visual fields were observed at a magnification of 100 to determine the area ratio of ⁇ ferrite.
  • Table 3 also shows the results of the above tests.
  • the welding materials of test numbers 1 to 11, 16 to 20, and 22 had an appropriate chemical composition, and the F1 value satisfied the formula (1). Therefore, the weld metals of these test numbers showed excellent creep strength and toughness. The obtained welded joint also showed sufficient creep strength and toughness.
  • the welding heat input used for test number 13 was too high. Therefore, solidification cracks occurred. Therefore, the test was not performed.
  • the B content was too high in the welding material of symbol H used in test number 25. Therefore, although it was excellent in creep strength, the average Charpy impact value was below 27 J, and the toughness was rejected.
  • the weld metal has both necessary creep strength and toughness, and the obtained welded joint also has sufficient creep strength and toughness.
  • a welding material for ferritic heat resistant steel that can be used for welding ferritic heat resistant steel containing a large amount of B can be obtained. Furthermore, by using this, a weld metal and weld joint excellent in creep strength and toughness can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Bを含有するフェライト系耐熱鋼を溶接する場合において、高いクリープ強度及び靭性を有する溶接金属を形成できるフェライト系耐熱鋼用溶接材料、フェライト系耐熱鋼用溶接継手、及び、フェライト系耐熱鋼用溶接継手の製造方法を提供する。本実施形態によるフェライト系耐熱鋼用溶接材料は、質量%で、C:0.06~0.10%、Si:0.1~0.4%、Mn:0.3~0.7%、Co:2.6~3.4%、Ni:0.01~1.10%、Cr:8.5~9.5%、W:2.5~3.5%、Nb:0.02~0.08%、V:0.1~0.3%、Ta:0.02~0.08%、B:0.007~0.015%、N:0.005~0.020%を含有し、残部はFe及び不純物からなり、式(1)を満たす化学組成を有する。 0.5≦Cr+6Si+1.5W+11V+5Nb+10B-40C-30N-4Ni-2Co-2Mn≦10.0 (1)

Description

フェライト系耐熱鋼用溶接材料、フェライト系耐熱鋼用溶接継手及びフェライト系耐熱鋼用溶接継手の製造方法
 本発明は、溶接材料、溶接継手及び溶接継手の製造方法に関し、さらに詳しくは、フェライト系耐熱鋼用溶接材料、フェライト系耐熱鋼用溶接継手及びフェライト系耐熱鋼用溶接継手の製造方法に関する。
 近年、火力発電では熱効率を高めるために、蒸気条件の高温高圧化が進められている。将来的には650℃、350気圧という超々臨界圧条件での操業が計画されている。フェライト系耐熱鋼は、オーステナイト系耐熱鋼やNi基耐熱鋼に比べて安価である。フェライト系耐熱鋼はさらに、熱膨張係数が小さいという耐熱鋼としての利点を有する。そのため、フェライト系耐熱鋼は、高温高圧環境において広く利用されている。
 特開平4-371551号公報(特許文献1)、特開平4-371552号公報(特許文献2)、及び、特開2002-241903号公報(特許文献3)は、上記のような将来的な条件の過酷化に対応可能なフェライト系耐熱鋼を提案する。特許文献1及び特許文献2に開示されたフェライト系耐熱鋼は、W及びMo含有量を最適化するとともに、Co及びBを含有する。これにより、これらの文献のフェライト系耐熱鋼は高強度を有する。また、特許文献3に開示されたフェライト系耐熱鋼材は、マルテンサイトラス界面に析出するM236炭化物及び金属間化合物相を積極的に活用することにより、高強度を有する。
 ところで、フェライト系耐熱鋼は溶接されて、溶接継手として構造物に利用される場合がある。この場合、溶接継手の溶接熱影響部(以下、HAZという)のクリープ強度が低下し得る。そこで、特開2004-300532号公報(特許文献4)、特開2010―7094号公報(特許文献5)、及び、国際公開第2008/149703号(特許文献6)は、HAZでのクリープ強度低下を抑制したフェライト系耐熱鋼を提案する。特許文献4に開示されたフェライト系耐熱鋼は、Bを0.003~0.03質量%含有することにより、HAZでの細粒化を抑える。これにより、HAZでのクリープ強度低下が抑制される。特許文献5及び特許文献6に開示されたフェライト系耐熱鋼は、多量のBを含有するとともに、溶接入熱又はB含有量に応じてC含有量を調整する。これにより、HAZでの強度低下を抑制するとともに、溶接時の液化割れが抑制される。
 多量のBを含有するフェライト系耐熱鋼を溶接する場合、一般的に溶接材料を使用する。市販Ni基耐熱合金用溶接材料(例えば、JIS Z 3334(2011)SNi6082)を用いて形成された溶接金属は、高いクリープ強度及び靭性を有する。しかしながら、溶接時、特に母材の希釈が大きい初層溶接部では、Bが母材から溶接金属中に流入する。この場合、凝固割れが発生する場合がある。したがって、Bを含有するフェライト系耐熱鋼を溶接するために使用される溶接材料には、溶接金属での高いクリープ強度及び靭性が求められるだけでなく、溶接時における凝固割れの抑制も求められる。
 特開平8-187592号公報(特許文献7)、特開平9-308989号公報(特許文献8)、及び、特開平9-122971号公報(特許文献9)は、クリープ強度、靭性及び溶接性に優れたフェライト系耐熱鋼用溶接材料を提案する。特許文献7の溶接材料は、Bを0.0005~0.006質量%含有し、かつ(Mo+W)/(Ni+Co)が0.045~2.0である。特許文献8の溶接材料は、任意でBを0.0005~0.006質量%含有するとともに、(Mo+W)/(Ni+Co)及び(0.5×Co+0.5×Mn+Ni)が所定の範囲内であり、さらに、Cr等量が所定範囲内である。特許文献9の溶接材料は、任意で0.02質量%以下のBを含有でき、さらに、Mn含有量が(0.0925-12.5〔%S〕)%~2.0%であり、(Al+O)が0.02%以下である。
 しかしながら、これらの溶接材料を多量のBを含有するフェライト系耐熱材料の溶接に使用した場合、溶接金属の十分なクリープ強度が安定して得られない場合がある。
特開平4-371551号公報 特開平4-371552号公報 特開2002-241903号公報 特開2004-300532号公報 特開2010―7094号公報 国際公開第2008/149703号 特開平8-187592号公報 特開平9-308989号公報 特開平9-122971号公報
 本発明の目的は、Bを含有するフェライト系耐熱鋼を溶接する場合において、高いクリープ強度及び靭性を有する溶接金属を形成できるフェライト系耐熱鋼用溶接材料、フェライト系耐熱鋼用溶接継手、及び、フェライト系耐熱鋼用溶接継手の製造方法を提供することである。
 本発明によるフェライト系耐熱鋼用溶接材料は、質量%で、C:0.06~0.10%、Si:0.1~0.4%、Mn:0.3~0.7%、P:0.01%以下、S:0.003%以下、Co:2.6~3.4%、Ni:0.01~1.10%、Cr:8.5~9.5%、W:2.5~3.5%、Mo:0.01%未満、Nb:0.02~0.08%、V:0.1~0.3%、Ta:0.02~0.08%、B:0.007~0.015%、N:0.005~0.020%、Al:0.03%以下、O:0.02%以下、Cu:0~1%、Ti:0~0.3%、Ca:0~0.05%、Mg:0~0.05%、及び、希土類元素:0~0.1%を含有し、残部はFe及び不純物からなり、式(1)を満たす化学組成を有する。
 0.5≦Cr+6Si+1.5W+11V+5Nb+10B-40C-30N-4Ni-2Co-2Mn≦10.0 (1)
 ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 本発明による溶接継手は、上述の化学組成を有するフェライト系耐熱鋼用溶接金属と、Bを含有するフェライト系耐熱鋼からなる母材とを備える。
 本発明による溶接継手の製造方法は、フェライト系耐熱鋼からなる母材に対して、上述のフェライト系耐熱鋼用溶接材料を用いて、溶接入熱6~20kJ/cmでガスタングステンアーク溶接を実施して溶接金属を形成する工程と、母材に形成された溶接金属に対して、740~780℃の熱処理温度で母材の厚さ25.4mm当たり0.5~4.0時間の熱処理を実施する工程とを備える。
 本発明によるフェライト系耐熱鋼用溶接材料は、Bを含有するフェライト系耐熱鋼を溶接する場合において、高いクリープ強度及び靭性を有する溶接金属を形成できる。
 本発明者らは、上述の課題を解決するために調査及び検討を行った。その結果、本発明者らは次の知見を得た。
 Bを含有するフェライト系耐熱鋼からなる母材に溶接を実施して溶接金属を形成する場合、溶接金属に適量のBが含まれていれば、溶接金属のクリープ強度が高まる。その理由は次のとおりと考えられる。旧オーステナイト粒界及びマルテンサイトラス境界にM236炭化物(Mは合金元素)が微細に分散する。このM236炭化物によりマルテンサイトラスの回復が遅れ、クリープ強度が高まる。母材のB含有量が0.005~0.020%である場合、溶接金属のB含有量が0.007%以上であれば、母材と同等以上のクリープ強度が得られる。
 一方、溶接金属中のB含有量が高すぎれば、高いクリープ強度が得られるものの、靭性が低下する。その理由は次のとおりと考えられる。B含有量が高すぎれば、マルテンサイト変態時にマルテンサイトラスの急激な伸長が生じる。これによりパケットサイズが大きくなり、衝撃に対する破壊単位が大きくなる。さらに、Bはフェライト形成元素であるため、溶接金属中のδフェライトの生成を促進して、溶接金属中のδフェライトの面積率が増大する。そのため、溶接金属の靭性が低下すると考えられる。
 次の(A)~(C)を満たせば、高い靭性を維持できる溶接金属が得られる。
 (A)溶接金属のB含有量を0.015%以下とすれば、マルテンサイトラスの急激な伸長が抑えられる。
 (B)溶接金属の化学組成において、F1=Cr+6Si+1.5W+11V+5Nb+10B-40C-30N-4Ni-2Co-2Mnと定義する。F1が10.0以下であれば、δフェライトの形成が抑制され、溶接金属中δフェライトの面積率が0.5%以下となる。
 (C)Sは、溶接中や溶接後熱処理の過程で偏析し、粒界の固着力を低下させる。そこで、S含有量を0.003質量%以下とする。これにより溶接金属の靭性が高まる。
 以上の知見に基づいて完成した本実施形態のフェライト系耐熱鋼用溶接材料は、質量%で、C:0.06~0.10%、Si:0.1~0.4%、Mn:0.3~0.7%、P:0.01%以下、S:0.003%以下、Co:2.6~3.4%、Ni:0.01~1.10%、Cr:8.5~9.5%、W:2.5~3.5%、Mo:0.01%未満、Nb:0.02~0.08%、V:0.1~0.3%、Ta:0.02~0.08%、B:0.007~0.015%、N:0.005~0.020%、Al:0.03%以下、O:0.02%以下、Cu:0~1%、Ti:0~0.3%、Ca:0~0.05%、Mg:0~0.05%、及び、希土類元素:0~0.1%を含有し、残部はFe及び不純物からなり、式(1)を満たす化学組成を有する。
 0.5≦Cr+6Si+1.5W+11V+5Nb+10B-40C-30N-4Ni-2Co-2Mn≦10.0 (1)
 ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 上記溶接材料の化学組成は、第1群~第3群から選択される1種又は2種以上の元素を含有してもよい。
 第1群:Cu:0.05~1.00%、
 第2群:Ti:0.02~0.30%、
 第3群:Ca:0.001~0.050%、Mg:0.001~0.050%、及び希土類元素:0.001~0.10%以下
 上記溶接材料中のδフェライトの面積率は、0.5%以下であるのが好ましい。
 本発明による溶接継手は、上述の化学組成を有する溶接金属と、フェライト系耐熱鋼からなる母材とを備える。母材は、質量%で、Cr:8~10%、Co:2~4%、W:2~4%、及び、B:0.005~0.020%を含有する化学組成を有する。
 上記母材の化学組成は、質量%で、C:0.04~0.12%、Si:0.05~0.60%、Mn:0.1~0.8%、P:0.02%以下、S:0.01%以下、Co:2~4%、Ni:0~0.4%、Cr:8~10%、W:2~4%、Nb及び/又はTa:合計で0.02~0.18%、V:0.05~0.40%、B:0.005~0.020%、Nd:0.01~0.06%、N:0.002~0.025%、Al:0.03%以下、及び、O:0.02%以下を含有し、残部がFe及び不純物であってもよい。上記母材の化学組成は、Ni:0.05~0.4%を含有してもよい。上記溶接金属中のδフェライトの面積率はたとえば、0.5%以下である。
 本発明による溶接継手の製造方法は、質量%で、Cr:8~10%、Co:2~4%、W:2~4%、及びB:0.005~0.020%を含有する化学組成を有するフェライト系耐熱鋼からなる母材に対して、上述のフェライト系耐熱鋼用溶接材料を用いて、溶接入熱6~20kJ/cmでガスタングステンアーク溶接を実施して溶接金属を形成する工程と、母材に形成された溶接金属に対して、740~780℃の熱処理温度で母材の厚さ25.4mm当たり0.5~4.0時間の熱処理を実施する工程とを備える。
 以下、本発明によるフェライト系耐熱鋼用溶接材料、溶接継手及び溶接継手の製造方法について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。
 [フェライト系耐熱鋼用溶接材料の化学組成]
 本実施形態のフェライト系耐熱鋼用溶接材料の化学組成は、次の元素を含有する。
 C:0.06~0.10%
 炭素(C)は、溶接金属のδフェライト生成を抑制し、溶接金属の主たる組織をマルテンサイト組織とする。Cはさらに、高温使用時に微細な炭化物(M236炭化物)を生成し、クリープ強度を高める。C含有量が低すぎれば、これらの効果が得られない。一方、C含有量が高すぎれば、粗大な炭化物が多量に析出し、溶接金属の靭性が低下する。したがって、C含有量は0.06~0.10%である。C含有量の好ましい下限は0.07%である。C含有量の好ましい上限は0.09%である。
 Si:0.1~0.4%
 シリコン(Si)は、鋼を脱酸する。Siはさらに、溶接金属の耐水蒸気酸化特性を高める。Si含有量が低すぎれば、これらの効果が得られない。一方、Si含有量が高すぎれば、δフェライトの生成が促進され、溶接金属の靭性が低下するとともに、クリープ延性も低下する。したがって、Si含有量は0.1~0.4%である。Si含有量の好ましい下限は0.25%である。Si含有量の好ましい上限は0.35%である。
 Mn:0.3~0.7%
 マンガン(Mn)は、Siと同様に鋼を脱酸する。Mnはさらに、溶接金属の組織のマルテンサイト化を促進する。Mn含有量が低すぎれば、これらの効果が得られない。一方、Mn含有量が高すぎれば、溶接金属においてクリープ脆化が発生しやすくなる。したがって、Mn含有量は0.3~0.7%である。Mn含有量の好ましい下限は、0.4%である。Mn含有量の好ましい上限は0.6%である。
 P:0.01%以下
 燐(P)は不純物である。Pは溶接金属の靭性を低下する。したがって、P含有量は0.01%以下である。P含有量の好ましい上限は0.008%である。P含有量はなるべく低い方が好ましい。しかし、材料コストの観点から、P含有量の好ましい下限は0.0005%である。
 S:0.003%以下
 硫黄(S)は不純物である。SはBを含有する溶接金属中の旧オーステナイト粒界及びラス界面に偏析し、粒界及びラス界面の固着力を低下する。そのため、溶接金属の靭性が低下する。したがって、Sの含有量は0.003%以下である。S含有量の好ましい上限は0.002%未満であり、さらに好ましくは0.0015%未満である。S含有量はなるべく低い方が好ましい。しかし、効果及び材料コストの観点から、S含有量の好ましい下限は0.0002%である。
 Co:2.6~3.4%
 コバルト(Co)は、δフェライトの生成を抑制し、マルテンサイト組織を得るのに有効である。母材と異なり、溶接金属は調質処理がされないため、上記効果を十分に得るためのCo含有量の下限は2.6%である。一方、Co含有量が高すぎれば、かえってクリープ強度が低下し、クリープ延性も低下する。さらに、Coは高価な元素であるため、材料コストが高くなる。したがって、Co含有量は2.6~3.4%である。Co含有量の好ましい下限は2.8%である。Co含有量の好ましい上限は3.3%である。
 Ni:0.01~1.10%
 ニッケル(Ni)は、δフェライトの生成を抑制し、マルテンサイト組織を得るのに有効である。Niはさらに、溶接金属の靭性を高める。Ni含有量が低すぎれば、これらの効果が得られない。一方、Ni含有量が高すぎれば、クリープ延性が低下する。さらに、Niは高価な元素であるため、材料コストが高くなる。したがって、Ni含有量は0.01~1.10%である。Ni含有量の好ましい下限は0.04%である。Ni含有量の好ましい上限は1.00%である。
 Cr:8.5~9.5%
 クロム(Cr)は、溶接金属の耐水蒸気酸化性及び耐食性を高める。Crはさらに、高温での使用中に炭化物として析出し、クリープ強度を高める。Cr含有量が低すぎれば、これらの効果が得られない。一方、Cr含有量が高すぎれば、炭化物の安定性が低下して、クリープ強度が低下する。Cr含有量が高すぎればさらに、δフェライトの生成が促進され、靭性が低下する。したがって、Cr含有量は8.5~9.5%である。Cr含有量の好ましい下限は8.7%である。Cr含有量の好ましい上限は9.3%である。
 W:2.5~3.5%
 タングステン(W)は、マトリックスに固溶、又は、金属間化合物として長時間使用中に析出し、溶接金属の高温でのクリープ強度を高める。W含有量が低すぎれば、この効果が得られない。一方、W含有量が高すぎれば、多量の析出物が生成する。さらに、δフェライトの生成が促進され、溶接金属の靭性が低下する。したがって、W含有量は2.5~3.5%である。W含有量の好ましい下限は2.7%である。W含有量の好ましい上限は3.3%である。
 Mo:0.01%未満
 モリブデン(Mo)は本発明の溶接材料においては、不純物である。Moは、マトリックスに固溶して、溶接金属のクリープ強度を高める。しかしながら、Moは凝固偏析しやすく、Wを含有する金属間化合物及び炭化物の長時間安定性を低下する。したがって、Mo含有量はなるべく低い方が好ましく、0.01%未満である。
 Nb:0.02~0.08%
 ニオブ(Nb)は、高温での使用中に微細な炭窒化物として粒内に析出し、溶接金属のクリープ強度を高める。Nb含有量が低すぎれば、この効果が得られない。一方、Nb含有量が高すぎれば、粗大な炭窒化物が多量に析出し、クリープ強度及びクリープ延性が低下する。さらに、δフェライトの生成が促進され、溶接金属の靭性が低下する。したがって、Nb含有量は0.02~0.08%である。Nb含有量の好ましい下限は0.03%である。Nb含有量の好ましい上限は0.07%である。
 V:0.1~0.3%
 バナジウム(V)はNbと同様に、高温での使用中に微細な炭窒化物として粒内に析出し、溶接金属のクリープ強度を高める。V含有量が低すぎれば、この効果が得られない。一方、V含有量が高すぎれば、粗大な炭窒化物が多量に析出し、クリープ強度及びクリープ延性が低下する。さらに、δフェライトの生成が促進され、溶接金属の靭性が低下する。したがって、V含有量は、0.1~0.3%である。V含有量の好ましい下限は0.15%である。V含有量の好ましい上限は0.25%である。
 Ta:0.02~0.08%
 タンタル(Ta)はNb及びVと同様に、高温での使用中に微細な炭窒化物として粒内に析出し、溶接金属のクリープ強度を高める。Ta含有量が低すぎれば、この効果が得られない。一方、Ta含有量が高すぎれば、粗大な炭窒化物が多量に析出し、クリープ強度及びクリープ延性が低下する。したがって、Ta含有量は、0.02~0.08%である。Ta含有量の好ましい下限は0.03%である。Ta含有量の好ましい上限は0.07%である。
 B:0.007~0.015%
 ホウ素(B)は、焼入れ性を高め、溶接金属においてマルテンサイト組織を得るのに有効である。Bはさらに、高温での使用中に炭化物を旧オーステナイト境界及びマルテンサイトラス境界に微細分散させ、組織の回復を抑制し、クリープ強度を高める。B含有量が低すぎれば、これらの効果が得られない。一方、B含有量が高すぎれば、マルテンサイト変態時にマルテンサイトラスが急激に伸長し、破壊単位が大きくなる。さらに、δフェライトの生成が促進される。そのため、溶接金属の靭性が極度に低下する。したがって、B含有量は、0.007~0.015%である。B含有量の好ましい下限は0.009%である。B含有量の好ましい上限は0.012%である。
 N:0.005~0.020%
 窒素(N)は、高温での使用中に微細な窒化物として粒内に微細に析出し、クリープ強度を高める。Nはさらに、δフェライトの生成を抑制する。N含有量が低すぎれば、これらの効果が得られない。一方、N含有量が高すぎれば、溶接金属の凝固時に粗大な窒化物が晶出し、溶接金属の靭性が低下する。したがって、N含有量は、0.005~0.020%である。N含有量の好ましい下限は0.008%である。N含有量の好ましい上限は0.015%である。
 Al:0.03%以下
 アルミニウム(Al)は、鋼を脱酸する。Al含有量が低すぎれば、この効果が得られない。一方、Al含有量が高すぎれば、清浄性が低下し、溶接材料の加工性及び溶接金属の靭性が低下する。さらに、溶接金属のクリープ強度が低下する。したがって、Al含有量は、0.03%以下である。Al含有量の好ましい上限は0.01%である。製造コストを考慮すれば、Al含有量の好ましい下限は0.001%である。本明細書において、Al含有量はsol.Al(酸可溶Al)を意味する。
 O:0.02%以下
 酸素(O)は、不純物である。O含有量が高すぎれば、溶接材料の加工性及び溶接金属の靭性が低下する。したがって、Oの含有量は0.02%以下である。O含有量の好ましい上限は0.01%である。効果と製造コストを考慮すれば、O含有量の好ましい下限は、0.001%である。
 本実施形態によるフェライト系耐熱鋼用溶接材料の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とはフェライト系耐熱鋼用溶接材料を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態のフェライト系耐熱鋼用溶接材料に悪影響を与えない範囲で許容されるものを意味する。
 [任意元素について]
 上述の溶接材料はさらに、次の第1群~第3群から選択される1種又は2種以上の元素を含有してもよい。以下、これらの元素について詳述する。
 [第1群]
 Cu:0~1%
 銅(Cu)は、任意元素であり含有されなくてもよい。含有される場合、Cuは、マルテンサイト組織の生成に有効である。しかしながら、Cu含有量が高すぎれば、溶接金属のクリープ延性が低下する。したがって、Cu含有量は、0~1%である。Cu含有量の好ましい上限は0.8%である。Cu含有量の好ましい下限は0.05%であり、さらに好ましくは0.2%である。
 [第2群]
 Ti:0~0.3%
 チタン(Ti)は、任意元素であり含有されなくてもよい。含有される場合、Tiは、Nb、V、及びTaと同様に、高温での使用中に微細な炭窒化物として粒内に析出し、溶接金属のクリープ強度を高める。しかしながら、Ti含有量が高すぎれば、溶接中に粗大な窒化物として晶出したり、高温での使用中に粗大な窒化物として多量に析出して、溶接金属の靭性を低下する。したがって、Ti含有量は0~0.3%である。Ti含有量の好ましい下限は0.02%であり、さらに好ましくは、0.05%である。
 [第3群]
 Ca:0~0.05%、
 Mg:0~0.05%、及び、
 希土類元素(REM):0~0.1%
 カルシウム(Ca)、マグネシウム(Mg)、及び希土類元素(REM)は、任意元素であり含有されなくてもよい。含有される場合、これらの元素は、溶接材料製造時の熱間加工性を高める。しかしながら、これらの元素の含有量が高すぎれば、これらの元素が酸素と結合し、溶接金属の清浄性を低下する。この場合、溶接金属の熱間加工性を低下する。したがって、Ca含有量は0~0.05%であり、Mg含有量は0~0.05%であり、REM含有量は0~0.1%である。Ca含有量、及びMg含有量の好ましい下限はそれぞれ0.001%であり、さらに好ましくはそれぞれ0.002%である。Ca含有量、及びMg含有量の好ましい上限はそれぞれ0.02%である。REM含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%である。REM含有量の好ましい上限は0.06%である。
 本明細書におけるREMは、Sc、Y、及び、ランタノイド(原子番号57番のLa~71番のLu)の少なくとも1種以上を含有する。REM含有量は、これらの元素の総含有量を意味する。
 [式(1)について]
 上記化学組成はさらに、式(1)を満たす。
 0.5≦Cr+6Si+1.5W+11V+5Nb+10B-40C-30N-4Ni-2Co-2Mn≦10.0 (1)
 F1=Cr+6Si+1.5W+11V+5Nb+10B-40C-30N-4Ni-2Co-2Mn、と定義する。F1は、クリープ強度及びδフェライト量の指標である。具体的には、F1が低すぎれば、十分なクリープ強度が得られず、クリープ強度が低い。一方、F1が高すぎれば、δフェライトの生成量が増加して、溶接金属の組織中のδフェライトの面積率が0.5%を超える。この場合、溶接金属の靭性が低下する。したがって、F1は0.5~10.0である。F1の好ましい下限は1.0である。F1の好ましい上限は9.0である。
 [溶接材料について]
 本発明のフェライト系耐熱鋼用溶接材料は、周知の製造方法により製造される。溶接材料はたとえば、溶加棒、ガスタングステンアーク溶接用のフィラーワイヤ、被覆アーク溶接用の溶接棒の芯線等に加工される。
 [溶接材料の組織のδフェライトの面積率]
 溶接材料の組織は主に焼き戻しマルテンサイト組織からなるが、組織中のδフェライトの面積率は0.5%以下である必要がある。δフェライトの面積率が高い場合、つまり、δフェライト量が多い場合、溶接材料の高温での加工時に、変形能の異なる組織が混在する。その結果、加工性が低下する。さらに、本発明の溶接材料を用いて得られる溶接金属のδフェライトの面積率を0.5%以下とすれば、高い靭性が得られる。これらの効果を安定して得るための、δフェライトの面積率の好ましい上限は0.3%であり、さらに好ましくは0.1%である。
 δフェライトの面積率は次の方法で測定される。溶接材料の任意の位置から、横断面サンプルを採取する。採取されたサンプルの表面を研磨する。研磨後、ビレラ(Vilella)試薬を用いて、研磨されたサンプル表面をエッチングする。光学顕微鏡(観察倍率100倍、観察視野650μm×860μm)を用いて、任意の5視野において、エッチングされた表面におけるδフェライトを特定する。特定には、例えば、周知の画像処理ソフトが用いられる。エッチングされた各組織(マルテンサイト、δフェライト等)のコントラストは異なるため、コントラストに基づいてδフェライトを特定する。各視野で特定されたδフェライトの総面積を、5視野の総面積(観察視野650μm×860μm×5)で除した値を、溶接材料中のδフェライトの面積率(%)と定義する。
 [溶接継手について]
 本発明のフェライト系耐熱鋼用溶接材料を用いて、後述のフェライト系耐熱鋼を母材として溶接すれば、溶接金属と、フェライト系耐熱鋼の母材とを備えた溶接継手が製造される。この溶接継手は優れたクリープ強度及び靭性を有する。以下、溶接継手の母材及び溶接金属について詳述する。
 [母材について]
 母材は、フェライト系耐熱鋼からなる。母材の化学組成は、次の元素を含有する。
 Cr:8~10%
 クロム(Cr)は、溶接材料における場合と同様に、母材の高温での耐水蒸気酸化性及び耐食性を高める。Crはさらに、高温での使用中に炭化物として析出し、母材のクリープ強度を高める。Cr含有量が低すぎれば、これらの効果が得られない。ただし、母材は溶接金属と異なり、凝固偏析が抑制されており、調質処理された後使用される。そのため、Cr含有量は、溶接材料の場合より低くても、上記効果を得ることができる。一方、Cr含有量が高すぎれば、炭化物の安定性が低下して母材のクリープ強度が低下する。したがって、Cr含有量は、8~10%である。Cr含有量の好ましい下限は8.5%である。Cr含有量の好ましい上限は9.5%である。
 Co:2~4%
 コバルト(Co)は、母材の組織をマルテンサイト組織にして、クリープ強度を高めるのに有効である。Co含有量が低すぎれば、この効果が得られない。ただし、母材は溶接金属と異なり、凝固偏析が抑制されており、調質処理された後使用される。そのため、Co含有量は、溶接材料の場合より低くても、上記効果を得ることができる。一方、Co含有量が高すぎれば、母材のクリープ強度及びクリープ延性が低下する。さらに、Coは高価な元素であるため、材料コストが高くなる。したがって、Co含有量は、2~4%である。Co含有量の好ましい下限は2.5%であり、Co含有量の好ましい上限は3.5%である。
 W:2~4%
 タングステン(W)は、溶接材料における場合と同様に、母材のマトリックスに固溶したり、金属間化合物として長時間使用中に析出したりして、高温でのクリープ強度を高める。W含有量が低すぎれば、この効果が得られない。ただし、母材は溶接金属と異なり、凝固偏析が抑制されており、調質処理された後使用される。そのため、W含有量は、溶接材料の場合より低くても、上記効果を得ることができる。一方、W含有量が高すぎれば、上記効果が飽和する。したがって、W含有量は、W:2~4%である。W含有量の好ましい下限は2.5%である。W含有量の好ましい上限は3.5%である。
 B:0.005~0.020%
 ホウ素(B)は、溶接材料における場合と同様に、焼入れ性を高め、マルテンサイト組織を得るのに有効である。Bはさらに、高温での使用中に炭化物を旧オーステナイト境界、マルテンサイトラス境界に微細分散して、組織の回復を抑制し、クリープ強度を高める。B含有量が低すぎれば、この効果が得られない。ただし、母材は溶接金属と異なり、凝固偏析が抑制されており、調質処理された後使用される。そのため、B含有量は、溶接材料の場合より低くても、上記効果を得ることができる。一方、B含有量が高すぎれば、溶接金属の場合と同様に、靭性が低下する。したがって、B含有量は、0.005~0.020%である。B含有量の好ましい下限は0.007%である。B含有量の好ましい上限は0.015%である。
 母材が上述の元素を含有すれば、母材は、高温域において、高いクリープ強度及び靭性を有する。
 好ましくは、上記母材の化学組成はさらに、次の元素を含有し、残部はFe及び不純物からなる。ここで、不純物とはフェライト系耐熱鋼用溶接材料を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態のフェライト系耐熱鋼からなる母材に悪影響を与えない範囲で許容されるものを意味する。
 C:0.04~0.12%
 炭素(C)は、マルテンサイト組織を得るのに有効である。Cはさらに、高温使用時に微細な炭化物を生成し、母材のクリープ強度を高める。C含有量が低すぎれば、これらの効果が得られない。ただし、母材は溶接金属と異なり、凝固偏析が抑制されており、調質処理された後使用される。そのため、C含有量は、溶接材料の場合より低くても、上記効果を得ることができる。一方、C含有量が高すぎれば、クリープ強度向上の効果が飽和する。したがって、C含有量は、0.04~0.12%である。C含有量の好ましい下限は0.06%である。C含有量の好ましい上限は0.10%である。
 Si:0.05~0.60%
 シリコン(Si)は、鋼を脱酸する。Siはさらに、母材の耐水蒸気酸化特性を高める。Si含有量が低すぎれば、これらの効果が得られない。ただし、母材は溶接金属と異なり、凝固偏析が抑制されており、調質処理された後使用される。そのため、Si含有量は、溶接材料の場合より低くても、上記効果を得ることができる。一方、Si含有量が高すぎれば、母材のクリープ延性及び靭性が低下する。したがって、Si含有量は、0.05~0.60%である。Si含有量の好ましい下限は0.10%である。Si含有量の好ましい上限は0.40%である。
 Mn:0.1~0.8%
 マンガン(Mn)は、Siと同様に、鋼を脱酸する。Mnはさらに、母材の組織をマルテンサイトにする。Mn含有量が低すぎれば、これらの効果が得られない。ただし、母材は溶接金属と異なり、凝固偏析が抑制されており、調質処理された後使用される。そのため、Mn含有量は、溶接材料の場合より低くても、上記効果を得ることができる。一方、Mn含有量が高すぎれば、クリープ脆化が発生しやすくなる。したがって、Mn含有量は、0.1~0.8%である。Mn含有量の好ましい下限は0.2%である。Mn含有量の好ましい上限は0.7%である。
 P:0.02%以下
 燐(P)は、不純物である。P含有量が高すぎれば、クリープ延性が低下する。したがって、P含有量は0.02%以下である。P含有量の好ましい上限は0.018%である。P含有量はなるべく低い方が好ましい。しかし、材料コストを考慮すれば、P含有量の好ましい下限は0.0005%である。
 S:0.01%以下
 硫黄(S)は、不純物である。S含有量が高すぎれば、クリープ延性が低下する。したがって、S含有量は0.01%以下である。S含有量の好ましい上限は0.005%である。S含有量はなるべく低い方が好ましい。しかし、材料コストを考慮すれば、P含有量の好ましい下限は0.0002%である。
 Nb及び/又はTa:合計0.02~0.18%
 ニオブ(Nb)及びタンタル(Ta)は、溶接材料における場合と同様に、高温での使用中に微細な炭窒化物として粒内に析出し、クリープ強度を高める。Nb及び/又はTa含有量が低すぎれば、この効果が得られない。ただし、母材は溶接金属と異なり、凝固偏析が抑制されており、調質処理された後使用される。そのため、これらの元素の含有量は、溶接材料の場合より低くても、上記効果を得ることができる。一方、Nb及び/又はTa含有量が高すぎれば、粗大な炭窒化物が多量に析出して、クリープ強度及びクリープ延性が低下する。したがって、Nb及び/又はTaの合計含有量は0.02~0.18%である。Nb及び/又はTaの総含有量の好ましい下限は0.05%である。Nb及び/又はTaの総含有量の好ましい上限は0.12%である。
 V:0.05~0.40%
 バナジウム(V)はNb及びTaと同様に、高温での使用中に微細な炭窒化物として粒内に析出し、クリープ強度を高める。V含有量が低すぎれば、この効果が得られない。ただし、母材は溶接金属と異なり、凝固偏析が抑制されており、調質処理された後使用される。そのため、V含有量は、溶接材料の場合より低くても、上記効果を得ることができる。一方、V含有量が高すぎれば、粗大な炭窒化物が多量に析出して、クリープ強度及びクリープ延性が低下する。したがって、V含有量は、0.05~0.40%である。V含有量の好ましい下限は0.10%である。V含有量の好ましい上限は0.30%である。
 Nd:0.01~0.06%
 ネオジム(Nd)は母材のクリープ延性を改善する。Nd含有量が低すぎれば、この効果が得られない。溶接中にスラグとして減少する心配のない母材においては、Ndの上記効果を有効に活用できる。一方、Nd含有量が高すぎれば、熱間加工性が低下する。したがって、Nd含有量は、0.01~0.06%である。Nd含有量の好ましい下限は0.02%である。Nd含有量の好ましい上限は0.05%である。
 N:0.002~0.025%
 窒素(N)は、高温での使用中に微細な窒化物として粒内に微細に析出し、クリープ強度を高める。N含有量が低すぎれば、この効果が得られない。ただし、母材は溶接金属と異なり、凝固偏析が抑制されており、調質処理された後使用される。そのため、N含有量は、溶接材料の場合より低くても、上記効果を得ることができる。一方、N含有量が高すぎれば、窒化物が粗大化して、クリープ延性が低下する。したがって、N含有量は、0.002~0.025%である。N含有量の好ましい下限は0.005%である。N含有量の好ましい上限は0.015%である。
 Al:0.03%以下
 アルミニウム(Al)は、溶接材料における場合と同様に、鋼を脱酸する。しかしながら、Al含有量が高すぎれば、母材の清浄性が低下して加工性が低下する。Al含有量が高すぎればさらに、クリープ強度が低下する。したがって、Al含有量は、0.03%以下である。Al含有量の好ましい上限は0.01%である。製造コストを考慮すれば、Al含有量の好ましい下限は、0.001%である。本明細書において、Al含有量はsol.Al(酸可溶Al)を意味する。
 O:0.02%以下
 酸素(O)は、溶接材料における場合と同様に不純物である。O含有量が高すぎれば、母材の加工性が低下する。したがって、O含有量は0.02%以下である。O含有量の好ましい上限は0.01%である。材料コストを考慮すれば、O含有量の好ましい下限は0.001%である。
 上述の母材はさらに、Feの一部に代えて、Niを含有してもよい。
 Ni:0~0.4%
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。含有される場合、Niは、マルテンサイト組織を得るのに有効である。しかしながら、Ni含有量が高すぎれば、上記効果が飽和する。したがってNi含有量は0~0.4%である。Ni含有量の好ましい上限は0.2%である。Ni含有量の好ましい下限は0.05%あり、さらに好ましくは、0.1%である。
 以上の化学組成を有する母材は、700℃以上の高温域においても優れた延性及びクリープ強度を有する。
 [溶接金属について]
 溶接金属は、上述のフェライト系耐熱鋼用溶接材料を用いて後述する方法で溶接することにより形成される。本発明の溶接金属は、優れたクリープ強度及び靭性を有する。溶接金属の化学組成は、溶接金属中のどの部位においても、上述のフェライト系耐熱鋼用溶接材料の化学組成で記載した各元素含有量の範囲内である。
 [溶接金属の組織]
 溶接後の溶接金属の組織は、主としてマルテンサイトからなる。溶接金属の組織中のδフェライトの面積率は0.5%以下である必要がある。δフェライトの面積率が高い場合、つまり、δフェライト量が多い場合、割れ発生の起点が増加し、靭性が低下する。本発明の溶接金属の組織中のδフェライトの面積率は0.5%以下と低い。そのため、溶接金属は高い靭性を有する。δフェライトの面積率の好ましい上限は0.3%であり、さらに好ましくは0.1%である。
 δフェライトの面積率は次の方法で測定される。溶接金属の任意の位置から、サンプルを採取する。採取されたサンプルの表面を研磨する。研磨後、ビレラ(Vilella)試薬を用いて、研磨されたサンプル表面をエッチングする。光学顕微鏡(観察倍率100倍、観察視野650μm×860μm)を用いて、任意の5視野において、エッチングされた表面におけるδフェライトを特定する。特定には、例えば、周知の画像処理ソフトが用いられる。エッチングされた各組織(マルテンサイト、δフェライト等)のコントラストは異なるため、コントラストに基づいてδフェライトを特定する。各視野で特定されたδフェライトの総面積を、5視野の総面積(観察視野650μm×860μm×5)で除した値を、溶接金属中のδフェライトの面積率(%)と定義する。
 [溶接継手の製造方法]
 上述の溶接継手の製造方法は、上記母材に対して上記フェライト系耐熱鋼用溶接材料を用いて溶接する工程(溶接工程)と、溶接後の溶接金属に対して熱処理を実施する工程(熱処理工程)とを備える。以下、各工程について詳述する。
 [溶接工程]
 上述の母材に対して溶接を実施して溶接金属を形成する。母材の形状は特に限定されない。母材は鋼板であってもよいし、鋼管であってもよい。
 溶接には、上述のフェライト系耐熱鋼用溶接材料を用いる。溶接方法として、ガスタングステンアーク溶接を採用するのが好ましい。ガスタングステンアーク溶接は、溶接時の酸素の混入が少なく、溶接金属の清浄性の低下が抑制されるためである。ガスタングステンアーク溶接時の溶接条件は次のとおりである。
 溶接入熱範囲:6~20kJ/cm
 ガスタングステンアーク溶接において、溶接入熱が低すぎれば、母材の寸法形状によっては、融合不良が生じやすくなる。溶接入熱が低すぎればさらに、冷却速度が大きくなりすぎて、マルテンサイトラスの成長が促進される。この場合、破壊単位が大きくなり、溶接金属の靭性が低下する。一方、溶接入熱が高すぎれば、Bを含有する本発明の溶接材料では、凝固割れが発生する。したがって、溶接入熱は6~20kJ/cmである。溶接入熱の好ましい下限は8kJ/cmである。溶接入熱の好ましい上限は18kJ/cmである。溶接入熱範囲がこの条件を満たせば、優れた靭性が得られやすい。
 [熱処理工程]
 溶接金属を形成した後、溶接金属に対して熱処理を実施する。熱処理により、溶接金属の硬さを低下して靭性を高める。例えば、溶接金属部を含む溶接部に、バンドヒーター及びインダクションヒーター等の熱処理装置を配置して、熱処理を実施する。又は、溶接構造物全体を加熱炉内で加熱する。熱処理における熱処理温度、及び、その熱処理温度での保持時間(熱処理時間)は次のとおりである。
 熱処理温度:740~780℃
 熱処理時間:母材の厚さ25.4mm当たり、0.5~4.0時間
 母材の単位厚さは、溶接施工基準等で規定されることの多い、25.4mm(1インチ)とした。熱処理温度が低すぎる場合、又は、母材の単位厚さ当たりの熱処理時間が短すぎれば、マルテンサイト組織の焼戻しが不十分となり、十分な靭性が得られない。一方、熱処理温度が高すぎれば、溶接金属の一部がオーステナイト変態温度を超え、靭性が低下する。また、母材の単位厚さあたりの熱処理時間が長すぎれば、焼戻しが過剰となりクリープ強度が低下する。したがって、熱処理温度は740~780℃であり、熱処理時間は母材の厚さ25.4mm当たり0.5~4.0時間である。ここで、母材の厚さは、母材が鋼板の場合は板厚であり、鋼管の場合は肉厚である。熱処理時間の好ましい下限は、母材の厚さ25.4mm当たり1.0時間であり、好ましい上限は3.0時間である。熱処理温度及び熱処理時間がこの条件を満たせば、たとえば、上述のフェライト系耐熱鋼用溶接材料を用いて製造した溶着金属のクリープ破断時間を3000時間以上とすることができ、かつ、優れた靭性が得られやすい。
 種々の化学組成及び製造条件で溶接継手を製造して、クリープ強度と靭性とを評価した。
 [母材の製造]
 表1に示す化学組成を有する溶鋼を製造した。溶鋼を用いて、インゴットを製造した。
Figure JPOXMLDOC01-appb-T000001
 インゴットに対して、熱間鍛造及び熱間圧延を実施して鋼板を製造した。鋼板に対して焼入れ及び焼戻しを実施して、板厚12mm、幅50mm、長さ200mmの母材鋼板(以下、単に母材という)を製造した。焼入れでは、鋼板を1100℃で1時間保持した後、空冷した(空冷焼入れ)。焼戻しでは、焼入れ後の鋼板を770℃で1.5時間保持した。
 [溶接材料の製造]
 表2に示す化学組成を有する溶鋼を製造し、溶鋼を用いてインゴットを製造した。インゴットに対して熱間鍛造、熱間圧延及び機械加工して、直径2.4mmのフィラーワイヤを製造した。製造されたフィラーワイヤを溶接材料とした。
Figure JPOXMLDOC01-appb-T000002
 [溶接材料のδフェライト量の面積率]
 上述のフィラーワイヤから、断面ミクロ試験片を採取した。このミクロ試験片を、上述の溶接材料でのδフェライト量の面積率と同様の方法で、研磨、腐食して、組織を現出した。任意の5視野を100倍で観察して、δフェライトの面積率を求めた。
 [溶接継手の製造]
 上記の母材の長手方向に、角度30°、ルート厚さ1mmのV開先を加工した。一対の母材のV開先同士を突き合わせ、上述の溶接材料を用いて、溶接を実施した。具体的には、シールドガスをArとしたガスタングステンアーク溶接により、溶接材料を開先内に積層溶接して溶接金属を形成し、表3に示す各試験番号の溶接継手を製造した。溶接時における初層溶接の入熱、及び積層溶接の入熱は、表3に示すとおりであった。
Figure JPOXMLDOC01-appb-T000003
 得られた溶接継手の溶接金属に対して、組成を測定した。溶接金属の元素組成の測定方法は以下のとおりであった。溶接金属から母材が混入しないように、切粉試験片を採取した。採取した切粉を用いて、誘導結合プラズマ発光分光分析法、高周波燃焼法などを用いて、分析した。得られた溶接金属の元素組成を表4及び表5に示す。なお、表5中のREM含有量は、Ndを除くREMの合計含有量を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 溶接後の溶接継手に対して、表3に示す熱処理温度及び熱処理時間で熱処理を実施した。具体的には、表3に示す熱処理温度で、熱処理時間保持した後、空冷した。
 [全溶着金属の製造]
 上記溶接継手とは別個に、各試験番号において、表3に示す母材の板材上に、表3に示す溶接材料を用いて、シールドガスをArとしたガスタングステンアーク溶接を用いて、表3に示す積層溶接入熱にて、12mm厚さとなるまで多層溶接した。これにより全溶着金属を作製した。
 製造された全溶着金属に対して、表3に示す熱処理条件で熱処理を実施した。
 [クリープ強度評価試験]
 製造された溶接継手から、溶接金属が平行部の中央となるように丸棒クリープ破断試験片(継手試験片という)を採取した。さらに、全溶着金属からも、丸棒クリープ破断試験片(溶接試験片という)を採取した。各試験片に対して、母材の目標クリープ破断時間が約3000時間となる650℃、147MPaの試験条件で、溶接継手及び全溶着金属の丸棒クリープ破断試験片に対してクリープ破断試験を実施した。試験の結果より、下記の評価でクリープ強度判定を行った。継手試験片が母材(HAZ)で破断し、かつ溶金試験片のクリープ破断時間が5000時間以上のものを「良」とした。継手試験片が母材(HAZ)で破断し、かつ溶金試験片のクリープ破断時間が3000時間以上、5000時間未満となるものを「可」とした。継手試験片において溶接金属部分で破断するか、又は溶金試験片のクリープ破断時間が3000時間を下回るものを「不合格」とした。
 [シャルピー衝撃試験]
 上述の溶接継手から、溶接金属にノッチを加工した、フルサイズのVノッチシャルピー衝撃試験片(ノッチ深さ2mm)を3本採取した。各試験片に対して、0℃にて、JIS Z2242(2005)に準拠したシャルピー衝撃試験を実施した。試験結果に基づいて、次のとおり靭性判定を行った。3本の試験片のシャルピー衝撃試験個値が全て27Jを超えるものを「良」、3本のうち少なくとも1本のシャルピー衝撃試験個値が27Jを下回るが、平均値で27Jを満足するものを「可」、及び、3本の平均値が27Jを下回るものを「不合格」とした。
 [δフェライト量の面積率]
 上述の全溶着金属から、断面ミクロ試験片を採取した。全溶着金属から採取したミクロ試験片を上述の方法により研磨、腐食して、組織を現出した。任意の5視野を100倍で観察して、δフェライトの面積率を求めた。
 [試験結果]
 表3に、上記各試験の結果を併せて示す。
 表3を参照して、試験番号1~11、16~20及び22の溶接材料は、適切な化学組成を有し、かつF1値が式(1)を満たした。そのため、これらの試験番号の溶接金属は、優れたクリープ強度及び靭性を示した。得られた溶接継手も十分なクリープ強度及び靭性を示した。
 一方、試験番号12で用いた溶接材料では、溶接入熱が低すぎた。そのため、シャルピー衝撃値が27Jを下回り、靭性が不合格となった。
 試験番号13で用いた溶接材料では、溶接入熱が高すぎた。そのため、凝固割れが発生した。したがい、試験を実施しなかった。
 試験番号14で用いた溶接材料では、溶接後の熱処理温度が低すぎた。そのため、シャルピー衝撃値が27Jを下回り、靭性が不合格となった。
 試験番号15で用いた溶接材料では、溶接後の熱処理温度が高すぎた。そのため、シャルピー衝撃値が27Jを下回り、靭性が不合格となった。
 試験番号21で用いた溶接材料では、溶接後の熱処理時間が短すぎた。そのため、シャルピー衝撃値が27Jを下回り、靭性が不合格となった。
 試験番号23で用いた溶接材料では、溶接後の熱処理時間が長すぎた。そのため、溶接継手のクリープ試験では溶接金属で破断するとともに、全溶着金属のクリープ破断時間が目標である3000時間に到達せず、クリープ強度が不合格となった。
 試験番号24で用いた符号Gの溶接材料では、B含有量が低すぎた。そのため、溶接継手のクリープ試験ではHAZで破断したものの、全溶着金属のクリープ破断時間が目標である3000時間に到達せず、クリープ強度が不合格となった。
 試験番号25で用いた符号Hの溶接材料では、B含有量が高すぎた。そのため、クリープ強度には優れるものの、平均シャルピー衝撃値が27Jを下回り、靭性が不合格となった。
 試験番号26で用いた符号Iの溶接材料では、F1値が高すぎた。そのため、溶接金属に0.5%を超えるδフェライトが生成したため、シャルピー衝撃値が27Jを下回り、靭性が不合格となった。
 試験番号27で用いた符号Jの溶接材料では、F1値が低すぎた。そのため、溶接継手のクリープ試験では溶接金属で破断するとともに、全溶着金属のクリープ破断時間が目標である3000時間に到達せず、目標とするクリープ強度が得られなかった。
 試験番号28で用いた母材では、母材に含有されるB含有量が低すぎた。そのため、全溶着金属のクリープ破断時間は目標を満足するものの、表4及び表5の試験番号28のとおり、溶接継手の溶接金属においては、B量が十分含有されなかったため、溶接金属で破断し、結果、不合格と判断された。
 このように本発明の要件を満足する場合のみ、溶接金属は必要なクリープ強度及び靭性を両立することが明らかであり、得られた溶接継手も十分なクリープ強度及び靭性を有する。
 本発明によれば、多量のBを含有するフェライト系耐熱鋼の溶接に使用可能なフェライト系耐熱鋼用溶接材料が得られる。さらに、これを使用することによりクリープ強度及び靭性に優れた溶接金属及び溶接継手が得られる。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 

Claims (8)

  1.  質量%で、
     C:0.06~0.10%、
     Si:0.1~0.4%、
     Mn:0.3~0.7%、
     P:0.01%以下、
     S:0.003%以下、
     Co:2.6~3.4%、
     Ni:0.01~1.10%、
     Cr:8.5~9.5%、
     W:2.5~3.5%、
     Mo:0.01%未満、
     Nb:0.02~0.08%、
     V:0.1~0.3%、
     Ta:0.02~0.08%、
     B:0.007~0.015%、
     N:0.005~0.020%、
     Al:0.03%以下、
     O:0.02%以下、
     Cu:0~1%、
     Ti:0~0.3%、
     Ca:0~0.05%、
     Mg:0~0.05%、及び、
     希土類元素:0~0.1%を含有し、残部はFe及び不純物からなり、式(1)を満たす化学組成を有するフェライト系耐熱鋼用溶接材料。
     0.5≦Cr+6Si+1.5W+11V+5Nb+10B-40C-30N-4Ni-2Co-2Mn≦10.0 (1)
     ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
  2.  請求項1に記載のフェライト系耐熱鋼用溶接材料であってさらに、質量%で、下記の第1群~第3群から選択される1種又は2種以上の元素を含有する、フェライト系耐熱鋼用溶接材料。
     第1群:Cu:0.05~1.00%、
     第2群:Ti:0.02~0.30%、
     第3群:Ca:0.001~0.050%、Mg:0.001~0.050%、及び希土類元素:0.001~0.10%以下
  3.  請求項1又は請求項2に記載のフェライト系耐熱鋼用溶接材料であって、
     δフェライトの面積率は0.5%以下である、フェライト系耐熱鋼用溶接材料。
  4.  請求項1~請求項3のいずれか1項に記載の化学組成を有する溶接金属と、
     フェライト系耐熱鋼からなる母材とを備え、
     前記母材は、質量%で、
     Cr:8~10%、
     Co:2~4%、
     W:2~4%、及び、
     B:0.005~0.020%を含有する化学組成を有する、フェライト系耐熱鋼用溶接継手。
  5.  請求項4に記載のフェライト系耐熱鋼用溶接継手であって、
     前記母材の化学組成は、質量%で、
     C:0.04~0.12%、
     Si:0.05~0.60%、
     Mn:0.1~0.8%、
     P:0.02%以下、
     S:0.01%以下、
     Co:2~4%、
     Ni:0~0.4%、
     Cr:8~10%、
     W:2~4%、
     Nb及び/又はTa:合計で0.02~0.18%、
     V:0.05~0.40%、
     B:0.005~0.020%、
     Nd:0.01~0.06%、
     N:0.002~0.025%、
     Al:0.03%以下、及び、
     O:0.02%以下を含有し、残部がFe及び不純物からなる、フェライト系耐熱鋼用溶接継手。
  6.  請求項5に記載のフェライト系耐熱鋼用溶接継手であって、
     前記母材は、
     Ni:0.05~0.4%を含有する、フェライト系耐熱鋼用溶接継手。
  7.  請求項4~請求項6のいずれか1項に記載のフェライト系耐熱鋼用溶接継手であって、
     前記溶接金属中のδフェライトの面積率は0.5%以下である、フェライト系耐熱鋼用溶接継手。
  8.  質量%で、Cr:8~10%、Co:2~4%、W:2~4%、及びB:0.005~0.020%を含有する化学組成を有するフェライト系耐熱鋼からなる母材に対して、請求項1又は請求項2に記載のフェライト系耐熱鋼用溶接材料を用いて、溶接入熱6~20kJ/cmでガスタングステンアーク溶接を実施して溶接金属を形成する工程と、
     前記母材に形成された前記溶接金属に対して、740~780℃の熱処理温度で前記母材の厚さ25.4mm当たり0.5~4.0時間の熱処理を実施する工程とを備える、フェライト系耐熱鋼用溶接継手の製造方法。
     
PCT/JP2016/087585 2015-12-18 2016-12-16 フェライト系耐熱鋼用溶接材料、フェライト系耐熱鋼用溶接継手及びフェライト系耐熱鋼用溶接継手の製造方法 WO2017104815A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187020361A KR102058602B1 (ko) 2015-12-18 2016-12-16 페라이트계 내열강용 용접 재료, 페라이트계 내열강용 용접 조인트 및 페라이트계 내열강용 용접 조인트의 제조 방법
JP2017556473A JP6338028B2 (ja) 2015-12-18 2016-12-16 フェライト系耐熱鋼用溶接材料、フェライト系耐熱鋼用溶接継手及びフェライト系耐熱鋼用溶接継手の製造方法
ES16875789T ES2828466T3 (es) 2015-12-18 2016-12-16 Material de soldadura para acero ferrítico resistente al calor, junta de soldadura para acero ferrítico resistente al calor y método para producir junta de soldadura para acero ferrítico resistente al calor
US16/060,121 US11090755B2 (en) 2015-12-18 2016-12-16 Welding material for ferritic heat-resistant steel, welded joint for ferritic heat-resistant steel, and method for producing welded joint for ferritic heat-resistant steel
CN201680073523.6A CN108367396B (zh) 2015-12-18 2016-12-16 铁素体系耐热钢用焊接材料、铁素体系耐热钢用焊接接头以及铁素体系耐热钢用焊接接头的制造方法
EP16875789.6A EP3391989B1 (en) 2015-12-18 2016-12-16 Welding material for ferrite heat-resistant steel, welding joint for ferrite heat-resistant steel, and method for producing welding joint for ferrite heat-resistant steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-246810 2015-12-18
JP2015246810 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017104815A1 true WO2017104815A1 (ja) 2017-06-22

Family

ID=59056654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087585 WO2017104815A1 (ja) 2015-12-18 2016-12-16 フェライト系耐熱鋼用溶接材料、フェライト系耐熱鋼用溶接継手及びフェライト系耐熱鋼用溶接継手の製造方法

Country Status (7)

Country Link
US (1) US11090755B2 (ja)
EP (1) EP3391989B1 (ja)
JP (1) JP6338028B2 (ja)
KR (1) KR102058602B1 (ja)
CN (1) CN108367396B (ja)
ES (1) ES2828466T3 (ja)
WO (1) WO2017104815A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108788518A (zh) * 2018-07-26 2018-11-13 钢铁研究总院 抗震耐蚀耐火建筑结构钢用690MPa级气体保护焊丝
CN108857140A (zh) * 2018-07-26 2018-11-23 钢铁研究总院 抗震耐蚀耐火建筑结构钢用460MPa级埋弧焊丝
CN108941972A (zh) * 2018-07-26 2018-12-07 钢铁研究总院 抗震耐蚀耐火建筑结构钢用460MPa级气体保护焊丝
CN109048117A (zh) * 2018-07-26 2018-12-21 钢铁研究总院 抗震耐蚀耐火建筑结构钢用690MPa级埋弧焊丝
WO2020116588A1 (ja) 2018-12-05 2020-06-11 日本製鉄株式会社 フェライト系耐熱鋼溶接継手の製造方法
JP2020104141A (ja) * 2018-12-27 2020-07-09 日本製鉄株式会社 フェライト系耐熱鋼溶接金属およびそれを備えた溶接継手
WO2020189789A1 (ja) * 2019-03-19 2020-09-24 日本製鉄株式会社 フェライト系耐熱鋼
JP2021016884A (ja) * 2019-07-19 2021-02-15 日本製鉄株式会社 フェライト系耐熱鋼異材溶接継手およびその製造方法
JP2021090975A (ja) * 2019-12-06 2021-06-17 日本製鉄株式会社 フェライト系耐熱鋼用溶接材料、および、フェライト系耐熱鋼の溶接継手の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176217A (ja) * 2017-04-12 2018-11-15 株式会社Uacj 溶接継手
CN109514046A (zh) * 2018-12-17 2019-03-26 陕西化建工程有限责任公司 一种带镍基隔离层设备口与耐热钢管道对接焊接工艺
JP7502041B2 (ja) * 2019-02-21 2024-06-18 株式会社神戸製鋼所 高Crフェライト系耐熱鋼用溶接材料
KR102639546B1 (ko) * 2019-03-29 2024-02-21 제이에프이 스틸 가부시키가이샤 가스 메탈 아크 용접용 솔리드 와이어 및 가스 메탈 아크 용접 방법
CN110142530B (zh) * 2019-06-18 2021-02-09 清河县联盛焊接材料有限公司 一种适用于多种钢种焊接的电焊条、用途及其制备方法
CN110551951B (zh) * 2019-09-27 2020-11-13 常州长海焊材有限公司 一种超低碳耐高温焊丝及其制备方法
CN111270164B (zh) * 2020-01-23 2021-04-20 清华大学 一种相间析出强化的低活化铁素体钢及其制备方法
CN114101969B (zh) * 2020-08-25 2023-02-17 宝武特种冶金有限公司 核级镍铬铁合金焊丝及其制备方法、应用
CN113478117A (zh) * 2021-05-25 2021-10-08 江苏新恒基特种装备股份有限公司 一种增材制造用的铬-钨-钴合金氩弧焊焊丝及其制备方法
CN113798721B (zh) * 2021-07-21 2022-07-08 中国船舶重工集团公司第七二五研究所 一种屈服强度超过890MPa的金红石型药芯焊丝
CN115041866A (zh) * 2022-06-30 2022-09-13 三一重机有限公司 气体保护焊丝及其在低合金高强钢的焊接中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267190A (ja) * 1996-03-29 1997-10-14 Kobe Steel Ltd 高クロムフェライト鋼用溶接ワイヤ
JP2002069588A (ja) * 2000-08-29 2002-03-08 Sumitomo Metal Ind Ltd フェライト系耐熱鋼
JP2004300532A (ja) * 2003-03-31 2004-10-28 National Institute For Materials Science 焼き戻しマルテンサイト系耐熱鋼の溶接継手
JP2010007094A (ja) * 2008-06-24 2010-01-14 Sumitomo Metal Ind Ltd フェライト系耐熱鋼材

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3251683A (en) * 1962-01-16 1966-05-17 Allegheny Ludlum Steel Martensitic steel
JP2631250B2 (ja) 1991-06-18 1997-07-16 新日本製鐵株式会社 ボイラ用鋼管用高強度フェライト系耐熱鋼
JP2808048B2 (ja) 1991-06-18 1998-10-08 新日本製鐵株式会社 高強度フェライト系耐熱鋼
JP2760713B2 (ja) * 1992-09-24 1998-06-04 新日本製鐵株式会社 耐火性及び靱性の優れた制御圧延形鋼の製造方法
JPH08187592A (ja) 1995-01-09 1996-07-23 Nippon Steel Corp 高Crフェライト系耐熱鋼用溶接材料
JP3322097B2 (ja) 1995-10-26 2002-09-09 住友金属工業株式会社 溶接施工性に優れた高強度、高耐食フェライト鋼用溶接材料
JPH09308989A (ja) 1996-05-17 1997-12-02 Nippon Steel Corp 高Crフェライト系耐熱鋼用溶接材料
JP3457834B2 (ja) * 1997-04-09 2003-10-20 三菱重工業株式会社 靱性に優れた低Crフェライト系耐熱鋼用溶接金属
JP3854440B2 (ja) * 2000-02-07 2006-12-06 三菱重工業株式会社 溶接材料およびガスメタルアーク溶接方法並びに溶接構造物
JP2002235154A (ja) * 2001-02-07 2002-08-23 Sumitomo Metal Ind Ltd 高Crフェライト系耐熱鋼材
JP3698058B2 (ja) 2001-02-13 2005-09-21 住友金属工業株式会社 高Crフェライト系耐熱鋼材
CN101680065B (zh) 2007-06-04 2011-11-16 住友金属工业株式会社 铁素体类耐热钢
JP5178157B2 (ja) * 2007-11-13 2013-04-10 日新製鋼株式会社 自動車排ガス経路部材用フェライト系ステンレス鋼材
CN101565798B (zh) * 2008-04-22 2011-07-20 宝山钢铁股份有限公司 一种铁素体系耐热钢及其制造方法
SG193359A1 (en) * 2011-03-10 2013-10-30 Nippon Steel & Sumitomo Metal Corp Duplex stainless steel sheet
CA2834245C (en) * 2011-05-13 2016-07-12 Nippon Steel & Sumitomo Metal Corporation Welding material and welding joint
JP6388276B2 (ja) * 2013-05-22 2018-09-12 新日鐵住金株式会社 耐熱鋼及びその製造方法
JP6039532B2 (ja) 2013-11-08 2016-12-07 三菱重工業株式会社 フェライト系耐熱鋼用溶接材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267190A (ja) * 1996-03-29 1997-10-14 Kobe Steel Ltd 高クロムフェライト鋼用溶接ワイヤ
JP2002069588A (ja) * 2000-08-29 2002-03-08 Sumitomo Metal Ind Ltd フェライト系耐熱鋼
JP2004300532A (ja) * 2003-03-31 2004-10-28 National Institute For Materials Science 焼き戻しマルテンサイト系耐熱鋼の溶接継手
JP2010007094A (ja) * 2008-06-24 2010-01-14 Sumitomo Metal Ind Ltd フェライト系耐熱鋼材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3391989A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108857140A (zh) * 2018-07-26 2018-11-23 钢铁研究总院 抗震耐蚀耐火建筑结构钢用460MPa级埋弧焊丝
CN108941972A (zh) * 2018-07-26 2018-12-07 钢铁研究总院 抗震耐蚀耐火建筑结构钢用460MPa级气体保护焊丝
CN109048117A (zh) * 2018-07-26 2018-12-21 钢铁研究总院 抗震耐蚀耐火建筑结构钢用690MPa级埋弧焊丝
CN108788518A (zh) * 2018-07-26 2018-11-13 钢铁研究总院 抗震耐蚀耐火建筑结构钢用690MPa级气体保护焊丝
KR20210090704A (ko) 2018-12-05 2021-07-20 닛폰세이테츠 가부시키가이샤 페라이트계 내열강 용접 조인트의 제조 방법
WO2020116588A1 (ja) 2018-12-05 2020-06-11 日本製鉄株式会社 フェライト系耐熱鋼溶接継手の製造方法
US11834731B2 (en) 2018-12-05 2023-12-05 Nippon Steel Corporation Method of producing ferritic heat-resistant steel welded joint
JP2020104141A (ja) * 2018-12-27 2020-07-09 日本製鉄株式会社 フェライト系耐熱鋼溶接金属およびそれを備えた溶接継手
JP7218573B2 (ja) 2018-12-27 2023-02-07 日本製鉄株式会社 フェライト系耐熱鋼溶接金属およびそれを備えた溶接継手
JP7136325B2 (ja) 2019-03-19 2022-09-13 日本製鉄株式会社 フェライト系耐熱鋼
KR20210137184A (ko) 2019-03-19 2021-11-17 닛폰세이테츠 가부시키가이샤 페라이트계 내열강
JPWO2020189789A1 (ja) * 2019-03-19 2020-09-24
WO2020189789A1 (ja) * 2019-03-19 2020-09-24 日本製鉄株式会社 フェライト系耐熱鋼
KR20240064053A (ko) 2019-03-19 2024-05-10 닛폰세이테츠 가부시키가이샤 페라이트계 내열강
JP2021016884A (ja) * 2019-07-19 2021-02-15 日本製鉄株式会社 フェライト系耐熱鋼異材溶接継手およびその製造方法
JP7376767B2 (ja) 2019-07-19 2023-11-09 日本製鉄株式会社 フェライト系耐熱鋼異材溶接継手およびその製造方法
JP2021090975A (ja) * 2019-12-06 2021-06-17 日本製鉄株式会社 フェライト系耐熱鋼用溶接材料、および、フェライト系耐熱鋼の溶接継手の製造方法
JP7492106B2 (ja) 2019-12-06 2024-05-29 日本製鉄株式会社 フェライト系耐熱鋼用溶接材料、および、フェライト系耐熱鋼の溶接継手の製造方法

Also Published As

Publication number Publication date
ES2828466T3 (es) 2021-05-26
JP6338028B2 (ja) 2018-06-06
JPWO2017104815A1 (ja) 2018-08-09
KR20180095639A (ko) 2018-08-27
EP3391989B1 (en) 2020-08-26
CN108367396B (zh) 2020-04-17
EP3391989A4 (en) 2019-05-29
KR102058602B1 (ko) 2019-12-23
US20180354059A1 (en) 2018-12-13
US11090755B2 (en) 2021-08-17
CN108367396A (zh) 2018-08-03
EP3391989A1 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6338028B2 (ja) フェライト系耐熱鋼用溶接材料、フェライト系耐熱鋼用溶接継手及びフェライト系耐熱鋼用溶接継手の製造方法
JP4188124B2 (ja) 焼き戻しマルテンサイト系耐熱鋼の溶接継手
JP6870749B2 (ja) オーステナイト系ステンレス鋼溶接金属および溶接構造物
JP5170351B1 (ja) 二相ステンレス鋼
JP6384611B2 (ja) オーステナイト系耐熱合金及び溶接構造物
KR102124914B1 (ko) 오스테나이트계 스테인리스강
CN111344427B (zh) 奥氏体系耐热钢焊接金属、焊接接头、奥氏体系耐热钢用焊接材料以及焊接接头的制造方法
JP6693561B2 (ja) 二相ステンレス鋼及び二相ステンレス鋼の製造方法
JP6965938B2 (ja) オーステナイト系ステンレス鋼溶接金属および溶接構造物
JP2020168639A (ja) 溶接継手、及び、その溶接継手の製造に用いられる溶接材料
JP6870748B2 (ja) オーステナイト系ステンレス鋼
JP6623719B2 (ja) オーステナイト系ステンレス鋼
JP6870750B2 (ja) オーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法
JP5741454B2 (ja) −196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板およびその製造方法
JP7218573B2 (ja) フェライト系耐熱鋼溶接金属およびそれを備えた溶接継手
JP6638552B2 (ja) オーステナイト系耐熱鋼用溶接材料
JP5935678B2 (ja) 高靭性高張力鋼およびその製造方法
JP2017202495A (ja) オーステナイト系耐熱鋼用溶接材料
JP7436793B2 (ja) フェライト系耐熱鋼の溶接継手の製造方法
JP2017202492A (ja) オーステナイト系耐熱鋼溶接金属およびそれを有する溶接継手
JP2021195602A (ja) 低合金耐熱鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556473

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187020361

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020361

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016875789

Country of ref document: EP