WO2017104244A1 - アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物 - Google Patents
アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物 Download PDFInfo
- Publication number
- WO2017104244A1 WO2017104244A1 PCT/JP2016/080275 JP2016080275W WO2017104244A1 WO 2017104244 A1 WO2017104244 A1 WO 2017104244A1 JP 2016080275 W JP2016080275 W JP 2016080275W WO 2017104244 A1 WO2017104244 A1 WO 2017104244A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- curing agent
- epoxy resin
- aluminum
- chelating agent
- agent
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
- C08G59/70—Chelates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/222—Catalysts containing metal compounds metal compounds not provided for in groups C08G18/225 - C08G18/26
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/288—Compounds containing at least one heteroatom other than oxygen or nitrogen
- C08G18/289—Compounds containing at least one heteroatom other than oxygen or nitrogen containing silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8003—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
- C08G18/8006—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
- C08G18/8009—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
- C08G18/8022—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
- C08G18/8029—Masked aromatic polyisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/188—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using encapsulated compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/24—Di-epoxy compounds carbocyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/24—Di-epoxy compounds carbocyclic
- C08G59/245—Di-epoxy compounds carbocyclic aromatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5435—Silicon-containing compounds containing oxygen containing oxygen in a ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/12—Adsorbed ingredients, e.g. ingredients on carriers
Definitions
- the present invention relates to a method for producing an aluminum chelate-based latent curing agent for curing a thermosetting epoxy resin, a thermosetting urea resin, a thermosetting melamine resin, a thermosetting phenol resin, or the like.
- an aluminum chelate-based latent curing agent As a curing agent exhibiting low-temperature rapid curing activity for epoxy resins, a particulate aluminum chelate-based latent curing agent in which an aluminum chelating agent is held in a porous resin particle derived from a polyfunctional isocyanate compound has been put into practical use.
- Such an aluminum chelate-based latent curing agent is an oil obtained by dissolving or dispersing a polyfunctional isocyanate compound and an aluminum chelating agent having a property capable of curing an epoxy resin (epoxy curing ability) in a poorly water-soluble organic solvent. It is manufactured by introducing the phase into an aqueous phase containing a dispersant and interfacial polymerization.
- the aluminum chelate-based latent curing agent once obtained is dissolved in an organic solvent.
- Immersion in an aluminum chelating agent solution, impregnating the solution into the porous resin constituting the aluminum chelating latent curing agent, thereby additionally filling the aluminum chelating latent curing agent with the aluminum chelating agent has been proposed (Patent Document 1).
- the object of the present invention is to solve the above-mentioned problems of the prior art, and an aluminum chelate-based latency in which an aluminum chelating agent is held in porous resin particles obtained by interfacial polymerization of a polyfunctional isocyanate compound. Inclusion of aluminum chelating agent in excess of the aluminum chelating agent concentration of the aluminum chelating agent solution prepared when the aluminum chelating agent is additionally filled into the aluminum chelating latent curing agent by immersing the curing agent in the aluminum chelating agent solution. It is to be able to produce an aluminum chelate-based latent curing agent with an increased proportion.
- thermosetting epoxy resin composition prepared by adding an aluminum chelate-based latent curing agent additionally filled with an aluminum chelating agent to an alicyclic epoxy resin is obtained at room temperature. It is possible to produce an aluminum chelate-based latent curing agent that can exhibit good storage stability and can also exhibit good storage stability in the presence of an epoxy resin and a solvent. It is.
- the present inventor immerses the aluminum chelate-based latent curing agent in the aluminum chelating agent solution, so that when the aluminum chelate-based latent curing agent is additionally filled with the aluminum chelating agent, the immersion is performed in the aluminum chelating agent. It was found that the aluminum chelating agent concentration in the aluminum chelating agent solution increases when the solvent is removed from the solution, and as a result, the aluminum chelating agent can be highly filled with the aluminum chelating latent curing agent. In addition, the present inventor performed an activity suppression treatment on the surface of the aluminum chelate-based latent curing agent so filled with the aluminum chelating agent with an epoxy alkoxysilane coupling agent, thereby presenting the aluminum chelating agent present on the surface.
- thermosetting epoxy resin composition obtained by blending has been found to exhibit good storage stability at room temperature without impairing the low-temperature fast-curing property, and has led to the completion of the present invention.
- the present invention is a method for producing an aluminum chelate latent curing agent in which an aluminum chelating agent and a silane compound are held in a porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound, A production method comprising steps (A) to (C).
- a polyfunctional isocyanate compound is prepared by heating and stirring an oil phase obtained by dissolving or dispersing an aluminum chelating agent, a silane compound and a polyfunctional isocyanate compound in a volatile organic solvent into an aqueous phase containing the dispersant.
- Process B Aluminum chelating agent additional filling process
- the particulate curing agent obtained in step A is dispersed and mixed in an aluminum chelating agent solution in which an aluminum chelating agent is dissolved in a volatile organic solvent, and the volatile organic solvent is removed while stirring the obtained dispersion mixture.
- Process C Surface activity suppression treatment process
- a particulate curing agent additionally filled with an aluminum chelating agent is immersed in a solution in which an epoxyalkoxysilane coupling agent is dissolved in an organic solvent, so that the surface activity is suppressed with the epoxyalkoxysilane coupling agent.
- the present invention also provides a thermosetting epoxy resin composition containing the aluminum chelate-based latent curing agent produced by the production method described above, an epoxy resin, and a silane compound.
- an aluminum chelating agent having epoxy curing ability is held in a porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound together with a silane compound, Further, the porous resin is additionally filled with an aluminum chelating agent. For this reason, the obtained aluminum chelate-based latent curing agent can rapidly cure the epoxy resin, and can exhibit sharp thermal responsiveness in a low temperature region.
- the activity of the surface of the particulate aluminum chelate-based latent curing agent is suppressed with an epoxyalkoxysilane coupling agent, and the activity of the aluminum chelating agent remaining on the surface is suppressed.
- the aluminum chelate-based latent curing agent produced by the production method of the present invention exhibits excellent solvent resistance and is obtained by blending it with an alicyclic epoxy resin exhibiting very high cationic polymerization. Good storage stability can also be realized at room temperature for a thermosetting epoxy resin composition of a mold.
- FIG. 1 is a DSC chart of a thermosetting epoxy resin composition using the particulate curing agent prepared in Step A of Example 1.
- FIG. FIG. 2 is a TG-DTA chart of the particulate curing agent prepared in Step A of Example 1.
- 3 is a DSC chart of a thermosetting epoxy resin composition using the particulate curing agent prepared in Step B of Example 1.
- FIG. 4 is a TG-DTA chart of the particulate curing agent prepared in Step B of Example 1.
- FIG. FIG. 5 is a particle size distribution chart of the aluminum chelate-based latent curing agent that has been subjected to surface activity suppression treatment in Step C of Example 1.
- FIG. 6A is an electron micrograph (1000 times) of the aluminum chelate-based latent curing agent that has been subjected to surface activity suppression treatment in Step C of Example 1.
- FIG. 6B is an electron micrograph (10,000 times) of the aluminum chelate-based latent curing agent that has been subjected to surface activity suppression treatment in Step C of Example 1.
- FIG. 7 is a DSC chart of a thermosetting epoxy resin composition using an aluminum chelate-based latent curing agent that has been subjected to surface activity suppression treatment in Step C of Example 1.
- FIG. FIG. 8 is a liquid life chart of a thermosetting epoxy resin composition using the aluminum chelate-based latent curing agent subjected to surface activity suppression treatment in Step C of Example 1.
- the method for producing an aluminum chelate-based latent curing agent of the present invention in which an aluminum chelating agent is held in a porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound includes the following steps (A) to (C): Have.
- steps (A) to (C): Have Hereinafter, it demonstrates in detail for every process.
- Step A Particulate curing agent preparation step> First, an oil phase obtained by dissolving or dispersing an aluminum chelating agent, a silane compound and a polyfunctional isocyanate compound in a volatile organic solvent is put into an aqueous phase containing a dispersant, and heated (usually a mixture of 30 to 30%). A particulate curing agent is prepared by interfacially polymerizing a polyfunctional isocyanate compound by stirring while heating to 90 ° C.), and retaining the aluminum chelating agent and the silane compound in the resulting porous resin. To do. The particulate curing agent can be pulverized into primary particles by a known pulverizer after being filtered, washed and dried as necessary.
- a porous resin derived from a polyfunctional isocyanate compound that constitutes such a particulate curing agent is a part of the isocyanate group that undergoes hydrolysis during the interfacial polymerization to become an amino group, which reacts with the amino group.
- a urea bond is produced and polymerized, and can be regarded as porous polyurea.
- the blending ratio of the aluminum chelating agent and the polyfunctional isocyanate compound is that if the blending amount of the aluminum chelating agent is too small, the curability of the epoxy resin to be cured is lowered, and if it is too large, the potential of the aluminum chelating latent curing agent is low. Therefore, the amount of the aluminum chelating agent is preferably 10 to 500 parts by mass, more preferably 10 to 300 parts by mass with respect to 100 parts by mass of the polyfunctional isocyanate compound constituting the porous resin.
- the silane compound compounded in the oil phase is preferably 1 to 500 parts by mass, more preferably 1 to 300 parts by mass with respect to 100 parts by mass of the aluminum chelating agent. If it is this range, the effect that a particle shape can be hold
- the radically polymerizable compound and the radical polymerization initiator are blended in the oil phase
- the radically polymerizable compound is preferably 1 to 80 parts by weight, more preferably 10 to 60 parts by weight with respect to 100 parts by weight of the polyfunctional isocyanate compound. Blend in parts. Within this range, good low-temperature activity can be imparted to the particulate curing agent.
- the radical polymerization initiator is added in an amount of preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the radical polymerizable compound for the initiation of polymerization.
- the reason for using the volatile organic solvent is as follows. That is, when a high-boiling solvent having a boiling point exceeding 300 ° C. as used in a normal interfacial polymerization method is used, the organic solvent does not volatilize during the interfacial polymerization, so the contact probability with isocyanate-water does not increase. This is because the degree of progress of interfacial polymerization between them becomes insufficient.
- thermosetting resin composition it is difficult to obtain a polymer having good shape retention even when interfacial polymerization is performed, and even when it is obtained, when the high boiling point solvent is still taken into the polymer and it is blended in a thermosetting resin composition
- the high boiling point solvent adversely affects the physical properties of the cured product of the thermosetting resin composition.
- a volatile organic solvent an aluminum chelating agent, a silane compound and a polyfunctional isocyanate compound, a radical polymerizable compound and a radical polymerization initiator, which are blended as necessary, are preferably good solvents (the respective solubility is preferable).
- Specific examples of such volatile organic solvents include alcohols, acetate esters, ketones and the like. Among these, ethyl acetate is preferable in terms of high polarity, low boiling point, and poor water solubility.
- the amount of the volatile organic solvent used is too small with respect to 100 parts by mass of the total amount of the aluminum chelating agent, the silane compound and the polyfunctional isocyanate compound, the radical polymerizable compound and the radical polymerization initiator blended as necessary.
- the particle size and curing characteristics are polydispersed, and if it is too large, the curing characteristics deteriorate, so the amount is preferably 10 to 500 parts by mass.
- the viscosity of the oil phase solution can be lowered by using a relatively large amount of the volatile organic solvent within the range of the volatile organic solvent used.
- the oil phase droplets in the reaction system can be made finer and more uniform, and the resulting latent hardener particle size can be controlled to submicron to several microns.
- the particle size distribution can be monodispersed.
- the viscosity of the oil phase solution is preferably set to 1 to 500 mPa ⁇ s.
- the aqueous phase is obtained by dissolving a dispersant in water.
- a dispersant a known dispersant used for interfacial polymerization can be used.
- PVA polyvinyl alcohol
- carboxymethyl cellulose gelatin and the like, among which polyvinyl alcohol (PVA) can be preferably used.
- the amount of the dispersant used is usually 0.1 to 10.0% by mass of the aqueous phase.
- water desalted and distilled water can be preferably used.
- the polyfunctional isocyanate compound and the like are emulsified and dispersed in the aqueous phase, so that the hydroxyl group of PVA reacts with the polyfunctional isocyanate compound.
- the particles may adhere to the periphery of the particle, or the particle shape itself may be deformed. In order to prevent this phenomenon, the reactivity between the polyfunctional isocyanate compound and water is promoted, or the reactivity between the polyfunctional isocyanate compound and PVA is suppressed.
- the blending amount of the aluminum chelating agent is preferably 1 ⁇ 2 or less, more preferably 3 or less, based on the weight of the polyfunctional isocyanate compound.
- the blending amount of the aluminum chelating agent is preferably at least equal to, more preferably 1.0 to 5.0 times, based on the weight of the polyfunctional isocyanate compound.
- concentration in the oil phase droplet surface falls.
- the polyfunctional isocyanate compound has a higher reaction rate (interfacial polymerization) with the amine formed by hydrolysis than the hydroxyl group, the reaction probability between the polyfunctional isocyanate compound and PVA can be lowered.
- the interfacial polymerization is performed by putting the oil phase into the aqueous phase and stirring with heating.
- a radical polymerizable compound and a radical polymerization initiator are blended in the oil phase, radical polymerization is simultaneously performed.
- the porous resin derived from a polyfunctional isocyanate compound is produced
- This holding mode is not a microcapsule having a simple structure in which a core of an aluminum chelating agent and a silane compound is coated with a porous resin shell, but a large number of fine pores existing in the porous resin matrix. It has a structure in which an aluminum chelating agent and a silane compound are incorporated and held.
- the shape of the particulate curing agent obtained by interfacial polymerization is spherical, and its particle size (which can be regarded as the particle size of the aluminum chelate-based latent curing agent) is preferably 0 from the viewpoint of curability and dispersibility.
- the pore size is preferably 1 to 150 nm from the viewpoints of curability and latency.
- the degree of cross-linking of the porous resin used is too small, the potential of the particulate curing agent is lowered, and when it is too large, the thermal responsiveness tends to be lowered. Therefore, it is preferable to adjust the degree of crosslinking according to the intended use of the particulate curing agent by the polymerization temperature and the amount of the emulsified oil phase of the aluminum chelating agent and silane compound.
- the degree of crosslinking of the porous resin can be measured by a micro compression test.
- the blending amount of the oil phase with respect to the aqueous phase at the time of the interfacial polymerization is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the aqueous phase because if the oil phase is too small, polydispersion occurs, and if the amount is too large, aggregation occurs. 70 parts by mass.
- the treatment conditions in the interfacial polymerization are stirring conditions (stirring device homogenizer; stirring speed of 6000 rpm or more) such that the size of the oil phase is preferably 0.5 to 100 ⁇ m, and usually at atmospheric pressure and a temperature of 30 to 80 ° C.
- the conditions for stirring with heating for 2 to 12 hours can be mentioned.
- the particulate polymer After completion of the interfacial polymerization (radical polymerization performed as necessary), the particulate polymer can be obtained by filtering the polymer fine particles and drying them naturally or vacuum.
- the type and amount of polyfunctional isocyanate compound, the type and amount of aluminum chelating agent, interfacial polymerization conditions, or the type and amount of silane compound, radical polymerizable compound and radical polymerization initiator, radical polymerization conditions are changed.
- curing agent which is the objective of manufacture can be controlled. For example, if the polymerization temperature is lowered, the curing temperature can be lowered, and conversely, if the polymerization temperature is raised, the curing temperature can be raised.
- Aluminum chelating agent blended in the oil phase examples include a complex compound in which three ⁇ -keto enolate anions are coordinated to aluminum, represented by the formula (1).
- R 1 , R 2 and R 3 are each independently an alkyl group or an alkoxyl group.
- the alkyl group include a methyl group and an ethyl group.
- the alkoxyl group include a methoxy group, an ethoxy group, and an oleyloxy group.
- the aluminum chelating agent represented by the formula (1) include aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum monoacetylacetonate Examples thereof include bisoleyl acetoacetate, ethyl acetoacetate aluminum diisopropylate, and alkyl acetoacetate aluminum diisopropylate.
- the polyfunctional isocyanate compound blended in the oil phase is preferably a compound having two or more isocyanate groups, preferably three isocyanate groups in one molecule.
- a TMP adduct of formula (2) obtained by reacting 3 mol of a diisocyanate compound with 1 mol of trimethylolpropane, and a formula (3) obtained by self-condensing 3 mol of a diisocyanate compound.
- An isocyanurate of formula (4) and a biuret of formula (4) obtained by condensing the remaining 1 mol of diisocyanate with diisocyanate urea obtained from 2 mol of 3 mol of diisocyanate compound.
- the substituent R is a portion excluding the isocyanate group of the diisocyanate compound.
- diisocyanate compounds include toluene 2,4-diisocyanate, toluene 2,6-diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, hexahydro-m-xylylene diisocyanate, isophorone diisocyanate, methylene diphenyl-4. 4,4'-diisocyanate and the like.
- silane compounds As described in paragraphs 0007 to 0010 of JP-A No. 2002-212537, the silane compound that can be blended in the oil phase is co-polymerized with the aluminum chelating agent held in the aluminum chelating latent curing agent. And has a function of initiating cationic polymerization of a thermosetting resin (for example, a thermosetting epoxy resin). Therefore, the effect of promoting the curing of the epoxy resin can be obtained by using such a silane compound together.
- a thermosetting resin for example, a thermosetting epoxy resin
- examples of such silane compounds include highly sterically hindered silanol compounds and silane coupling agents having 1 to 3 lower alkoxy groups in the molecule.
- the latent curing agent of the present invention is a cationic curing agent, the amino group or the mercapto group substantially generates the generated cationic species. Can be used when not captured.
- the silanol compound is preferably 1 to 500 parts by mass, more preferably 1 to 300 parts by mass with respect to 100 parts by mass.
- the highly sterically hindered silanol compound that can be blended in the oil phase is an arylsilaneol having a chemical structure of the following formula (A).
- m is 2 or 3, preferably 3, provided that the sum of m and n is 4. Therefore, the silanol compound of the formula (A) becomes a mono or diol form.
- “Ar” is an optionally substituted aryl group, and examples of the aryl group include a phenyl group, a naphthyl group (for example, 1 or 2-naphthyl group), an anthracenyl group (for example, 1, 2, or 9-anthracenyl group).
- Benz [a] -9-anthracenyl group phenaryl group (eg 3 or 9-phenaryl group), pyrenyl group (eg 1-pyrenyl group), azulenyl group, fluorenyl group, biphenyl group (eg 2,3 Or 4-biphenyl group), thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyridyl group, and the like.
- a phenyl group is preferable from the viewpoint of availability and cost.
- the m Ars may be the same or different, but are preferably the same from the viewpoint of availability.
- aryl groups can have 1 to 3 substituents such as halogen such as chloro and bromo; trifluoromethyl; nitro; sulfo; carboxyl; alkoxycarbonyl such as methoxycarbonyl and ethoxycarbonyl; Electron-withdrawing groups; alkyl such as methyl, ethyl and propyl; alkoxy such as methoxy and ethoxy; hydroxy; amino; monoalkylamino such as monomethylamino; and electron-donating groups such as dialkylamino such as dimethylamino.
- substituents such as halogen such as chloro and bromo; trifluoromethyl; nitro; sulfo; carboxyl; alkoxycarbonyl such as methoxycarbonyl and ethoxycarbonyl; Electron-withdrawing groups; alkyl such as methyl, ethyl and propyl; alkoxy such as methoxy and ethoxy; hydroxy; amino; mono
- the acidity of the hydroxyl group of silanol can be increased by using an electron withdrawing group as a substituent, and conversely, the acidity can be lowered by using an electron donating group, so that the curing activity can be controlled.
- the substituents may be different for each of the m Ars, but the substituents are preferably the same for the m Ars from the viewpoint of availability. Further, only some Ar may have a substituent, and other Ar may not have a substituent.
- phenyl group having a substituent examples include 2, 3, or 4-methylphenyl group; 2,6-dimethyl, 3,5-dimethyl, 2,4-dimethyl, 2,3-dimethyl, 2,5- Examples include dimethyl or 3,4-dimethylphenyl group; 2,4,6-trimethylphenyl group; 2 or 4-ethylphenyl group.
- triphenylsilanol or diphenylsilanediol is preferable. Particularly preferred is triphenylsilanol.
- the silane coupling agent having 1 to 3 lower alkoxy groups in the molecule when used as the silane compound, if the amount of the silane coupling agent in the oil phase is too small, the effect of addition cannot be expected, and the amount is too large. And the silanolate anion generated from the silane coupling agent causes an influence of the polymerization termination reaction, so the amount is preferably 1 to 50 parts by mass, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the aluminum chelating agent.
- silane coupling agents that can be incorporated into the oil phase include vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -styryltrimethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane.
- ⁇ -acryloxypropyltrimethoxysilane ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, N- ⁇ - (Aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyl Examples include limethoxysilane and ⁇ -chloropropyltrimethoxysilane.
- the radically polymerizable compound that can be blended in the oil phase simultaneously undergoes radical polymerization during the interfacial polymerization of the polyfunctional isocyanate compound, thereby improving the mechanical properties of the porous resin that becomes the microcapsule wall.
- region are realizable.
- interfacial polymerization and radical polymerization occur at the same time, and a phase separation structure is formed in the porous resin.
- the crosslink density of the polyurea-urethane moiety is smaller than the homopolymerization system of the isocyanate compound. This is considered to be because.
- Such a radically polymerizable compound preferably has one or more carbon-carbon unsaturated bonds in the molecule, and includes so-called monofunctional radically polymerizable compounds and polyfunctional radically polymerizable compounds.
- the radical polymerizable compound preferably contains a polyfunctional radical polymerizable compound. This is because by using a polyfunctional radically polymerizable compound, it becomes easier to realize sharp thermal responsiveness in a low temperature region. Also in this sense, the radical polymerizable compound preferably contains a polyfunctional radical polymerizable compound at least 20% by mass, more preferably at least 50% by mass.
- Examples of the monofunctional radical polymerizable compound include monofunctional vinyl compounds such as styrene and methylstyrene, and monofunctional (meth) acrylate compounds such as butyl acrylate.
- Examples of the polyfunctional radical polymerizable compound include polyfunctional vinyl compounds such as divinylbenzene, and polyfunctional (meth) acrylate compounds such as 1,6-hexanediol diacrylate and trimethylolpropane triacrylate. Of these, polyfunctional vinyl compounds, particularly divinylbenzene, can be preferably used from the viewpoints of latency and heat responsiveness.
- the polyfunctional radically polymerizable compound may be composed of a polyfunctional vinyl compound and a polyfunctional (meth) acrylate compound.
- the radical polymerization initiator that can be blended in the oil phase is one that can initiate radical polymerization under the interfacial polymerization conditions of the polyfunctional isocyanate compound.
- a peroxide initiator, an azo initiator An agent or the like can be used.
- Step A Aluminum hardener additional filling process
- the particulate curing agent obtained in Step A is dispersed and mixed in an aluminum chelating agent solution in which an aluminum chelating agent is dissolved in a volatile organic solvent, and the volatile organic solvent is stirred while stirring the obtained dispersion mixture.
- an aluminum chelating agent is additionally filled in the particulate curing agent.
- the particulate curing agent additionally filled with an aluminum chelating agent can be pulverized into primary particles by a known pulverizer after filtering, washing and drying as necessary.
- an aluminum chelating agent different from that used in Step A can be used, but it is preferable to use the same one from the viewpoint of management of the amount used.
- the volatile organic solvent used with the oil phase of the process A can be used.
- the aluminum chelating agent concentration in the aluminum chelating agent solution is preferably 10 to 80% by mass, more preferably 10 to 50% by mass. If it is this range, the high permeability of the aluminum chelating agent solution into the particulate curing agent can be realized.
- the blending amount of the particulate curing agent with respect to 100 parts by weight of the aluminum chelating agent solution is preferably 10 to 80 parts by weight, more preferably 10 to 50 parts by weight. Within this range, good dispersion stability of the particulate curing agent can be realized.
- Removal of the volatile organic solvent from the dispersion mixture is an operation of increasing the concentration of the aluminum chelating agent in the dispersion mixture, and an operation of removing by any method can be adopted as long as the aluminum chelating agent is not decomposed. For example, heating the dispersion mixture to a temperature higher than the boiling point of the volatile organic solvent used, depressurizing the stirring system of the dispersion mixture, or air blowing the surface of the dispersion mixture, etc. It is done.
- the degree of removal is such that preferably 50 to 95% of the volatile organic solvent charged is removed.
- the aluminum chelating agent can be highly filled in the pores of the particulate curing agent.
- the removal rate is preferably 10 to 60% by weight / hour. Within this range, the aluminum chelating agent is effectively captured in the pores of the particulate curing agent.
- the particulate curing agent additionally filled with the aluminum chelating agent is immersed in a solution in which the epoxyalkoxysilane coupling agent is dissolved in an organic solvent, so that the surface activity is suppressed with the epoxyalkoxysilane coupling agent, Thereby, a latent aluminum chelate-based latent curing agent is obtained.
- a particulate curing agent additionally filled with an aluminum chelating agent is dissolved in an organic solvent, preferably a nonpolar solvent, particularly cyclohexane, preferably in an amount of 5 to 80% (mass) of an epoxyalkoxysilane coupling agent.
- the surface activity is suppressed by immersing in the solution at 25 to 80 ° C. for 1 to 20 hours to make it latent.
- curing agent by which the activity suppression process was given to the surface is obtained.
- the obtained aluminum chelate-based latent curing agent can be filtered, washed and dried as necessary, and then pulverized into primary particles with a known pulverizer.
- the aluminum chelate-based latent curing agent does not substantially contain the organic solvent used in Steps A to C, specifically, 1 ppm or less.
- the epoxy alkoxysilane coupling agent used for the surface activity suppression treatment is a surface formed by an epoxy polymer chain generated by reacting an epoxy group in the molecule with an active aluminum chelating agent on the surface of the particulate curing agent. It can be coated to reduce activity.
- this epoxy type silane coupling agent include alicyclic epoxy silane coupling agents such as 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303, Shin-Etsu Chemical Co., Ltd.).
- glycidyloxysilane coupling agents such as 3-glycidoxypropyltrimethoxysilane (KBM-403, Shin-Etsu Chemical Co., Ltd.).
- alicyclic epoxysilane coupling agents are preferred because a polymerized film can be formed at a relatively low temperature of room temperature to 40 ° C.
- the aluminum chelate-based latent curing agent described above can further contain a filler such as silica and mica, a pigment, an antistatic agent and the like, if necessary.
- thermosetting epoxy resin composition By adding the aluminum chelate-based latent curing agent of the present invention to an epoxy resin and a silane-based compound, a low-temperature fast-curing thermosetting epoxy resin composition can be provided. Such a thermosetting epoxy resin composition is also part of the present invention.
- the content of the aluminum chelate-based latent curing agent in the thermosetting epoxy resin composition of the present invention is too small, it will not be cured sufficiently, and if it is too large, the resin properties of the cured product of the composition (for example, acceptable (Flexibility) is lowered, so that it is 1 to 70 parts by mass, preferably 1 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin.
- the epoxy resin constituting the thermosetting epoxy resin composition of the present invention is used as a film forming component.
- Such epoxy resins include not only alicyclic epoxy resins such as 3 ′, 4′-epoxycyclohexylmethyl ⁇ ⁇ ⁇ 3,4-epoxycyclohexanecarboxylate, but also conventional aluminum chelate-based latent curing agents and silanol compounds.
- Glycidyl ether type epoxy resins that could not be used in the mixed system can also be used.
- Such a glycidyl ether type epoxy resin may be liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4000 and having two or more epoxy groups in the molecule.
- bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, ester type epoxy resin and the like can be mentioned.
- bisphenol A type epoxy resins can be preferably used from the viewpoint of resin characteristics.
- These epoxy resins also include monomers and oligomers.
- thermosetting epoxy resin composition of the present invention can be used in combination with an oxetane compound in order to sharpen the exothermic peak.
- Preferred oxetane compounds include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, 4,4′-bis [(3-ethyl- 3-Oxetanyl) methoxymethyl] biphenyl, 1,4-benzenedicarboxylic acid bis [(3-ethyl-3-oxetanyl)] methyl ester, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3- ( 2-ethylhexyloxymethyl) oxetane, di [1-ethyl (3-oxetanyl)] methyl ether, 3-eththyl-3-hydroxymethyloxetane,
- the silane compound to be blended in the thermosetting epoxy resin composition of the present invention was held in an aluminum chelate latent curing agent as described in paragraphs 0007 to 0010 of JP-A No. 2002-212537. It has a function of starting cationic polymerization of a thermosetting resin (for example, thermosetting epoxy resin) in cooperation with an aluminum chelating agent. Therefore, the effect of promoting the curing of the epoxy resin can be obtained by using such a silane compound together.
- examples of such silane compounds include highly sterically hindered silanol compounds and silane coupling agents having 1 to 3 lower alkoxy groups in the molecule.
- the latent curing agent of the present invention is a cationic curing agent, the amino group or the mercapto group substantially generates the generated cationic species. Can be used when not captured.
- the silanol compound is preferably 1 to 50 parts by mass, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the thermosetting epoxy resin.
- the highly sterically hindered silanol compound used in the thermosetting epoxy resin composition of the present invention has a chemical structure of the following formula (A): Arylsilaneol.
- m is 2 or 3, preferably 3, provided that the sum of m and n is 4. Therefore, the silanol compound of the formula (A) becomes a mono or diol form.
- “Ar” is an optionally substituted aryl group, and examples of the aryl group include a phenyl group, a naphthyl group (for example, 1 or 2-naphthyl group), an anthracenyl group (for example, 1, 2, or 9-anthracenyl group).
- Benz [a] -9-anthracenyl group phenaryl group (eg 3 or 9-phenaryl group), pyrenyl group (eg 1-pyrenyl group), azulenyl group, fluorenyl group, biphenyl group (eg 2,3 Or 4-biphenyl group), thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyridyl group, and the like.
- a phenyl group is preferable from the viewpoint of availability and cost.
- the m Ars may be the same or different, but are preferably the same from the viewpoint of availability.
- aryl groups can have 1 to 3 substituents such as halogen such as chloro and bromo; trifluoromethyl; nitro; sulfo; carboxyl; alkoxycarbonyl such as methoxycarbonyl and ethoxycarbonyl; Electron-withdrawing groups; alkyl such as methyl, ethyl and propyl; alkoxy such as methoxy and ethoxy; hydroxy; amino; monoalkylamino such as monomethylamino; and electron-donating groups such as dialkylamino such as dimethylamino.
- substituents such as halogen such as chloro and bromo; trifluoromethyl; nitro; sulfo; carboxyl; alkoxycarbonyl such as methoxycarbonyl and ethoxycarbonyl; Electron-withdrawing groups; alkyl such as methyl, ethyl and propyl; alkoxy such as methoxy and ethoxy; hydroxy; amino; mono
- the acidity of the hydroxyl group of silanol can be increased by using an electron withdrawing group as a substituent, and conversely, the acidity can be lowered by using an electron donating group, so that the curing activity can be controlled.
- the substituents may be different for each of the m Ars, but the substituents are preferably the same for the m Ars from the viewpoint of availability. Further, only some Ar may have a substituent, and other Ar may not have a substituent.
- phenyl group having a substituent examples include 2, 3, or 4-methylphenyl group; 2,6-dimethyl, 3,5-dimethyl, 2,4-dimethyl, 2,3-dimethyl, 2,5- Examples include dimethyl or 3,4-dimethylphenyl group; 2,4,6-trimethylphenyl group; 2 or 4-ethylphenyl group.
- triphenylsilanol or diphenylsilanediol is preferable. Particularly preferred is triphenylsilanol.
- the amount of the silane coupling agent in the aluminum chelate latent curing agent of the present invention is too small.
- the addition effect cannot be expected, and if it is too much, an influence of the polymerization termination reaction due to the silanolate anion generated from the silane coupling agent occurs, so 1 to 300 parts by mass, preferably 100 parts by mass with respect to 100 parts by mass of the aluminum chelate-based latent curing agent. Is 1 to 100 parts by mass.
- thermosetting epoxy resin composition of the present invention is an aluminum which is additionally filled with an aluminum chelating agent as a curing agent, and whose surface has an activity suppression treatment with an epoxyalkoxysilane coupling agent to improve the potential. Since a chelate-based latent curing agent is used, it is excellent in storage stability and solvent resistance in spite of being one-pack type.
- thermosetting epoxy resin composition can be cationically polymerized by low temperature rapid curing.
- thermosetting epoxy resin composition of the present invention contains an aluminum chelate-based latent curing agent produced by the production method of the present invention, an epoxy resin, and a silane compound.
- a preferred silane compound is triphenylsilanol
- a preferred epoxy resin is an alicyclic epoxy resin.
- thermosetting epoxy resin composition of the present invention is allowed to stand at room temperature for 48 hours even when an alicyclic epoxy resin, preferably 3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, is used as the epoxy resin.
- the subsequent increase in viscosity can be made twice or less the initial ratio.
- a solvent such as propylene glycol monomethyl ether acetate, the rate of increase in viscosity can be reduced to 20% or less of the initial ratio.
- Example 1 Particulate curing agent preparation step> (Preparation of aqueous phase) 800 parts by weight of distilled water, 0.05 part by weight of a surfactant (Nurex R, NOF Corporation), 4 parts by weight of polyvinyl alcohol (PVA-205, Kuraray Co., Ltd.) as a dispersant, The mixture was placed in a 3 liter interfacial polymerization vessel equipped with a meter and mixed uniformly to prepare an aqueous phase.
- a surfactant Nurex R, NOF Corporation
- PVA-205 polyvinyl alcohol
- the prepared oil phase is put into the previously prepared aqueous phase, emulsified and mixed with a homogenizer (10000 rpm / 5 min: T-50, IKA Japan Co., Ltd.), and then interfaced with stirring at 70 ° C. for 6 hours at 200 rpm. Polymerization was performed. After completion of the reaction, the polymerization reaction solution is allowed to cool to room temperature, and the generated interfacially polymerized resin particles are filtered off, washed by filtration with distilled water, and air-dried at room temperature for surface activity suppression treatment. No bulky curing agent was obtained. The massive curing agent was pulverized into primary particles using a pulverizer (AO jet mill, Seishin Corporation) to obtain a particulate curing agent.
- a homogenizer 10000 rpm / 5 min: T-50, IKA Japan Co., Ltd.
- thermosetting epoxy resin composition For DSC measurement by uniformly mixing 4 parts by mass of particulate curing agent, 80 parts by mass of bisphenol A type epoxy resin (EP828, Mitsubishi Chemical Corporation) and 8 parts by mass of triphenylsilanol (Tokyo Chemical Industry Co., Ltd.) A thermosetting epoxy resin composition was obtained.
- thermosetting epoxy resin composition was subjected to differential scanning calorimetry (DSC) using a differential thermal analyzer (DSC6200, Hitachi High-Tech Science Co., Ltd.) under the conditions of an evaluation amount of 5 mg and a heating rate of 10 ° C./min. went.
- thermogravimetry measurement a thermal analyzer (TG / DTA6200, Hitachi High-Tech Science Co., Ltd.) is used, and an evaluation amount of 5 mg is used in the same manner as DSC using a particulate curing agent.
- the measurement was performed under the condition of a temperature rising rate of 10 ° C./min.
- the obtained DSC chart is shown in FIG. 1
- the TG-DTA chart is shown in FIG.
- the start of heat generation coincided with the start of measurement
- the heat generation peak temperature was 89.9 ° C.
- the total heat generation amount was ⁇ 407 J / g.
- the weight reduction rate up to 260 ° C. was ⁇ 17.7%. From these results, when the compounding amount of the catalyst (aluminum chelating agent and triphenylsilanol) was doubled with respect to the monomer, the potential of the particulate curing agent could not be confirmed. In addition, a weight loss of about 18% of the total weight was observed. This indicates that the amount of catalyst (aluminum chelating agent and triphenylsilanol) retained in the particulate curing agent is about 18%.
- ⁇ Process B Aluminum chelating agent additional filling process> 15 parts by mass of the particulate curing agent obtained in step A is mixed with 12.5 parts by mass of an aluminum chelating agent (Aluminum Chelate D, Kawaken Fine Chemical Co., Ltd.) and another aluminum chelating agent (ALCH-TR, Kawaken Fine Chemical ( Co.) 25 parts by mass was put into an aluminum chelate solution dissolved in 62.5 parts by mass of ethyl acetate, and stirred at 80 ° C. for 9 hours at a stirring speed of 200 rpm while volatilizing ethyl acetate. After the stirring, the mixture was filtered and washed with cyclohexane to obtain a bulky curing agent.
- an aluminum chelating agent Aligninum Chelate D, Kawaken Fine Chemical Co., Ltd.
- ALCH-TR Kawaken Fine Chemical ( Co.) 25 parts by mass was put into an aluminum chelate solution dissolved in 62.5 parts by mass of ethy
- This bulk curing agent is vacuum-dried at 30 ° C. for 4 hours, and then crushed into primary particles using a crushing device (AO jet mill, Seishin Enterprise Co., Ltd.), so that an aluminum chelating agent is additionally filled. 11 parts by mass of the particulate curing agent thus obtained was obtained. The amount of ethyl acetate in the filtrate was the amount from which the original 90% was removed.
- thermosetting epoxy resin composition for DSC measurement was obtained with the same formulation as in Step A, except that a particulate curing agent additionally filled with an aluminum chelating agent was used.
- thermogravimetry Differential scanning calorimetry (DSC) and thermogravimetry measurement (TG-DTA) of particulate curing agent
- DSC differential scanning calorimetry
- TG-DTA thermogravimetric reduction measurement
- the heat generation start temperature was 77.5 ° C.
- the heat generation peak temperature was 96.7 ° C.
- the total heat generation amount was ⁇ 442 J / g. This indicates that the curing agent potential is improved. This is thought to be because triphenylsilanol in the curing agent was eluted in ethyl acetate.
- the weight reduction rate up to 260 ° C. was ⁇ 33.1%. Therefore, the amount of the catalyst (aluminum chelating agent and triphenylsilanol) held in the particulate curing agent is 33.1%, and the amount of filling increases from about 18% to about 33% through Step B. I understand that.
- ⁇ Process C Surface activity suppression treatment process> 30 parts by mass of the particulate curing agent additionally filled with an aluminum chelating agent obtained in Step B, and 240 parts by mass of an epoxyalkoxysilane coupling agent (KBM-303, Shin-Etsu Chemical Co., Ltd.) are added to 60 parts by mass of cyclohexane.
- the solution was poured into the dissolved solution and stirred at 30 ° C. for 8 hours at 200 rpm. During this stirring, the particulate curing agent is subjected to surface activity suppression treatment by forming a coating derived from the epoxy alkoxysilane coupling agent on the surface thereof.
- the mixture was filtered and washed with cyclohexane to obtain a bulky curing agent.
- This bulk curing agent is vacuum-dried at 30 ° C. for 4 hours, and then crushed into primary particles using a crushing device (AO jet mill, Seishin Enterprise Co., Ltd.), so that an aluminum chelating agent is additionally filled. And an aluminum chelate-based latent curing agent that was subjected to surface activity suppression treatment was obtained.
- particle size distribution measurement The particle size distribution of the aluminum chelate-based latent curing agent of Example 1 was measured using a laser particle size distribution measuring device (MT3300EXII, Nikkiso Co., Ltd.).
- FIG. 5 shows a particle size distribution chart. The average particle size was 5.5 ⁇ m and the CV value was 37.9%. Further, no aggregation peak of the curing agent was observed.
- FIG. 6A shows a 1000 times SEM photograph.
- FIG. 6B shows a 10,000 times SEM photograph. From these photographs, it can be seen that a good particle state free from foreign matters and aggregates is maintained even after the surface activity suppression treatment.
- DSC measurement By uniformly mixing 4 parts by mass of an aluminum chelate-based latent curing agent, 80 parts by mass of a bisphenol A type epoxy resin (EP828, Mitsubishi Chemical Corporation) and 8 parts by mass of triphenylsilanol (Tokyo Chemical Industry Co., Ltd.) A thermosetting epoxy resin composition for DSC measurement was obtained.
- thermosetting epoxy resin composition was subjected to thermal analysis (DSC) using a differential thermal analyzer (DSC6200, Hitachi High-Tech Science Co., Ltd.) with an evaluation amount of 5 mg and a temperature increase rate of 10 ° C./min.
- DSC differential thermal analyzer
- the exothermic start temperature was 77.5 ° C. before the surface activity suppression treatment to 82.5 ° C.
- the exothermic peak temperature was 96.7 ° C. before the surface activity suppression treatment.
- the temperature was 99.5 ° C.
- the total calorific value was ⁇ 442 J / g before the surface activity suppression treatment, which was ⁇ 411 J / g. From these results, it is understood that the heat generation start temperature and the heat generation peak temperature are shifted to the high temperature side by the surface activity suppression treatment.
- Geltime evaluation 100 parts by mass of an alicyclic epoxy compound (CEL2021P (3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate), Daicel Corporation), 5 parts by mass of triphenylsilanol (Tokyo Chemical Industry Co., Ltd.)
- a composition for gel time evaluation was prepared by uniformly mixing 2 parts by mass of the aluminum chelate-based latent curing agent of Example 1 that had been subjected to surface activity suppression treatment. 1 g of this composition was placed on the surface of a Shamal hot plate (HHP-412, ASONE Co., Ltd.) heated to 80 ° C.
- the aluminum chelate-based latent curing agent of the present invention exhibits good low-temperature rapid curability.
- Liquid life evaluation A gel time evaluation composition having the same composition as the gel time evaluation was prepared and used as a liquid life evaluation composition. Liquid life evaluation conditions were that the composition was allowed to stand at room temperature (aging), and the viscosity at 20 ° C. was measured using a vibrating viscometer (SV-10, A & D Co., Ltd.) after a predetermined time had elapsed. did. The obtained results are shown in Table 1 and FIG. 8 (Liquid Life Chart). From these results, the composition for liquid life evaluation containing a highly reactive alicyclic epoxy compound does not thicken even when stored for 48 hours, and has a good latent potential despite its low temperature rapid curability. It turns out that it shows sex.
- solvent resistance evaluation 6 parts by mass of an aluminum chelate latent curing agent, 60 parts by mass of a bisphenol A type epoxy resin (EP828, Mitsubishi Chemical Corporation), 6 parts by mass of triphenylsilanol (Tokyo Chemical Industry Co., Ltd.), and propylene glycol monomethyl ether acetate (PMA)
- a thermosetting epoxy resin composition for solvent resistance evaluation was obtained by uniformly mixing 20 parts by mass or 40 parts by mass.
- thermosetting epoxy resin composition is allowed to stand at room temperature (aging), and after a predetermined time has elapsed, the viscosity at 20 ° C. is measured using a vibration viscometer (SV-10, A & D Co., Ltd.). It was measured. The obtained results are shown in Table 2. From this result, it can be seen that when the liquid viscosity is equal to or higher than a predetermined value, good solvent resistance is exhibited. For example, when the initial liquid viscosity was about 266 cP, thickening could not be confirmed under the condition of standing at room temperature for 4 hours.
- the aluminum chelate-based latent curing agent of the present invention is additionally filled with an aluminum chelating agent and is subjected to surface activity suppression treatment, it exhibits excellent low-temperature rapid curing properties, one-part storage stability, and solvent resistance. . In particular, application to epoxy application systems that require solvent resistance becomes possible. Moreover, although it is excellent in low-temperature rapid-curing property as a cationic curing catalyst, it is excellent in liquid life with one liquid in the presence of an alicyclic epoxy compound. Since a large amount of the aluminum chelating agent can be held inside the curing agent, the amount added to the resin composition to be cured can be reduced. Therefore, it is useful as a curing agent for a thermosetting epoxy resin composition.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Epoxy Resins (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
アルミニウムキレート剤、シラン系化合物及び多官能イソシアネート化合物を揮発性有機溶剤に溶解または分散させて得た油相を、分散剤を含有する水相に投入しながら加熱撹拌することにより、多官能イソシアネート化合物を界面重合させ、それにより得られる多孔性樹脂にアルミニウムキレート剤及びシラン系化合物を保持させることにより粒子状硬化剤を調製する工程。
工程Aで得られた粒子状硬化剤を、アルミニウムキレート剤を揮発性有機溶剤に溶解させたアルミニウムキレート剤溶液に分散混合し、得られた分散混合物を撹拌しながら揮発性有機溶剤を除去することにより、粒子状硬化剤にアルミニウムキレート剤を追加充填する工程。
アルミニウムキレート剤が追加充填された粒子状硬化剤を、有機溶剤にエポキシアルコキシシランカップリング剤が溶解した溶液中に浸漬することにより、エポキシアルコキシシランカップリング剤で表面活性抑制処理し、それにより潜在化されたアルミニウムキレート系潜在性硬化剤を取得する工程。
アルミニウムキレート剤が、多官能イソシアネート化合物を界面重合させて得た多孔性樹脂に保持されている本発明のアルミニウムキレート系潜在性硬化剤の製造方法は、以下の工程(A)~(C)を有する。以下、工程毎に詳細に説明する。
まず、アルミニウムキレート剤、シラン系化合物及び多官能イソシアネート化合物を揮発性有機溶剤に溶解または分散させて得た油相を、分散剤を含有する水相に投入し、加熱(通常、混合物が30~90℃になるように加熱)しながら撹拌することにより、多官能イソシアネート化合物を界面重合させ、それにより得られる多孔性樹脂にアルミニウムキレート剤及びシラン系化合物を保持させることにより粒子状硬化剤を調製する。この粒子状硬化剤は、必要に応じて濾別し洗浄し乾燥した後、公知の解砕装置で一次粒子に解砕することができる。
この製造方法においては、まず、アルミニウムキレート剤、シラン系化合物及び多官能イソシアネート化合物を揮発性有機溶剤に溶解または分散させ、界面重合における油相を調製する。
水相は、分散剤を水に溶解したものである。分散剤としては、界面重合に用いられている公知の分散剤を使用することができる。例えば、ポリビニルアルコール(PVA)、カルボキシメチルセルロース、ゼラチン等、中でもポリビニルアルコール(PVA)を好ましく使用することができる。分散剤の使用量は、通常、水相の0.1~10.0質量%である。また、水として、脱塩及び蒸留処理した水を好ましく使用することができる。
次に、この製造方法においては、油相を水相に投入し、加熱撹拌することにより界面重合を行う。油相にラジカル重合性化合物およびラジカル重合開始剤が配合されている場合には、同時にラジカル重合も行う。これにより、多官能イソシアネート化合物由来の多孔性樹脂が生成し、それにアルミニウムキレート剤及びシラン系化合物が保持され、粒子状硬化剤が得られる。
油相に配合するアルミニウムキレート剤としては、式(1)に表される、3つのβ-ケトエノラート陰イオンがアルミニウムに配位した錯体化合物が挙げられる。
油相に配合する多官能イソシアネート化合物は、好ましくは一分子中に2個以上のイソシアネート基、好ましくは3個のイソシアネート基を有する化合物である。このような3官能イソシアネート化合物の更に好ましい例としては、トリメチロールプロパン1モルにジイソシアネート化合物3モルを反応させた式(2)のTMPアダクト体、ジイソシアネート化合物3モルを自己縮合させた式(3)のイソシアヌレート体、ジイソシアネート化合物3モルのうちの2モルから得られるジイソシアネートウレアに残りの1モルのジイソシアネートが縮合した式(4)のビュウレット体が挙げられる。
油相に配合することができるシラン系化合物は、特開2002-212537号公報の段落0007~0010に記載されているように、アルミニウムキレート系潜在性硬化剤に保持されているアルミニウムキレート剤と共働して熱硬化性樹脂(例えば、熱硬化性エポキシ樹脂)のカチオン重合を開始させる機能を有する。従って、このような、シラン系化合物を併用することにより、エポキシ樹脂の硬化を促進するという効果が得られる。このようなシラン系化合物としては、高立体障害性のシラノール化合物や、分子中に1~3の低級アルコキシ基を有するシランカップリング剤等を挙げることができる。なお、シランカップリング剤の分子中に熱硬化性樹脂の官能基に対して反応性を有する基、例えば、ビニル基、スチリル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、アミノ基、メルカプト基等を有していてもよいが、アミノ基やメルカプト基を有するカップリング剤は、本発明の潜在性硬化剤がカチオン型硬化剤であるため、アミノ基やメルカプト基が発生カチオン種を実質的に捕捉しない場合に使用することができる。
また、油相に配合することができるラジカル重合性化合物は、多官能イソシアネート化合物の界面重合の際に、同時にラジカル重合し、マイクロカプセル壁となる多孔性樹脂の機械的性質を改善する。これにより、エポキシ樹脂の硬化時の熱応答性、特に低温領域でシャープな熱応答性を実現することができる。この理由は明確ではないが、界面重合とラジカル重合とが同時に生じ、多孔性樹脂中に相分離構造が形成され、その結果、イソシアネート化合物の単独重合系よりもポリウレア-ウレタン部位の架橋密度が小さくなるからであると考えられる。
油相に配合することができるラジカル重合開始剤としては、多官能イソシアネート化合物の界面重合条件下で、ラジカル重合を開始させることができるものであり、例えば、過酸化物系開始剤、アゾ系開始剤等を使用することができる。
次に、工程Aで得られた粒子状硬化剤を、アルミニウムキレート剤を揮発性有機溶剤に溶解させたアルミニウムキレート剤溶液に分散混合し、得られた分散混合物を撹拌しながら揮発性有機溶剤を除去することにより、粒子状硬化剤にアルミニウムキレート剤を追加充填する。揮発性溶剤を除去することにより、アルミニウムキレート剤溶液中のアルミニウムキレート剤の濃度が上昇し、結果的に、粒子状硬化剤の多孔性樹脂の孔中に保持されるアルミニウムキレート剤の量が増加する。なお、アルミニウムキレート剤が追加充填された粒子状硬化剤は、必要に応じて濾別し洗浄し乾燥した後、公知の解砕装置で一次粒子に解砕することができる。
次に、アルミニウムキレート剤が追加充填された粒子状硬化剤を、有機溶剤にエポキシアルコキシシランカップリング剤が溶解した溶液中に浸漬することにより、エポキシアルコキシシランカップリング剤で表面活性抑制処理し、それにより潜在化されたアルミニウムキレート系潜在性硬化剤を取得する。浸漬の際に撹拌してもよい。具体的には、アルミニウムキレート剤が追加充填された粒子状硬化剤を、有機溶剤、好ましくは非極性溶剤、特にシクロヘキサンにエポキシアルコキシシランカップリング剤を好ましくは5~80%(質量)で溶解させた溶液に、25~80℃で1~20時間浸漬することにより表面活性抑制処理を行い潜在化させる。これにより、表面に活性抑制処理が施されたアルミニウムキレート系潜在性硬化剤が得られる。得られたアルミニウムキレート系潜在性硬化剤は、必要に応じて濾別し洗浄し乾燥した後、公知の解砕装置で一次粒子に解砕することができる。
本発明において、表面活性抑制処理に使用するエポキシアルコキシシランカップリング剤は、粒子状硬化剤の表面の活性なアルミニウムキレート剤に、分子内のエポキシ基を反応させて生成したエポキシ重合鎖で表面を被覆して活性を低下させることができる。このエポキシタイプのシランカップリング剤の具体例としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(KBM-303、信越化学工業(株))等の脂環式エポキシシランカップリング剤、3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株))等のグリシジルオキシシランカップリング剤を挙げることができる。中でも、室温~40℃の比較的低温で重合被膜を形成可能である点から脂環式エポキシシランカップリング剤が好ましい。
本発明のアルミニウムキレート系潜在性硬化剤は、エポキシ樹脂およびシラン系化合物に添加することにより、低温速硬化性の熱硬化型エポキシ樹脂組成物を提供することができる。このような熱硬化型エポキシ樹脂組成物も本発明の一部である。
<工程A:粒子状硬化剤調製工程>
(水相の調製)
蒸留水800質量部と、界面活性剤(ニューレックスR、日油(株))0.05質量部と、分散剤としてポリビニルアルコール(PVA-205、(株)クラレ)4質量部とを、温度計を備えた3リットルの界面重合容器に入れ、均一に混合し水相を調製した。
次に、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株))80質量部と、多官能イソシアネート化合物としてメチレンジフェニル-4,4´-ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D-109、三井化学(株))80質量部と、トリフェニルシラノール(東京化成工業(株))80質量部とを、酢酸エチル120質量部に溶解した油相を調製した。
調製した油相を、先に調製した水相に投入し、ホモジナイザー(10000rpm/5分:T-50、IKAジャパン(株))で乳化混合後、70℃で6時間、200rpmで撹拌しながら界面重合を行った。反応終了後、重合反応液を室温まで放冷し、生成した界面重合樹脂粒子を濾過により濾別し、蒸留水で濾過洗浄し、室温下で自然乾燥することにより表面活性抑制処理が施されていない塊状の硬化剤を得た。この塊状の硬化剤を、解砕装置(A-Oジェットミル、(株)セイシン企業)を用いて一次粒子に解砕することにより粒子状硬化剤を得た。
この熱硬化型エポキシ樹脂組成物を、示差熱分析装置(DSC6200、(株)日立ハイテクサイエンス)を用いて、評価量5mg、昇温速度10℃/minという条件で示差走査熱量測定(DSC)を行った。また、熱重量減少測定(TG-DTA)の場合は、熱分析装置(TG/DTA6200、(株)日立ハイテクサイエンス)を使用し、粒子状硬化剤を直接用いて、DSCと同様に評価量5mg、昇温速度10℃/minという条件で測定を行った。得られたDSCチャートを図1に、TG-DTAチャートを図2に示す。
工程Aで得られた粒子状硬化剤15質量部を、アルミニウムキレート剤(アルミキレートD、川研ファインケミカル(株))12.5質量部と別のアルミニウムキレート剤(ALCH-TR、川研ファインケミカル(株))25質量部とを酢酸エチル62.5質量部に溶解させたアルミニウムキレート系溶液に投入し、80℃で9時間、酢酸エチルを揮散させながら200rpmの撹拌速度で撹拌した。撹拌終了後、濾過処理し、シクロヘキサンで洗浄することにより塊状の硬化剤を得た。この塊状の硬化剤を、30℃で4時間真空乾燥した後、解砕装置(A-Oジェットミル、(株)セイシン企業)を用いて一次粒子に解砕することによりアルミニウムキレート剤が追加充填された粒子状硬化剤11質量部を得た。なお、濾液中の酢酸エチル量は、当初の90%が除去された量であった。
この熱硬化型エポキシ樹脂組成物を、工程Aと同様の条件で示差走査熱量測定(DSC)を行った。また、粒子状硬化剤を直接用いて、工程Aと同様の条件で熱重量減少測定(TG-DTA)を行った。得られたDSCチャートを図3に、TG-DTAチャートを図4に示す。
工程Bで得た、アルミニウムキレート剤が追加充填された粒子状硬化剤30質量部を、シクロヘキサン60質量部にエポキシアルコキシシランカップリング剤(KBM-303、信越化学工業(株))240質量部が溶解した溶液中に投入し、30℃で8時間、200rpmで撹拌した。この撹拌中に、粒子状硬化剤は、その表面でエポキシアルコキシシランカップリング剤由来の被膜が形成され、表面活性抑制処理される。撹拌終了後、濾過処理し、シクロヘキサンで洗浄することにより塊状の硬化剤を得た。この塊状の硬化剤を、30℃で4時間真空乾燥した後、解砕装置(A-Oジェットミル、(株)セイシン企業)を用いて一次粒子に解砕することによりアルミニウムキレート剤が追加充填され且つ表面活性抑制処理されたアルミニウムキレート系潜在性硬化剤を得た。
実施例1で得られたアルミニウムキレート系潜在性硬化剤について、以下に説明するように「粒度分布測定」、「電子顕微鏡観察」、「ゲルタイム評価」、「DSC測定」、「液ライフ評価」、「耐溶剤性評価」、を行った。
実施例1のアルミニウムキレート系潜在性硬化剤の粒度分布を、レーザー式粒度分布測定装置(MT3300EXII、日機装(株))を用いて測定した。図5に粒度分布チャートを示す。平均粒子径は5.5μmであり、CV値は37.9%であった。また、硬化剤の凝集ピークは観察されなかった。
走査型電子顕微鏡(JSM-6510A、日本電子(株))を用いて、実施例1のアルミニウムキレート系潜在性硬化剤の電子顕微鏡写真を取得した。図6Aに1000倍のSEM写真を示す。図6Bに10000倍のSEM写真を示す。これらの写真から、表面活性抑制処理後も、異物や凝集物がない良好な粒子状態が保持されていることがわかる。
アルミニウムキレート系潜在性硬化剤4質量部、ビスフェノールA型エポキシ樹脂(EP828、三菱化学(株))80質量部およびトリフェニルシラノール(東京化成工業(株))8質量部を均一に混合することによりDSC測定用の熱硬化型エポキシ樹脂組成物を得た。
脂環式エポキシ化合物(CEL2021P(3',4'-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート)、(株)ダイセル)100質量部、トリフェニルシラノール(東京化成工業(株))5質量部、表面活性抑制処理された実施例1のアルミニウムキレート系潜在性硬化剤2質量部とを均一に混合することによりゲルタイム評価用組成物を調製した。この組成物1gを、80℃又は100℃に加温したシャマルホットプレート(HHP-412、アズワン(株))のプレート表面に載せ、ゲル化するまでの時間(ゲルタイム)を測定した。その結果、80℃でのゲルタイムは30秒であり、100℃でのゲルタイムは8秒であった。この結果から、本発明のアルミニウムキレート系潜在性硬化剤は、良好な低温速硬化性を示すことがわかる。
ゲルタイム評価と同じ配合のゲルタイム評価用組成物を調製し、液ライフ評価用組成物として使用した。液ライフ評価条件は、組成物を室温下に放置(エージング)し、所定の時間経過後に振動式粘度計(SV-10、(株)エー・アンド・デイ)を用いて20℃の粘度を測定した。得られた結果を表1と図8(液ライフチャート)を示す。これらの結果から、高反応性の脂環式エポキシ化合物を含んでいる液ライフ評価用組成物は、48時間保管しても増粘せず、低温速硬化性を示すにも拘わらず良好な潜在性を示すことがわかる。
アルミニウムキレート系潜在性硬化剤6質量部、ビスフェノールA型エポキシ樹脂(EP828、三菱化学(株))60質量部、トリフェニルシラノール(東京化成工業(株))6質量部、及びプロピレングリコールモノメチルエーテルアセテート(PMA)20質量部又は40質量部を均一に混合することにより耐溶剤性評価用の熱硬化型エポキシ樹脂組成物を得た。
Claims (13)
- アルミニウムキレート剤及びシラン系化合物が、多官能イソシアネート化合物を界面重合させて得た多孔性樹脂に保持されているアルミニウムキレート系潜在性硬化剤の製造方法であって、以下の工程(A)~(C)
(工程A:粒子状硬化剤調製工程)
アルミニウムキレート剤、シラン系化合物及び多官能イソシアネート化合物を揮発性有機溶剤に溶解または分散させて得た油相を、分散剤を含有する水相に投入しながら加熱撹拌することにより、多官能イソシアネート化合物を界面重合させ、それにより得られる多孔性樹脂にアルミニウムキレート剤及びシラン系化合物を保持させることにより粒子状硬化剤を調製する工程;
(工程B:アルミニウムキレート剤追加充填工程)
工程Aで得られた粒子状硬化剤を、アルミニウムキレート剤を揮発性有機溶剤に溶解させたアルミニウムキレート剤溶液に分散混合し、得られた分散混合物を撹拌しながら揮発性有機溶剤を除去することにより、粒子状硬化剤にアルミニウムキレート剤を追加充填する工程;及び
(工程C:表面活性抑制処理工程)
アルミニウムキレート剤が追加充填された粒子状硬化剤を、有機溶剤にエポキシアルコキシシランカップリング剤が溶解した溶液中に浸漬することにより、エポキシアルコキシシランカップリング剤で表面活性抑制処理し、それにより潜在化されたアルミニウムキレート系潜在性硬化剤を取得する工程
を有することを特徴とする製造方法。 - シラン系化合物が、トリフェニルシラノールである請求項1記載の製造方法。
- 工程Bにおける揮発性有機溶剤の除去が、分散混合物を揮発性有機溶剤の沸点以上に加熱することにより行われる請求項1記載の製造方法。
- エポキシアルコキシシランカップリング剤が、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン又は3-グリシドキシプロピルトリメトキシシランである請求項3記載の製造方法。
- 工程Aにおける油相に、ラジカル重合性化合物とラジカル重合開始剤とが配合されている請求項1~4のいずれかに記載の製造方法。
- 工程Aにおける油相中のアルミニウムキレート剤の含有量が、多官能イソシアネート化合物100質量部に対し、10~500質量部である請求項1~4のいずれかに記載の製造方法。
- 請求項1~6のいずれかに記載の製造方法で製造されたアルミニウムキレート系潜在性硬化剤と、エポキシ樹脂と、シラン系化合物とを含有する熱硬化型エポキシ樹脂組成物。
- シラン系化合物が、トリフェニルシラノールである請求項7記載の熱硬化型エポキシ樹脂組成物。
- エポキシ樹脂が脂環式エポキシ樹脂であり、室温48時間放置後の粘度上昇が初期比2倍以下である請求項7記載の熱硬化型エポキシ樹脂組成物。
- 脂環式エポキシ樹脂が3',4'-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレートである請求項9記載の熱硬化型エポキシ樹脂組成物。
- 溶剤存在下で室温4時間放置後の粘度上昇率が初期比20%以下である請求項7~10のいずれかに記載の熱硬化型エポキシ樹脂組成物。
- 溶剤配合後の液粘度が200cP以上である請求項11記載の熱硬化型エポキシ樹脂組成物。
- 溶剤がプロピレングリコールモノメチルエーテルアセテートである請求項12記載の熱硬化型エポキシ樹脂組成物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/061,153 US10626215B2 (en) | 2015-12-17 | 2016-10-12 | Process for producing aluminum-chelate-based latent curing agent, and thermosetting epoxy resin composition |
KR1020187004249A KR102036751B1 (ko) | 2015-12-17 | 2016-10-12 | 알루미늄 킬레이트계 잠재성 경화제의 제조 방법 및 열경화형 에폭시 수지 조성물 |
JP2017556385A JP6875999B2 (ja) | 2015-12-17 | 2016-10-12 | アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物 |
CN201680064082.3A CN109071781B (zh) | 2015-12-17 | 2016-10-12 | 铝螯合物系潜伏性固化剂的制造方法和热固型环氧树脂组合物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015245994 | 2015-12-17 | ||
JP2015-245994 | 2015-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017104244A1 true WO2017104244A1 (ja) | 2017-06-22 |
Family
ID=59056052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/080275 WO2017104244A1 (ja) | 2015-12-17 | 2016-10-12 | アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10626215B2 (ja) |
JP (1) | JP6875999B2 (ja) |
KR (1) | KR102036751B1 (ja) |
CN (1) | CN109071781B (ja) |
TW (1) | TWI709586B (ja) |
WO (1) | WO2017104244A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017222782A (ja) * | 2016-06-15 | 2017-12-21 | デクセリアルズ株式会社 | 潜在性硬化剤、及びその製造方法、並びに熱硬化型エポキシ樹脂組成物 |
CN111788247A (zh) * | 2018-01-12 | 2020-10-16 | 味之素株式会社 | 被覆粒子 |
WO2022176608A1 (ja) * | 2021-02-19 | 2022-08-25 | デクセリアルズ株式会社 | カチオン硬化剤及びその製造方法、並びにカチオン硬化性組成物 |
WO2023095601A1 (ja) * | 2021-11-29 | 2023-06-01 | デクセリアルズ株式会社 | 潜在性硬化剤及びその製造方法、並びに硬化性組成物 |
KR20230107664A (ko) | 2020-12-21 | 2023-07-17 | 데쿠세리아루즈 가부시키가이샤 | 경화제 및 그 제조방법, 경화용 조성물 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7221075B2 (ja) * | 2019-02-15 | 2023-02-13 | デクセリアルズ株式会社 | 潜在性硬化剤及びその製造方法、並びにカチオン硬化性組成物 |
WO2021039480A1 (ja) * | 2019-08-26 | 2021-03-04 | デクセリアルズ株式会社 | カチオン硬化剤及びその製造方法、並びにカチオン硬化性組成物 |
JP7520609B2 (ja) * | 2019-08-26 | 2024-07-23 | デクセリアルズ株式会社 | カチオン硬化剤及びその製造方法、並びにカチオン硬化性組成物 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009197206A (ja) * | 2008-01-25 | 2009-09-03 | Sony Chemical & Information Device Corp | 熱硬化型エポキシ樹脂組成物 |
JP2009221465A (ja) * | 2008-02-18 | 2009-10-01 | Sony Chemical & Information Device Corp | アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物 |
JP2010168449A (ja) * | 2009-01-21 | 2010-08-05 | Sony Chemical & Information Device Corp | アルミニウムキレート系潜在性硬化剤及びその製造方法 |
JP2011137117A (ja) * | 2009-12-30 | 2011-07-14 | Sony Chemical & Information Device Corp | 電気装置及びそれに用いるエポキシ樹脂組成物 |
WO2016024471A1 (ja) * | 2014-08-11 | 2016-02-18 | デクセリアルズ株式会社 | アルミニウムキレート系潜在性硬化剤及びその製造方法 |
WO2016039193A1 (ja) * | 2014-09-09 | 2016-03-17 | デクセリアルズ株式会社 | アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002212537A (ja) | 2001-01-24 | 2002-07-31 | Sony Chem Corp | 接着剤及び電気装置 |
JP4811555B2 (ja) * | 2005-01-12 | 2011-11-09 | ソニーケミカル&インフォメーションデバイス株式会社 | 潜在性硬化剤 |
JP5481013B2 (ja) | 2006-12-26 | 2014-04-23 | デクセリアルズ株式会社 | 潜在性硬化剤粒子の製造方法、接着剤製造方法 |
JP5360378B2 (ja) | 2009-02-12 | 2013-12-04 | デクセリアルズ株式会社 | 潜在性硬化剤の製造方法、及び接着剤の製造方法 |
JP5481995B2 (ja) * | 2009-07-24 | 2014-04-23 | デクセリアルズ株式会社 | アルミニウムキレート系潜在性硬化剤及びそれらの製造方法 |
-
2016
- 2016-10-12 CN CN201680064082.3A patent/CN109071781B/zh active Active
- 2016-10-12 WO PCT/JP2016/080275 patent/WO2017104244A1/ja active Application Filing
- 2016-10-12 US US16/061,153 patent/US10626215B2/en active Active
- 2016-10-12 KR KR1020187004249A patent/KR102036751B1/ko active IP Right Grant
- 2016-10-12 JP JP2017556385A patent/JP6875999B2/ja active Active
- 2016-10-17 TW TW105133416A patent/TWI709586B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009197206A (ja) * | 2008-01-25 | 2009-09-03 | Sony Chemical & Information Device Corp | 熱硬化型エポキシ樹脂組成物 |
JP2009221465A (ja) * | 2008-02-18 | 2009-10-01 | Sony Chemical & Information Device Corp | アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物 |
JP2010168449A (ja) * | 2009-01-21 | 2010-08-05 | Sony Chemical & Information Device Corp | アルミニウムキレート系潜在性硬化剤及びその製造方法 |
JP2011137117A (ja) * | 2009-12-30 | 2011-07-14 | Sony Chemical & Information Device Corp | 電気装置及びそれに用いるエポキシ樹脂組成物 |
WO2016024471A1 (ja) * | 2014-08-11 | 2016-02-18 | デクセリアルズ株式会社 | アルミニウムキレート系潜在性硬化剤及びその製造方法 |
WO2016039193A1 (ja) * | 2014-09-09 | 2016-03-17 | デクセリアルズ株式会社 | アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017222782A (ja) * | 2016-06-15 | 2017-12-21 | デクセリアルズ株式会社 | 潜在性硬化剤、及びその製造方法、並びに熱硬化型エポキシ樹脂組成物 |
CN111788247A (zh) * | 2018-01-12 | 2020-10-16 | 味之素株式会社 | 被覆粒子 |
CN111788247B (zh) * | 2018-01-12 | 2023-07-18 | 味之素株式会社 | 被覆粒子 |
KR20230107664A (ko) | 2020-12-21 | 2023-07-17 | 데쿠세리아루즈 가부시키가이샤 | 경화제 및 그 제조방법, 경화용 조성물 |
WO2022176608A1 (ja) * | 2021-02-19 | 2022-08-25 | デクセリアルズ株式会社 | カチオン硬化剤及びその製造方法、並びにカチオン硬化性組成物 |
WO2023095601A1 (ja) * | 2021-11-29 | 2023-06-01 | デクセリアルズ株式会社 | 潜在性硬化剤及びその製造方法、並びに硬化性組成物 |
Also Published As
Publication number | Publication date |
---|---|
US10626215B2 (en) | 2020-04-21 |
CN109071781A (zh) | 2018-12-21 |
US20180371155A1 (en) | 2018-12-27 |
KR102036751B1 (ko) | 2019-10-25 |
JPWO2017104244A1 (ja) | 2018-10-18 |
TWI709586B (zh) | 2020-11-11 |
KR20180030117A (ko) | 2018-03-21 |
JP6875999B2 (ja) | 2021-05-26 |
TW201736428A (zh) | 2017-10-16 |
CN109071781B (zh) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017104244A1 (ja) | アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物 | |
JP6489494B2 (ja) | アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物 | |
JP5458596B2 (ja) | アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物 | |
JP5321082B2 (ja) | アルミニウムキレート系潜在性硬化剤及びその製造方法 | |
JP5707662B2 (ja) | 熱硬化型エポキシ樹脂組成物 | |
JP5481995B2 (ja) | アルミニウムキレート系潜在性硬化剤及びそれらの製造方法 | |
TWI717525B (zh) | 熱硬化型環氧基樹脂組成物、及其製造方法 | |
JP5664366B2 (ja) | 熱潜在性硬化剤及びその製造方法並びに熱硬化型エポキシ樹脂組成物 | |
WO2017217275A1 (ja) | 潜在性硬化剤、及びその製造方法、並びに熱硬化型エポキシ樹脂組成物 | |
JP6323247B2 (ja) | アルミニウムキレート系潜在性硬化剤及びその製造方法 | |
JP2017101164A (ja) | アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物 | |
JP7028280B2 (ja) | アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物 | |
JP5354192B2 (ja) | 熱硬化型導電ペースト組成物 | |
JP7097665B2 (ja) | アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物 | |
JP6915671B2 (ja) | アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16875229 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017556385 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187004249 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16875229 Country of ref document: EP Kind code of ref document: A1 |