WO2016039193A1 - アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物 - Google Patents

アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物 Download PDF

Info

Publication number
WO2016039193A1
WO2016039193A1 PCT/JP2015/074610 JP2015074610W WO2016039193A1 WO 2016039193 A1 WO2016039193 A1 WO 2016039193A1 JP 2015074610 W JP2015074610 W JP 2015074610W WO 2016039193 A1 WO2016039193 A1 WO 2016039193A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing agent
aluminum chelate
latent curing
based latent
epoxy resin
Prior art date
Application number
PCT/JP2015/074610
Other languages
English (en)
French (fr)
Inventor
和伸 神谷
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020167036606A priority Critical patent/KR102331383B1/ko
Priority to CN201580045273.0A priority patent/CN106661202B/zh
Priority to US15/509,025 priority patent/US10093769B2/en
Publication of WO2016039193A1 publication Critical patent/WO2016039193A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4261Macromolecular compounds obtained by reactions involving only unsaturated carbon-to-carbon bindings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/188Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using encapsulated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/70Chelates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the present invention relates to an aluminum chelate latent curing agent in which an aluminum chelate curing agent is held by a porous resin among curing agents for curing a thermosetting epoxy resin.
  • Patent Document 1 Aluminum having an aluminum chelate-based curing agent retained on porous resin particles obtained by interfacial polymerization of a polyfunctional isocyanate compound and radical polymerization of a radical polymerizable compound as a curing agent exhibiting low temperature rapid curing activity for epoxy resins A chelate-based latent curing agent has been proposed (Patent Document 1).
  • the aluminum chelate-based curing agent present on the surface of the particulate aluminum chelate-based latent curing agent disclosed in Patent Document 1 reacts with water present during the interfacial polymerization of the polyfunctional isocyanate compound, and deactivates. Not all aluminum chelate curing agents present on the surface are completely deactivated. For this reason, a one-component thermosetting epoxy resin composition in which such an aluminum chelate-based latent curing agent is blended with a general-purpose glycidyl ether type epoxy resin is stored at room temperature (20 to 35 ° C.).
  • thermosetting epoxy resin composition blended with an alicyclic epoxy resin that exhibits extremely high cationic polymerization is stable at room temperature. There was a problem that sex was not enough.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and an aluminum chelate is added to porous resin particles obtained by interfacial polymerization of a polyfunctional isocyanate compound and radical polymerization of a radical polymerizable compound.
  • a one-component thermosetting epoxy resin composition is prepared by blending an aluminum chelate-based latent curing agent holding a system curing agent with an alicyclic epoxy resin exhibiting very high cationic polymerizability
  • An object of the present invention is to provide an aluminum chelate-based latent curing agent that can exhibit good storage stability at room temperature without impairing the low-temperature rapid curability of the resin composition.
  • the inventor can deactivate the aluminum chelate curing agent present on the surface almost completely by inactivating the surface of the particulate aluminum chelate latent curing agent with an alkoxysilane coupling agent.
  • a one-component thermosetting type obtained by blending an aluminum chelate-based latent curing agent surface-inactivated with an alkoxysilane coupling agent into an alicyclic epoxy resin exhibiting extremely high cationic polymerization
  • the present inventors have found that the epoxy resin composition exhibits good storage stability at room temperature without impairing the low temperature rapid curability, and have completed the present invention.
  • the present invention is an aluminum chelate-based latent curing agent for curing a thermosetting epoxy resin
  • An aluminum chelate-based curing agent is held in a porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound and radical polymerization of a radical polymerizable compound in the presence of a radical polymerization initiator
  • an aluminum chelate-based latent curing agent which is surface-inactivated with an alkoxysilane coupling agent.
  • the present invention is a method for producing the above-mentioned aluminum chelate-based latent curing agent, Heating an oil phase obtained by dissolving or dispersing an aluminum chelate curing agent, a polyfunctional isocyanate compound, a radical polymerizable compound and a radical polymerization initiator in a volatile organic solvent into an aqueous phase containing the dispersant.
  • the polyfunctional isocyanate compound is interfacially polymerized and at the same time the radical polymerizable compound is radically polymerized, and the resulting porous resin holds the aluminum chelate curing agent, and then the alkoxysilane cup is added to the organic solvent.
  • a production method characterized in that surface inactivation treatment is carried out with an alkoxysilane coupling agent by immersing it in a solution in which the ring agent is dissolved.
  • thermosetting epoxy resin composition containing the above-described aluminum chelate-based latent curing agent, an epoxy resin, and a silane compound.
  • an aluminum chelate-based curing agent capable of curing an epoxy resin is obtained by simultaneously subjecting a mixture of a polyfunctional isocyanate compound and a radical polymerizable compound to interfacial polymerization and radical polymerization, respectively.
  • the obtained porous resin is held.
  • the porous resin wall microcapsule wall
  • the aluminum chelate-based latent curing agent can exhibit sharp thermal responsiveness in a low temperature region.
  • the surface of the particulate aluminum chelate-based latent curing agent is inactivated with an alkoxysilane coupling agent, and the aluminum chelate-based curing agent remaining on the surface is inactivated.
  • a one-component thermosetting epoxy resin composition obtained by blending the aluminum chelate-based latent curing agent of the present invention with an alicyclic epoxy resin exhibiting a very high cationic polymerizability is good at room temperature. Storage stability can be realized.
  • FIG. 1 is a DSC chart of thermosetting epoxy resin compositions using the aluminum chelate-based latent curing agents of Examples 1 and 2 and Comparative Example 1.
  • FIG. 2 is a DSC chart of a thermosetting epoxy resin composition using the aluminum chelate-based latent curing agent of Examples 2 to 4.
  • FIG. 3 is a DSC chart of a thermosetting epoxy resin composition using the aluminum chelate-based latent curing agent of Comparative Example 2 and Examples 5 and 6.
  • 4 is a DSC chart of a thermosetting epoxy resin composition using the aluminum chelate latent curing agent of Comparative Example 2 and Example 7.
  • FIG. FIG. 5 is an electron micrograph (5000 magnifications) of the aluminum chelate-based latent curing agent of Example 6.
  • 6 is an electron micrograph (5000 magnifications) of the aluminum chelate-based latent curing agent of Example 7.
  • FIG. 5 is an electron micrograph (5000 magnifications) of the aluminum chelate-based latent curing agent of Example 6.
  • the aluminum chelate-based latent curing agent of the present invention is a porous product obtained by radically polymerizing a radical polymerizable compound in the presence of a radical polymerization initiator at the same time that the aluminum chelate-based curing agent is interfacially polymerized with a polyfunctional isocyanate compound. It is held by the functional resin. More specifically, it is not a microcapsule having a simple structure in which a core of an aluminum chelate curing agent is covered with a porous resin shell, but an aluminum chelate system in a large number of fine pores existing in a porous resin matrix. It has a structure in which a curing agent is held. In addition, the surface is inactivated with an alkoxysilane coupling agent.
  • the aluminum chelate-based latent curing agent of the present invention is produced mainly using an interfacial polymerization method, the shape thereof is spherical, and the particle size is preferably 0.5 from the viewpoint of curability and dispersibility. In addition, the pore size is preferably 5 to 150 nm from the viewpoint of curability and latency.
  • the aluminum chelate-based latent curing agent has a tendency to decrease if the degree of crosslinking of the porous resin to be used is too small, and if too large, the thermal responsiveness tends to decrease. It is preferable to use a porous resin whose degree of crosslinking is adjusted. Here, the degree of crosslinking of the porous resin can be measured by a micro compression test.
  • the aluminum chelate-based latent curing agent does not substantially contain an organic solvent used at the time of interfacial polymerization, specifically, 1 ppm or less.
  • the aluminum chelate-based latent curing agent Prior to the surface deactivation treatment, the aluminum chelate-based latent curing agent is immersed in a high-concentration aluminum chelate-based curing agent solution, then filtered and dried to increase the concentration of the aluminum chelate-based curing agent. You can also keep it.
  • the compounding amount of the aluminum chelate-based curing agent with respect to the porous resin in the aluminum chelate-based latent curing agent is such that if the amount of the aluminum chelate-based curing agent is too small, the curability of the epoxy resin to be cured decreases, If the amount is too high, the potential of the aluminum chelate-based latent curing agent is lowered. Therefore, the aluminum chelate-based curing agent is preferably used with respect to 100 parts by mass of the polyfunctional isocyanate compound and the radical polymerizable compound constituting the porous resin. The amount is 10 to 200 parts by mass, more preferably 10 to 150 parts by mass.
  • the aluminum chelate-based curing agent constituting the aluminum chelate-based latent curing agent of the present invention includes a complex compound in which three ⁇ -keto enolate anions are coordinated to aluminum represented by the formula (1). It is done.
  • R 1 , R 2 and R 3 are each independently an alkyl group or an alkoxyl group.
  • the alkyl group include a methyl group and an ethyl group.
  • the alkoxyl group include a methoxy group, an ethoxy group, and an oleyloxy group.
  • aluminum chelate curing agent represented by the formula (1) examples include aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), aluminum monoacetylacetonate bis (ethylacetoacetate), and aluminum monoacetyl.
  • aluminum tris acetylacetonate
  • aluminum tris ethylacetoacetate
  • aluminum monoacetylacetonate bis ethylacetoacetate
  • aluminum monoacetyl aluminum monoacetyl.
  • examples include acetonate bisoleyl acetoacetate, ethyl acetoacetate aluminum diisopropylate, and alkyl acetoacetate aluminum diisopropylate.
  • the polyfunctional isocyanate compound for constituting the porous resin is preferably a compound having two or more isocyanate groups, preferably three isocyanate groups in one molecule.
  • a trifunctional isocyanate compound a TMP adduct of formula (2) obtained by reacting 3 mol of a diisocyanate compound with 1 mol of trimethylolpropane, and a formula (3) obtained by self-condensing 3 mol of a diisocyanate compound.
  • An isocyanurate of formula (4) and a biuret of formula (4) obtained by condensing the remaining 1 mol of diisocyanate with diisocyanate urea obtained from 2 mol of 3 mol of diisocyanate compound.
  • the substituent R is a portion excluding the isocyanate group of the diisocyanate compound.
  • diisocyanate compounds include toluene 2,4-diisocyanate, toluene 2,6-diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, hexahydro-m-xylylene diisocyanate, isophorone diisocyanate, methylene diphenyl-4. 4,4'-diisocyanate and the like.
  • the radical polymerizable compound which is another component for constituting the porous resin is a mechanical property of the porous resin which simultaneously undergoes radical polymerization during the interfacial polymerization of the polyfunctional isocyanate compound and becomes a microcapsule wall.
  • region are realizable.
  • interfacial polymerization and radical polymerization occur at the same time, and a phase separation structure is formed in the porous resin.
  • the crosslink density of the polyurea-urethane moiety is smaller than the homopolymerization system of the isocyanate compound. This is considered to be because.
  • Such a radically polymerizable compound preferably has one or more carbon-carbon unsaturated bonds in the molecule, and includes so-called monofunctional radically polymerizable compounds and polyfunctional radically polymerizable compounds.
  • the radical polymerizable compound preferably contains a polyfunctional radical polymerizable compound. This is because by using a polyfunctional radically polymerizable compound, it becomes easier to realize sharp thermal responsiveness in a low temperature region. Also in this sense, the radical polymerizable compound preferably contains a polyfunctional radical polymerizable compound at least 30% by mass or more, more preferably at least 50% by mass or more.
  • Examples of the monofunctional radical polymerizable compound include monofunctional vinyl compounds such as styrene and methylstyrene, and monofunctional (meth) acrylate compounds such as butyl acrylate.
  • Examples of the polyfunctional radical polymerizable compound include polyfunctional vinyl compounds such as divinylbenzene, and polyfunctional (meth) acrylate compounds such as 1,6-hexanediol diacrylate and trimethylolpropane triacrylate. Of these, polyfunctional vinyl compounds, particularly divinylbenzene, can be preferably used from the viewpoints of latency and heat responsiveness.
  • the polyfunctional radically polymerizable compound may be composed of a polyfunctional vinyl compound and a polyfunctional (meth) acrylate compound.
  • the radical polymerization initiator used in the present invention is one capable of initiating radical polymerization under the interfacial polymerization conditions of the polyfunctional isocyanate compound.
  • a peroxide initiator, an azo initiator, etc. Can be used.
  • a porous resin obtained by radically polymerizing a radically polymerizable compound in the presence of a radical polymerization initiator simultaneously with interfacial polymerization of a polyfunctional isocyanate compound has a portion of isocyanate groups during the interfacial polymerization. Hydrolysis leads to an amino group, which reacts with the amino group and isocyanate group to form a urea bond to form a polymer, thereby decomposing the radical polymerization initiator during radical polymerization
  • radicals generated by the above are formed by chaining unsaturated bonds in a chain.
  • an aluminum chelate-based latent curing agent composed of a porous resin having such a side surface and an aluminum chelate-based curing agent held in the pores is heated for curing the epoxy resin, the clear reason is unknown.
  • the aluminum chelate curing agent held in the porous resin comes into contact with a silane compound such as a silane coupling agent or silanol compound existing outside the porous resin, and starts cationic polymerization of the epoxy resin. To be able to.
  • the aluminum chelate-based latent curing agent is considered to have an aluminum chelate-based curing agent not only inside but also on the surface due to its structure. It is considered that the potential was obtained because many of the aluminum chelate curing agents on the surface were inactivated by the water present therein.
  • an aluminum chelate-based latent curing agent is used in combination with an alicyclic epoxy resin having high reactivity, the resin composition greatly thickens with time, so a part of the surface aluminum chelate-based curing agent is It is considered that the activity is maintained without being inactivated. For this reason, in this invention, surface inactivation processing is performed for the aluminum chelate type hardening
  • alkoxysilane coupling agent for surface deactivation treatment the alkoxysilane coupling agent used for the surface inactivation treatment is classified into two types as described below.
  • the first type reacts with the active aluminum chelate hardener on the surface of the aluminum chelate latent hardener to produce an aluminum chelate-silanol reactant, thereby reducing the electron density of oxygen adjacent to the aluminum atom.
  • a type of silane coupling agent that reduces activity by reducing in other words, reducing the acidity of hydrogen bonded to oxygen, or in other words, reducing the polarizability between oxygen and hydrogen
  • silane coupling agent include an alkoxysilane coupling agent having an electron donating group bonded to a silicon atom, preferably an alkylalkoxysilane coupling agent having an alkyl group. Specific examples include methyltrimethoxysilane, n-propyltrimethoxysilane, hexyltrimethoxysilane and the like.
  • the second type is a type in which the surface is covered with an epoxy polymer chain generated by reacting an epoxy group in the molecule with an active aluminum chelate-based curing agent on the surface of an aluminum chelate-based latent curing agent to reduce the activity.
  • It is a silane coupling agent.
  • An epoxy silane coupling agent is mentioned as this type of silane coupling agent. Specifically, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303, Shin-Etsu Chemical Co., Ltd.), 3-glycidoxypropyltrimethoxysilane (KBM-403, Shin-Etsu Chemical ( Etc.).
  • the surface deactivation treatment method of the aluminum chelate-based latent curing agent with the alkoxysilane coupling agent is preferably an organic solvent, preferably a nonpolar solvent, particularly cyclohexane, preferably 5 to 80% (mass) of the alkoxysilane coupling agent.
  • a method of immersing in a solution dissolved in 1 to 20 hours at 25 to 80 ° C. is possible. You may stir in the case of immersion.
  • the aluminum chelate-based latent curing agent of the present invention comprises an oil phase obtained by dissolving or dispersing an aluminum chelate-based curing agent, a polyfunctional isocyanate compound, a radical polymerizable compound, and a radical polymerization initiator in a volatile organic solvent.
  • the polyfunctional isocyanate compound is subjected to interfacial polymerization by radically polymerizing the polyfunctional isocyanate compound by introducing it into the aqueous phase containing the dispersant, and at the same time, the radical polymerizable compound is subjected to a radical polymerization reaction.
  • the produced particulate aluminum chelate-based latent curing agent is filtered and dried as necessary, and then immersed in a solution in which the alkoxysilane coupling agent is dissolved in an organic solvent, thereby Can be manufactured by surface deactivation treatment with silane coupling agent . This will be described in more detail below.
  • an aluminum chelate curing agent, a polyfunctional isocyanate compound, a polyfunctional radical polymerizable compound and a radical polymerization initiator are dissolved or dispersed in a volatile organic solvent to prepare an oil phase in interfacial polymerization.
  • a volatile organic solvent is as follows. That is, when a high-boiling solvent having a boiling point exceeding 300 ° C. as used in a normal interfacial polymerization method is used, the organic solvent does not volatilize during the interfacial polymerization, so the contact probability with isocyanate-water does not increase.
  • Examples of such a volatile organic solvent include an aluminum chelate curing agent, a polyfunctional isocyanate compound, a polyfunctional radical polymerizable compound, and a good solvent for each of radical polymerization initiators (the solubility of each is preferably 0.1 g / ml ( Organic solvent) or higher), which is substantially insoluble in water (water solubility is 0.5 g / ml (organic solvent) or lower) and has a boiling point of 100 ° C. or lower under atmospheric pressure.
  • Specific examples of such volatile organic solvents include alcohols, acetate esters, ketones and the like. Among these, ethyl acetate is preferable in terms of high polarity, low boiling point, and poor water solubility.
  • the amount of the volatile organic solvent used is too small relative to 100 parts by mass of the total amount of the aluminum chelate-based curing agent, the polyfunctional isocyanate compound, the polyfunctional radical polymerizable compound and the radical polymerization initiator, the particle size and the curing characteristics are increased. When it is dispersed and too much, the curing characteristics are lowered, so the amount is preferably 10 to 500 parts by mass.
  • the viscosity of the oil phase solution can be lowered by using a relatively large amount of the volatile organic solvent within the amount of volatile organic solvent used.
  • the oil phase droplets in the reaction system can be made finer and more uniform, and the resulting latent hardener particle size can be controlled to submicron to several microns.
  • the particle size distribution can be monodispersed.
  • the viscosity of the oil phase solution is preferably set to 1 to 100 mPa ⁇ s.
  • the blending amount of the aluminum chelate curing agent is preferably 1 ⁇ 2 or less, more preferably ⁇ or less, based on the weight of the polyfunctional isocyanate compound. .
  • the blending amount of the aluminum chelate curing agent is preferably at least equal to, more preferably 1.0 to 2.0 times, based on the weight of the polyfunctional isocyanate compound.
  • concentration in the oil phase droplet surface falls.
  • the polyfunctional isocyanate compound has a higher reaction rate (interfacial polymerization) with the amine formed by hydrolysis than the hydroxyl group, the reaction probability between the polyfunctional isocyanate compound and PVA can be lowered.
  • polyfunctional isocyanate compound When the aluminum chelate-based curing agent, polyfunctional isocyanate compound, polyfunctional radical polymerizable compound and radical polymerization initiator are dissolved or dispersed in a volatile organic solvent, it may be mixed and stirred at room temperature under atmospheric pressure, You may heat as needed.
  • an aluminum chelate curing agent, a polyfunctional isocyanate compound, a polyfunctional radical polymerizable compound, and an oil phase in which a radical polymerization initiator is dissolved or dispersed in a volatile organic solvent contain a dispersant.
  • Interfacial polymerization and radical polymerization are carried out by adding to the aqueous phase and stirring with heating.
  • a dispersing agent what is used in normal interfacial polymerization methods, such as polyvinyl alcohol, carboxymethylcellulose, gelatin, can be used.
  • the amount of the dispersant used is usually 0.1 to 10.0% by mass of the aqueous phase.
  • the blending amount of the oil phase with respect to the aqueous phase is preferably 5 to 70 parts by mass with respect to 100 parts by mass of the aqueous phase because polydispersion occurs when the oil phase is too small, and aggregation occurs when the oil phase is too large.
  • stirring conditions such that the size of the oil phase is preferably from 0.5 to 100 ⁇ m are usually obtained at a temperature of 30 to 80 ° C. under atmospheric pressure.
  • the conditions of stirring with heating for 2 to 12 hours can be given.
  • the polymer fine particles are separated by filtration and then naturally dried or vacuum dried to obtain an aluminum chelate-based latent curing agent.
  • the type and amount of the polyfunctional isocyanate compound, the type and amount of the aluminum chelate curing agent, the interfacial polymerization conditions, or the type and amount of the polyfunctional radical polymerizable compound and radical polymerization initiator, the radical polymerization conditions By changing the value, the curing characteristics of the aluminum chelate-based latent curing agent can be controlled. For example, if the polymerization temperature is lowered, the curing temperature can be lowered, and conversely, if the polymerization temperature is raised, the curing temperature can be raised.
  • the obtained aluminum chelate-based latent curing agent is used as an organic solvent, preferably a nonpolar solvent, particularly cyclohexane, preferably an alkoxysilane coupling agent in an amount of 5 to 80% (mass).
  • Surface inactivation treatment is performed by immersing in the solution dissolved in step 1 at 25 to 80 ° C. for 1 to 20 hours. Thereby, the aluminum chelate type
  • thermosetting epoxy resin composition By adding the aluminum chelate-based latent curing agent of the present invention to an epoxy resin and a silane-based compound, a low-temperature fast-curing thermosetting epoxy resin composition can be provided. Such a thermosetting epoxy resin composition is also part of the present invention.
  • the content of the aluminum chelate-based latent curing agent in the thermosetting epoxy resin composition of the present invention is too small, it will not be cured sufficiently, and if it is too large, the resin properties of the cured product of the composition (for example, acceptable (Flexibility) is lowered, so that it is 1 to 70 parts by mass, preferably 1 to 50 parts by mass with respect to 100 parts by mass of epoxy resin.
  • the epoxy resin constituting the thermosetting epoxy resin composition of the present invention is used as a film forming component.
  • an epoxy resin not only an alicyclic epoxy resin but also a glycidyl ether type epoxy resin that could not be conventionally used in a mixed system of an aluminum chelate-based latent curing agent and a silanol compound can be used.
  • a glycidyl ether type epoxy resin may be liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4000 and having two or more epoxy groups in the molecule.
  • bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, ester type epoxy resin and the like can be mentioned.
  • bisphenol A type epoxy resins can be preferably used from the viewpoint of resin characteristics. These epoxy resins also include monomers and oligomers.
  • thermosetting epoxy resin composition of the present invention can be used in combination with an oxetane compound in order to sharpen the exothermic peak.
  • Preferred oxetane compounds include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, 4,4′-bis [(3-ethyl- 3-Oxetanyl) methoxymethyl] biphenyl, 1,4-benzenedicarboxylic acid bis [(3-ethyl-3-oxetanyl)] methyl ester, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3- ( 2-ethylhexyloxymethyl) oxetane, di [1-ethyl (3-oxetanyl)] methyl ether, 3-eththyl-3-hydroxymethyloxetane,
  • the silane compound to be blended in the thermosetting epoxy resin composition of the present invention was held in an aluminum chelate latent curing agent as described in paragraphs 0007 to 0010 of JP-A No. 2002-212537. It has a function of starting cationic polymerization of a thermosetting resin (for example, thermosetting epoxy resin) in cooperation with an aluminum chelate curing agent. Therefore, the effect of promoting the curing of the epoxy resin can be obtained by using such a silane compound together.
  • examples of such silane compounds include highly sterically hindered silanol compounds and silane coupling agents having 1 to 3 lower alkoxy groups in the molecule.
  • the latent curing agent of the present invention is a cationic curing agent, the amino group or the mercapto group substantially generates the generated cationic species. Can be used when not captured.
  • the silanol compound is preferably 1 to 50 parts by mass, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the highly sterically hindered silanol compound used in the present invention is an arylsilane all having a chemical structure of the following formula (A).
  • m is 2 or 3, preferably 3, provided that the sum of m and n is 4. Therefore, the silanol compound of the formula (A) becomes a mono or diol form.
  • “Ar” is an optionally substituted aryl group, and examples of the aryl group include a phenyl group, a naphthyl group (for example, 1 or 2-naphthyl group), an anthracenyl group (for example, 1, 2, or 9-anthracenyl group).
  • Benz [a] -9-anthracenyl group phenaryl group (eg 3 or 9-phenaryl group), pyrenyl group (eg 1-pyrenyl group), azulenyl group, fluorenyl group, biphenyl group (eg 2,3 Or 4-biphenyl group), thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyridyl group, and the like.
  • a phenyl group is preferable from the viewpoint of availability and cost.
  • the m Ars may be the same or different, but are preferably the same from the viewpoint of availability.
  • aryl groups may have 1 to 3 substituents such as halogen such as chloro and bromo; trifluoromethyl; nitro; sulfo; alkoxycarbonyl such as carboxyl, methoxycarbonyl and ethoxycarbonyl; formyl and the like Electron-withdrawing groups, alkyl such as methyl, ethyl and propyl; alkoxy such as methoxy and ethoxy; hydroxy; amino; monoalkylamino such as monomethylamino; and electron-donating groups such as dialkylamino such as dimethylamino.
  • substituents such as halogen such as chloro and bromo; trifluoromethyl; nitro; sulfo; alkoxycarbonyl such as carboxyl, methoxycarbonyl and ethoxycarbonyl; formyl and the like
  • Electron-withdrawing groups alkyl such as methyl, ethyl and propyl; alkoxy such as meth
  • the acidity of the hydroxyl group of silanol can be increased by using an electron withdrawing group as a substituent, and conversely, the acidity can be lowered by using an electron donating group, so that the curing activity can be controlled.
  • the substituents may be different for each of the m Ars, but the substituents are preferably the same for the m Ars from the viewpoint of availability. Further, only some Ar may have a substituent, and other Ar may not have a substituent.
  • phenyl group having a substituent examples include 2, 3, or 4-methylphenyl group; 2,6-dimethyl, 3,5-dimethyl, 2,4-dimethyl, 2,3-dimethyl, 2,5- Examples include dimethyl or 3,4-dimethylphenyl group; 2,4,6-trimethylphenyl group; 2 or 4-ethylphenyl group.
  • triphenylsilanol or diphenylsilanediol is preferable. Particularly preferred is triphenylsilanol.
  • the amount of the silane coupling agent in the aluminum chelate latent curing agent of the present invention is too small.
  • the addition effect cannot be expected, and if it is too much, an influence of the polymerization termination reaction due to the silanolate anion generated from the silane coupling agent occurs, so 1 to 300 parts by mass, preferably 100 parts by mass with respect to 100 parts by mass of the aluminum chelate-based latent curing agent. Is 1 to 100 parts by mass.
  • silane coupling agent examples include vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -styryltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, N- ⁇ - ( Aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -
  • thermosetting epoxy resin composition of the present invention uses an aluminum chelate-based latent curing agent as a curing agent.
  • a highly sterically hindered silanol compound is a thermosetting epoxy resin composition in spite of containing a glycidyl ether epoxy resin that could not be sufficiently cured with an aluminum chelate latent curing agent. Since it is contained therein, the thermosetting epoxy resin composition can be cationically polymerized by low temperature rapid curing.
  • the aluminum chelate-based latent curing agent of the present invention can further contain a filler such as silica and mica, a pigment, an antistatic agent and the like, if necessary.
  • Comparative Example 1 Manufacture of aluminum chelate-based latent curing agent that has not been surface-inactivated 800 parts by mass of distilled water, 0.05 part by mass of a surfactant (Nurex RT, NOF Corporation), and 4 parts by mass of polyvinyl alcohol (PVA-205, Kuraray Co., Ltd.) as a dispersant.
  • a surfactant Nurex RT, NOF Corporation
  • PVA-205 polyvinyl alcohol
  • the aqueous phase was further mixed with 100 parts by mass of a 24% isopropanol solution of aluminum monoacetylacetonate bis (ethylacetoacetate) (Aluminum Chelate D, Kawaken Fine Chemical Co., Ltd.) and methylenediphenyl-4, polyfunctional isocyanate compound.
  • the polymerization reaction solution was allowed to cool to room temperature, and the polymer particles were separated by filtration and naturally dried to obtain a spherical aluminum chelate-based latent curing agent that had not been subjected to surface deactivation treatment. .
  • Example 1 Manufacture of aluminum chelate-based latent hardener with surface deactivation treatment
  • 1.5 parts by mass of methyltrimethoxysilane (KBM-13, Shin-Etsu Chemical Co., Ltd.) is dissolved in 28.5 parts by mass of cyclohexane to prepare a surface inactivation treatment liquid.
  • 3 parts by mass of the aluminum chelate-based latent curing agent of Comparative Example 1 that had not been subjected to inactivation treatment was added, and the mixture was stirred at 200 rpm for 20 hours at 30 ° C.
  • Surface inactivation treatment was performed. After the completion of the treatment reaction, the polymer particles were separated from the treatment liquid by filtration and naturally dried to obtain a spherical aluminum chelate-based latent curing agent that had been subjected to surface inactivation treatment.
  • Example 2 3 parts by mass of methyltrimethoxysilane (KBM-13, Shin-Etsu Chemical Co., Ltd.) is dissolved in 27 parts by mass of cyclohexane to prepare a surface inactivation treatment solution, and 30 parts by mass of this treatment solution is subjected to surface inactivation treatment. 3 parts by weight of the aluminum chelate-based latent curing agent of Comparative Example 1 that has not been subjected to the above is added, and the surface of the aluminum chelate-based latent curing agent is deactivated while stirring the mixture at 30 ° C. for 20 hours at 200 rpm. Processed. After the completion of the treatment reaction, the polymer particles were separated from the treatment liquid by filtration and naturally dried to obtain a spherical aluminum chelate-based latent curing agent that had been subjected to surface inactivation treatment.
  • KBM-13 methyltrimethoxysilane
  • Example 3 Instead of using 3 parts by mass of n-propyltrimethoxysilane (KBM-3033, Shin-Etsu Chemical Co., Ltd.) instead of 3 parts by mass of methyltrimethoxysilane (KBM-13, Shin-Etsu Chemical Co., Ltd.), By repeating the same operation as in Example 2, a spherical aluminum chelate-based latent curing agent subjected to the surface inactivation treatment was obtained.
  • KBM-3033 Shin-Etsu Chemical Co., Ltd.
  • methyltrimethoxysilane KBM-13, Shin-Etsu Chemical Co., Ltd.
  • Example 4 Example in place of using 3 parts by mass of hexyltrimethoxysilane (KBM-3063, Shin-Etsu Chemical Co., Ltd.) instead of 3 parts by mass of methyltrimethoxysilane (KBM-13, Shin-Etsu Chemical Co., Ltd.) By repeating the same operation as in No. 2, a spherical aluminum chelate-based latent curing agent subjected to the surface inactivation treatment was obtained.
  • KBM-3063 Shin-Etsu Chemical Co., Ltd.
  • methyltrimethoxysilane KBM-13, Shin-Etsu Chemical Co., Ltd.
  • Comparative Example 2 Manufacture of aluminum chelate-based latent curing agent that has not been surface-inactivated 800 parts by mass of distilled water, 0.05 part by mass of a surfactant (Nurex RT, NOF Corporation), and 4 parts by mass of polyvinyl alcohol (PVA-205, Kuraray Co., Ltd.) as a dispersant.
  • a surfactant Nurex RT, NOF Corporation
  • PVA-205 polyvinyl alcohol
  • This aluminum chelate-based latent curing agent is composed of 40 parts by mass of a 24% isopropanol solution of aluminum monoacetylacetonate bis (ethylacetoacetate) (aluminum chelate D, Kawaken Fine Chemical Co., Ltd.) and 60 parts by mass of ethanol. After being put into the impregnating solution and stirred at 30 ° C. for 6 hours, the particulate curing agent is filtered off and dried naturally, whereby a high concentration type spherical aluminum chelate that has not been subjected to surface deactivation treatment A system latent curing agent was obtained.
  • Example 5 A surface inactivation treatment solution was prepared by dissolving 3 parts by mass of n-propyltrimethoxysilane (KBM-3033, Shin-Etsu Chemical Co., Ltd.) in 27 parts by mass of cyclohexane. 3 parts by weight of the aluminum chelate-based latent curing agent of Comparative Example 2 that has not been subjected to the heat treatment is added, and the mixture is stirred at 200 rpm for 20 hours at 30 ° C. Activation processing was performed. After the completion of the treatment reaction, the polymer particles were separated from the treatment liquid by filtration and naturally dried to obtain a high concentration type spherical aluminum chelate-based latent curing agent subjected to surface inactivation treatment.
  • Example 6 A surface inactivation treatment solution was prepared by dissolving 6 parts by mass of n-propyltrimethoxysilane (KBM-3033, Shin-Etsu Chemical Co., Ltd.) in 24 parts by mass of cyclohexane. 3 parts by weight of the aluminum chelate-based latent curing agent of Comparative Example 2 that has not been subjected to the heat treatment is added, and the mixture is stirred at 200 rpm for 20 hours at 30 ° C. Activation processing was performed. After the completion of the treatment reaction, the polymer particles were separated from the treatment liquid by filtration and naturally dried to obtain a high concentration type spherical aluminum chelate-based latent curing agent subjected to surface inactivation treatment.
  • KBM-3033 Shin-Etsu Chemical Co., Ltd.
  • Example 7 A surface inactivation treatment solution was prepared by dissolving 6 parts by mass of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303, Shin-Etsu Chemical Co., Ltd.) in 24 parts by mass of cyclohexane. 30 parts by mass of the liquid was charged with 3 parts by mass of the aluminum chelate-based latent curing agent of Comparative Example 2 that had not been subjected to surface inactivation treatment, and the mixture was stirred at 200 rpm for 20 hours at 30 ° C. The surface inactivation treatment of the system latent curing agent was performed. After the completion of the treatment reaction, the polymer particles were separated from the treatment liquid by filtration and naturally dried to obtain a high concentration type spherical aluminum chelate-based latent curing agent subjected to surface inactivation treatment.
  • KBM-303 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane
  • ⁇ Evaluation 1 (DSC measurement)> 8 parts by mass of the aluminum chelate-based latent curing agent of Comparative Examples 1 and 2 and Examples 1 to 7, 80 parts by mass of bisphenol A type epoxy resin (EP828, Mitsubishi Chemical Corporation) and triphenylsilanol (Tokyo Chemical Industry Co., Ltd.) ))
  • a thermosetting epoxy resin composition for DSC measurement was obtained by uniformly mixing 4 parts by mass.
  • thermosetting epoxy resin compositions were subjected to thermal analysis using a differential thermal analyzer (DSC6200, Hitachi High-Tech Science Co., Ltd.). The obtained results are shown in Table 1.
  • DSC6200 differential thermal analyzer
  • FIG. 1 the results of the thermosetting epoxy resin compositions using the aluminum chelate latent curing agents of Examples 1 and 2 and Comparative Example 1 are shown in FIG. 1, and the aluminum chelate latent curing agents of Examples 2 to 4 are shown.
  • FIG. 2 shows the results of the thermosetting epoxy resin composition using the above
  • FIG. 3 shows the results of the thermosetting epoxy resin composition using the aluminum chelate-based latent curing agent of Comparative Example 2 and Examples 5 and 6.
  • thermosetting type epoxy resin composition using the aluminum chelate system latency hardening agent of comparative example 2 and Example 7 is shown in FIG.
  • the exothermic start temperature means the curing start temperature
  • the exothermic peak temperature means the temperature at which curing is most active
  • the total calorific value ( (Peak area) indicates the degree of progress of curing, and in order to achieve good low-temperature rapid curability, it is desirable that it be practically 250 J / g or more.
  • ⁇ Evaluation 2 (storage stability)> 2 parts by mass of the aluminum chelate-based latent curing agent of Comparative Examples 1 and 2 and Examples 1 to 7, 100 parts by mass of alicyclic epoxy resin (CEL2021P, Daicel Corporation), 3-glycoxypropyltrimethoxysilane (KBM) -403, Shin-Etsu Chemical Co., Ltd.) 0.5 parts by mass and triphenylsilanol (Tokyo Chemical Industry Co., Ltd.) 7 parts by mass were mixed uniformly to produce a thermosetting epoxy resin composition for viscosity measurement. Obtained.
  • alicyclic epoxy resin CEL2021P, Daicel Corporation
  • KBM 3-glycoxypropyltrimethoxysilane
  • Shin-Etsu Chemical Co., Ltd. Shin-Etsu Chemical Co., Ltd.
  • triphenylsilanol Tokyo Chemical Industry Co., Ltd.
  • thermosetting epoxy resin compositions are stored at room temperature (25 ° C.), and the initial viscosity and the viscosity after a predetermined time are measured using a tuning-fork vibration viscometer (SV-10, A & D Co., Ltd.). Was measured at 20 ° C.
  • the obtained results are shown in Table 2, and the value obtained by dividing the viscosity after 48 hours by the initial viscosity (48H value / initial value) is also shown in Table 1. The closer this value is to 1, the better the storage stability.
  • Electron micrographs (magnification 5000 times) of the aluminum chelate-based latent curing agents of Examples 6 and 7 are shown in FIGS. 5 and 6, respectively.
  • the highly reactive alicyclic epoxy resin-based thermosetting epoxy resin composition has storage stability in one liquid at room temperature. It turns out that it is improving greatly.
  • grains is a shape close
  • the aluminum chelate-based latent curing agent of the present invention exhibits sharp thermal responsiveness in a low temperature region, despite using an interfacial polymer of a polyfunctional isocyanate compound as a microcapsule wall. Therefore, it is useful as a latent curing agent for epoxy adhesives for low-temperature short-time connection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 熱硬化型エポキシ樹脂を硬化させるためのアルミニウムキレート系潜在性硬化剤は、アルミニウムキレート系硬化剤が、多官能イソシアネート化合物を界面重合させると同時に、ラジカル重合開始剤の存在下でラジカル重合性化合物をラジカル重合させて得た多孔性樹脂に保持されており、アルコキシシランカップリング剤で表面不活性化処理されている。アルコキシシランカップリング剤として、アルキルアルコキシシランが好ましい。ラジカル重合性化合物は、多官能ラジカル重合性化合物を含有することが好ましい。

Description

アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物
 本発明は、熱硬化型エポキシ樹脂を硬化させるための硬化剤のうち、アルミニウムキレート系硬化剤が多孔性樹脂に保持されてなるアルミニウムキレート系潜在性硬化剤に関する。
 エポキシ樹脂に対する低温速硬化活性を示す硬化剤として、多官能イソシアネート化合物を界面重合させると同時にラジカル重合性化合物をラジカル重合させて得た多孔性樹脂粒子に、アルミニウムキレート系硬化剤を保持させたアルミニウムキレート系潜在性硬化剤が提案されている(特許文献1)。
特開2009-221465号公報
 ところで、特許文献1に開示された粒子状のアルミニウムキレート系潜在性硬化剤の表面に存在するアルミニウムキレート系硬化剤は、多官能イソシアネート化合物の界面重合時に存在する水と反応して失活するが、表面に存在するすべてのアルミニウムキレート系硬化剤が完全に失活している訳ではない。このため、そのようなアルミニウムキレート系潜在性硬化剤を汎用のグリシジルエーテル型エポキシ樹脂に配合した一液型の熱硬化型エポキシ樹脂組成物については、室温(20~35℃)下でのその保存安定性は実用上問題のないレベルではあるが、非常に高いカチオン重合性を示す脂環式エポキシ樹脂に配合した一液型の熱硬化型エポキシ樹脂組成物については、室温下でのその保存安定性は十分とは言えないという問題があった。
 本発明の目的は、以上の従来の技術の課題を解決しようとするものであり、多官能イソシアネート化合物を界面重合させると同時にラジカル重合性化合物をラジカル重合させて得た多孔性樹脂粒子にアルミニウムキレート系硬化剤を保持させたアルミニウムキレート系潜在性硬化剤を、非常に高いカチオン重合性を示す脂環式エポキシ樹脂に配合して一液型の熱硬化型エポキシ樹脂組成物を調製した場合に、その樹脂組成物の低温速硬化性を損なうことなく、室温下で良好な保存安定性を示すことを可能とするアルミニウムキレート系潜在性硬化剤を提供することである。
 本発明者は、粒子状のアルミニウムキレート系潜在性硬化剤の表面をアルコキシシランカップリング剤で不活性化処理することにより、表面に存在するアルミニウムキレート系硬化剤をほぼ完全に失活させることができ、しかも、アルコキシシランカップリング剤で表面不活性化処理したアルミニウムキレート系潜在性硬化剤を非常に高いカチオン重合性を示す脂環式エポキシ樹脂に配合して得た一液型の熱硬化型エポキシ樹脂組成物が、低温速硬化性が損なわれることなく、室温下で良好な保存安定性を示すことを見出し、本発明を完成させるに至った。
 即ち、本発明は、熱硬化型エポキシ樹脂を硬化させるためのアルミニウムキレート系潜在性硬化剤であって、
 アルミニウムキレート系硬化剤が、多官能イソシアネート化合物を界面重合させると同時に、ラジカル重合開始剤の存在下でラジカル重合性化合物をラジカル重合させて得た多孔性樹脂に保持されており、
 アルコキシシランカップリング剤で表面不活性化処理されていることを特徴とするアルミニウムキレート系潜在性硬化剤を提供する。
 また、本発明は、上述のアルミニウムキレート系潜在性硬化剤の製造方法であって、
 アルミニウムキレート系硬化剤、多官能イソシアネート化合物、ラジカル重合性化合物及びラジカル重合開始剤を、揮発性有機溶媒に溶解または分散させて得た油相を、分散剤を含有する水相に投入しながら加熱撹拌することにより、多官能イソシアネート化合物を界面重合させると同時にラジカル重合性化合物をラジカル重合反応させ、それにより得られる多孔性樹脂にアルミニウムキレート系硬化剤を保持させた後、有機溶媒にアルコキシシランカップリング剤が溶解した溶液中に浸漬することにより、アルコキシシランカップリング剤で表面不活性化処理することを特徴とする製造方法を提供する。
 更に、本発明は、上述のアルミニウムキレート系潜在性硬化剤と、エポキシ樹脂と、シラン系化合物とを含有する熱硬化型エポキシ樹脂組成物を提供する。
 本発明のアルミニウムキレート系潜在性硬化剤においては、エポキシ樹脂を硬化させることのできるアルミニウムキレート系硬化剤を、多官能イソシアネート化合物とラジカル重合性化合物との混合物を同時にそれぞれ界面重合とラジカル重合させて得た多孔性樹脂に保持させている。このため多孔性樹脂壁(マイクロカプセル壁)が脆弱化し、その結果、アルミニウムキレート系潜在性硬化剤は、低温領域でシャープな熱応答性を示すことができる。しかも、粒子状のアルミニウムキレート系潜在性硬化剤の表面がアルコキシシランカップリング剤で不活性化処理されており、表面に残存していたアルミニウムキレート系硬化剤が不活性化している。このため、本発明のアルミニウムキレート系潜在性硬化剤を非常に高いカチオン重合性を示す脂環式エポキシ樹脂に配合して得た一液型の熱硬化型エポキシ樹脂組成物について、室温下で良好な保存安定性を実現できる。
図1は、実施例1、2及び比較例1のアルミニウムキレート系潜在性硬化剤を使用した熱硬化型エポキシ樹脂組成物のDSCチャートである。 図2は、実施例2~4のアルミニウムキレート系潜在性硬化剤を使用した熱硬化型エポキシ樹脂組成物のDSCチャートである。 図3は、比較例2及び実施例5、6のアルミニウムキレート系潜在性硬化剤を使用した熱硬化型エポキシ樹脂組成物のDSCチャートである。 図4は、比較例2と実施例7のアルミニウムキレート系潜在性硬化剤を使用した熱硬化型エポキシ樹脂組成物のDSCチャートである。 図5は、実施例6のアルミニウムキレート系潜在性硬化剤の電子顕微鏡写真(5000倍)である。 図6は、実施例7のアルミニウムキレート系潜在性硬化剤の電子顕微鏡写真(5000倍)である。
<アルミニウムキレート系潜在性硬化剤>
 本発明のアルミニウムキレート系潜在性硬化剤は、アルミニウムキレート系硬化剤が、多官能イソシアネート化合物を界面重合させると同時に、ラジカル重合開始剤の存在下でラジカル重合性化合物をラジカル重合させて得た多孔性樹脂に保持されているものである。より具体的には、アルミニウムキレート系硬化剤のコアの周囲を多孔性樹脂のシェルで被覆した単純な構造のマイクロカプセルではなく、多孔性樹脂マトリックス中に存在する微細な多数の孔にアルミニウムキレート系硬化剤が保持された構造を有する。しかも、その表面が、アルコキシシランカップリング剤により不活性化処理されているものである。
 本発明のアルミニウムキレート系潜在性硬化剤は、主として界面重合法を利用して製造されるため、その形状は球状であり、その粒子径は硬化性及び分散性の点から、好ましくは0.5~100μmであり、また、孔の大きさは硬化性及び潜在性の点から、好ましくは5~150nmである。
 また、アルミニウムキレート系潜在性硬化剤は、使用する多孔性樹脂の架橋度が小さすぎるとその潜在性が低下し、大きすぎるとその熱応答性が低下する傾向があるので、使用目的に応じて、架橋度が調整された多孔性樹脂を使用することが好ましい。ここで、多孔性樹脂の架橋度は、微小圧縮試験により計測することができる。
 アルミニウムキレート系潜在性硬化剤は、その界面重合時に使用する有機溶媒を実質的に含有していないこと、具体的には、1ppm以下であることが、硬化安定性の点で好ましい。
 なお、アルミニウムキレート系潜在性硬化剤は、表面不活性化処理に先立って、そのアルミニウムキレート系硬化剤濃度を高めるために、高濃度のアルミニウムキレート系硬化剤溶液に浸漬した後、濾別し乾燥しておくこともできる。
 また、アルミニウムキレート系潜在性硬化剤における多孔性樹脂に対するアルミニウムキレート系硬化剤の配合量は、アルミニウムキレート系硬化剤の配合量が少なすぎると、硬化させるべきエポキシ樹脂の硬化性が低下し、多すぎるとアルミニウムキレート系潜在性硬化剤の潜在性が低下するので、多孔性樹脂を構成する多官能イソシアネート化合物とラジカル重合性化合物との合計100質量部に対し、アルミニウムキレート系硬化剤を、好ましくは10~200質量部、より好ましくは10~150質量部である。
(アルミニウムキレート系硬化剤)
 また、本発明のアルミニウムキレート系潜在性硬化剤を構成するアルミニウムキレート系硬化剤としては、式(1)に表される、3つのβ-ケトエノラート陰イオンがアルミニウムに配位した錯体化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000001
 ここで、R、R及びRは、それぞれ独立的にアルキル基又はアルコキシル基である。アルキル基としては、メチル基、エチル基等が挙げられる。アルコキシル基としては、メトキシ基、エトキシ基、オレイルオキシ基等が挙げられる。
 式(1)で表されるアルミニウムキレート系硬化剤の具体例としては、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビスオレイルアセトアセテート、エチルアセトアセテートアルミニウムジイソプロピレート、アルキルアセトアセテートアルミニウムジイソプロピレート等が挙げられる。
(多官能イソシアネート化合物)
 多孔性樹脂を構成するための多官能イソシアネート化合物は、好ましくは一分子中に2個以上のイソシアネート基、好ましくは3個のイソシアネート基を有する化合物である。このような3官能イソシアネート化合物の更に好ましい例としては、トリメチロールプロパン1モルにジイソシアネート化合物3モルを反応させた式(2)のTMPアダクト体、ジイソシアネート化合物3モルを自己縮合させた式(3)のイソシアヌレート体、ジイソシアネート化合物3モルのうちの2モルから得られるジイソシアネートウレアに残りの1モルのジイソシアネートが縮合した式(4)のビュウレット体が挙げられる。
Figure JPOXMLDOC01-appb-I000002
 上記式(2)~(4)において、置換基Rは、ジイソシアネート化合物のイソシアネート基を除いた部分である。このようなジイソシアネート化合物の具体例としては、トルエン2,4-ジイソシアネート、トルエン2,6-ジイソシアネート、m-キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘキサヒドロ-m-キシリレンジイソシアネート、イソホロンジイソシアネート、メチレンジフェニル-4,4′-ジイソシアネート等が挙げられる。
(ラジカル重合性化合物)
 また、多孔性樹脂を構成するためのもう一つの成分であるラジカル重合性化合物は、多官能イソシアネート化合物の界面重合の際に、同時にラジカル重合し、マイクロカプセル壁となる多孔性樹脂の機械的性質を改善する。これにより、エポキシ樹脂の硬化時の熱応答性、特に低温領域でシャープな熱応答性を実現することができる。この理由は明確ではないが、界面重合とラジカル重合とが同時に生じ、多孔性樹脂中に相分離構造が形成され、その結果、イソシアネート化合物の単独重合系よりもポリウレア-ウレタン部位の架橋密度が小さくなるからであると考えられる。
 このようなラジカル重合性化合物は、好ましくは分子内に1個以上の炭素-炭素不飽和結合を有するものであり、いわゆる単官能ラジカル重合性化合物、多官能ラジカル重合性化合物を包含するが、本発明においては、ラジカル重合性化合物が、多官能ラジカル重合性化合物を含有することが好ましい。これは、多官能ラジカル重合性化合物を使用することにより、低温領域でシャープな熱応答性を実現することがより容易になるからである。この意味からも、ラジカル重合性化合物は、多官能ラジカル重合性化合物を好ましくは少なくとも30質量%以上、より好ましくは少なくとも50質量%以上含有する。
 単官能ラジカル重合性化合物としては、スチレン、メチルスチレン等の単官能ビニル系化合物、ブチルアクリレートなどの単官能(メタ)アクリレート系化合物等が挙げられる。多官能ラジカル重合性化合物としては、ジビニルベンゼン等の多官能ビニル系化合物、1,6-ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート等の多官能(メタ)アクリレート系化合物を例示することができる。中でも、潜在性及び熱応答性の点から、多官能ビニル系化合物、特にジビニルベンゼンを好ましく使用することができる。
 なお、多官能ラジカル重合性化合物は、多官能ビニル系化合物と多官能(メタ)アクリレート系化合物とから構成されていてもよい。このように併用することにより、熱応答性を変化させたり、反応性官能基を導入できたりといった効果が得られる。
(ラジカル重合開始剤)
 本発明で使用するラジカル重合開始剤としては、多官能イソシアネート化合物の界面重合条件下で、ラジカル重合を開始させることができるものであり、例えば、過酸化物系開始剤、アゾ系開始剤等を使用することができる。
(多孔性樹脂)
 本発明において、多官能イソシアネート化合物を界面重合させると同時に、ラジカル重合開始剤の存在下でラジカル重合性化合物をラジカル重合させて得られる多孔性樹脂は、界面重合の間にイソシアネート基の一部が加水分解を受けてアミノ基となり、そのアミノ基とイソシアネート基とが反応して尿素結合を生成してポリマー化して得られる多孔性ポリウレアという側面と、ラジカル重合の間に、ラジカル重合開始剤の分解により生じたラジカルが不飽和結合を連鎖的に結合してなる2次元的ないしは3次元的ポリマーという側面がある。このような側面を有する多孔性樹脂とその孔に保持されたアルミニウムキレート系硬化剤とからなるアルミニウムキレート系潜在性硬化剤は、エポキシ樹脂の硬化のために加熱されると、明確な理由は不明であるが、多孔性樹脂に保持されているアルミニウムキレート系硬化剤が、多孔性樹脂の外部に存在するシランカップリング剤やシラノール化合物等のシラン系化合物と接触し、エポキシ樹脂のカチオン重合を開始させることができるようになる。
 なお、前述したように、アルミニウムキレート系潜在性硬化剤は、その構造上、その内部だけでなく表面にもアルミニウムキレート系硬化剤が存在することになると思われるが、界面重合の際に重合系内に存在する水により表面のアルミニウムキレート系硬化剤の多くが不活性化するため潜在性を獲得できたものと考えられる。しかしながら、アルミニウムキレート系潜在性硬化剤を高い反応性を有する脂環式エポキシ樹脂と併用した場合に樹脂組成物が経時的に大きく増粘することから、表面のアルミニウムキレート系硬化剤の一部は不活性化せず、活性を維持していると考えられる。このため、本願発明では、表面のアルミニウムキレート系硬化剤を、以下に説明するように、アルコキシシランカップリング剤で表面不活性化処理する。
(表面不活性化処理用のアルコキシシランカップリング剤)
 本発明において、表面不活性化処理に使用するアルコキシシランカップリング剤は、以下に説明するように二つのタイプに分類される。
 第一のタイプは、アルミニウムキレート系潜在性硬化剤の表面の活性なアルミニウムキレート系硬化剤と反応してアルミニウムキレート-シラノール反応物を生成し、それによりアルミニウム原子に隣接する酸素の電子密度を小さくすること(言い換えれば、酸素に結合している水素の酸性度を低下させること、更に言い換えれば、酸素と水素との間の分極率を低下させること)で活性を低下させるタイプのシランカップリング剤である。このタイプのシランカップリング剤としては、電子供与性基がケイ素原子に結合したアルコキシシランカップリング剤、好ましくはアルキル基を有するアルキルアルコキシシランカップリング剤が挙げられる。具体的には、メチルトリメトキシシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン等が挙げられる。
 第二のタイプは、アルミニウムキレート系潜在性硬化剤の表面の活性なアルミニウムキレート系硬化剤に、分子内のエポキシ基を反応させて生成したエポキシ重合鎖で表面を被覆して活性を低下させるタイプのシランカップリング剤である。このタイプのシランカップリング剤としては、エポキシシランカップリング剤が挙げられる。具体的には、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(KBM-303、信越化学工業(株))、3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株))等が挙げられる。
 アルミニウムキレート系潜在性硬化剤のアルコキシシランカップリング剤による表面不活性化処理の方法は、有機溶媒、好ましくは非極性溶媒、特にシクロヘキサンにアルコキシシランカップリング剤を好ましくは5~80%(質量)で溶解させた溶液に、25~80℃で1~20時間浸漬する方法が挙げられる。浸漬の際に撹拌してもよい。
<アルミニウムキレート系潜在性硬化剤の製造方法>
 本発明のアルミニウムキレート系潜在性硬化剤は、アルミニウムキレート系硬化剤、多官能イソシアネート化合物、ラジカル重合性化合物、およびラジカル重合開始剤を揮発性有機溶媒に溶解または分散させて得た油相を、分散剤を含有する水相に投入しながら加熱撹拌することにより、多官能イソシアネート化合物を界面重合させると同時にラジカル重合性化合物をラジカル重合反応させ、それにより得られる多孔性樹脂に、アルミニウムキレート系硬化剤を保持させた後、生成した粒子状のアルミニウムキレート系潜在性硬化剤を必要に応じ濾別し乾燥した後、有機溶媒にアルコキシシランカップリング剤が溶解した溶液中に浸漬することにより、アルコキシシランカップリング剤で表面不活性化処理することにより製造することができる。以下、更に詳細に説明する。
(界面重合における油相の調製)
 この製造方法においては、まず、アルミニウムキレート系硬化剤、多官能イソシアネート化合物、多官能ラジカル重合性化合物およびラジカル重合開始剤を揮発性有機溶媒に溶解または分散させ、界面重合における油相を調製する。ここで、揮発性有機溶媒を使用する理由は以下の通りである。即ち、通常の界面重合法で使用するような沸点が300℃を超える高沸点溶剤を用いた場合、界面重合の間に有機溶媒が揮発しないために、イソシアネート-水との接触確率が増大せず、それらの間での界面重合の進行度合いが不十分となるからである。そのため、界面重合させても良好な保形性の重合物が得られ難く、また、得られた場合でも重合物に高沸点溶剤が取り込まれたままとなり、熱硬化型樹脂組成物に配合した場合に、高沸点溶剤が熱硬化型樹脂組成物の硬化物の物性に悪影響を与えるからである。このため、この製造方法においては、油相を調製する際に使用する有機溶媒として、揮発性のものを使用することが好ましい。
 このような揮発性有機溶媒としては、アルミニウムキレート系硬化剤、多官能イソシアネート化合物、多官能ラジカル重合性化合物およびラジカル重合開始剤のそれぞれの良溶媒(それぞれの溶解度が好ましくは0.1g/ml(有機溶媒)以上)であって、水に対しては実質的に溶解せず(水の溶解度が0.5g/ml(有機溶媒)以下)、大気圧下での沸点が100℃以下のものが好ましい。このような揮発性有機溶媒の具体例としては、アルコール類、酢酸エステル類、ケトン類等が挙げられる。中でも、高極性、低沸点、貧水溶性の点で酢酸エチルが好ましい。
 揮発性有機溶媒の使用量は、アルミニウムキレート系硬化剤、多官能イソシアネート化合物、多官能ラジカル重合性化合物およびラジカル重合開始剤の合計量100質量部に対し、少なすぎると粒子サイズ及び硬化特性が多分散化し、多すぎると硬化特性が低下するので、好ましくは10~500質量部である。
 なお、揮発性有機溶媒の使用量範囲内において、揮発性有機溶媒の使用量を比較的多く使用すること等により、油相となる溶液の粘度を下げることができるが、粘度を下げると撹拌効率が向上するため、反応系における油相滴をより微細化かつ均一化することが可能になり、結果的に得られる潜在性硬化剤粒子径をサブミクロン~数ミクロン程度の大きさに制御しつつ、粒度分布を単分散とすることが可能となる。油相となる溶液の粘度は1~100mPa・sに設定することが好ましい。
 また、多官能イソシアネート化合物等を水相に乳化分散する際にPVAを用いた場合、PVAの水酸基と多官能イソシアネート化合物が反応してしまうため、副生成物が異物として潜在性硬化剤粒子の周囲に付着してしまったり、および粒子形状そのものが異形化してしまったりする。この現象を防ぐためには、多官能イソシアネート化合物と水との反応性を促進すること、あるいは多官能イソシアネート化合物とPVAとの反応性を抑制することが挙げられる。
 多官能イソシアネート化合物と水との反応性を促進するためには、アルミニウムキレート系硬化剤の配合量を多官能イソシアネート化合物の重量基準で好ましくは1/2以下、より好ましくは1/3以下とする。これにより、多官能イソシアネート化合物と水とが接触する確率が高くなり、PVAが油相滴表面に接触する前に多官能イソシアネート化合物と水とが反応し易くなる。
 また、多官能イソシアネート化合物とPVAとの反応性を抑制するためには、油相中のアルミニウムキレート系硬化剤の配合量を増大させることが挙げられる。具体的には、アルミニウムキレート系硬化剤の配合量を多官能イソシアネート化合物の重量基準で好ましくは等倍以上、より好ましくは1.0~2.0倍とする。これにより、油相滴表面におけるイソシアネート濃度が低下する。さらに多官能イソシアネート化合物は水酸基よりも加水分解により形成されるアミンとの反応(界面重合)速度が大きいため、多官能イソシアネート化合物とPVAとの反応確率を低下させることができる。
 アルミニウムキレート系硬化剤、多官能イソシアネート化合物、多官能ラジカル重合性化合物およびラジカル重合開始剤を揮発性有機溶媒に溶解または分散させる際には、大気圧下、室温で混合撹拌するだけでもよいが、必要に応じ、加熱してもよい。
(界面重合とラジカル重合の実施)
 次に、この製造方法においては、アルミニウムキレート系硬化剤、多官能イソシアネート化合物、多官能ラジカル重合性化合物およびラジカル重合開始剤を揮発性有機溶媒に溶解または分散した油相を、分散剤を含有する水相に投入し、加熱撹拌することにより界面重合とラジカル重合とを行う。ここで、分散剤としては、ポリビニルアルコール、カルボキシメチルセルロース、ゼラチン等の通常の界面重合法において使用されるものを使用することができる。分散剤の使用量は、通常、水相の0.1~10.0質量%である。
 油相の水相に対する配合量は、油相が少なすぎると多分散化し、多すぎると微細化により凝集が生ずるので、水相100質量部に対し、好ましくは5~70質量部である。
 界面重合における乳化条件としては、油相の大きさが好ましくは0.5~100μmとなるような撹拌条件(撹拌装置ホモジナイザー;撹拌速度6000rpm以上)で、通常、大気圧下、温度30~80℃、撹拌時間2~12時間、加熱撹拌する条件を挙げることができる。
 界面重合およびラジカル重合終了後に、重合体微粒子を濾別し、自然乾燥もしくは真空乾燥することによりアルミニウムキレート系潜在性硬化剤を得ることができる。ここで、多官能イソシアネート化合物の種類や使用量、アルミニウムキレート系硬化剤の種類や使用量、界面重合条件、あるいは多官能ラジカル重合性化合物、およびラジカル重合開始剤の種類や使用量、ラジカル重合条件を変化させることにより、アルミニウムキレート系潜在性硬化剤の硬化特性をコントロールすることができる。例えば、重合温度を低くすると硬化温度を低下させることができ、反対に、重合温度を高くすると硬化温度を上昇させることができる。
(アルコキシシランカップリング剤による表面不活性化処理)
 本発明においては、既に説明したように、得られたアルミニウムキレート系潜在性硬化剤を、有機溶媒、好ましくは非極性溶媒、特にシクロヘキサンにアルコキシシランカップリング剤を好ましくは5~80%(質量)で溶解させた溶液に、25~80℃で1~20時間浸漬することにより表面不活性化処理を行う。これにより、表面に不活性化処理が施されたアルミニウムキレート系潜在性硬化剤が得られる。
<熱硬化型エポキシ樹脂組成物>
 本発明のアルミニウムキレート系潜在性硬化剤は、エポキシ樹脂およびシラン系化合物に添加することにより、低温速硬化性の熱硬化型エポキシ樹脂組成物を提供することができる。このような熱硬化型エポキシ樹脂組成物も本発明の一部である。
 なお、本発明の熱硬化型エポキシ樹脂組成物におけるアルミニウムキレート系潜在性硬化剤の含有量は、少なすぎると十分に硬化せず、多すぎるとその組成物の硬化物の樹脂特性(例えば、可撓性)が低下するので、エポキシ樹脂100質量部に対し1~70質量部、好ましくは1~50質量部である。
 本発明の熱硬化型エポキシ樹脂組成物を構成するエポキシ樹脂は、成膜成分として使用されているものである。そのようなエポキシ樹脂としては、脂環式エポキシ樹脂のみならず、従来、アルミニウムキレート系潜在性硬化剤とシラノール化合物との混合系においては使用できなかったグリシジルエーテル型エポキシ樹脂も使用することができる。このようなグリシジルエーテル型エポキシ樹脂としては、液状でも固体状でもよく、エポキシ当量が通常100~4000程度であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、エステル型エポキシ樹脂等を挙げることができる。中でも、樹脂特性の点からビスフェノールA型エポキシ樹脂を好ましく使用できる。また、これらのエポキシ樹脂にはモノマーやオリゴマーも含まれる。
 本発明の熱硬化型エポキシ樹脂組成物は、樹脂成分として、このようなグリシジルエーテル型エポキシ樹脂の他に、発熱ピークをシャープにするために、オキセタン化合物を併用することもできる。好ましいオキセタン化合物としては、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、4,4´-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、1,4-ベンゼンジカルボン酸 ビス[(3-エチル-3-オキセタニル)]メチルエステル、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、ジ[1-エチル(3-オキセタニル)]メチルエーテル、3-エチル-3-{[3-(トリエトキシシリル)プロポキシ]メチル}オキセタン、オキセタニルシルセスキオキサン、フェノールノボラックオキセタン等を挙げることができる。オキセタン化合物を使用する場合、その使用量は、エポキシ樹脂100質量部に対し、好ましくは10~100質量部、より好ましくは20~70質量部である。
 本発明の熱硬化型エポキシ樹脂組成物に配合するシラン系化合物は、特開2002-212537号公報の段落0007~0010に記載されているように、アルミニウムキレート系潜在性硬化剤に保持されていたアルミニウムキレート系硬化剤と共働して熱硬化性樹脂(例えば、熱硬化型エポキシ樹脂)のカチオン重合を開始させる機能を有する。従って、このような、シラン系化合物を併用することにより、エポキシ樹脂の硬化を促進するという効果が得られる。このようなシラン系化合物としては、高立体障害性のシラノール化合物や、分子中に1~3の低級アルコキシ基を有するシランカップリング剤等を挙げることができる。なお、シランカップリング剤の分子中に熱硬化性樹脂の官能基に対して反応性を有する基、例えば、ビニル基、スチリル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、アミノ基、メルカプト基等を有していてもよいが、アミノ基やメルカプト基を有するカップリング剤は、本発明の潜在性硬化剤がカチオン型硬化剤であるため、アミノ基やメルカプト基が発生カチオン種を実質的に捕捉しない場合に使用することができる。
 シラン系化合物として高立体障害性のシラノール化合物を使用した場合、本発明のアルミニウムキレート系潜在性硬化剤における高立体障害性のシラノール化合物の配合量は、少なすぎると硬化不足となり、多すぎると硬化後の樹脂特性が低下するので、熱硬化性樹脂100質量部に対し、シラノール化合物を好ましくは1~50質量部、より好ましくは1~30質量部である。
 本発明で使用する高立体障害性のシラノール化合物は、トリアルコキシ基を有している従来シランカップリング剤とは異なり、以下の式(A)の化学構造を有するアリールシランオールである。
Figure JPOXMLDOC01-appb-I000003
 式中、mは2又は3、好ましくは3であり、但しmとnとの和は4である。従って、式(A)のシラノール化合物は、モノまたはジオール体となる。“Ar”は、置換されてもよいアリール基であるが、アリール基としては、フェニル基、ナフチル基(例えば、1または2-ナフチル基)、アントラセニル基(例えば、1、2または9-アントラセニル基、ベンズ[a]-9-アントラセニル基)、フェナリル基(例えば、3または9-フェナリル基)、ピレニル基(例えば、1-ピレニル基)、アズレニル基、フルオレニル基、ビフェニル基(例えば、2,3または4-ビフェニル基)、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピリジル基等を挙げることができる。中でも、入手容易性、入手コストの観点からフェニル基が好ましい。m個のArは、いずれも同一でもよく異なっていてもよいが、入手容易性の点から同一であることが好ましい。
 これらのアリール基は、1~3個の置換基を有することができ、例えば、クロロ、ブロモ等のハロゲン;トリフルオロメチル;ニトロ;スルホ;カルボキシル、メトキシカルボニル、エトキシカルボニル等のアルコキシカルボニル;ホルミル等の電子吸引基、メチル、エチル、プロピルなどのアルキル;メトキシ、エトキシ等のアルコキシ;ヒドロキシ;アミノ;モノメチルアミノ等のモノアルキルアミノ;ジメチルアミノ等のジアルキルアミノ等の電子供与基などが挙げられる。なお、置換基として電子吸引基を使用することによりシラノールの水酸基の酸度を上げることができ、逆に、電子供与基を使用することにより酸度を下げることができるので、硬化活性のコントロールが可能となる。ここで、m個のAr毎に、置換基が異なっていてもよいが、m個のArについて入手容易性の点から置換基は同一であることが好ましい。また、一部のArだけに置換基があり、他のArに置換基が無くてもよい。置換基を有するフェニル基の具体例としては、2、3または4-メチルフェニル基;2,6-ジメチル、3,5-ジメチル、2,4-ジメチル、2,3-ジメチル、2,5-ジメチルまたは3,4-ジメチルフェニル基;2,4,6-トリメチルフェニル基;2または4-エチルフェニル基等が挙げられる。
 式(A)のシラノール化合物の中でも、好ましいものとして、トリフェニルシラノール又はジフェニルシランジオールが挙げられる。特に好ましいものは、トリフェニルシラノールである。
 他方、シラン系化合物として分子中に1~3の低級アルコキシ基を有するシランカップリング剤を使用した場合、本発明のアルミニウムキレート系潜在性硬化剤におけるシランカップリング剤の配合量は、少なすぎると添加効果が望めず、多すぎるとシランカップリング剤から発生するシラノレートアニオンによる重合停止反応の影響が生じてくるので、アルミニウムキレート系潜在性硬化剤100質量部に対し1~300質量部、好ましくは1~100質量部である。
 本発明において使用できるシランカップリング剤の具体例としては、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-スチリルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン等を挙げることができる。
 このようにして得られた本発明の熱硬化型エポキシ樹脂組成物は、硬化剤としてアルミニウムキレート系潜在性硬化剤を使用しているので、一剤型であるにも関わらず、保存安定性に優れている。また、アルミニウムキレート系潜在性硬化剤で十分に硬化させることができなかったグリシジルエーテル系エポキシ樹脂を含有しているにも関わらず、高立体障害性のシラノール化合物が、熱硬化型エポキシ樹脂組成物中に含有されているので、熱硬化型エポキシ樹脂組成物を低温速硬化でカチオン重合させることができる。
 本発明のアルミニウムキレート系潜在性硬化剤は、更に必要に応じて、シリカ、マイカなどの充填剤、顔料、帯電防止剤などを含有させることができる。
 以下、本発明を具体的に説明する。
  比較例1
(表面不活性化処理が施されていないアルミニウムキレート系潜在性硬化剤の製造)
 蒸留水800質量部と、界面活性剤(ニューレックスR-T、日油(株))0.05質量部と、分散剤としてポリビニルアルコール(PVA-205、(株)クラレ)4質量部とを、温度計を備えた3リットルの界面重合容器に入れ、均一に混合し水相を調製した。
 この水相に、更に、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株))100質量部と、多官能イソシアネート化合物としてメチレンジフェニル-4,4´-ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D-109、三井化学(株))70質量部と、ラジカル重合性化合物としてジビニルベンゼン(メルク(株))30質量部と、ラジカル重合開始剤(パーロイルL、日油(株))0.3質量部(ラジカル重合性化合物の1質量%相当量)とを、酢酸エチル100質量部に溶解した油相を投入し、ホモジナイザー(10000rpm/5分:T-50、IKAジャパン(株))で乳化混合後、80℃で6時間、界面重合とラジカル重合を行った。反応終了後、重合反応液を室温まで放冷し、重合粒子を濾過により濾別し、自然乾燥することにより表面不活性化処理が施されていない球状のアルミニウムキレート系潜在性硬化剤を得た。
  実施例1
(表面不活性化処理が施されたアルミニウムキレート系潜在性硬化剤の製造)
 メチルトリメトキシシラン(KBM-13、信越化学工業(株))1.5質量部をシクロヘキサン28.5質量部に溶解して表面不活性化処理液を調製し、この処理液30質量部に表面不活性化処理が施されていない比較例1のアルミニウムキレート系潜在性硬化剤3質量部を投入し、その混合物を30℃で20時間、200rpmで撹拌しながら、アルミニウムキレート系潜在性硬化剤の表面不活性化処理を行った。処理反応終了後、処理液から重合粒子を濾過により濾別し、自然乾燥することにより表面不活性化処理が施された球状のアルミニウムキレート系潜在性硬化剤を得た。
  実施例2
 メチルトリメトキシシラン(KBM-13、信越化学工業(株))3質量部をシクロヘキサン27質量部に溶解して表面不活性化処理液を調製し、この処理液30質量部に表面不活性化処理が施されていない比較例1のアルミニウムキレート系潜在性硬化剤3質量部を投入し、その混合物を30℃で20時間、200rpmで撹拌しながら、アルミニウムキレート系潜在性硬化剤の表面不活性化処理を行った。処理反応終了後、処理液から重合粒子を濾過により濾別し、自然乾燥することにより表面不活性化処理が施された球状のアルミニウムキレート系潜在性硬化剤を得た。
  実施例3
 メチルトリメトキシシラン(KBM-13、信越化学工業(株))3質量部に代えて、n-プロピルトリメトキシシラン(KBM-3033、信越化学工業(株))3質量部を使用すること以外、実施例2と同様の操作を繰り返すことにより、表面不活性化処理が施された球状のアルミニウムキレート系潜在性硬化剤を得た。
  実施例4
 メチルトリメトキシシラン(KBM-13、信越化学工業(株))3質量部に代えて、ヘキシルトリメトキシシラン(KBM-3063、信越化学工業(株))3質量部を使用すること以外、実施例2と同様の操作を繰り返すことにより、表面不活性化処理が施された球状のアルミニウムキレート系潜在性硬化剤を得た。
  比較例2
(表面不活性化処理が施されていないアルミニウムキレート系潜在性硬化剤の製造)
 蒸留水800質量部と、界面活性剤(ニューレックスR-T、日油(株))0.05質量部と、分散剤としてポリビニルアルコール(PVA-205、(株)クラレ)4質量部とを、温度計を備えた3リットルの界面重合容器に入れ、均一に混合し水相を調製した。
 この水相に、更に、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株))350質量部と、多官能イソシアネート化合物としてメチレンジフェニル-4,4´-ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D-109、三井化学(株))49質量部と、ラジカル重合性化合物としてジビニルベンゼン(メルク(株))21質量部と、ラジカル重合開始剤(パーロイルL、日油(株))0.21質量部(ラジカル重合性化合物の1質量%相当量)とを、酢酸エチル70質量部に溶解した油相を投入し、ホモジナイザー(10000rpm/5分:T-50、IKAジャパン(株))で乳化混合後、80℃で6時間、界面重合とラジカル重合を行った。反応終了後、重合反応液を室温まで放冷し、重合粒子を濾過により濾別し、自然乾燥することにより表面不活性化処理が施されていない球粒子状のアルミニウムキレート系潜在性硬化剤を得た。
 このアルミニウムキレート系潜在性硬化剤を、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株))40質量部と、エタノール60質量部とからなる含浸液に投入し、30℃で6時間撹拌した後、粒子状の硬化剤を濾別し、自然乾燥させることにより、高濃度タイプの、表面不活性化処理が施されていない球状のアルミニウムキレート系潜在性硬化剤を得た。
  実施例5
 n-プロピルトリメトキシシラン(KBM-3033、信越化学工業(株))3質量部をシクロヘキサン27質量部に溶解して表面不活性化処理液を調製し、この処理液30質量部に表面不活性化処理が施されていない比較例2のアルミニウムキレート系潜在性硬化剤3質量部を投入し、その混合物を30℃で20時間、200rpmで撹拌しながら、アルミニウムキレート系潜在性硬化剤の表面不活性化処理を行った。処理反応終了後、処理液から重合粒子を濾過により濾別し、自然乾燥することにより、高濃度タイプの、表面不活性化処理が施された球状のアルミニウムキレート系潜在性硬化剤を得た。
  実施例6
 n-プロピルトリメトキシシラン(KBM-3033、信越化学工業(株))6質量部をシクロヘキサン24質量部に溶解して表面不活性化処理液を調製し、この処理液30質量部に表面不活性化処理が施されていない比較例2のアルミニウムキレート系潜在性硬化剤3質量部を投入し、その混合物を30℃で20時間、200rpmで撹拌しながら、アルミニウムキレート系潜在性硬化剤の表面不活性化処理を行った。処理反応終了後、処理液から重合粒子を濾過により濾別し、自然乾燥することにより、高濃度タイプの、表面不活性化処理が施された球状のアルミニウムキレート系潜在性硬化剤を得た。
  実施例7
 2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(KBM-303、信越化学工業(株))6質量部をシクロヘキサン24質量部に溶解して表面不活性化処理液を調製し、この処理液30質量部に表面不活性化処理が施されていない比較例2のアルミニウムキレート系潜在性硬化剤3質量部を投入し、その混合物を30℃で20時間、200rpmで撹拌しながら、アルミニウムキレート系潜在性硬化剤の表面不活性化処理を行った。処理反応終了後、処理液から重合粒子を濾過により濾別し、自然乾燥することにより、高濃度タイプの、表面不活性化処理が施された球状のアルミニウムキレート系潜在性硬化剤を得た。
<評価1(DSC測定)>
 比較例1、2及び実施例1~7のアルミニウムキレート系潜在性硬化剤8質量部、ビスフェノールA型エポキシ樹脂(EP828、三菱化学(株))80質量部およびトリフェニルシラノール(東京化成工業(株))4質量部を均一に混合することによりDSC測定用の熱硬化型エポキシ樹脂組成物を得た。
 これらの熱硬化型エポキシ樹脂組成物を、示差熱分析装置(DSC6200、(株)日立ハイテクサイエンス)を用いて熱分析した。得られた結果を表1に示す。併せて、実施例1、2及び比較例1のアルミニウムキレート系潜在性硬化剤を使用した熱硬化型エポキシ樹脂組成物の結果を図1に、実施例2~4のアルミニウムキレート系潜在性硬化剤を使用した熱硬化型エポキシ樹脂組成物の結果を図2に、比較例2及び実施例5、6のアルミニウムキレート系潜在性硬化剤を使用した熱硬化型エポキシ樹脂組成物の結果を図3に、そして比較例2と実施例7のアルミニウムキレート系潜在性硬化剤を使用した熱硬化型エポキシ樹脂組成物の結果を図4に示す。ここで、アルミニウムキレート系潜在性硬化剤の硬化特性に関し、発熱開始温度は硬化開始温度を意味しており、発熱ピーク温度は最も硬化が活性となる温度を意味しており、そして総発熱量(ピーク面積)は硬化進行度合いを示しており、良好な低温速硬化性を実現するために、実用上250J/g以上であることが望まれる。
<評価2(保存安定性)>
 比較例1、2及び実施例1~7のアルミニウムキレート系潜在性硬化剤2質量部、脂環式エポキシ樹脂(CEL2021P、(株)ダイセル)100質量部、3-グリドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株))0.5質量部、及びトリフェニルシラノール(東京化成工業(株))7質量部を均一に混合することにより粘度測定用の熱硬化型エポキシ樹脂組成物を得た。
 これらの熱硬化型エポキシ樹脂組成物を室温(25℃)で保存し、初期粘度、所定時間経過後の粘度を、音叉型振動式粘度計(SV-10、(株)エー・アンド・デイ)を用いて20℃で測定した。得られた結果を表2に示し、48時間経過時の粘度を初期粘度で除した値(48H値/初期値)を表1にも示した。この値が1に近いほど保存安定性に優れていることを示している。
<評価3(電子顕微鏡観察)>
 実施例6、7のアルミニウムキレート系潜在性硬化剤の電子顕微鏡写真(倍率5000倍)を、それぞれ図5、6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<結果の考察>
(1)表1、表2及び図1の比較例1、実施例1、2の結果から、アルキルアルコキシシランで表面不活性化処理を行うと、発熱開始温度及び発熱ピーク温度が高温側にシフトしたが、実用上の低温速硬化性と潜在性とが確保されていることがわかる。また、保存安定性の結果から、高反応の脂環式エポキシ樹脂系の熱硬化型エポキシ樹脂組成物について、室温下、一液での保存安定性が大きく向上していることがわかる。
(2)表1、表2及び図2の実施例2~4の結果から、アルキルアルコキシシランの種類が変化しても、同様の結果が得られることがわかる。
(3)表1、表2及び図3の比較例2、実施例5、6の結果から、高濃度タイプのアルミニウムキレート系潜在性硬化剤を使用しても、アルキルアルコキシシランで表面不活性化処理を行えば、実用上の低温速硬化性と潜在性とが確保され、しかも、高反応の脂環式エポキシ樹脂系の熱硬化型エポキシ樹脂組成物について、室温下、一液での保存安定性が大きく向上していることがわかる。
(4)表1、表2及び図4の比較例2、実施例7の結果から、高濃度タイプのアルミニウムキレート系潜在性硬化剤を使用しても、エポキシアルコキシシランで表面不活性化処理を行えば、実用上の低温速硬化性と潜在性とが確保され、しかも、高反応の脂環式エポキシ樹脂系の熱硬化型エポキシ樹脂組成物について、室温下、一液での保存安定性が大きく向上していることがわかる。
 なお、実施例6,7のアルミニウムキレート系潜在性硬化剤の電子顕微鏡写真(図5,図6)から硬化剤粒子の形状が真球に近い形状となっていることがわかる。このことから、アルミニウムキレート系潜在性硬化剤の粒子表面が上述のカップリング剤の処理膜で均一に被覆されていることが推察される。
 本発明のアルミニウムキレート系潜在性硬化剤は、多官能イソシアネート化合物の界面重合物をマイクロカプセル壁として利用しているにも関わらず、低温領域でシャープな熱応答性を示す。従って、低温短時間接続用のエポキシ系接着剤の潜在性硬化剤として有用である。

Claims (14)

  1.  熱硬化型エポキシ樹脂を硬化させるためのアルミニウムキレート系潜在性硬化剤であって、
     アルミニウムキレート系硬化剤が、多官能イソシアネート化合物を界面重合させると同時に、ラジカル重合開始剤の存在下でラジカル重合性化合物をラジカル重合させて得た多孔性樹脂に保持されており、
     アルコキシシランカップリング剤で表面不活性化処理されていることを特徴とするアルミニウムキレート系潜在性硬化剤。
  2.  アルコキシシランカップリング剤が、アルキルアルコキシシランである請求項1記載のアルミニウムキレート系潜在性硬化剤。
  3.  アルキルアルコキシシランが、メチルトリメトキシシラン、n-プロピルトリメトキシシラン、又はヘキシルトリメトキシシランである請求項2記載のアルミニウムキレート系潜在性硬化剤。
  4.  アルコキシシランカップリング剤が、エポキシアルコキシシランである請求項1記載のアルミニウムキレート系潜在性硬化剤。
  5.  エポキシアルコキシシランが、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン又は3-グリシドキシプロピルトリメトキシシランである請求項4記載のアルミニウムキレート系潜在性硬化剤。
  6.  ラジカル重合性化合物が、多官能ラジカル重合性化合物を含有する請求項1~5のいずれかに記載のアルミニウムキレート系潜在性硬化剤。
  7.  ラジカル重合性化合物が、多官能ラジカル重合性化合物を少なくとも50質量%以上含有する請求項6記載のアルミニウムキレート系潜在性硬化剤。
  8.  多官能ラジカル重合性化合物が、多官能ビニル系化合物である請求項6または7記載のアルミニウムキレート系潜在性硬化剤。
  9.  多官能ビニル系化合物が、ジビニルベンゼンである請求項8記載のアルミニウムキレート系潜在性硬化剤。
  10.  多官能ラジカル重合性化合物が、更に、多官能(メタ)アクリレート系化合物を含有する請求項6~9のいずれかに記載のアルミニウムキレート系潜在性硬化剤。
  11.  アルミニウムキレート系硬化剤の含有量が、多官能イソシアネート化合物とラジカル重合性化合物との合計100質量部に対し、10~200質量部である請求項1~10のいずれかに記載のアルミニウムキレート系潜在性硬化剤。
  12.  請求項1記載のアルミニウムキレート系潜在性硬化剤の製造方法であって、
     アルミニウムキレート系硬化剤、多官能イソシアネート化合物、ラジカル重合性化合物及びラジカル重合開始剤を、揮発性有機溶媒に溶解または分散させて得た油相を、分散剤を含有する水相に投入しながら加熱撹拌することにより、多官能イソシアネート化合物を界面重合させると同時にラジカル重合性化合物をラジカル重合反応させ、それにより得られる多孔性樹脂にアルミニウムキレート系硬化剤を保持させた後、有機溶媒にアルコキシシランカップリング剤が溶解した溶液中に浸漬することにより、アルコキシシランカップリング剤で表面不活性化処理することを特徴とする製造方法。
  13.  請求項1~11のいずれかに記載のアルミニウムキレート系潜在性硬化剤と、エポキシ樹脂と、シラン系化合物とを含有する熱硬化型エポキシ樹脂組成物。
  14.  シラン系化合物が、トリフェニルシラノールである請求項13記載の熱硬化型エポキシ樹脂組成物。
PCT/JP2015/074610 2014-09-09 2015-08-31 アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物 WO2016039193A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167036606A KR102331383B1 (ko) 2014-09-09 2015-08-31 알루미늄 킬레이트계 잠재성 경화제, 그 제조 방법 및 열경화형 에폭시 수지 조성물
CN201580045273.0A CN106661202B (zh) 2014-09-09 2015-08-31 铝螯合物系潜伏性固化剂、其制造方法及热固型环氧树脂组合物
US15/509,025 US10093769B2 (en) 2014-09-09 2015-08-31 Aluminum chelate-based latent curing agent, method of producing same, and thermosetting epoxy resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014183374A JP6489494B2 (ja) 2014-09-09 2014-09-09 アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物
JP2014-183374 2014-09-09

Publications (1)

Publication Number Publication Date
WO2016039193A1 true WO2016039193A1 (ja) 2016-03-17

Family

ID=55458945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074610 WO2016039193A1 (ja) 2014-09-09 2015-08-31 アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物

Country Status (6)

Country Link
US (1) US10093769B2 (ja)
JP (1) JP6489494B2 (ja)
KR (1) KR102331383B1 (ja)
CN (1) CN106661202B (ja)
TW (1) TWI658059B (ja)
WO (1) WO2016039193A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104244A1 (ja) * 2015-12-17 2017-06-22 デクセリアルズ株式会社 アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物
JP2017222782A (ja) * 2016-06-15 2017-12-21 デクセリアルズ株式会社 潜在性硬化剤、及びその製造方法、並びに熱硬化型エポキシ樹脂組成物
WO2022176608A1 (ja) * 2021-02-19 2022-08-25 デクセリアルズ株式会社 カチオン硬化剤及びその製造方法、並びにカチオン硬化性組成物
WO2023095601A1 (ja) * 2021-11-29 2023-06-01 デクセリアルズ株式会社 潜在性硬化剤及びその製造方法、並びに硬化性組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6948114B2 (ja) 2016-06-15 2021-10-13 デクセリアルズ株式会社 熱硬化型エポキシ樹脂組成物、及びその製造方法
JP7257736B2 (ja) * 2017-07-06 2023-04-14 デクセリアルズ株式会社 カチオン硬化性組成物
JP7009201B2 (ja) * 2017-12-21 2022-02-10 デクセリアルズ株式会社 化合物、カチオン硬化剤、及びカチオン硬化性組成物
JP7117166B2 (ja) 2018-06-13 2022-08-12 デクセリアルズ株式会社 カチオン硬化性組成物、及び硬化物の製造方法
JP7221075B2 (ja) 2019-02-15 2023-02-13 デクセリアルズ株式会社 潜在性硬化剤及びその製造方法、並びにカチオン硬化性組成物
CN114269760A (zh) 2019-08-26 2022-04-01 迪睿合株式会社 阳离子固化剂及其制造方法、以及阳离子固化性组合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238656A (ja) * 2002-02-18 2003-08-27 Sony Chem Corp 潜在性硬化剤、潜在性硬化剤の製造方法及び接着剤
WO2007007725A1 (ja) * 2005-07-11 2007-01-18 Sony Chemical & Information Device Corporation 熱硬化型エポキシ樹脂組成物
JP2008031325A (ja) * 2006-07-31 2008-02-14 Asahi Kasei Chemicals Corp 潜在性熱硬化型組成物とその硬化物
JP2010168449A (ja) * 2009-01-21 2010-08-05 Sony Chemical & Information Device Corp アルミニウムキレート系潜在性硬化剤及びその製造方法
JP2012117033A (ja) * 2010-11-12 2012-06-21 Namics Corp 液状封止材、それを用いた電子部品
JP2012188596A (ja) * 2011-03-11 2012-10-04 Hitachi Chemical Co Ltd 熱潜在性硬化剤及びその製造方法並びに熱硬化型エポキシ樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212537A (ja) 2001-01-24 2002-07-31 Sony Chem Corp 接着剤及び電気装置
JP4811555B2 (ja) * 2005-01-12 2011-11-09 ソニーケミカル&インフォメーションデバイス株式会社 潜在性硬化剤
JP5458596B2 (ja) 2008-02-18 2014-04-02 デクセリアルズ株式会社 アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物
JP5469956B2 (ja) * 2008-08-27 2014-04-16 デクセリアルズ株式会社 磁性シート組成物、磁性シート、及び磁性シートの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238656A (ja) * 2002-02-18 2003-08-27 Sony Chem Corp 潜在性硬化剤、潜在性硬化剤の製造方法及び接着剤
WO2007007725A1 (ja) * 2005-07-11 2007-01-18 Sony Chemical & Information Device Corporation 熱硬化型エポキシ樹脂組成物
JP2012224869A (ja) * 2005-07-11 2012-11-15 Sony Chemical & Information Device Corp 熱硬化型エポキシ樹脂組成物
JP2008031325A (ja) * 2006-07-31 2008-02-14 Asahi Kasei Chemicals Corp 潜在性熱硬化型組成物とその硬化物
JP2010168449A (ja) * 2009-01-21 2010-08-05 Sony Chemical & Information Device Corp アルミニウムキレート系潜在性硬化剤及びその製造方法
JP2012117033A (ja) * 2010-11-12 2012-06-21 Namics Corp 液状封止材、それを用いた電子部品
JP2012188596A (ja) * 2011-03-11 2012-10-04 Hitachi Chemical Co Ltd 熱潜在性硬化剤及びその製造方法並びに熱硬化型エポキシ樹脂組成物

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104244A1 (ja) * 2015-12-17 2017-06-22 デクセリアルズ株式会社 アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物
JPWO2017104244A1 (ja) * 2015-12-17 2018-10-18 デクセリアルズ株式会社 アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物
US10626215B2 (en) 2015-12-17 2020-04-21 Dexerials Corporation Process for producing aluminum-chelate-based latent curing agent, and thermosetting epoxy resin composition
JP2017222782A (ja) * 2016-06-15 2017-12-21 デクセリアルズ株式会社 潜在性硬化剤、及びその製造方法、並びに熱硬化型エポキシ樹脂組成物
CN109312058A (zh) * 2016-06-15 2019-02-05 迪睿合株式会社 潜在性固化剂及其制造方法、以及热固化型环氧树脂组合物
US10745551B2 (en) 2016-06-15 2020-08-18 Dexerials Corporation Latent curing agent, production method therefor, and thermosetting epoxy resin composition
TWI724180B (zh) * 2016-06-15 2021-04-11 日商迪睿合股份有限公司 潛在性硬化劑及其製造方法、以及熱硬化型環氧樹脂組成物
CN109312058B (zh) * 2016-06-15 2021-05-14 迪睿合株式会社 潜在性固化剂及其制造方法、以及热固化型环氧树脂组合物
WO2022176608A1 (ja) * 2021-02-19 2022-08-25 デクセリアルズ株式会社 カチオン硬化剤及びその製造方法、並びにカチオン硬化性組成物
WO2023095601A1 (ja) * 2021-11-29 2023-06-01 デクセリアルズ株式会社 潜在性硬化剤及びその製造方法、並びに硬化性組成物

Also Published As

Publication number Publication date
KR102331383B1 (ko) 2021-11-25
TW201623363A (zh) 2016-07-01
KR20170049465A (ko) 2017-05-10
TWI658059B (zh) 2019-05-01
US10093769B2 (en) 2018-10-09
JP6489494B2 (ja) 2019-03-27
CN106661202A (zh) 2017-05-10
JP2016056274A (ja) 2016-04-21
CN106661202B (zh) 2019-04-09
US20170253694A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6489494B2 (ja) アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物
JP5458596B2 (ja) アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物
JP5321082B2 (ja) アルミニウムキレート系潜在性硬化剤及びその製造方法
JP5707662B2 (ja) 熱硬化型エポキシ樹脂組成物
WO2017104244A1 (ja) アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物
JP5481995B2 (ja) アルミニウムキレート系潜在性硬化剤及びそれらの製造方法
JP6948114B2 (ja) 熱硬化型エポキシ樹脂組成物、及びその製造方法
JP2012188596A (ja) 熱潜在性硬化剤及びその製造方法並びに熱硬化型エポキシ樹脂組成物
CN109312058B (zh) 潜在性固化剂及其制造方法、以及热固化型环氧树脂组合物
JP2017101164A (ja) アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物
JP5354192B2 (ja) 熱硬化型導電ペースト組成物
JP2009035693A (ja) 潜在性硬化剤
JP7097665B2 (ja) アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物
JP6915671B2 (ja) アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物
JP7028280B2 (ja) アルミニウムキレート系潜在性硬化剤の製造方法及び熱硬化型エポキシ樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167036606

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15509025

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839385

Country of ref document: EP

Kind code of ref document: A1