WO2017101262A1 - 一种锂离子电池正极材料的合成方法 - Google Patents
一种锂离子电池正极材料的合成方法 Download PDFInfo
- Publication number
- WO2017101262A1 WO2017101262A1 PCT/CN2016/084412 CN2016084412W WO2017101262A1 WO 2017101262 A1 WO2017101262 A1 WO 2017101262A1 CN 2016084412 W CN2016084412 W CN 2016084412W WO 2017101262 A1 WO2017101262 A1 WO 2017101262A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- lithium ion
- ion battery
- electrode material
- synthesizing
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the technical field of cathode materials for lithium ion batteries, in particular to a method for synthesizing cathode materials for lithium ion batteries.
- the chemical coprecipitation method is most widely used in liquid phase chemical synthesis of powder materials.
- a suitable precipitant is added to the raw material liquid, so that the components which have been uniformly mixed in the solution are precipitated together in a stoichiometric ratio, or An intermediate product is precipitated in the solution, and then calcined and decomposed to prepare a target product.
- the process can be used to control the particle size and morphology of the product according to the experimental conditions, and the effective components in the product can be uniformly mixed at the atomic and molecular levels, and the device is simple and easy to operate.
- the pH is controlled to a constant value under the same conditions, and the particle growth is achieved by the increase of the reaction time, and the whole process takes a long time, and The fixed pH of the growth of the particles cannot meet the requirements of particle growth, and the resulting particle size and morphology may not meet the production requirements.
- the primary particle accompanying the reaction process gradually exhibits a gradient change of the particle size, thereby controlling the primary particle morphology of the secondary particle from the inside to the outer surface.
- small-sized particles have large specific surface area, high efficiency, high magnification, low safety, large-sized particles with small specific surface area, high cycle and safety, in order to obtain precursors with different particle sizes and morphologies, control is required.
- the feed port conveys a gradient solution, and the composition of the feed solution needs to be changed in gradient with time or the feed volume.
- the feed solutions of different elemental components need to be grown at different pH values, so the pH changes accordingly.
- the present invention discloses a coprecipitation method in which the pH value changes linearly with reaction time or feed volume.
- the object of the present invention is to control the linear pH value in the coprecipitation reaction to regulate the particle size and morphology change of the precursor, and to provide a positive electrode material for a lithium ion battery. resolve resolution.
- the technical proposal of the present invention is: a method for synthesizing a positive electrode material for a lithium ion battery, characterized in that: the positive electrode material of the lithium ion battery is at least one of a lithium-rich manganese-based material and a ternary material, and the positive electrode material precursor
- the synthesis uses an improved coprecipitation method, in which the pH in the autoclave is linearly changed with the reaction time or the volume of the added salt solution during any one or several time periods ⁇ t of the coprecipitation reaction.
- the linear change of pH includes linear increase and linear decrease, and the linear change rate value range is 0.02 ⁇ h -1 ⁇ V ⁇ 2 ⁇ h -1 , that is, the reaction time at ⁇ t 1 In the segment, the rate of change is V 1 , and at ⁇ t 2 , the rate of change is V 2 .
- the ternary material has a molecular formula of Li 1+n Ni x Co y M 1-xy O 2 , wherein M is at least one element of Mn, Al, Mg, Zr, Ce, Ti, Ca, Fe, and 0 ⁇ n ⁇ 0.1, 0.3 ⁇ x ⁇ 1, 0.1 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1.
- Any one of the above and several time periods ⁇ t range from 1 min to 72 h.
- the pH range varies from a value between 10 and 13 between two values.
- the ternary material or the lithium-rich manganese-based material is obtained by synthesizing the precursor obtained by two-step sintering, the calcination temperature is 300-500 ° C, the calcination time is 1-10 h, and the secondary calcination temperature is 600-1000. °C, the time of secondary calcination is 10-20h.
- the beneficial effects of the invention are: controlling the linear change of pH value during the coprecipitation process and the change of the pH change rate in different processes of nucleation growth, and controlling the linear change of the growth rate of the primary particles and the secondary particles, in controlling the morphology of the precursor Under the premise, reducing particle growth time, improving production efficiency, facilitating mass production, and broad prospects for large-scale application.
- Figure 1 is a graph showing the change in the linear decrease in pH controlled by Example 1.
- Figure 2 is a graph showing the change in the linear increase in pH controlled by Example 2.
- Figure 3 is a multi-stage linear change in pH controlled by Example 3.
- Figure 4 is a multi-segment linear change in the other case of pH controlled by Example 4.
- Embodiments of the present invention provide a method for preparing a positive electrode active material for a lithium ion battery, wherein the maximum technical feature is any one of the coprecipitation reaction and a plurality of time periods ⁇ t, and the pH value in the control kettle is controlled according to the reaction time or the salt solution is added.
- the volume changes linearly.
- the volume of the added salt solution is obtained by the feeding rate and the feeding time.
- the linear change of pH includes linear increase and linear decrease.
- the linear change rate range is 0.02 ⁇ h -1 ⁇ V ⁇ 2 ⁇ h -1 , the pH value can be changed in multiple stages; the pH value is controlled by the program-controlled automatic feeding equipment, which realizes automatic production, avoids manual control precision error and cost increase.
- the nitrogen gas aeration rate was controlled to 200 mL/min to remove the oxygen in the solution and above, and the temperature was adjusted to 50 ° C while stirring at 1000 rpm.
- 3M metal ion aqueous solution is arranged, wherein nickel sulfate: cobalt sulfate: manganese sulfate molar ratio is 5:2:3, and then enters the reaction kettle at a rate of 10 mL/min, while the aqueous sodium hydroxide solution is set according to the pH value according to FIG.
- the controlled automation equipment is automatically added to the autoclave.
- the pH at the start of the reaction is set to 10, the pH value is controlled to rise linearly, the pH change rate V is 0.096 ⁇ h -1 , and the reaction time is 26 h.
- the ammonia aqueous solution is continuously pumped.
- the concentration of ammonia in the kettle required to maintain the reactor was constant.
- the precursor obtained by the synthesis is prepared by two-step sintering to prepare a cathode material having a calcination temperature of 400 ° C, a calcination time of 6 h, a secondary calcination temperature of 900 ° C, and a secondary calcination time of 12 h.
- the nitrogen gas aeration rate was controlled to 200 mL/min to remove the oxygen in the solution and above, and the temperature was adjusted to 50 ° C while stirring at 1000 rpm.
- 3M metal ion aqueous solution is arranged, wherein nickel sulfate: cobalt sulfate: manganese sulfate molar ratio is 5:2:3, and then enters the reaction kettle at a rate of 10 mL/min, while the aqueous sodium hydroxide solution is set according to the pH value according to FIG.
- the controlled automation equipment is automatically added to the autoclave.
- the pH at the start of the reaction is set to 12.5, the pH value is controlled to decrease linearly, the pH change rate V is 0.096 ⁇ h -1 , and the reaction time is 26 h.
- the ammonia solution is continuously pumped.
- the concentration of ammonia in the kettle required to maintain the reactor was constant.
- the precursor obtained by the synthesis is prepared by two-step sintering to prepare a cathode material having a calcination temperature of 400 ° C, a calcination time of 6 h, a secondary calcination temperature of 900 ° C, and a secondary calcination time of 12 h.
- the nitrogen gas aeration rate was controlled to 200 mL/min to remove the oxygen in the solution and above, and the temperature was adjusted to 50 ° C while stirring at 1000 rpm.
- 3M metal ion aqueous solution is arranged, wherein nickel sulfate: cobalt sulfate: manganese sulfate molar ratio is 6:2:2, and then enters the reaction kettle at a rate of 10 mL/min, while the sodium hydroxide aqueous solution is set according to the pH value according to FIG.
- the controlled automation equipment is automatically added to the autoclave.
- the pH at the beginning of the reaction is set to 10, and the pH value is controlled to increase linearly.
- the first stage pH change rate V 1 is 0.05 ⁇ h -1 and the reaction time is 10 h.
- the second stage The linearity increased, the pH change rate V 2 was 0.25 ⁇ h -1 , and the reaction time was 2 h; the pH value of the third stage increased linearly, the pH change rate V 3 was 0.5 ⁇ h -1 , and the reaction time was 4 h.
- the aqueous ammonia solution is continuously pumped into the reactor to maintain a constant ammonia concentration in the tank.
- the synthesized precursor was subjected to two-step sintering to prepare a desired positive electrode material, the calcination temperature was 400 ° C, the calcination time was 6 h, the secondary calcination temperature was 800 ° C, and the secondary calcination time was 15 h.
- the nitrogen gas aeration rate was controlled to 200 mL/min to remove the oxygen in the solution and above, and the temperature was adjusted to 50 ° C while stirring at 1000 rpm.
- 3M metal ion aqueous solution is arranged, wherein nickel sulfate: cobalt sulfate: manganese sulfate molar ratio is 6:2:2, and then enters the reaction kettle at a rate of 10 mL/min, while the sodium hydroxide aqueous solution is set according to the pH value according to FIG.
- the controlled automation equipment is automatically added to the autoclave.
- the pH at the beginning of the reaction is set to 10, and the pH value is controlled to increase linearly.
- the first stage pH change rate V 1 is 0.05 ⁇ h -1 and the reaction time is 10 h.
- the second stage The linearity increased, the pH change rate V 2 was 0.25 ⁇ h -1 , and the reaction time was 4 h; the pH value of the third stage decreased linearly, the pH change rate V 3 was 0.15 ⁇ h -1 , and the reaction time was 6 h.
- the aqueous ammonia solution is continuously pumped into the reactor to maintain a constant ammonia concentration in the tank.
- the synthesized precursor was subjected to two-step sintering to prepare a desired positive electrode material, the calcination temperature was 400 ° C, the calcination time was 6 h, the secondary calcination temperature was 800 ° C, and the secondary calcination time was 15 h.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种锂离子电池正极材料的合成方法,属于锂离子电池正极材料技术领域,通过控制共沉淀反应中的线性pH值来调控前驱体的粒度及形貌变化。本发明一种锂离子电池正极材料的合成方法,该锂离子电池正极材料为富锂锰基材料、三元材料的至少一种,此合成方法的是共沉淀过程中任意一个及若干个时间段△t内,控制釜内pH值随时间或加入盐溶液体积呈线性变化,达到控制一次粒子及二次粒子生长速度线性变化,使一次粒子从颗粒内部向外部呈现梯度变化的生长速度,达到控制电化学性能的目的,有利于批量化生产,具有大规模化应用的广阔前景。
Description
本发明涉及锂离子电池正极材料技术领域,特别涉及一种锂离子电池正极材料的合成方法。
化学共沉淀法在液相化学合成粉体材料中应用最为广泛,一般是向原料液中添加适当的沉淀剂,使溶液中已经混合均匀的各组分按化学计量比共同沉淀出来,或者是在溶液中先反应沉淀出一种中间产物,再把它煅烧分解制备出目标产品。采用该工艺可根据实验条件对产物的粒度、形貌进行调控,产物中有效组分可达到原子、分子级别的均匀混合,设备简单,操作容易。
传统的化学共沉淀法在前驱体合成时,在其他条件不变的情况下,控制pH为一个定值,通过反应时间的增加来达到使粒子增长的目的,整个过程耗费时间较长,而且随着粒子的增长固定的pH值不能满足粒子生长的要求,这样得到的粒度和形貌也可能达不到生产的要求。
在氢氧化物做为沉淀剂的共沉淀反应过程,pH控制着过饱和度,影响着晶核生成速率和晶体生长速度。在络合剂和浓度等其他条件不变时,pH升高,溶液过饱和度提高,成核反应得到促进,颗粒成核数量多,二次球形颗粒中的一次颗粒细小。反之,降低pH时,晶体成核速率得到抑制,成核速率慢,一次颗粒生长的尺寸变大。本发明中,通过控制共沉淀反应中pH值呈线性变化,能促使一次颗粒伴随反应过程逐渐呈现粒径的梯度变化,从而控制二次颗粒由内部到外表面的一次颗粒形貌。因为小尺寸的粒子比表面积大,首效高、倍率高、安全性低,大尺寸的粒子比表面积小,循环和安全性高,所以为了能够得到不同粒度及形貌的前驱体,就需要控制线性pH变化。另外,在共沉淀法合成梯度组分的三元材料时,进料口输送的是梯度溶液,加料溶液组分需要随时间或加料体积呈梯度变化。而不同元素组分的加料溶液,需要在不同pH值下生长,因此也需要pH相应呈梯度变化。本发明,公开了一种pH值随反应时间或加料体积呈线性速率变化的共沉淀法。
发明内容
鉴于上述方法的不足及实际生产合成过程中的问题,本发明的目的在于控制共沉淀反应中的线性pH值来调控前驱体的粒度及形貌变化,并提供了一种锂离子电池正极材料的合成方法。
本发明的技术方案为:一种锂离子电池正极材料的合成方法,其特征在于:该锂离子电池正极材料为富锂锰基材料、三元材料的至少一种,所述的正极材料前驱体合成使用的是改进的共沉淀法,即在共沉淀反应的任意一个及若干个时间段△t内,控制釜内pH值随反应时间或加入盐溶液体积呈线性变化。
所述的在时间段△t内,pH线性变化包含了线性升高和线性降低,线性变化速率大小值范围为0.02·h-1≤V≤2·h-1,即在△t1反应时间段内,变化速率为V1,在△t2时,变化速率为V2。
所述的三元材料的分子式为Li1+nNixCoyM1-x-yO2,其中M为Mn、Al、Mg、Zr、Ce、Ti、Ca、Fe的至少一种元素,且0≤n<0.1,0.3≤x<1,0.1≤y<1,0<x+y<1。
所述的富锂锰基材料的分子式为nLi2MnO3·(1-n)LiNixCoyMnzO2,其中0<n<1,0<x<1,,0<y<1,0<z<1且x+y+z=1。
所述的任意一个及若干个时间段△t的范围为1min~72h。
所述的pH值的变化范围为10~13之间的某两个数值之间的变化。
所述的三元材料或富锂锰基材料是由合成得到的前驱体经两步烧结得到,预烧温度300~500℃,预烧时间为1~10h,二次煅烧的温度为600~1000℃,二次煅烧的时间为10~20h。
本发明的有益效果为:控制共沉淀过程中pH值线性变化及成核生长不同过程中pH值变化速率的改变,达到控制一次粒子及二次粒子生长速度线性变化,在控制前驱体形貌的前提下,减少粒子生长时间,提高生产效率,有利于批量化生产,具有大规模化应用的广阔前景。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是实施例1控制的pH值线性减小的变化。
图2是实施例2控制的pH值线性增加的变化。
图3是实施例3控制的pH值多段线性变化。
图4是实施例4控制的pH值另一种情况的多段线性变化。
本发明实施例提供一种锂离子电池正极活性材料的制备方法,其中最大技术特征为共沉淀反应中的任意一个及若干个时间段△t内,控制釜内pH值随反应时间或加入盐溶液体积呈线性变化,加入盐溶液体积是由加料速度与加料时间得到;在时间段△t内,pH线性变化包含了线性升高和线性降低,线性变化速率大小值范围为0.02·h-1≤V≤2·h-1,pH的值可以的一段变化也可以多段变化;pH值的控制为程序控制的自动化加料设备来调节,实现了自动化生产,避免人工控制精度误差及成本增加等问题。
以下举出实施例对本发明具体地进行说明,但本发明并不限于这些实施例。
实施例1
在10L反应釜中,控制氮气通气速率为200mL/min去除溶液中及上方氧气,搅拌1000rpm同时控制釜内温度为50℃。
配置3M的金属离子水溶液,其中硫酸镍:硫酸钴:硫酸锰摩尔比为5:2:3,然后以10mL/min速度进入反应釜,同时氢氧化钠水溶液根据图1设定的pH值由程序控制的自动化设备自动加入釜内,反应开始时的pH设定为10,控制pH值线性升高,pH值变化速率V为0.096·h-1,反应时间为26h,与此同时氨水溶液连续泵入反应釜内维持所需的釜内氨水浓度恒定。
合成得到的前驱体经两步烧结制备出所需的正极材料,预烧温度400℃,预烧时间为6h,二次煅烧的温度为900℃,二次煅烧的时间为12h。
实施例2
在10L反应釜中,控制氮气通气速率为200mL/min去除溶液中及上方氧气,搅拌1000rpm同时控制釜内温度为50℃。
配置3M的金属离子水溶液,其中硫酸镍:硫酸钴:硫酸锰摩尔比为5:2:3,然后以10mL/min速度进入反应釜,同时氢氧化钠水溶液根据图2设定的pH值由程序控制的自动化设备自动加入釜内,反应开始时的pH设定为12.5,控制pH值线性降低,pH值变化速率V为0.096·h-1,反应时间为26h,与此同时氨水溶液连续泵入反应釜内维持所需的釜内氨水浓度恒定。
合成得到的前驱体经两步烧结制备出所需的正极材料,预烧温度400℃,预烧时间为6h,二次煅烧的温度为900℃,二次煅烧的时间为12h。
实施例3
在10L反应釜中,控制氮气通气速率为200mL/min去除溶液中及上方氧气,搅拌1000rpm同时控制釜内温度为50℃。
配置3M的金属离子水溶液,其中硫酸镍:硫酸钴:硫酸锰摩尔比为6:2:2,然后以10mL/min速度进入反应釜,同时氢氧化钠水溶液根据图3设定的pH值由程序控制的自动化设备自动加入釜内,反应开始时的pH设定为10,控制pH值多段线性升高,第一段pH变化速率V1为0.05·h-1,反应时间为10h;第二阶段线性升高,pH变化速率V2为0.25·h-1,反应时间为2h;第三阶段pH值线性升高,pH变化速率V3为0.5·h-1,反应时间为4h。,与此同时氨水溶液连续泵入反应釜内维持所需的釜内氨水浓度恒定。
合成得到的前驱体经两步烧结制备出所需的正极材料,预烧温度400℃,预烧时间为6h,二次煅烧的温度为800℃,二次煅烧的时间为15h。
实施例4
在10L反应釜中,控制氮气通气速率为200mL/min去除溶液中及上方氧气,搅拌1000rpm同时控制釜内温度为50℃。
配置3M的金属离子水溶液,其中硫酸镍:硫酸钴:硫酸锰摩尔比为6:2:2,然后以10mL/min速度进入反应釜,同时氢氧化钠水溶液根据图3设定的pH值由程序控制的自动化设备自动加入釜内,反应开始时的pH设定为10,控制pH值多段线性升高,第一段pH变化速率V1为0.05·h-1,反应时间为10h;第二阶段线性升高,pH变化速率V2为0.25·h-1,反应时间为4h;第三阶段pH值线性降低,pH变化速率V3为0.15·h-1,反应时间为6h。,与此同时氨水溶液连续泵入反应釜内维持所需的釜内氨水浓度恒定。
合成得到的前驱体经两步烧结制备出所需的正极材料,预烧温度400℃,预烧时间为6h,二次煅烧的温度为800℃,二次煅烧的时间为15h。
Claims (7)
- 一种锂离子电池正极材料的合成方法,其特征在于:该锂离子电池正极材料为富锂锰基材料、三元材料的至少一种,所述的正极材料前驱体合成使用的是改进的共沉淀法,即在共沉淀反应的任意一个及若干个时间段△t内,控制釜内pH值随反应时间或加入盐溶液体积呈线性变化。
- 如权利要求1所述的一种锂离子电池正极材料的合成方法,其特征在于:所述的在时间段△t内,pH线性变化包含了线性升高和线性降低,线性变化速率大小值范围为0.02·h-1≤V≤2·h-1,即在△t1反应时间段内,变化速率为V1,在△t2时,变化速率为V2。
- 如权利要求1所述的一种锂离子电池正极材料的合成方法,其特征在于:所述的三元材料的分子式为Li1+nNixCoyM1-x-yO2,其中M为Mn、Al、Mg、Zr、Ce、Ti、Ca、Fe的至少一种元素,且0≤n<0.1,0.3≤x<1,0.1≤y<1,0<x+y<1。
- 如权利要求1所述的一种锂离子电池正极材料的合成方法,其特征在于:所述的富锂锰基材料的分子式为nLi2MnO3·(1-n)LiNixCoyMnzO2,其中0<n<1,0<x<1,,0<y<1,0<z<1且x+y+z=1。
- 如权利要求1所述的一种锂离子电池正极材料的合成方法,其特征在于:所述的任意一个及若干个时间段△t的范围为1min~72h。
- 如权利要求1所述的一种锂离子电池正极材料的合成方法,其特征在于:所述的pH值的变化范围为10~13之间的某两个数值之间的变化。
- 如权利要求1、3或4所述的一种锂离子电池正极材料的合成方法,其特征在于:所述的三元材料或富锂锰基材料是由合成得到的前驱体经两步烧结得到,预烧温度300~500℃,预烧时间为1~10h,二次煅烧的温度为600~1000℃,二次煅烧的时间为10~20h。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510951028.8A CN105514411B (zh) | 2015-12-19 | 2015-12-19 | 一种锂离子电池正极材料的合成方法 |
CN201510951028.8 | 2015-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017101262A1 true WO2017101262A1 (zh) | 2017-06-22 |
Family
ID=55722222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/084412 WO2017101262A1 (zh) | 2015-12-19 | 2016-06-01 | 一种锂离子电池正极材料的合成方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105514411B (zh) |
WO (1) | WO2017101262A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113571695A (zh) * | 2021-09-23 | 2021-10-29 | 长沙理工大学 | 一种具有包覆层的渐变式三元正极材料的制备方法 |
CN113800577A (zh) * | 2021-09-28 | 2021-12-17 | 南通金通储能动力新材料有限公司 | 一种制备小粒径三元前驱体的方法 |
CN114408984A (zh) * | 2021-12-31 | 2022-04-29 | 宜宾光原锂电材料有限公司 | 前驱体制备过程中母液的循环利用方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105514411B (zh) * | 2015-12-19 | 2018-08-10 | 山东玉皇新能源科技有限公司 | 一种锂离子电池正极材料的合成方法 |
CN107204423B (zh) * | 2017-05-18 | 2020-06-09 | 山东玉皇新能源科技有限公司 | 一种高倍率三元正极材料的制备方法及其应用 |
CN107346824B (zh) * | 2017-05-27 | 2020-06-09 | 山东玉皇新能源科技有限公司 | 一种梯度三元正极材料的制备方法及其应用 |
CN108281639A (zh) * | 2018-01-31 | 2018-07-13 | 山东德朗能新能源科技有限公司 | 一种长寿命镍钴锰酸锂圆柱锂离子电池制作方法 |
CN111370679A (zh) * | 2018-12-25 | 2020-07-03 | 宁德时代新能源科技股份有限公司 | 正极活性物质前驱体、其制备方法及正极活性物质 |
CN113415830B (zh) * | 2021-08-24 | 2021-11-05 | 金驰能源材料有限公司 | 锂离子电池正极材料前驱体的制备方法 |
CN114204008A (zh) * | 2021-11-23 | 2022-03-18 | 格林美(江苏)钴业股份有限公司 | 一种高电压钴酸锂正极材料的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101202343A (zh) * | 2006-12-15 | 2008-06-18 | 中国电子科技集团公司第十八研究所 | 锂离子电池正极材料氧化镍钴锰锂及其制备方法 |
CN105514411A (zh) * | 2015-12-19 | 2016-04-20 | 山东玉皇新能源科技有限公司 | 一种锂离子电池正极材料的合成方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101229928B (zh) * | 2007-01-25 | 2010-04-07 | 湖南科力远新能源股份有限公司 | 一种球形镍钴锰酸锂材料的制备方法 |
CN102092798A (zh) * | 2010-12-01 | 2011-06-15 | 兰州金川新材料科技股份有限公司 | 一种锂离子电池正极材料前驱体的连续合成方法 |
CN103413931B (zh) * | 2013-08-08 | 2016-01-20 | 北京大学 | 硼掺杂的锂离子电池富锂正极材料及其制备方法 |
CN103545504B (zh) * | 2013-10-17 | 2016-01-20 | 江西赣锋锂业股份有限公司 | 一种三元正极材料前驱体的制备方法 |
CN103956479B (zh) * | 2014-05-20 | 2016-04-06 | 天津理工大学 | 一种高容量球形富锂正极材料的制备方法 |
-
2015
- 2015-12-19 CN CN201510951028.8A patent/CN105514411B/zh active Active
-
2016
- 2016-06-01 WO PCT/CN2016/084412 patent/WO2017101262A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101202343A (zh) * | 2006-12-15 | 2008-06-18 | 中国电子科技集团公司第十八研究所 | 锂离子电池正极材料氧化镍钴锰锂及其制备方法 |
CN105514411A (zh) * | 2015-12-19 | 2016-04-20 | 山东玉皇新能源科技有限公司 | 一种锂离子电池正极材料的合成方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113571695A (zh) * | 2021-09-23 | 2021-10-29 | 长沙理工大学 | 一种具有包覆层的渐变式三元正极材料的制备方法 |
CN113571695B (zh) * | 2021-09-23 | 2022-01-04 | 长沙理工大学 | 一种具有包覆层的渐变式三元正极材料的制备方法 |
CN113800577A (zh) * | 2021-09-28 | 2021-12-17 | 南通金通储能动力新材料有限公司 | 一种制备小粒径三元前驱体的方法 |
CN114408984A (zh) * | 2021-12-31 | 2022-04-29 | 宜宾光原锂电材料有限公司 | 前驱体制备过程中母液的循环利用方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105514411B (zh) | 2018-08-10 |
CN105514411A (zh) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017101262A1 (zh) | 一种锂离子电池正极材料的合成方法 | |
US11345609B2 (en) | High voltage lithium nickel cobalt manganese oxide precursor, method for making the same, and high voltage lithium nickel cobalt manganese oxide cathode material | |
KR101952210B1 (ko) | 알루미늄원소 구배 분포를 갖는 니켈-코발트-알루미늄 전구재료 및 정극재료 제조방법 | |
WO2019104473A1 (zh) | 三元前驱体材料及其制备方法 | |
CN111029561A (zh) | 三元锂电正极材料前驱体及其制备方法、三元锂电正极材料及制备方法和用途 | |
CN111072075A (zh) | 一种锂离子电池正极材料的制备方法 | |
CN113582256B (zh) | 一种高镍单晶正极材料及其前驱体、以及前驱体的制备方法 | |
CN106816579B (zh) | 一种冷冻结晶法制备镍钴锰酸锂锂离子电池正极材料方法 | |
CN105742568B (zh) | 一种镍钴铝氧化物及其制备方法 | |
CN106558695A (zh) | 一种镍钴铝复合氢氧化物、镍钴铝复合氧化物及其制备方法 | |
CN110918043A (zh) | 一种掺杂及包覆富锂层状锂锰氧化物吸附材料及其制备方法 | |
CN114573045B (zh) | 一种锂离子电池无钴正极前驱体材料的制备方法及其应用 | |
CN116239161A (zh) | 一种镍铁锰三元前驱体、制备方法及钠离子电池正极材料 | |
CN113258054B (zh) | 一种锂离子电池改性三元正极材料前驱体及其制备方法 | |
CN108598471B (zh) | 一种钠离子电池含钴正极材料及其制备方法 | |
CN116354409A (zh) | 一种超高bet高镍三元前驱体及其连续制备方法 | |
CN113830841A (zh) | 一种正极固溶体材料及其制备方法和应用 | |
CN105390691A (zh) | 一种液相模板法制备球形镍钴锰酸锂的方法 | |
CN116199270A (zh) | 一种减少钴氧化物生产过程废水的处理工艺 | |
CN113213558B (zh) | 一种大颗粒球形碳酸钴前驱体及其制备方法、以及四氧化三钴的制备方法 | |
CN105314680A (zh) | 纳米铬酸镧的制备方法 | |
CN111717939B (zh) | 一种窄分布的大粒径镍钴铝氢氧化物及其制备方法 | |
CN110871092A (zh) | 一种Co掺杂磷酸镍钠光催化材料及其制备方法 | |
WO2024164414A1 (zh) | 一种放射状多孔结构的镍钴锰氢氧化物前驱体及其制备方法 | |
JP6745742B2 (ja) | ニッケルコバルトアルミニウム複合水酸化物粒子の製造方法及び正極活物質の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16874326 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16874326 Country of ref document: EP Kind code of ref document: A1 |