WO2017098849A1 - 電圧生成回路および過電流検出回路 - Google Patents
電圧生成回路および過電流検出回路 Download PDFInfo
- Publication number
- WO2017098849A1 WO2017098849A1 PCT/JP2016/083022 JP2016083022W WO2017098849A1 WO 2017098849 A1 WO2017098849 A1 WO 2017098849A1 JP 2016083022 W JP2016083022 W JP 2016083022W WO 2017098849 A1 WO2017098849 A1 WO 2017098849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- resistance
- circuit
- resistor
- temperature
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/575—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/565—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
- G05F1/569—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
- G05F1/573—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/10—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
- H02H7/12—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
- H02H7/122—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
- H02H7/1227—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the output circuit, e.g. short circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/082—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
- H03K17/0828—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/60—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0063—High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0072—Low side switches, i.e. the lower potential [DC] or neutral wire [AC] being directly connected to the switch and not via the load
Definitions
- the present invention relates to, for example, a voltage generation circuit capable of generating a reference voltage for overcurrent detection with high accuracy in accordance with output temperature characteristics of a current detection element, and an overcurrent detection circuit including the voltage generation circuit.
- a voltage generation circuit capable of generating a reference voltage for overcurrent detection with high accuracy in accordance with output temperature characteristics of a current detection element, and an overcurrent detection circuit including the voltage generation circuit.
- a power supply device for driving an AC load such as a motor
- a power converter in which a first and a second switching elements are connected in series to form a half bridge circuit.
- the first and second switching elements are made of high-voltage IGBTs or MOS-FETs, and are alternately turned on / off by a drive control circuit realized as a power supply IC and connected to a load connected to the midpoint of the half-bridge circuit. Supply AC power.
- the drive control circuit is provided with an overcurrent detection circuit that detects an overcurrent flowing through the switching element and stops the on-drive of the switching element.
- the overcurrent detection circuit includes, for example, a current detection resistor that generates a voltage proportional to the current flowing through the switching element from the output of the current detection element integrated into the switching element, and a voltage detected via the current detection resistor. And a comparator for detecting an overcurrent of the switching element by comparing with a predetermined comparison reference voltage.
- the comparison reference voltage is generated exclusively by a resistance dividing circuit that divides a predetermined power supply voltage by resistance. Therefore, conventionally, as introduced in, for example, Patent Document 1, a power supply voltage is applied to a resistance dividing circuit via a bipolar transistor, and the temperature characteristic of the bipolar transistor is used to set the comparison reference voltage to the output temperature characteristic of the current detection element. Corresponding temperature characteristics.
- the drive control circuit that drives the high-side switching element on and off is configured to perform a floating operation using the midpoint voltage of the half-bridge circuit as a reference potential. For this reason, it cannot be denied that a displacement current flows to the drive control circuit on the high side with the on / off operation of the switching element on the high side in the hybrid circuit. Then, due to this displacement current, the midpoint potential at which the half bridge circuit performs the floating operation changes, and the reference potential of the drive control circuit on the high side, and hence the power supply voltage, changes.
- Directional current is also likely to occur. Then, it cannot be denied that the bipolar transistor malfunctions due to potential fluctuation or displacement current, and the comparison reference voltage fluctuates due to this malfunction.
- LTC low temperature coefficient resistor
- HR resistor having a negative resistance temperature coefficient
- the temperature gradient of the output current of the current sensing IGBT which is a switching element, for example, a current detecting element integrally incorporated in the IGBT, can be generally considered to be substantially constant.
- the temperature gradient of the output current of the current sensing IGBT slightly increases as the operating temperature of the IGBT increases. Accordingly, in order to detect overcurrent with higher accuracy, it is important to generate a comparison reference voltage in accordance with the nonlinear temperature characteristic of the output current of the current sensing IGBT, that is, the output temperature characteristic of the current detection element.
- the present invention has been made in view of such circumstances, and the object thereof is to easily and highly accurately compare a reference voltage having a temperature characteristic that changes in accordance with the output temperature characteristic of the current detection element with higher accuracy. It is an object of the present invention to provide a voltage generation circuit that can be generated at the same time, and a high-accuracy overcurrent detection circuit configured using the voltage generation circuit.
- a voltage generation circuit generates a reference voltage having a temperature characteristic proportional to the output temperature characteristic of a current detection element by dividing a predetermined power supply voltage by resistance.
- a first resistance voltage dividing circuit configured to connect a low temperature coefficient resistor whose resistance temperature coefficient can be regarded as zero (0) in series to generate a reference voltage by dividing the power supply voltage by resistance; , One or a plurality of resistors configured to connect a resistor having a positive or negative resistance temperature coefficient and the low temperature coefficient resistor in series to divide the power supply voltage by resistance to generate a divided voltage depending on temperature.
- a second resistance voltage divider circuit And an instrumentation amplifier that generates the comparison reference voltage in accordance with a difference voltage between the reference voltage and the divided voltage.
- the voltage generation circuit is configured such that when the divided voltage exceeds a predetermined voltage threshold as the temperature rises, the voltage generated by the second resistance voltage dividing circuit and supplied to the instrumentation amplifier is provided.
- a comparator that changes the voltage or changes the gain of the instrumentation amplifier is provided, and the temperature gradient of the comparison reference voltage is changed with the operating point of the comparator as a boundary.
- the overcurrent detection circuit detects an overcurrent flowing through the switching element by comparing the comparison reference voltage generated by the voltage generation circuit with a voltage detected via the current detection element. And a comparator for detecting overcurrent.
- the temperature gradient of the comparison reference voltage is changed using the output of the comparator, so that the temperature characteristic of the comparison reference voltage can be simply and effectively changed by the output temperature characteristic of the current detection element. Can be accurately matched to.
- the nonlinear output of the current detection element A comparison reference voltage having a temperature characteristic approximating the temperature characteristic can be generated.
- a comparative reference voltage serving as a reference can be generated with high accuracy, and there are significant practical effects such as enabling overcurrent detection of the IGBT.
- FIG. 3 is a diagram showing temperature characteristics of a comparison reference voltage generated by the voltage generation circuit shown in FIG. 2.
- FIG. 1 is a schematic configuration diagram of a main part of an overcurrent detection circuit incorporated in a power converter.
- the power converter includes, for example, two switching elements Q1 and Q2 that are connected in series to form a half bridge circuit. These switching elements Q1 and Q2 are alternately turned on and off by a drive control circuit, which will be described later, to switch a predetermined power supply voltage + V, and output an AC voltage Vout supplied to a load (not shown) from the midpoint of the half bridge circuit To do.
- the switching elements Q1 and Q2 are made of, for example, a high breakdown voltage IGBT, a high breakdown voltage MOS-FET may be used.
- the high-side and low-side drive control circuits 1 and 1 for driving the switching elements Q1 and Q2 respectively on and off are constructed with the voltage generation circuit according to the present invention.
- the drive control circuit 1 on the high side is configured to operate by receiving the power supply voltage + V using the midpoint voltage VS of the half bridge circuit as a reference potential.
- the low-side drive control circuit 1 is configured to operate by receiving the midpoint voltage VS of the half-bridge circuit, for example, using the ground voltage GND as a reference potential.
- the high-side drive control circuit 1 for turning on / off the switching element Q1 on the positive potential (+ V) side in the half-bridge circuit will be described.
- the switching element Q2 on the negative potential (GND) side is turned on / off.
- the drive control circuit 1 on the low side that is driven off is configured in the same manner as the drive control circuit 1 on the high side.
- the drive control circuit 1 on the high side operates, for example, with the midpoint voltage VS of the half bridge circuit as a reference potential and receives a predetermined power supply voltage Vreg, while the drive control circuit 1 on the low side has the ground voltage GND. It operates by receiving the midpoint voltage VS as a reference potential.
- the drive control circuit 1 incorporates an overcurrent detection circuit 2 that detects an overcurrent flowing through the switching element Q1 (Q2) and stops the on-drive of the switching element Q1 (Q2). .
- the overcurrent detection circuit 2 plays a role of protecting the switching element Q1 (Q2) and an AC load (not shown) connected to the power converter from overcurrent when overcurrent is detected.
- the overcurrent detection circuit 2 is a current detection resistor that generates a voltage Vsens proportional to the current flowing through the switching element Q1 (Q2) from the output of the current detection element q1 (q2) integrated into the switching element Q1 (Q2). 3 is provided. Further, the overcurrent detection circuit 2 compares the voltage Vsens detected via the current detection resistor 3 with a comparison reference voltage Vtmp generated by the voltage generation circuit 4 described later and flows to the switching element Q1 (Q2). A comparator 5 for detecting overcurrent is provided. The overcurrent detection comparator 5 plays a role of stopping the operation of the output amplifier 6 that drives the switching element Q1 (Q2) on and off when the overcurrent is detected.
- the output amplifier 6 regularly drives the switching element Q1 (Q2) by receiving a drive signal DRV given from a control circuit (not shown). Further, when the switching element Q1 (Q2) is an IGBT, the current detection element q1 (q2) is integrated into the IGBT and is mirror-connected to the IGBT, and outputs a current Isens proportional to the current I flowing through the IGBT. It consists of IGBT.
- the voltage generation circuit 4 plays a role of generating a comparison reference voltage Vtmp having a temperature characteristic proportional to the output temperature characteristic of the current detection element q1 (q2).
- the voltage generation circuit 4 basically generates a reference voltage by dividing a predetermined power supply voltage (Vreg-VS or VS-GND) applied to the voltage generation circuit 4 by resistance, as will be described in detail later. According to a difference voltage between the reference voltage and the divided voltage, a first resistance voltage dividing circuit that generates a divided voltage that depends on temperature by dividing the power supply voltage Vreg, and And an instrumentation amplifier that generates the comparison reference voltage Vtmp.
- the voltage generation circuit 4 further includes a comparator that determines whether the divided voltage exceeds a predetermined voltage threshold as the temperature rises.
- the voltage generation circuit 4 is controlled by the comparator and is generated by the second resistance voltage dividing circuit.
- a switch for changing the divided voltage applied to the instrumentation amplifier or a switch for changing the gain of the instrumentation amplifier controlled by a comparator is provided.
- FIG. 2 shows a schematic configuration of the voltage generation circuit 4a according to the first embodiment of the present invention.
- the voltage generation circuit 4a is a series resistance circuit configured by connecting two low temperature coefficient resistors (LTC) R1, R2 whose resistance temperature coefficient can be regarded as zero (0) in series. Is provided as the first resistance voltage dividing circuit 11.
- the voltage generation circuit 4a is a series formed by connecting a general resistor (HR) R3 having a negative temperature coefficient and a low temperature coefficient resistor (LTC) R4 in series as shown in FIG.
- HR general resistor
- LTC low temperature coefficient resistor
- a resistor circuit and a series resistor circuit configured by connecting a low temperature coefficient resistor (LTC) R5 and a resistor (NR) R6 having a positive temperature coefficient in series are two second resistors provided in parallel.
- the resistor voltage divider circuit 12 (12a, 12b) is provided.
- each of the low temperature coefficient resistor (LTC) and the resistor (HR, NR) having a negative or positive temperature coefficient is formed by being simultaneously integrated on the semiconductor circuit element substrate on which the overcurrent detection circuit 2 is constructed.
- the low temperature coefficient resistor (LTC) and the resistor (HR, NR) having a negative or positive temperature coefficient respectively select the kind of dopant ion-implanted into the semiconductor substrate and the implantation amount in the semiconductor manufacturing process. As a result, the resistors having different temperature coefficients are formed.
- a specific method for manufacturing a low temperature coefficient resistor (LTC) and a resistor having a negative or positive temperature coefficient (HR, NR) is introduced in detail in, for example, Japanese Patent No. 4547753 and Japanese Patent Application Laid-Open No. 2008-227061. It is as it is done.
- One of the second resistance voltage dividing circuits 12a is connected in series with the resistor (HR) R3 on the power supply voltage Vreg side and the low temperature coefficient resistor (LTC) R4 on the reference potential VS side.
- the other second resistance voltage dividing circuit 12b is formed by connecting the low temperature coefficient resistor (LTC) R5 in series with the power supply voltage Vreg side and the resistor (NR) R6 with the reference potential VS side.
- the first resistance voltage dividing circuit 11 generates the reference voltage REF that does not depend on the temperature change by dividing the power supply voltage Vreg with a low temperature coefficient resistor (LTC). Further, the second resistance voltage dividing circuits 12a and 12b perform resistance division on the power supply voltage Vreg by the resistor (HR, NR) having a negative or positive temperature gradient and the low temperature coefficient resistor (LTC) described above. The temperature gradients are different from each other, and the divided voltages DIF1 and DIF2 whose potentials increase as the temperature rises are generated.
- the temperature gradient of the divided voltage DIF1 generated by the second resistance voltage dividing circuit 12a is set to correspond to the output temperature characteristic of the current detection element q1 when the temperature of the current detection element q1 is low.
- the temperature gradient of the divided voltage DIF2 generated by the second resistance voltage dividing circuit 12b is larger than the temperature gradient of the divided voltage DIF1, and the output temperature characteristic of the current detection element q1 when the temperature of the current detection element q1 is high is obtained. It is set as the equivalent.
- the resistance voltage dividing ratios of the second resistance voltage dividing circuits 12a and 12b are set so that the divided voltages DIF1 and DIF2 are equal to each other at a temperature threshold value described later.
- the voltage generation circuit 4a selectively selects the divided voltages DIF1 and DIF2 and applies the switch 14 to the instrumentation amplifier 13, and a comparator 15 that controls the selection operation of the divided voltages DIF1 and DIF2 by the switch 14.
- the instrumentation amplifier 13 includes an overcurrent detection circuit according to a difference voltage between the reference voltage REF output from the first resistance voltage dividing circuit 11 and one of the divided voltages DIF1 and DIF2 selected via the switch 14. 2 serves to generate the comparison reference voltage Vtmp to be supplied to the overcurrent detection comparator 5 described above.
- the comparator 15 determines the level of the divided voltage DIF1 output from the second resistance voltage dividing circuit 12a with reference to the reference voltage REF output from the first resistance voltage dividing circuit 11.
- the comparator 15 plays a role of determining whether or not the temperature indicated by the divided voltage DIF1 exceeds a temperature threshold value defined by the reference voltage REF generated by the first resistance voltage dividing circuit 11.
- the switch 14 controlled to be switched by the comparator 15 selects the divided voltage DIF1 when the divided voltage DIF1 is lower than the reference voltage REF and thereby the temperature of the current detection element q1 is lower than the temperature threshold.
- the switch 14 selects the divided voltage DIF2 and applies it to the instrumentation amplifier 13. .
- the instrumentation amplifier 13 when the temperature of the current detection element q1 is lower than the temperature threshold, the instrumentation amplifier 13 generates the comparison reference voltage Vtmp according to the difference voltage between the reference voltage REF and the divided voltage DIF1, and detects the current.
- the comparison reference voltage Vtmp corresponding to the difference voltage between the reference voltage REF and the divided voltage DIF2 is generated. Therefore, the temperature gradient of the comparison reference voltage Vtmp output from the instrumentation amplifier 13 is changed with the temperature threshold as a boundary according to the output of the comparator 15 as shown in FIG.
- the comparison reference voltage Vtmp when the temperature is low, the comparison reference voltage Vtmp is generated with a temperature characteristic having a low temperature gradient with respect to the temperature change, and when the temperature is high, the temperature characteristic with a high temperature gradient with respect to the temperature change is generated.
- a comparison reference voltage Vtmp is generated. Therefore, the temperature characteristic of the comparison reference voltage Vtmp generated by changing the temperature gradient before and after the temperature threshold in this way is generated by linearly approximating the output temperature characteristic of the current detection element q1 by the method disclosed in Patent Document 2.
- the non-linear output temperature characteristic of the current detection element q1 is approximated with higher accuracy than the comparison reference voltage.
- the switching element regardless of the temperature of the current detection element q1. It is possible to detect the overcurrent flowing through Q1 with high accuracy.
- the voltage generation circuit 4a is simply selected as the voltage dividing circuits DIF1 and DIF2 having different temperature gradients generated by the second resistance voltage dividing circuits 12a and 12b, respectively, and applied to the instrumentation amplifier 13. It can be realized with a configuration. Therefore, its practical advantages are great.
- the voltage generation circuit 4b according to the second embodiment includes two low temperature coefficient resistors (LTCs) R1 and R2 that can be regarded as having a resistance temperature coefficient of zero (0) as shown in FIG.
- a series resistance circuit configured to be connected to is provided as the first resistance voltage dividing circuit 11.
- the voltage generation circuit 4b includes a series resistor circuit formed by connecting a general resistor (HR) R3 having a negative temperature coefficient and a low temperature coefficient resistor (LTC) R4 in series with a second resistor. It is provided as a voltage dividing circuit 12 (12a).
- the voltage generation circuit 4b includes a reference voltage REF output by the first resistance voltage dividing circuit 11 dividing the power supply voltage Vreg, and a second resistance voltage dividing circuit 12 (12a) resistance dividing the power supply voltage Vreg.
- An instrumentation amplifier 13 that generates a comparison reference voltage Vtmp according to a voltage difference from the divided voltage DIF to be output.
- the voltage generation circuit 4b includes a comparator 16 that compares the divided voltage DIF with a threshold voltage Vref corresponding to a preset temperature threshold.
- the comparator 16 changes the gain (amplification factor) of the instrumentation amplifier 13 by variably setting a gain adjustment resistor provided in the instrumentation amplifier 13.
- the instrumentation amplifier 13 is provided with two resistors R11 and R12 connected in series as resistors for gain adjustment.
- a switch 17 is provided in parallel with the resistor R12. This switch 17 short-circuits the resistor R12 to reduce the resistance value of the resistor R11 alone as a gain adjusting resistor, thereby setting the gain of the instrumentation amplifier 13 low.
- the resistor R11 and the resistor R12 are connected in series to increase the resistance value as a gain adjusting resistor, thereby setting the gain of the instrumentation amplifier 13 high. .
- the comparator 16 plays a role of controlling on / off of the switch 17 in accordance with the magnitude of the divided voltage DIF, in other words, the temperature of the current detection element q1 indicated by the divided voltage DIF.
- the comparator 16 keeps the switch 17 on (short circuit) when the divided voltage DIF is lower than the threshold voltage Vref, and turns off the switch 17 when the divided voltage DIF exceeds the threshold voltage Vref ( Open).
- the gain of the instrumentation amplifier 13 is suppressed to a low level and the comparison reference voltage Vtmp generated by the instrumentation amplifier 13 is controlled.
- the temperature gradient is kept small.
- the gain of the instrumentation amplifier 13 is set high, and the temperature gradient of the comparison reference voltage Vtmp generated by the instrumentation amplifier 13 is set large.
- the voltage generation circuit 4b configured as described above, when the temperature of the current detection element q1 is low as in the voltage generation circuit 4a according to the first embodiment described above, the temperature characteristics with a low temperature gradient are obtained.
- the comparison reference voltage Vtmp is generated, and when the temperature of the current detection element q1 becomes high, the comparison reference voltage Vtmp can be generated with a temperature characteristic having a high temperature gradient. Therefore, the voltage generation circuit 4b can also generate the comparison reference voltage Vtmp having a temperature characteristic in which the temperature gradient is changed before and after the temperature threshold.
- the comparison reference voltage Vtmp approximating the nonlinear output temperature characteristic of the current detection element q1 can be generated with higher accuracy than the comparison reference voltage generated by the method disclosed in Patent Document 2 described above. It is possible to improve the accuracy of overcurrent detection in the detection circuit 2.
- the voltage generation circuit 4c according to the third embodiment includes, in addition to a series resistance circuit in which two low temperature coefficient resistors (LTCs) R1 and R2 are connected in series as shown in FIG.
- a series resistance circuit in which the low temperature coefficient resistors (LTC) R7 and R8 are connected in series is provided in parallel as the first resistance voltage dividing circuit 11 (11a and 11b).
- the voltage generation circuit 4c includes a series resistor circuit in which a resistor (HR) R3 having a negative temperature coefficient and a low temperature coefficient resistor (LTC) R4 are connected in series, and a low temperature coefficient resistor (LTC) R5.
- a resistor (NR) R6 having a negative temperature coefficient are connected in series as two second resistance voltage dividing circuits 12 (12a, 12b) provided in parallel.
- the first resistance voltage dividing circuit 11 (11a, 11b) generates two types of reference voltages REF1, REF2 having different potentials with different voltage dividing ratios, and the second resistance voltage dividing circuit 12 (12a). 12b) generate the divided voltages DIF1 and DIF2 having temperature characteristics with different temperature gradients.
- the reference voltage REF2 output from the first resistance voltage dividing circuit 11b is determined as a voltage corresponding to the above-described temperature threshold.
- the divided voltage DIF2 output from the second resistance voltage dividing circuit 12b is equal to the divided voltage DIF1 when the divided voltage DIF1 output from the second resistance voltage dividing circuit 12a becomes equal to the reference voltage REF2. Is set to be equal to
- the voltage generation circuit 4c includes reference voltages REF1 and REF2 that are alternatively selected via the switch 14a, and divided voltages DIF1 and DIF2 that are alternatively selected via the switch 14b linked to the switch 14a.
- An instrumentation amplifier 13 is provided.
- the instrumentation amplifier 13 generates a comparison reference voltage Vtmp according to the difference voltage between the reference voltage REF1 and the divided voltage DIF1, or the difference voltage between the reference voltage REF2 and the divided voltage DIF2.
- the comparator 15 plays a role of determining the level of the divided voltage DIF1 with reference to the reference voltage REF2 and switching the switches 14a and 14b in accordance with the temperature of the current detection element q1.
- the comparator 15 selects the reference voltage REF1 and the divided voltage DIF1 through the switches 14a and 14b, respectively, when the divided voltage DIF1 is lower than the threshold voltage REF2, and the divided voltage DIF1 is the threshold value.
- the reference voltage REF2 and the divided voltage DIF2 are selected via the switches 14a and 14b, respectively.
- the instrumentation amplifier 13 when the temperature of the current detection element q1 is low, the instrumentation amplifier 13 generates the comparison reference voltage Vtmp based on the reference voltage REF1 according to the difference voltage between the reference voltage REF1 and the divided voltage DIF1.
- the instrumentation amplifier 13 When the temperature of the current detection element q1 exceeds the temperature threshold, the instrumentation amplifier 13 generates the comparison reference voltage Vtmp based on the reference voltage REF2 according to the difference voltage between the reference voltage REF2 and the divided voltage DIF2.
- the comparison reference voltage Vtmp generated according to the difference voltage between the reference voltage REF2 and the divided voltage DIF2 is generated by being positively biased by an amount corresponding to the potential difference between the reference voltage REF1 and the reference voltage REF2.
- the comparison reference voltage Vtmp generated by the instrumentation amplifier 13 has a temperature characteristic in which the temperature gradient is switched at the operating point of the comparator 15 as shown in FIG. That is, when the temperature of the current detection element q1 is low, the temperature gradient of the comparison reference voltage Vtmp generated by the instrumentation amplifier 13 is suppressed to be small. When the temperature of the current detection element q1 exceeds the temperature threshold, the temperature gradient of the comparison reference voltage Vtmp generated by the instrumentation amplifier 13 is set large.
- the comparison reference voltage Vtmp can be generated.
- the comparison reference voltage Vtmp can be generated with a temperature characteristic with a low temperature gradient
- the comparison reference voltage Vtmp can be generated with a temperature characteristic with a high temperature gradient. Therefore, also in the voltage generation circuit 4c, the comparison reference voltage Vtmp approximating the nonlinear output temperature characteristic of the current detection element q1 is generated with higher accuracy than the comparison reference voltage generated by the method disclosed in Patent Document 2 described above. Therefore, the overcurrent detection accuracy in the overcurrent detection circuit 2 can be increased.
- the voltage generation circuits 4a, 4b, and 4c are generated by changing the temperature gradient of the comparison reference voltage Vtmp at one temperature threshold value.
- the voltage generation circuit 4 it is also possible to configure the voltage generation circuit 4 so as to change the temperature gradient of the comparison reference voltage Vtmp at a plurality of temperature thresholds.
- FIG. 7 illustrates a configuration example of the voltage generation circuit 4d in which the temperature gradient of the comparison reference voltage Vtmp is changed at a plurality of temperature thresholds as the fourth embodiment of the present invention.
- the voltage generation circuit 4d according to the fourth embodiment has two low temperature coefficient resistors, for example, like the voltage generation circuit 4b according to the second embodiment described above as schematically illustrated in FIG. (LTC)
- a series resistor circuit in which R1 and R2 are connected in series is a first resistor voltage divider circuit 11, and a resistor (HR) R3 having a negative temperature coefficient and a low temperature coefficient resistor (LTC) R4 are connected in series.
- a series resistor circuit connected to the second resistor voltage dividing circuit 12 is provided.
- the voltage generation circuit 4d generates a comparison reference voltage Vtmp according to a difference voltage between the reference voltage REF output from the first resistance voltage dividing circuit 11 and the divided voltage DIF output from the second resistance voltage dividing circuit 12.
- An instrumentation amplifier 13 is provided.
- the voltage generation circuit 4d includes comparators 16a and 16b that respectively compare the divided voltage DIF with threshold voltages Vref1 and Vref2 corresponding to two preset temperature thresholds. When the divided voltage DIF exceeds the threshold voltages Vref1 and Vref2, these comparators 16a and 16b variably set a gain adjusting resistor provided in the instrumentation amplifier 13 to thereby adjust the gain of the instrumentation amplifier 13 ( Amplification gain) is changed in multiple stages.
- the instrumentation amplifier 13 is provided with three resistors R11, R12, R13 connected in series as gain adjusting resistors.
- the resistors R12 and R13 are provided with switches 17a and 17b for short-circuiting the resistors R12 and R13, respectively.
- the comparators 16a and 16b turn on both the switches 17a and 17b to lower the gain of the instrumentation amplifier 13 as only the gain adjustment resistor R11, and turn off only the switch 17a to make the gain adjustment resistor resistive.
- the gain of the instrumentation amplifier 13 is increased as a series circuit resistance of R11 and R12.
- the comparators 16a and 16b turn off both the switches 17a and 17b, so that the gain adjustment resistor becomes a series circuit resistance of the resistors R11, R12, and R13, and the gain of the instrumentation amplifier 13 is further increased.
- the temperature gradient of the comparison reference voltage Vtmp is stepwise according to the temperature of the current detection element q1 as shown in FIG. Can be high. Accordingly, it is possible to generate a comparison reference voltage Vtmp having a temperature characteristic that approximates the nonlinear output temperature characteristic of the current detection element q1 with higher accuracy than those shown in the previous embodiments. Therefore, according to the overcurrent detection circuit 2 configured using the voltage generation circuit 4d, effects such as being able to detect the overcurrent of the switching element Q1 with higher accuracy are exhibited.
- the second resistance voltage dividing circuit 12a composed of a series resistance circuit in which a resistor (HR) R3 having a negative temperature coefficient and a low temperature coefficient resistor (LTC) R4 are connected in series is used, or a low temperature is used.
- Whether to use the second resistance voltage dividing circuit 12b formed of a series resistance circuit in which a coefficient resistor (LTC) R5 and a resistor (NR) R6 having a positive temperature coefficient are connected in series depends on the circuit specifications. It can be determined.
- a plurality of resistors (HR) R3 having negative temperature coefficients with different temperature gradients are used, or a plurality of resistors (NR) R6 having positive temperature coefficients are used to have a plurality of resistance voltage dividing characteristics different from each other.
- HR resistors
- NR resistors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Measurement Of Current Or Voltage (AREA)
- Electronic Switches (AREA)
- Control Of Electrical Variables (AREA)
- Power Conversion In General (AREA)
Abstract
低温度係数抵抗体を直列に接続して構成されて所定の電源電圧を抵抗分割して参照電圧を生成する第1の抵抗分圧回路と、正または負の抵抗温度係数を有する抵抗体と前記低温度係数抵抗体とを直列に接続して構成されて前記電源電圧を抵抗分割して温度に依存する分圧電圧を生成する1つまたは複数の第2の抵抗分圧回路と、前記参照電圧と前記分圧電圧との差電圧に応じて比較基準電圧を生成する計装アンプとを備える。更に温度上昇に伴って分圧電圧が所定の電圧閾値を超えたとき、前記第2の抵抗分圧回路により生成されて前記計装アンプに与えられる前記分圧電圧を変更し、または前記計装アンプのゲインを変更する比較器を備える。
Description
本発明は、例えば過電流検出を行う上での比較基準電圧を電流検出素子の出力温度特性に合わせて高精度に生成することのできる電圧生成回路およびこの電圧生成回路を備えた過電流検出回路に関する。
モータ等の交流負荷を駆動する電源装置として、例えば第1および第2のスイッチング素子を直列に接続してハーフブリッジ回路を形成した電力変換器がある。第1および第2のスイッチング素子は高耐圧のIGBTやMOS-FETからなり、電源ICとして実現される駆動制御回路により交互にオン・オフ駆動されてハーフブリッジ回路の中点に接続された負荷に交流電力を供給する。
駆動制御回路にはスイッチング素子に流れる過電流を検出して該スイッチング素子のオン駆動を停止させる過電流検出回路が設けられる。過電流検出回路は、例えばスイッチング素子に一体に組み込まれた電流検出素子の出力からスイッチング素子に流れる電流に比例した電圧を生成する電流検出抵抗と、この電流検出抵抗を介して検出される電圧と所定の比較基準電圧とを比較してスイッチング素子の過電流を検出する比較器とを備えて構成される。
この際、過電流の誤検出を防止する上で電流検出素子の出力温度特性を考慮して比較基準電圧を生成することが重要である。比較基準電圧は、専ら所定の電源電圧を抵抗分割する抵抗分割回路にて生成される。そこで従来では、例えば特許文献1に紹介されるように抵抗分割回路にバイポーラトランジスタを介して電源電圧を印加し、バイポーラトランジスタの温度特性を利用して比較基準電圧に電流検出素子の出力温度特性に相当する温度特性を持たせている。
ハイサイド側のスイッチング素子をオン・オフ駆動する駆動制御回路は、ハーフブリッジ回路の中点電圧を基準電位としてフローティング動作するように構成される。この為、ハイブリッド回路におけるハイサイド側のスイッチング素子のオン・オフ動作に伴ってハイサイド側の駆動制御回路に変位電流が流れることが否めない。するとこの変位電流に起因してハーフブリッジ回路のフローティング動作する中点電位が変動し、ハイサイド側の駆動制御回路の基準電位、ひいては電源電圧が変動する。
またハイサイド側の駆動制御回路においてはスイッチング素子のオン・オフ動作に伴う負電圧サージに起因する変位電流や、当該駆動制御回路を形成した半導体回路基板における寄生ダイオードの順方向バイアスに起因する順方向電流も生じ易い。すると電位変動や変位電流によってバイポーラトランジスタが誤動作し、これに起因して比較基準電圧が変動することも否めない。
そこで本発明者等は、先に特許文献2に開示するようにバイポーラトランジスタに代えて温度係数を零(0)とみなし得る低温度係数抵抗体(LTC)と負の抵抗温度係数を有する抵抗体(HR)とを直列に接続して正および負の温度勾配を持つ分圧電圧をそれぞれ生成する第1および第2の抵抗分圧回路を構成する。そして計装アンプを用いて各抵抗分圧回路による分圧電圧の差電圧に応じて電流検出素子の出力温度特性に相当する温度特性を有する比較基準電圧を生成することを提唱した。
ところでスイッチング素子である、例えばIGBTに一体に組み込まれた電流検出素子としての電流センス用IGBTの出力電流の温度勾配は、一般的には略一定であるとみなし得る。しかし厳密には電流センス用IGBTの出力電流の温度勾配は、IGBTの動作温度が高くなるに従って若干大きくなる。従ってより高精度な過電流検出を行うには、電流センス用IGBTの出力電流の非線形な温度特性、即ち、電流検出素子の出力温度特性に合わせて比較基準電圧を生成することが重要となる。
本発明はこのような事情を考慮してなされたもので、その目的は、より高精度に電流検出素子の出力温度特性に応じて変化する温度特性を有する比較基準電圧を簡易に、且つ高精度に生成することのできる電圧生成回路、およびこの電圧生成回路を用いて構成される高精度な過電流検出回路を提供することにある。
上述した目的を達成するべく本発明に係る電圧生成回路は、所定の電源電圧を抵抗分割して電流検出素子の出力温度特性に比例した温度特性を有する比較基準電圧を生成するものであって、
基本的には抵抗温度係数が零(0)とみなし得る低温度係数抵抗体を直列に接続して構成されて前記電源電圧を抵抗分割して参照電圧を生成する第1の抵抗分圧回路と、
正または負の抵抗温度係数を有する抵抗体と前記低温度係数抵抗体とを直列に接続して構成されて前記電源電圧を抵抗分割して温度に依存する分圧電圧を生成する1つまたは複数の第2の抵抗分圧回路と、
前記参照電圧と前記分圧電圧との差電圧に応じて前記比較基準電圧を生成する計装アンプとを備える。
基本的には抵抗温度係数が零(0)とみなし得る低温度係数抵抗体を直列に接続して構成されて前記電源電圧を抵抗分割して参照電圧を生成する第1の抵抗分圧回路と、
正または負の抵抗温度係数を有する抵抗体と前記低温度係数抵抗体とを直列に接続して構成されて前記電源電圧を抵抗分割して温度に依存する分圧電圧を生成する1つまたは複数の第2の抵抗分圧回路と、
前記参照電圧と前記分圧電圧との差電圧に応じて前記比較基準電圧を生成する計装アンプとを備える。
特に本発明に係る電圧生成回路は、温度上昇に伴って前記分圧電圧が所定の電圧閾値を超えたとき、前記第2の抵抗分圧回路により生成されて前記計装アンプに与えられる前記分圧電圧を変更し、または前記計装アンプのゲインを変更する比較器を備え、該比較器の動作点を境として前記比較基準電圧の温度勾配を変更するように構成したことを特徴としている。
また本発明に係る過電流検出回路は、前記電圧生成回路にて生成された前記比較基準電圧と前記電流検出素子を介して検出される電圧とを比較して前記スイッチング素子に流れる過電流を検出する過電流検出用の比較器とを備えたことを特徴としている。
このような構成の電圧生成回路によれば、比較器の出力を用いて比較基準電圧の温度勾配を変更するので、簡易にして効果的に比較基準電圧の温度特性を電流検出素子の出力温度特性に精度良く合わせることができる。特に比較器の出力に応じて第2の抵抗分圧回路から計装アンプに与える分圧電圧の温度勾配を変更し、或いは計装アンプのゲインを変更するだけで、電流検出素子の非線形な出力温度特性を近似した温度特性の比較基準電圧を生成することができる。
よって、例えばハイサイド側のIGBTに流れる電流を電流センス用IGBTを介して検出する場合であっても、IGBTの変位電流やハーフブリッジ回路の中点電位の変動等に拘わることなく過電流検出の基準となる比較基準電圧を精度良く生成することができ、IGBTの過電流検出を行うことが可能となる等の実用上多大なる効果が奏せられる。
以下、図面を参照して本発明の実施形態に係る電圧生成回路と過電流検出回路について説明する。
図1は電力変換器に組み込まれる過電流検出回路の要部概略構成図である。電力変換器は、例えば直列に接続されてハーフブリッジ回路を形成した2つのスイッチング素子Q1,Q2を備えて構成される。これらのスイッチング素子Q1,Q2は、後述する駆動制御回路により交互にオン・オフ駆動されて所定の電源電圧+Vをスイッチングし、ハーフブリッジ回路の中点から図示しない負荷に供給する交流電圧Voutを出力する。ちなみにスイッチング素子Q1,Q2は、例えば高耐圧のIGBTからなるが、高耐圧のMOS-FETが用いられる場合もある。
スイッチング素子Q1,Q2をそれぞれオン・オフ駆動するハイサイド側およびローサイド側の駆動制御回路1,1は、本発明に係る電圧生成回路を備えて構築される。ちなみにハイサイド側の駆動制御回路1は、ハーフブリッジ回路の中点電圧VSを基準電位として電源電圧+Vを受けて動作するように構成される。またローサイド側の駆動制御回路1は、接地電圧GNDを基準電位とし、例えばハーフブリッジ回路の中点電圧VSを受けて動作するように構成される。
尚、ここではハーフブリッジ回路における正電位(+V)側のスイッチング素子Q1をオン・オフ駆動するハイサイド側の駆動制御回路1について説明するが、負電位(GND)側のスイッチング素子Q2をオン・オフ駆動するローサイド側の駆動制御回路1についてもハイサイド側の駆動制御回路1と同様に構成される。ちなみにハイサイド側の駆動制御回路1は、例えばハーフブリッジ回路の中点電圧VSを基準電位とし、所定の電源電圧Vregを受けて動作し、一方、ローサイド側の駆動制御回路1は接地電圧GNDを基準電位とし、中点電圧VSを受けて動作する。
ここで駆動制御回路1には、図1に示すようにスイッチング素子Q1(Q2)に流れる過電流を検出して該スイッチング素子Q1(Q2)のオン駆動を停止させる過電流検出回路2が組み込まれる。この過電流検出回路2は、過電流検出時にスイッチング素子Q1(Q2)、並びに電力変換器に接続された図示しない交流負荷を過電流から保護する役割を担う。
過電流検出回路2は、スイッチング素子Q1(Q2)に一体に組み込まれた電流検出素子q1(q2)の出力から該スイッチング素子Q1(Q2)に流れる電流に比例した電圧Vsensを生成する電流検出抵抗3を備える。更に過電流検出回路2は、電流検出抵抗3を介して検出された電圧Vsensと、後述する電圧生成回路4にて生成された比較基準電圧Vtmpとを比較してスイッチング素子Q1(Q2)に流れる過電流を検出する過電流検出用の比較器5を備える。この過電流検出用の比較器5は、過電流検出時にスイッチング素子Q1(Q2)をオン・オフ駆動する出力アンプ6の動作を停止させる役割を担う。
尚、出力アンプ6は、定常的には図示しない制御回路から与えられる駆動信号DRVを受けてスイッチング素子Q1(Q2)をオン・オフ駆動するものである。またスイッチング素子Q1(Q2)がIGBTである場合、電流検出素子q1(q2)はIGBTに一体に組み込まれて該IGBTにミラー接続され、IGBTに流れる電流Iに比例した電流Isensを出力する電流センスIGBTからなる。
本発明に係る電圧生成回路4は、電流検出素子q1(q2)の出力温度特性に比例した温度特性を有する比較基準電圧Vtmpを生成する役割を担う。本発明に係る電圧生成回路4は、詳細は後述するが基本的には該電圧生成回路4に印加される所定の電源電圧(Vreg-VSまたはVS―GND)を抵抗分割して参照電圧を生成する第1の抵抗分圧回路と、電源電圧Vregを抵抗分割して温度に依存する分圧電圧を生成する第2の抵抗分圧回路と、参照電圧と分圧電圧との差電圧に応じて比較基準電圧Vtmpを生成する計装アンプとを備える。更に電圧生成回路4は、温度上昇に伴って分圧電圧が所定の電圧閾値を超えるか否かを判定する比較器を備え、比較器により制御されて第2の抵抗分圧回路により生成されて計装アンプに与えられる分圧電圧を変更するスイッチ、または比較器により制御されて計装アンプのゲインを変更するスイッチを備えることを特徴としている。
図2は本発明の第1の実施形態に係る電圧生成回路4aの概略構成を示している。この電圧生成回路4aは、図3に示すように抵抗温度係数を零(0)とみなし得る2個の低温度係数抵抗体(LTC)R1,R2を直列に接続して構成された直列抵抗回路を第1の抵抗分圧回路11として備える。また電圧生成回路4aは、図3に示すように負の温度係数を有する一般的な抵抗体(HR)R3と、低温度係数抵抗体(LTC)R4とを直列に接続して構成された直列抵抗回路、並びに低温度係数抵抗体(LTC)R5と正の温度係数を有する抵抗体(NR)R6とを直列に接続して構成された直列抵抗回路を、並列に設けられた2つの第2の抵抗分圧回路12(12a,12b)として備える。
ちなみに低温度係数抵抗体(LTC)および負または正の温度係数を有する抵抗体(HR,NR)のそれぞれは、過電流検出回路2が構築される半導体回路素子基板上に同時集積して形成されるポリシリコン抵抗体からなる。これらの低温度係数抵抗体(LTC)および負または正の温度係数を有する抵抗体(HR,NR)は、半導体製造工程において半導体基板にイオン注入されるドーパントの種類とその注入量をそれぞれ選定することによって互いに異なる温度係数を有する抵抗体として形成される。ちなみに低温度係数抵抗体(LTC)および負または正の温度係数を有する抵抗体(HR,NR)の具体的な製造方法については、例えば特許4547753号公報や特開2008-227061号公報に詳しく紹介される通りである。
尚、前述した一方の第2の抵抗分圧回路12aは、抵抗体(HR)R3を電源電圧Vreg側とし、低温度係数抵抗体(LTC)R4を基準電位VS側として直列接続したものである。また他方の第2の抵抗分圧回路12bは、低温度係数抵抗体(LTC)R5を電源電圧Vreg側とし、抵抗体(NR)R6を基準電位VS側として直列接続したものである。
従って第1の抵抗分圧回路11は、低温度係数抵抗体(LTC)にて電源電圧Vregを抵抗分割することで温度変化に依存することのない参照電圧REFを生成する。また第2の抵抗分圧回路12a,12bは、前述した負または正の温度勾配を有する抵抗体(HR,NR)と低温度係数抵抗体(LTC)にて電源電圧Vregを抵抗分割することで温度勾配が互いに異なり、温度上昇に伴って電位が高くなる分圧電圧DIF1,DIF2をそれぞれ生成する。
第2の抵抗分圧回路12aが生成する分圧電圧DIF1の温度勾配は、ここでは電流検出素子q1の温度が低いときの該電流検出素子q1の出力温度特性に相当するものとして設定されている。また第2の抵抗分圧回路12bが生成する分圧電圧DIF2の温度勾配は分圧電圧DIF1の温度勾配より大きく、電流検出素子q1の温度が高いときの該電流検出素子q1の出力温度特性に相当するものとして設定されている。尚、第2の抵抗分圧回路12a,12bの各抵抗分圧比は、分圧電圧DIF1,DIF2が後述する温度閾値において互いに等しくなるように設定されている。
さらに電圧生成回路4aは、分圧電圧DIF1,DIF2を択一的に選択して計装アンプ13に与えるスイッチ14と、このスイッチ14による分圧電圧DIF1,DIF2の選択動作を制御する比較器15とを備える。計装アンプ13は、第1の抵抗分圧回路11から出力される参照電圧REFと、スイッチ14を介して選択された分圧電圧DIF1,DIF2の一方との差電圧に応じて過電流検出回路2における前述した過電流検出用の比較器5に与える比較基準電圧Vtmpを生成する役割を担う。
また比較器15は、第1の抵抗分圧回路11から出力される参照電圧REFを基準として第2の抵抗分圧回路12aから出力される分圧電圧DIF1のレベルを判定する。この比較器15は、分圧電圧DIF1により示される温度が第1の抵抗分圧回路11にて生成される参照電圧REFにより規定される温度閾値を超えるか否かを判定する役割を担う。そして比較器15により切換え制御されるスイッチ14は、分圧電圧DIF1が参照電圧REFよりも低く、これによって電流検出素子q1の温度が温度閾値よりも低い場合には、分圧電圧DIF1を選択して計装アンプ13に与える。これに対して分圧電圧DIF1が参照電圧REFよりも高くなり、電流検出素子q1の温度が温度閾値を超えた場合には、スイッチ14は分圧電圧DIF2を選択して計装アンプ13に与える。
この結果、計装アンプ13は、電流検出素子q1の温度が温度閾値よりも低い場合には、参照電圧REFと分圧電圧DIF1との差電圧に応じた比較基準電圧Vtmpを生成し、電流検出素子q1の温度が温度閾値よりも高い場合には、参照電圧REFと分圧電圧DIF2との差電圧に応じた比較基準電圧Vtmpを生成する。従って計装アンプ13が出力する比較基準電圧Vtmpの温度勾配は、図4に示すように比較器15の出力に応じて温度閾値を境として変更される。
具体的には温度が低い場合には温度変化に対して温度勾配の低い温度特性で比較基準電圧Vtmpが生成され、温度が高くなった場合には温度変化に対して温度勾配の高い温度特性で比較基準電圧Vtmpが生成される。従ってこのようにして温度閾値の前後で温度勾配を変更して生成する比較基準電圧Vtmpの温度特性は、特許文献2に開示された手法により電流検出素子q1の出力温度特性を直線近似して生成される比較基準電圧よりも該電流検出素子q1の非線形な出力温度特性を、より高精度に近似したものとなる。
この結果、上述した如く構成された電圧生成回路4aにて生成される比較基準電圧Vtmpを用いて過電流検出を行う過電流検出回路2によれば、電流検出素子q1の温度に拘わりなくスイッチング素子Q1に流れる過電流を高精度に検出することが可能となる。しかも電圧生成回路4aについては、上述した如く第2の抵抗分圧回路12a,12bによりそれぞれ生成された温度勾配の異なる分圧電圧DIF1,DIF2を選択して計装アンプ13に与えると言う簡易な構成で実現することができる。従ってその実用的利点は多大である。
次に本発明の第2の実施形態に係る電圧生成回路4bについて説明する。
この第2の実施形態に係る電圧生成回路4bは、図5に概略構成を示すように抵抗温度係数を零(0)とみなし得る2個の低温度係数抵抗体(LTC)R1,R2を直列に接続して構成された直列抵抗回路を第1の抵抗分圧回路11として備える。また電圧生成回路4bは、負の温度係数を有する一般的な抵抗体(HR)R3と低温度係数抵抗体(LTC)R4とを直列に接続して構成された直列抵抗回路を第2の抵抗分圧回路12(12a)として備える。
この第2の実施形態に係る電圧生成回路4bは、図5に概略構成を示すように抵抗温度係数を零(0)とみなし得る2個の低温度係数抵抗体(LTC)R1,R2を直列に接続して構成された直列抵抗回路を第1の抵抗分圧回路11として備える。また電圧生成回路4bは、負の温度係数を有する一般的な抵抗体(HR)R3と低温度係数抵抗体(LTC)R4とを直列に接続して構成された直列抵抗回路を第2の抵抗分圧回路12(12a)として備える。
また電圧生成回路4bは、第1の抵抗分圧回路11が電源電圧Vregを抵抗分圧して出力する参照電圧REFと、第2の抵抗分圧回路12(12a)が電源電圧Vregを抵抗分圧して出力する分圧電圧DIFとの差電圧に応じた比較基準電圧Vtmpを生成する計装アンプ13を備える。更に電圧生成回路4bは、分圧電圧DIFを予め設定された温度閾値に相当する閾値電圧Vrefと比較する比較器16を備える。
この比較器16は、分圧電圧DIFが閾値電圧Vrefを超えたとき、計装アンプ13が備えたゲイン調整用の抵抗を可変設定することで該計装アンプ13のゲイン(増幅率)を変更する役割を担う。具体的には計装アンプ13にはゲイン調整用の抵抗として直列に接続された2つの抵抗R11,R12が設けられている。特に抵抗R12にはスイッチ17が並列に設けられている。このスイッチ17は抵抗R12を短絡することで抵抗R11だけをゲイン調整用の抵抗としての抵抗値を小さくし、これによって計装アンプ13のゲインを低く設定する。またスイッチ17が開放されたときには抵抗R11と抵抗R12とを直列接続することでゲイン調整用の抵抗としての抵抗値を大きくし、これによって計装アンプ13のゲインを高く設定するようになっている。
比較器16は、分圧電圧DIFの大きさ、換言すれば該分圧電圧DIFによって示される電流検出素子q1の温度に応じてスイッチ17をオン・オフ制御する役割を担う。特にこの実施形態では比較器16は、分圧電圧DIFが閾値電圧Vrefよりも低いときにはスイッチ17をオン(短絡)状態に保ち、分圧電圧DIFが閾値電圧Vrefを超えたときにはスイッチ17をオフ(開放)するものとなっている。
このような比較器16によるスイッチ17のオン・オフ制御により電流検出素子q1の温度が低い場合には、計装アンプ13のゲインが低く抑えられて該計装アンプ13が生成する比較基準電圧Vtmpの温度勾配が小さく抑えられる。そして電流検出素子q1の温度が温度閾値を超えた場合には、計装アンプ13のゲインが高く設定されて該計装アンプ13が生成する比較基準電圧Vtmpの温度勾配が大きく設定される。
かくしてこのように構成された電圧生成回路4bによれば、先に説明した第1の実施形態に係る電圧生成回路4aと同様に電流検出素子q1の温度が低い場合には温度勾配の低い温度特性で比較基準電圧Vtmpを生成し、電流検出素子q1の温度が高くなった場合には温度勾配の高い温度特性で比較基準電圧Vtmpを生成することが可能となる。従って電圧生成回路4bにおいても温度閾値の前後で温度勾配を変更した温度特性の比較基準電圧Vtmpを生成することが可能となる。よって電流検出素子q1の非線形な出力温度特性を近似した比較基準電圧Vtmpを、前述した特許文献2に開示された手法により生成される比較基準電圧よりも高精度に生成することができ、過電流検出回路2における過電流検出の精度を高めることが可能となる。
次に本発明の第3の実施形態に係る電圧生成回路4cについて説明する。
この第3の実施形態に係る電圧生成回路4cは、図6に概略構成を示すように2個の低温度係数抵抗体(LTC)R1,R2を直列に接続した直列抵抗回路に加えて、2個の低温度係数抵抗体(LTC)R7,R8を直列に接続した直列抵抗回路を第1の抵抗分圧回路11(11a,11b)として並列に備える。また電圧生成回路4cは、負の温度係数を有する抵抗体(HR)R3と、低温度係数抵抗体(LTC)R4とを直列に接続した直列抵抗回路、並びに低温度係数抵抗体(LTC)R5と負の温度係数を有する抵抗体(NR)R6とを直列に接続した直列抵抗回路を、並列に設けられた2つの第2の抵抗分圧回路12(12a,12b)として備える。
この第3の実施形態に係る電圧生成回路4cは、図6に概略構成を示すように2個の低温度係数抵抗体(LTC)R1,R2を直列に接続した直列抵抗回路に加えて、2個の低温度係数抵抗体(LTC)R7,R8を直列に接続した直列抵抗回路を第1の抵抗分圧回路11(11a,11b)として並列に備える。また電圧生成回路4cは、負の温度係数を有する抵抗体(HR)R3と、低温度係数抵抗体(LTC)R4とを直列に接続した直列抵抗回路、並びに低温度係数抵抗体(LTC)R5と負の温度係数を有する抵抗体(NR)R6とを直列に接続した直列抵抗回路を、並列に設けられた2つの第2の抵抗分圧回路12(12a,12b)として備える。
第1の抵抗分圧回路11(11a,11b)は、互いに異なる分圧比で電位の異なる2種類の参照電圧REF1,REF2をそれぞれ生成するものであり、また第2の抵抗分圧回路12(12a,12b)は、互いに温度勾配の異なる温度特性の分圧電圧DIF1,DIF2をそれぞれ生成するものである。尚、第1の抵抗分圧回路11bが出力する参照電圧REF2は前述した温度閾値に相当する電圧として定められている。また第2の抵抗分圧回路12bが出力する分圧電圧DIF2は、第2の抵抗分圧回路12aが出力する分圧電圧DIF1が参照電圧REF2に等しくなったとき、そのときの分圧電圧DIF1と等しくなるように設定されている。
また電圧生成回路4cは、スイッチ14aを介して択一的に選択された参照電圧REF1,REF2、およびスイッチ14aに連動するスイッチ14bを介して択一的に選択された分圧電圧DIF1,DIF2が入力される計装アンプ13を備える。この計装アンプ13は参照電圧REF1と分圧電圧DIF1との差電圧、または参照電圧REF2と分圧電圧DIF2との差電圧に応じて比較基準電圧Vtmpを生成する。
ここで比較器15は、参照電圧REF2を基準として分圧電圧DIF1のレベルを判定して電流検出素子q1の温度に応じてスイッチ14a,14bをそれぞれ切換える役割を担う。特にこの実施形態では比較器15は、分圧電圧DIF1が閾値電圧REF2よりも低いときにはスイッチ14a,14bをそれぞれ介して参照電圧REF1および分圧電圧DIF1をそれぞれ選択し、また分圧電圧DIF1が閾値電圧REF1を超えたときにはスイッチ14a,14bをそれぞれ介して参照電圧REF2および分圧電圧DIF2をそれぞれ選択するように動作する。
従って計装アンプ13は、電流検出素子q1の温度が低い場合には参照電圧REF1と分圧電圧DIF1との差電圧に応じて参照電圧REF1を基準として比較基準電圧Vtmpを生成する。そして電流検出素子q1の温度が温度閾値を超えたときには、計装アンプ13は、参照電圧REF2と分圧電圧DIF2との差電圧に応じて参照電圧REF2を基準として比較基準電圧Vtmpを生成する。換言すれば参照電圧REF2と分圧電圧DIF2との差電圧に応じて生成される比較基準電圧Vtmpは、参照電圧REF1と参照電圧REF2との電位差に相当する分、正にバイアスされて生成される。
この結果、計装アンプ13が生成する比較基準電圧Vtmpは、図4に示したように比較器15の動作点において温度勾配が切換えられた温度特性を有するものとなる。即ち、電流検出素子q1の温度が低い場合には、計装アンプ13が生成する比較基準電圧Vtmpの温度勾配が小さく抑えられる。そして電流検出素子q1の温度が温度閾値を超えた場合には、計装アンプ13が生成する比較基準電圧Vtmpの温度勾配が大きく設定される。
従って上述した如く構成された電圧生成回路4cによれば、先に説明した第1および第2の実施形態に係る電圧生成回路4a,4bと同様に温度閾値の前後で温度勾配を変更した温度特性の比較基準電圧Vtmpを生成することが可能となる。特に温度が低い場合には温度勾配の低い温度特性で比較基準電圧Vtmpを生成し、温度が高くなった場合には温度勾配の高い温度特性で比較基準電圧Vtmpを生成することが可能となる。よって電圧生成回路4cにおいても電流検出素子q1の非線形な出力温度特性を近似した比較基準電圧Vtmpを、前述した特許文献2に開示された手法により生成される比較基準電圧よりも高精度に生成することができ、過電流検出回路2における過電流検出精度を高めることが可能となる。
ところで上述した各実施形態に係る電圧生成回路4a,4b,4cにおいては、比較基準電圧Vtmpの温度勾配を1つの温度閾値において変化させて生成した。しかし複数の温度閾値において比較基準電圧Vtmpの温度勾配を変更するように電圧生成回路4を構成することも可能である。図7は複数の温度閾値において比較基準電圧Vtmpの温度勾配を変更するようにした電圧生成回路4dの構成例を本発明の第4の実施形態として例示したものである。
即ち、第4の実施形態に係る電圧生成回路4dは、例えば図7に概略構成を示すように前述した第2の実施形態に係る電圧生成回路4bと同様に、2個の低温度係数抵抗体(LTC)R1,R2を直列に接続した直列抵抗回路を第1の抵抗分圧回路11、並びに負の温度係数を有する抵抗体(HR)R3と低温度係数抵抗体(LTC)R4とを直列に接続した直列抵抗回路を第2の抵抗分圧回路12として備える。また電圧生成回路4dは、第1の抵抗分圧回路11が出力する参照電圧REFと、第2の抵抗分圧回路12が出力する分圧電圧DIFとの差電圧に応じた比較基準電圧Vtmpを生成する計装アンプ13を備える。
更に電圧生成回路4dは、分圧電圧DIFを予め設定された2つの温度閾値に相当する閾値電圧Vref1,Vref2とをそれぞれ比較する比較器16a,16bを備える。これらの比較器16a,16bは、分圧電圧DIFが閾値電圧Vref1,Vref2を超えたとき、計装アンプ13が備えたゲイン調整用の抵抗を可変設定することで該計装アンプ13のゲイン(増幅利得)を多段階に変更する役割を担う。
具体的には計装アンプ13にはゲイン調整用の抵抗として直列に接続された3つの抵抗R11,R12,R13が設けられている。そして抵抗R12,R13には、該抵抗R12,R13をそれぞれ短絡する為のスイッチ17a,17bが設けられている。比較器16a,16bは、スイッチ17a,17bを共にオンすることでゲイン調整用の抵抗R11だけとして計装アンプ13のゲインを低くし、スイッチ17aだけをオフすることでゲイン調整用の抵抗を抵抗R11,R12の直列回路抵抗として計装アンプ13のゲインを高くする。更に比較器16a,16bは、スイッチ17a,17bを共にオフすることでゲイン調整用の抵抗を抵抗R11,R12,R13の直列回路抵抗とし、計装アンプ13のゲインを更に高くする。
このようにして計装アンプ13のゲインを3段階に可変設定する電圧生成回路4dによれば、図8に示すように電流検出素子q1の温度に応じて比較基準電圧Vtmpの温度勾配を段階的に高くすることができる。従って電流検出素子q1の非線形な出力温度特性を、先の各実施形態にそれぞれ示すよりも高精度に近似した温度特性の比較基準電圧Vtmpを生成することが可能となる。よって電圧生成回路4dを用いて構成される過電流検出回路2によれば、スイッチング素子Q1の過電流を、より高精度に検出することが可能となる等の効果が奏せられる。
尚、本発明は上述した各実施形態に限定されるものではない。例えば負の温度係数を有する抵抗体(HR)R3と、低温度係数抵抗体(LTC)R4とを直列に接続した直列抵抗回路からなる第2の抵抗分圧回路12aを用いるか、或いは低温度係数抵抗体(LTC)R5と正の温度係数を有する抵抗体(NR)R6とを直列に接続した直列抵抗回路からなる第2の抵抗分圧回路12bを用いるかについては、その回路仕様に応じて定めれば良いものである。また温度勾配の異なる負の温度係数を有する複数の抵抗体(HR)R3を用い、或いは正の温度係数を有する複数の抵抗体(NR)R6を用いて互いに抵抗分圧特性が異なる複数の第2の抵抗分圧回路12を形成することも勿論可能である。
更には多段階の温度勾配を有する温度特性の比較参照電圧Vtmpを生成する場合には、計装アンプ13に対する前述した複数の分圧電圧DIF1,DIF2,…の択一的な入力切換えと、計装アンプ13のゲインの変更とを適宜組み合わせることも勿論可能である。更に多少回路構成が複雑にはなるが、上述した手法を採用することで比較参照電圧Vtmpの温度勾配を4段階以上に変更することも可能である。またここではハイサイド側の過電流検出回路2に組み込まれる電圧生成回路について説明したが、ローサイド側の過電流検出回路2に組み込まれる電圧生成回路についても本発明を同様に適用することができる。この場合、図2,図5,図6,図7に示す回路において、Vregに代えてVS、またVSに代えてGNDを第1の抵抗分圧回路11及び第2の抵抗分圧回路12に印加する。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。
Q1,Q2 スイッチング素子(IGBT)
q1,q2 電流検出素子(電流センスIGBT)
1 駆動制御回路
2 過電流検出回路
3 電流検出抵抗
4,4a,4b,4c,4d 電圧生成回路
5 過電流検出用の比較器
6 出力アンプ
11,11a,11b 第1の抵抗分圧回路
12,12a,12b 第2の抵抗分圧回路
13 計装アンプ
14,14a,14b,17,17a,17b スイッチ
15,16,16a,16b 比較器
LTC 低温度係数抵抗体
HR 負の温度係数を有する抵抗体
NR 正の温度係数を有する抵抗体
q1,q2 電流検出素子(電流センスIGBT)
1 駆動制御回路
2 過電流検出回路
3 電流検出抵抗
4,4a,4b,4c,4d 電圧生成回路
5 過電流検出用の比較器
6 出力アンプ
11,11a,11b 第1の抵抗分圧回路
12,12a,12b 第2の抵抗分圧回路
13 計装アンプ
14,14a,14b,17,17a,17b スイッチ
15,16,16a,16b 比較器
LTC 低温度係数抵抗体
HR 負の温度係数を有する抵抗体
NR 正の温度係数を有する抵抗体
Claims (10)
- 所定の電源電圧を抵抗分割して電流検出素子の出力温度特性に比例した温度特性を有する比較基準電圧を生成する電圧生成回路であって、
抵抗温度係数が略零(0)とみなし得る低温度係数抵抗体を直列に接続して構成され、前記電源電圧を抵抗分割して参照電圧を生成する第1の抵抗分圧回路と、
正または負の抵抗温度係数を有する抵抗体と前記低温度係数抵抗体とを直列に接続して構成され、前記電源電圧を抵抗分割して温度に依存する分圧電圧を生成する1つまたは複数の第2の抵抗分圧回路と、
前記参照電圧と前記分圧電圧との差電圧に応じて前記比較基準電圧を生成する計装アンプと、
温度上昇に伴って分圧電圧が所定の電圧閾値を超えたとき、前記第2の抵抗分圧回路により生成されて前記計装アンプに与えられる前記分圧電圧を変更し、または前記計装アンプのゲインを変更する比較器と
を具備したことを特徴とする電圧生成回路。 - 前記第2の抵抗分圧回路は、負の抵抗温度係数を有する抵抗体を前記電源電圧の正電位側にして前記低温度係数抵抗体を直列に接続して構成され、または正の抵抗温度係数を有する抵抗体を前記電源電圧の負電位側にして前記低温度係数抵抗体を直列に接続して構成される請求項1に記載の電圧生成回路。
- 前記第2の抵抗分圧回路は、負の抵抗温度係数を有する抵抗体を前記電源電圧の正電位側にして前記低温度係数抵抗体を直列に接続して構成され、および正の抵抗温度係数を有する抵抗体を前記電源電圧の負電位側にして前記低温度係数抵抗体を直列に接続して構成される請求項1に記載の電圧生成回路。
- 前記第2の抵抗分圧回路は、温度勾配の異なる複数の分圧電圧をそれぞれ生成するものであって、
前記比較器は、前記複数の分圧電圧の内、常温時には温度勾配の小さい分圧電圧を選択して前記計装アンプに与え、この温度勾配の小さい分圧電圧が所定の電圧閾値を超えたときに温度勾配の大きい分圧電圧を選択して前記計装アンプに与えるものである請求項1に記載の電圧生成回路。 - 前記比較器は、前記分圧電圧が所定の電圧閾値を超えたとき、前記計装アンプのゲインを高くするものである請求項1に記載の電圧生成回路。
- 前記低温度係数抵抗体は、当該電圧生成回路が構築される半導体回路素子基板に同時集積して形成されるポリシリコンからなる請求項1に記載の電圧生成回路。
- 前記電流検出素子は、スイッチング用のIGBTに一体に設けられて該IGBTにミラー接続された電流センス用IGBTであって、
前記比較基準電圧は、前記電流センス用IGBTの出力電流に比例した電流検出電圧の判定に用いられるものである請求項1に記載の電圧生成回路。 - 前記スイッチング用のIGBTは、ハーフブリッジ回路を形成して前記電源電圧をスイッチングする電力変換器におけるハイサイド側のスイッチング素子であって、
前記第1および第2の抵抗分圧回路は、前記電源電圧と前記ハーフブリッジ回路の中点電位との電位差を抵抗分割するものである請求項7に記載の電圧生成回路。 - 入力電力をスイッチングするスイッチング素子をオン・オフ駆動する駆動制御回路に設けられ、前記スイッチング素子に流れる電流を検出して前記駆動制御回路の動作を制御する過電流検出回路であって、
前記スイッチング素子に組み込まれた電流検出素子の出力から該スイッチング素子に流れる電流に比例した電圧を生成する電流検出抵抗と、
前記電流検出素子の出力温度特性に比例した温度特性を有する比較基準電圧を生成する請求項1~8のいずれかに記載の電圧生成回路と、
この電圧生成回路にて生成された前記比較基準電圧と前記電流検出抵抗を介して検出される電圧とを比較して前記スイッチング素子に流れる過電流を検出する過電流検出用の比較器と
を具備したことを特徴とする過電流検出回路。 - 前記スイッチング素子は、直列に接続されてハーフブリッジ回路を形成し、駆動制御回路により交互にオン・オフ駆動されて入力電力をスイッチングして前記ハーフブリッジ回路の中点から負荷に供給する交流電圧を出力する一対のスイッチング素子を備えた電力変換器におけるハイサイド側のスイッチング素子であって、
前記電圧生成回路は、前記ハイサイド側のスイッチング素子をオン・オフ駆動するハイサイド側の駆動制御回路に組み込まれるものである請求項9に記載の過電流検出回路。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680032766.5A CN107750420B (zh) | 2015-12-07 | 2016-11-08 | 电压生成电路及过电流检测电路 |
EP16872749.3A EP3293873B1 (en) | 2015-12-07 | 2016-11-08 | Voltage generation circuit and overcurrent detection circuit |
JP2017554979A JP6468368B2 (ja) | 2015-12-07 | 2016-11-08 | 電圧生成回路および過電流検出回路 |
US15/830,830 US10281941B2 (en) | 2015-12-07 | 2017-12-04 | Voltage generating circuit and overcurrent detecting circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-238936 | 2015-12-07 | ||
JP2015238936 | 2015-12-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/830,830 Continuation US10281941B2 (en) | 2015-12-07 | 2017-12-04 | Voltage generating circuit and overcurrent detecting circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017098849A1 true WO2017098849A1 (ja) | 2017-06-15 |
Family
ID=59013050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/083022 WO2017098849A1 (ja) | 2015-12-07 | 2016-11-08 | 電圧生成回路および過電流検出回路 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10281941B2 (ja) |
EP (1) | EP3293873B1 (ja) |
JP (1) | JP6468368B2 (ja) |
CN (1) | CN107750420B (ja) |
WO (1) | WO2017098849A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110474626A (zh) * | 2019-05-10 | 2019-11-19 | 中智电气南京有限公司 | 一种基于数控车床伺服驱动器的igbt保护电路 |
US11025245B2 (en) | 2017-08-24 | 2021-06-01 | Mitsubishi Electric Corporation | Power conversion device |
JP7508906B2 (ja) | 2020-07-09 | 2024-07-02 | 富士電機株式会社 | 電子回路及び半導体モジュール |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10175118B1 (en) * | 2016-08-31 | 2019-01-08 | Square, Inc. | Systems and methods for measuring temperature |
US11228306B2 (en) * | 2017-07-27 | 2022-01-18 | Diodes Incorporated | Power switch over-power protection |
US10474846B1 (en) | 2017-08-31 | 2019-11-12 | Square, Inc. | Processor power supply glitch detection |
US10476607B2 (en) | 2017-09-30 | 2019-11-12 | Square, Inc. | Wireless signal noise reduction |
KR101937268B1 (ko) * | 2017-10-11 | 2019-04-09 | 현대오트론 주식회사 | 실시간 기울기 제어 장치 및 그것의 동작 방법 |
FR3081265B1 (fr) * | 2018-05-17 | 2020-06-12 | Valeo Siemens Eautomotive France Sas | Circuit de protection d’un interrupteur |
JP7222197B2 (ja) * | 2018-08-03 | 2023-02-15 | 富士電機株式会社 | スレーブ通信装置およびマスタ通信装置 |
JP6999533B2 (ja) * | 2018-11-15 | 2022-01-18 | 三菱電機株式会社 | スイッチング素子の制御装置 |
CN111583987B (zh) * | 2019-02-19 | 2022-06-03 | 华邦电子股份有限公司 | 温度感测器的评估方法 |
JP6807983B2 (ja) * | 2019-06-06 | 2021-01-06 | 三菱電機株式会社 | 電力変換装置 |
JP6995175B1 (ja) * | 2020-09-07 | 2022-01-14 | 三菱電機株式会社 | スイッチング装置および電力変換装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002112535A (ja) * | 2000-10-02 | 2002-04-12 | Sharp Corp | スイッチング電源装置 |
WO2014199816A1 (ja) * | 2013-06-11 | 2014-12-18 | 富士電機株式会社 | 過電流検出回路 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0108408B1 (en) * | 1980-04-28 | 1987-07-01 | Fujitsu Limited | Temperature compensating voltage generator circuit |
JPS5828438U (ja) * | 1981-08-17 | 1983-02-24 | 株式会社ボッシュオートモーティブ システム | 感温スイッチ回路 |
JPH0535339A (ja) * | 1991-07-31 | 1993-02-12 | Konica Corp | 温度制御装置 |
CA2150502A1 (en) * | 1994-08-05 | 1996-02-06 | Michael F. Mattes | Method and apparatus for measuring temperature |
US5772321A (en) * | 1995-10-25 | 1998-06-30 | Hewlett-Packard Company | Compensation for spacial and temporal temperature variations in a thermal conductivity detector |
JP2000258257A (ja) * | 1999-03-04 | 2000-09-22 | Nec Ic Microcomput Syst Ltd | 温度判定方法および装置 |
JP2002204581A (ja) * | 2001-01-09 | 2002-07-19 | Fuji Electric Co Ltd | 電力用半導体モジュール |
JP4236402B2 (ja) * | 2001-10-09 | 2009-03-11 | 富士通マイクロエレクトロニクス株式会社 | 半導体装置 |
KR100440451B1 (ko) * | 2002-05-31 | 2004-07-14 | 삼성전자주식회사 | 전압 글리치 검출 회로, 그것을 구비하는 집적회로장치,그리고 전압 글리치 어택으로부터 집적회로장치를보호하는 장치 및 방법 |
JP4192510B2 (ja) * | 2002-06-14 | 2008-12-10 | 日本電気株式会社 | 半導体装置 |
JP2004045305A (ja) | 2002-07-15 | 2004-02-12 | Mitsubishi Electric Corp | 過電流検出回路 |
DE10245133B4 (de) * | 2002-09-27 | 2007-12-13 | Infineon Technologies Ag | Kalibrierungsanordnung |
JP2005045993A (ja) * | 2003-07-10 | 2005-02-17 | Seiko Instruments Inc | Pwmスイッチングレギュレータ制御回路 |
JP4316473B2 (ja) * | 2004-10-29 | 2009-08-19 | パナソニック株式会社 | 電圧検出回路、過電流検出回路、充電電流制御システム、及び電圧検出方法 |
JP4790405B2 (ja) * | 2005-12-16 | 2011-10-12 | 三菱電機株式会社 | 熱式流量センサ |
JP4905208B2 (ja) * | 2006-10-25 | 2012-03-28 | 株式会社デンソー | 過電流検出回路 |
DE102008045410B4 (de) * | 2007-09-05 | 2019-07-11 | Denso Corporation | Halbleitervorrichtung mit IGBT mit eingebauter Diode und Halbleitervorrichtung mit DMOS mit eingebauter Diode |
US8337082B2 (en) * | 2009-05-08 | 2012-12-25 | Canon U.S. Life Sciences, Inc. | Systems and methods for auto-calibration of resistive temperature sensors |
KR101576182B1 (ko) * | 2009-05-28 | 2015-12-10 | 삼성전자주식회사 | 태양전지를 구비하는 휴대 단말기의 충전 제어 장치 및 방법 |
JP5055349B2 (ja) * | 2009-12-28 | 2012-10-24 | 日立オートモティブシステムズ株式会社 | 熱式ガスセンサ |
US8026761B2 (en) * | 2010-01-26 | 2011-09-27 | Microchip Technology Incorporated | Instrumentation amplifier calibration method, system and apparatus |
JP5170208B2 (ja) * | 2010-10-22 | 2013-03-27 | 富士電機株式会社 | パワー半導体デバイスの電流検出回路 |
JP6014357B2 (ja) * | 2012-04-26 | 2016-10-25 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
CN103545212B (zh) * | 2012-07-16 | 2016-09-21 | 中国科学院微电子研究所 | 半导体器件制造方法 |
JP2014057404A (ja) * | 2012-09-11 | 2014-03-27 | Ricoh Co Ltd | 過電流検出回路及び電流制限回路 |
WO2014181450A1 (ja) * | 2013-05-10 | 2014-11-13 | 株式会社 日立製作所 | 絶縁ゲート型半導体素子の制御装置およびそれを用いた電力変換装置 |
JP5800006B2 (ja) * | 2013-10-31 | 2015-10-28 | トヨタ自動車株式会社 | 半導体装置 |
US9489828B2 (en) * | 2014-05-28 | 2016-11-08 | Ecolink Intelligent Technology, Inc. | Programmable security sensor |
US9513318B2 (en) * | 2014-05-29 | 2016-12-06 | Infineon Technologies Ag | Current or voltage sensing |
WO2016085586A2 (en) * | 2014-10-16 | 2016-06-02 | Flir Systems, Inc. | Low cost and high performance bolometer circuitry and methods |
JP6500694B2 (ja) * | 2015-08-19 | 2019-04-17 | 富士電機株式会社 | 電力変換装置用制御装置および電力変換装置 |
-
2016
- 2016-11-08 EP EP16872749.3A patent/EP3293873B1/en active Active
- 2016-11-08 JP JP2017554979A patent/JP6468368B2/ja active Active
- 2016-11-08 WO PCT/JP2016/083022 patent/WO2017098849A1/ja active Application Filing
- 2016-11-08 CN CN201680032766.5A patent/CN107750420B/zh active Active
-
2017
- 2017-12-04 US US15/830,830 patent/US10281941B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002112535A (ja) * | 2000-10-02 | 2002-04-12 | Sharp Corp | スイッチング電源装置 |
WO2014199816A1 (ja) * | 2013-06-11 | 2014-12-18 | 富士電機株式会社 | 過電流検出回路 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3293873A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11025245B2 (en) | 2017-08-24 | 2021-06-01 | Mitsubishi Electric Corporation | Power conversion device |
CN110474626A (zh) * | 2019-05-10 | 2019-11-19 | 中智电气南京有限公司 | 一种基于数控车床伺服驱动器的igbt保护电路 |
JP7508906B2 (ja) | 2020-07-09 | 2024-07-02 | 富士電機株式会社 | 電子回路及び半導体モジュール |
Also Published As
Publication number | Publication date |
---|---|
EP3293873A1 (en) | 2018-03-14 |
JPWO2017098849A1 (ja) | 2018-03-29 |
EP3293873B1 (en) | 2021-01-13 |
US10281941B2 (en) | 2019-05-07 |
EP3293873A4 (en) | 2019-10-09 |
US20180088615A1 (en) | 2018-03-29 |
CN107750420B (zh) | 2020-04-17 |
CN107750420A (zh) | 2018-03-02 |
JP6468368B2 (ja) | 2019-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6468368B2 (ja) | 電圧生成回路および過電流検出回路 | |
JP6070841B2 (ja) | 過電流検出回路 | |
US7924542B2 (en) | Power supply controller and semiconductor device | |
US8633755B2 (en) | Load driver with constant current variable structure | |
US10944393B2 (en) | Drive device for semiconductor element | |
JP5862434B2 (ja) | パワートランジスタの駆動回路 | |
TWI476558B (zh) | 電壓調節器 | |
JP4961977B2 (ja) | 過電流保護回路 | |
US11545970B2 (en) | Current detection circuit, current detection method, and semiconductor module | |
JP6061033B2 (ja) | 基準電圧回路 | |
JP5831528B2 (ja) | 半導体装置 | |
TW200843306A (en) | Current detector circuit and current mode switching regulator | |
KR101761526B1 (ko) | 반도체 디바이스 | |
JPWO2012157118A1 (ja) | 電圧駆動型素子を駆動する駆動装置 | |
JP5880493B2 (ja) | 温度検出装置 | |
WO2020003842A1 (ja) | 電流検出装置 | |
US11581886B2 (en) | Current detection circuit, current detection method, and semiconductor module | |
US8994309B2 (en) | Pulse width modulation signal generating circuit and motor driving circuit | |
WO2013027342A1 (ja) | 電磁石コイルの駆動装置 | |
JP2014190773A (ja) | 過電流検出装置及びそれを備える半導体駆動装置 | |
JP2017182799A (ja) | 電源供給装置 | |
US20220390492A1 (en) | Overcurrent detection circuit and drive circuit | |
JP5110018B2 (ja) | 電源回路 | |
WO2019058544A1 (ja) | スイッチング素子制御回路及びパワーモジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16872749 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017554979 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016872749 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |