JP6995175B1 - スイッチング装置および電力変換装置 - Google Patents

スイッチング装置および電力変換装置 Download PDF

Info

Publication number
JP6995175B1
JP6995175B1 JP2020149564A JP2020149564A JP6995175B1 JP 6995175 B1 JP6995175 B1 JP 6995175B1 JP 2020149564 A JP2020149564 A JP 2020149564A JP 2020149564 A JP2020149564 A JP 2020149564A JP 6995175 B1 JP6995175 B1 JP 6995175B1
Authority
JP
Japan
Prior art keywords
temperature
detecting means
switching element
switching
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020149564A
Other languages
English (en)
Other versions
JP2022044106A (ja
Inventor
隆志 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020149564A priority Critical patent/JP6995175B1/ja
Priority to US17/388,122 priority patent/US11652402B2/en
Priority to CN202111021396.4A priority patent/CN114243643B/zh
Application granted granted Critical
Publication of JP6995175B1 publication Critical patent/JP6995175B1/ja
Publication of JP2022044106A publication Critical patent/JP2022044106A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • H02H5/041Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature additionally responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • G05F1/463Sources providing an output which depends on temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】電流検出機能と温度検出機能を有し、複数のスイッチング素子が並列接続されたアームにおいて、スイッチング素子のオープン故障時に電流検出機能の喪失を検出する機能を提供することを目的とする。【解決手段】スイッチング装置は、並列に接続された複数のスイッチング素子のうち、少なくとも一つのスイッチング素子に設けられた電流検出手段および温度検出手段と、電流検出手段が設けられたスイッチング素子の過電流を判定し、温度検出手段の出力に基づいて温度検出手段が設けられたスイッチング素子の過熱状態および昇温不良を判定しスイッチング素子を制御する制御部、を備えたものである。【選択図】図1

Description

本願は、スイッチング装置とそのスイッチング装置を用いた電力変換装置に関するものである。
複数のスイッチング素子が組み込まれた電力変換装置において、故障に対する保護機能が提案されている。IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)のような半導体によるスイッチング素子を使用した電力変換装置では、過負荷、異常動作時にスイッチング素子の温度上昇によりスイッチング素子がダメージを受ける場合がある。
このため、スイッチンング素子に温度検出手段および電流検出手段を備え、過熱状態および過電流を検出して、出力を制限し、またはスイッチング動作を停止するといった保護手段を備えたスイッチング装置が提案されている。直列に接続された、正極側の電流を供給する上側アームと、負極側の電流を供給する下側アームとを備えた電力変換装置において、スイッチング装置を上側アームと下側アームに用いたものが広く知られている。スイッチング素子を保護するために、スイッチング動作を停止することは、電力変換動作を停止することにも通じる。
特許文献1では、半導体によるスイッチング素子が二個並列に接続されて構成されたアームを備えた電力変換装置の過熱保護方法について示されている。二個並列のスイッチング素子のうち、一方は温度検出手段を備え、他方は電流検出手段を備えることで、いずれか一方がオープン故障(IGBTであればコレクタ、エミッタ間オープン故障)した場合においても、他方のスイッチング素子が温度閾値または過電流閾値を超過した場合の保護動作を実施することができる。このような方法によって、健全な方のスイッチング素子を保護し、コストアップを抑えつつ、冗長性と信頼性を向上することできる。
特許第4177392号公報
特許文献1では、二個並列接続されたスイッチング素子のうち過熱状態を検出するための温度検出可能な素子と、過電流を検出するための電流検出可能な素子が分離配置されている。このため、電流検出可能な素子がオープン故障した場合、温度検出可能な素子にて異常を検出することとなる。実際に、一方のスイッチング素子がオープン故障を起こした場合、他方のスイッチング素子に二倍の電流が流れ込むこととなる。他方のスイッチング素子に大電流が流れ込むことによって、温度が上昇し、温度検出手段によって過熱状態が検出され、出力の制限またはスイッチング動作の停止が実行される。このとき、過熱状態が検出されているにもかかわらず、電流検出手段が過電流を検出していないことから、電流検出手段の出力が異常である、もしくは当該スイッチング素子がオープン故障を起こしていることが判明することとなる。
しかし、実際にスイッチング素子が大電流を流し始めてから、素子の基板の温度が上昇し、それを温度検出手段が検出して過熱状態を示す信号を出力し始めるまでに時間がかかる。この時間経過までの間は、過電流検出が不能であることに気づくことなく動作継続することになる。また、通常は最大定格出力時に温度保護がかからないよう様々なバラつきを考慮して高めの余裕を持たせて温度保護閾値が設定される。このため、電力変換装置が最大定格出力よりも低い電力で動作している場合においては、片方の素子がオープン故障したとしても温度保護閾値に到達しないまま動作が継続される場合がある。さらに、スイッチング素子が並列に多数設けられている場合はその数が増加するほど、一つのスイッチング素子がオープン故障を起こした時の他の素子の通電電流の増加量は減少して温度上昇も低くなるため、正常時からの差異が小さくなり過熱状態であるという判断が難しくなる。
このような場合、スイッチング装置もしくは電力変換装置は、スイッチング素子の電流検出手段の出力が異常である、もしくは当該スイッチング素子がオープン故障を起こしていることを判定することなく運転を継続することとなる。電流検出手段による過電流の検出は、誤作動(誤オン)、ショート故障時の短絡電流を検出してゲートを遮断するための短絡保護に用いられることが多い。よって、過電流の検出が不能な場合は、上下アームが短絡して電力変換装置、電源および負荷がダメージを受けることにつながるため、電流検出機能の喪失は迅速に検出できることが望ましい。
本願は上記のような問題点を解消するために成されたものであって、複数のスイッチング素子が並列接続されたスイッチング装置において、電流検出機能と温度検出機能を有するスイッチング素子の過熱と電流検出機能の喪失を検出する機能を提供することを目的とするものである。また、電力変換装置のアームにおいて、上記のようなスイッチング装置を用いて、スイッチング素子の過熱と電流検出機能の喪失を検出する機能を有する電力変換装置を得ることを目的とする。
本願に係るスイッチング装置は、
制御端子への入力信号に応じて第一端子と第二端子との導通と遮断を切り替える、並列に接続された複数のスイッチング素子、
複数のスイッチング素子のうち、少なくとも一つのスイッチング素子に設けられた電流検出手段および温度検出手段、
制御端子と電流検出手段と温度検出手段とに接続され、スイッチング素子のオン、オフを切り替え、電流検出手段の出力に基づいて電流検出手段が設けられたスイッチング素子の過電流を判定し、温度検出手段の出力に基づいて温度検出手段が設けられたスイッチング素子の過熱および昇温不良を判定し、過電流の判定結果と過熱および昇温不良の判定結果に基づいて複数のスイッチング素子を制御する制御部、を備えたものである。
また、本願に係る電力変換装置は、
直列に接続された、正極側の電流を供給する上側アームと、負極側の電流を供給する下側アームとを備え、
前記スイッチング装置を上側アームと下側アームに用いたことを特徴とするものである。
本願に係るスイッチング装置によれば、並列に複数接続されたスイッチング素子のうち電流検出手段を備えたスイッチング素子は併せて温度検出手段を備え、これらの温度検出手段を設けることにより、電流検出手段を備えたスイッチング素子の過熱と電流検出機能の喪失を検出可能となる。
本願に係る電力変換装置によれば、このようなスイッチング素子を上側アームと下側アームに用いたことによって、アームに用いられたスイッチング素子の電流検出手段を備えたスイッチング素子の過熱と電流検出機能の喪失を検出可能となる。
実施の形態1に係る電力変換装置の構成図である。 実施の形態1に係る制御部のハードウェア構成図である。 実施の形態1に係るスイッチング装置の構成図である。 実施の形態1に係る電流検出回路の構成図である。 実施の形態1に係る温度検出手段による昇温不良判定の処理手順を示す第一のフローチャートである。 実施の形態1に係る温度検出手段による昇温不良判定の処理手順を示す第二のフローチャートである。 実施の形態2に係る温度検出手段による昇温不良判定の処理手順を示すフローチャートである。 実施の形態3係る電力変換装置の構成図である。 実施の形態3に係るスイッチング装置の構成図である。
以下、本願に係るスイッチング装置、および電力変換装置の実施の形態について、図面を参照して説明する。
1.実施の形態1
<電力変換装置の構成>
図1に電力変換装置10の構成を示す。電力変換装置10は、複数のスイッチング素子としてIGBTが並列接続された下アーム20と上アーム30を備えている。図1では、複数のIGBTの記載は省略して、単一のIGBTを代表として図示している。直列に接続された下アーム20と上アーム30の接続点には、リアクトル3が接続され、リアクトル3を介して電源1と、入力コンデンサ4に接続されている。下アーム20と上アーム30の接続点と逆側には、出力コンデンサ5と負荷2が接続されている。下アーム20と上アーム30のスイッチング素子は、その制御端子が駆動回路28と駆動回路38に接続され、駆動回路は制御回路6から指令を受けて、各スイッチング素子の制御端子に駆動信号を伝達する。
下アーム20と上アーム30のスイッチング素子は、電流検出手段、温度検出手段を有し、駆動回路28と駆動回路38に検出信号を伝達する。駆動回路28と駆動回路38は、検出された信号を制御回路6へ伝達する。制御回路6は冷却器温度検出用サーミスタ7からの冷却器温度の情報を入力する。制御回路6はスイッチング素子の過電流、過熱、および昇温不良を判定して、電力変換装置10の制御に反映する。図1に示す電力変換装置10は、DC-DCコンバータである。制御回路6、駆動回路28および駆動回路38は、制御部210を構成する。
<制御部のハードウェア構成>
図2は、制御部210、240のハードウェア構成図である(以下、制御部210として説明するが制御部240も同様である)。本実施の形態では、制御部210は、電力変換装置10を制御する制御装置である。制御部210の各機能は、制御部210が備えた処理回路により実現される。具体的には、制御部210は、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りをする記憶装置91、演算処理装置90に外部の信号を入力する入力部92、及び演算処理装置90から外部に信号を出力する出力部93等を備えている。
演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のものまたは異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置90からデータを読み出し可能に構成されたROM(Read only Memory)等が備えられている。入力部92は、駆動回路28、38の電流検出手段、温度検出手段のインターフェースを含み、各種のセンサ及びスイッチが接続され、これらセンサ及びスイッチの出力信号を演算処理装置90に入力するAD変換部、入力回路などのインターフェース回路を備えている。出力部93は、駆動回路28、38のスイッチング素子駆動部を含み、スイッチング素子、アクチュエータ等の電気負荷が接続され、これら電気負荷に演算処理装置90からの出力信号を変換して出力する駆動回路、通信回路等のインターフェース回路を備えている。
制御部210が備える各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力部92、及び出力部93等の制御部210の他のハードウェアと協働することにより実現される。なお、制御部210が用いる閾値、判定値等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。
図1の制御部210の内部に搭載された各機能は、それぞれソフトウェアのモジュールで構成されるものであってもよいが、ソフトウェアとハードウェアの組み合わせによって構成されるものであってもよい。
<スイッチング装置の構成>
図3は、下アーム20、駆動回路28、制御回路6とから構成されるスイッチング装置9を示している。図3では、下アーム20の詳細が示されており、ダイオードが逆並列接続された3つのIGBT21a、21b、21cが並列接続されて構成される。IGBT21aは電流検出手段である電流検出用セル23aを備え、駆動回路28へ電流情報を伝達する。IGBT21a、21bは温度検出手段である温度検出用ダイオード24a、24bを備え、駆動回路28へ温度情報を伝達する。IGBT21aは電流検出手段と温度検出手段の両方を備えている。以下、電流検出手段または、温度検出手段を備えたIGBT(またはMOSFET)を電流検出機能または温度検出機能を有したIGBT(またはMOSFET)と称する。
各IGBT21a、21b、21cのゲート端子は共通のゲート駆動信号線22で接続され、駆動回路28から出力されるゲート信号によりオンオフ駆動される。駆動回路28は、制御回路6から出力されたPWM(Pulse Width Modulation)信号25をIGBTのゲート駆動信号としてゲート駆動信号線22へ出力する。
駆動回路28は過電流保護手段を有し、電流検出用セル23aからの電流情報を受けて過電流保護を実施するとともに、過電流異常信号26を制御回路6へ伝える。駆動回路28は温度検出用ダイオード24a、24bから受けた温度情報を温度信号27として制御回路6へ伝え、制御回路6が備える温度異常検出手段によってIGBT21a、21bの温度異常を検出する。
図3は下アーム20について説明しているが、上アーム30についても同様の構成である。上アーム30の詳細な構成については図示しないが、3つのIGBT31a、31b、31cが並列接続され、1つの電流検出用セル33a、2つの温度検出用ダイオード34a、34bを備え、IGBT31aは電流検出手段と温度検出手段の両方を備えている。制御回路6から出力されるPWM信号35は駆動回路38を介してゲート駆動信号線32へ出力される。駆動回路38は過電流異常信号36と温度信号37を制御回路6へ出力する。
なお、図3ではスイッチング素子としてIGBTを用いた場合について説明しているが、MOSFETなど別の半導体素子であってもよい。また、図3で示した個別のIGBTが逆並列ダイオードを持つRC-IGBT(Reverse Conducting IGBT)以外の、IGBT並列数とは異なる数のダイオードを逆並列接続したものであってもよい。
<電力変換>
電力変換装置10の電力変換の動作について説明する。図1の下アーム20をオン、上アーム30をオフとすることによりリアクトル3を励磁し、下アーム20をオフ、上アームをオンとすることによりリアクトル3をリセットする。このようなスイッチング動作を所定周波数にて行い、励磁・リセットの期間を所定のデューティ比(下アームオン比率)にて制御することにより昇圧を行う。
<過電流の検出>
駆動回路28と駆動回路38における過電流保護手段について説明する。なお、ここでの過電流保護は、上下アームが両方導通状態となり瞬間的に過大な短絡電流が流れた場合にいずれかのアームをオフして短絡電流を遮断する短絡保護を想定している。
図4は、実施の形態1に係る電流検出回路の構成図である。ここでは、センス方式で電流を検出する例を示す。センス方式では、スイッチング素子に流れる主回路電流の一部をセンス端子に分流して取り出す。例えば、IGBT(Insulated Gate Bipolar Transistor)ではエミッタ側、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)であれば、ソース側から分流して電流を取り出す。この電流を抵抗器にて電流電圧変換した後、その電圧レベルを監視することで、過電流を検出する。駆動回路28には電流検出回路280が内蔵されている。駆動回路38についても同様であるがここでは説明を省略する。電流検出用セル23aからの分流された電流は並列抵抗281、直列抵抗282を介してコンパレータ286に入力されて比較され、過電流の有無が検出される。
ここで、ノイズの影響を除去するためコンパレータ286手前にキャパシタ283が接続されている。IGBT21aがPWMスイッチング信号によってオンとなり電流が導通するたびにキャパシタ283が充電される。継続的に充電されると、キャパシタ283の電圧が上昇し、過電流が誤検出される問題を生じる。そのため、ゲートオフ時に放電スイッチ284によりキャパシタ283を放電してリセットする。ゲート駆動信号線22のゲート信号に対してNOT論理駆動素子285を介して放電スイッチ284を駆動する。このような動作により、ゲートオフ期間には過電流検出が不可となり、ゲートオン期間に過電流検出が有効となる。なお、図4の回路は一例であり、同様の動作をする回路であればこのような構成に限らない。過電流を検出すると、例えば駆動回路28、38はゲートをOFFし、過電流検出したことを制御回路6へ伝える動作を行う。
電力変換実行中の正常な動作時には、下アーム20がオン時には上アーム30はオフ、上アーム30がオン時には下アーム20がオフとなるよう排他論理的にスイッチング動作される。このため、通常動作においては短絡とはならない。異常時について、例えば下アーム20がオフ、上アーム30がオンにおいて、下アーム20がノイズおよび制御異常により誤オンまたはコレクタ、エミッタ間が短絡故障した場合には、上下アームに短絡電流が導通するためオン状態の上アームによって過電流が検出される。この時、ゲート遮断による短絡保護が実施される。反対に、オンオフ状態が上下アームで逆の場合においては、オン状態となる下アームにおいて過電流を検出して短絡保護が実施される。
このとき、過電流を検出する側のアームにおいて、過電流検出手段を持つIGBTのオープン故障により過電流検出機能を喪失してしまっている場合について考える。IGBTが断線故障している場合、センサ端子に電流が流れず、過電流検出ができず、正常に短絡電流遮断のためのゲート遮断が行われない。故障しているIGBTには電流が流れないので、並列の他のIGBTが導通している時過剰に電流が流れることとなる。この状態で、対となる上側アームもしくは下側アームが短絡故障を起こした場合、過大な電流が上下アームに流れることになり、しかも過電流検出もできない事態となる。
ゲートオフ時の電圧サージ過大による耐圧超過または過熱によるIGBT短絡が発生した場合、電源1、負荷2を短絡してしまうことによって、被害が拡大する恐れがある。上側アームと下側アームの双方に電流検出手段を備えている場合であっても、どちらかの電流検出機能を喪失すると大きな問題となる。上記のように過電流検出されない期間を有する過電流検出回路を備える場合には、各アームにおいて電流検出機能の喪失を判定する必要がある。本願の実施の形態1では、このような電流検出機能の喪失を検出できるよう、図3の構成のように電流検出手段を保有するスイッチング素子には併せて温度検出手段を備え、温度異常を検出することに意義がある。
<温度検出による異常判定>
次に温度検出手段による断線判定について説明する。異常を検出する方法、及び温度異常時の動作について説明する。図1、3に示すように、制御回路6は駆動回路28からそれぞれ温度信号27として伝えられるIGBT21a、21bのIGBT温度、および冷却器温度検出用サーミスタ7から伝えられる冷却器温度を検出可能であり、これらの情報を用いて温度異常を検出する。
制御回路6は各IGBT温度および冷却器温度が所定温度以上となったときに過熱と判断して過熱保護を実施する。過熱保護としては、出力電力を低減して電力変換動作を継続する、または電力変換動作を停止する。これに加えて、以下の手順で各IGBT温度から昇温不良を判定することができる。昇温不良とはスイッチング素子の継続的なオンオフ駆動(デューティ駆動)によって、スイッチング素子の温度が適正に上昇するべきところ、温度上昇が不足していることを言う。この場合、IGBTが正常に電流を供給できていない状態であり、したがってスイッチング装置9の過電流を検出するためのIGBTの電流検出機能の喪失を伴うこととなる。電流検出機能の喪失の要因として、IGBTの断線を想定することができる。以下、昇温不良を判定する、とは温度上昇が不足していると判断することを指す。
<昇温不良判定のフローチャート>
図5、図6に、制御部210で実行する温度検出手段による昇温不良の判定の処理手順を示す第一のフローチャートと第二のフローチャートを示す。図6のフローチャートは図5のフローチャートの続きを示す。図5および図6のフローチャートは所定時間(例えば5ms)ごとに実行される。実行タイミングは所定時間ごとではなく、スイッチング素子が制御される信号に応じて実行する、またはその他外部のイベントに応じて実行することにしてもよい。
ステップS101から開始した処理は、ステップS102で制御部210が起動直後であるかどうか判定する。起動直後でない場合(判定がNOの時)ステップS105へ進む。起動直後の場合(判定がYESの時)は、ステップS103で検出したIGBT温度をIGBT起動時温度として記憶装置91に格納する。そしてステップS103で、駆動カウンタ、停止カウンタ、出力制限カウンタをクリアしてステップS105へ進む。
ステップS105で、制御信号のデューティ(スイッチング素子のオン時間比率)が所定の駆動判定デューティD1(例えば20%)を上回っているかどうか判定する。判定がYESの場合すなわちデューティが駆動判定デューティD1を上回っている場合、スイッチング素子は所定以上の負荷で電流を流していることを示し、スイッチング素子の温度が上昇することが期待できる。この場合ステップS106に進む。判定がNOの場合はステップS112へ進み、駆動カウンタをクリアした後、ステップS119で処理を終了する。ここでは、駆動判定デューティD1が20%の例について説明したが、駆動判定デューティD1=0%として、駆動信号のデューティがこれを上回っている場合、即ちスイッチング素子が駆動している場合、という条件とすることもできる。
ステップS106では駆動カウンタを加算して、ステップS107へ進む。駆動カウンタは、駆動判定デューティD1を越える負荷でスイッチング素子が駆動されている時間をカウントするカウンタである。ステップS107で、駆動カウンタが所定の駆動判定カウント値Cd(例えば1秒)を上回っているかどうか判定する。上回っていない場合(判定がNOの時)は、ステップS119へ進んで処理を終了する。上回っている場合(判定がYESの時)は、ステップS108へ進む。
ステップS108では、検出したIGBT温度と記憶装置91から読み出したIGBT起動時温度の差(IGBT温度―IGBT起動時温度)すなわち昇温温度が所定の第一駆動温度Td1より低いかどうか判定する。温度が低くない場合(判定がNOの時)は、ステップS113へ進み、停止カウンタをクリアしてステップS114へ進む。温度が第一駆動温度Td1より低い場合(判定がYESの時)はステップS109で停止カウンタを加算する。スイッチング素子が駆動判定デューティD1を上回ったデューティで駆動判定カウント値を超える時間駆動しているので、スイッチング素子は本来発熱して昇温しているべきところ、昇温温度が第一駆動温度Td1より低い(昇温不良である)場合を示す。このとき、スイッチング素子の断線が想定でき、スイッチング素子が正常に駆動しておらず、スイッチング素子の電流検出機能を喪失していると判断できるので駆動を停止するための停止カウンタを加算する。その後ステップS110へ進む。
ステップS110では、停止カウンタの値が所定の停止確定時間Csより大きいかどうか判定する。大きくない場合(判定がNOの時)はステップS114へ進む。停止カウンタの値が停止確定時間Csより大きい場合(判定がYESの時)はステップS111で、停止制御を実行する。昇温不良が判断されたのが、瞬間的なものではなく、継続して判断されている場合に、昇温不良の判定を確定し迅速にスイッチング装置9の停止処理を行い、スイッチング素子がダメージを受けることを回避することができる。ステップS111の後、ステップS119で処理を終了する。
ステップS114では、検出したIGBT温度と記憶装置91から読み出したIGBT起動時温度の差(IGBT温度―IGBT起動時温度)すなわち昇温温度が、第一駆動温度Td1より高い第二駆動温度Td2より低いかどうか判定する。低くない場合(判定がNOの時)はステップS118へ進み、出力制限カウンタをクリアしてステップS119で処理を終了する。温度が低い場合(判定がYESの時)は、ステップS115で出力制限カウンタを加算してステップS116へ進む。スイッチング素子の昇温温度が第二駆動温度Td2より低い場合は、断線の断定までできないが、スイッチング素子の温度上昇が低いので、スイッチング素子の不具合を考慮して出力を制限するためのカウンタを加算する。
ステップS116では、出力制限カウンタの値が所定の出力制限確定時間Clより大きいかどうか判定する。大きくない場合(判定がNOの時)はステップS119へ進んで処理を終了する。出力制限カウンタの値が出力制限確定時間Clより大きい場合(判定がYESの時)はステップS117で、出力制限制御を実行する。出力制限フラグがセットされたのが、瞬間的なものではなく、継続してセットされている場合に、迅速にスイッチング装置9の出力制限処理を行い、スイッチング素子がダメージを受けることを回避することができる。ステップS117の後、ステップS119で処理を終了する。
図6のフローチャートでは、(IGBT温度―IGBT起動時温度)すなわち昇温温度を、予め定めた第一駆動温度Td1、第二駆動温度Td2と比較して、停止カウンタ、もしくは出力制限カウンタを加算することとした。しかし、IGBT起動時温度を省略して、現在のIGBT温度を、第一駆動温度Td1、第二駆動温度Td2と比較することとしてもよい。スイッチング素子が駆動判定デューティD1を上回ったデューティで駆動判定カウント値を超える時間駆動している場合の、スイッチング素子の発熱温度に対しIGBT起動時温度の影響が限定的であると判断することができるからである。
また、IGBT起動時温度を省略した場合に、第一駆動温度Td1、第二駆動温度Td2を、冷却器温度検出用サーミスタ7により検出した冷却器温度もしくは、スイッチング装置9、電力変換装置10の外気温度の関数としてもよい。冷却器温度もしくは外気温度が低いほど、スイッチング素子の置かれている周囲の温度が低くなり、温度検出用ダイオード24a、24bの検出温度にも影響を与えるからである。関数はマップで定義してもよく、関数または、マップの設定は実験によって求めることができる。
さらに、図6のフローチャートのIGBT温度の比較を、IGBT温度から、冷却器温度もしくは外気温度を差し引いた値を、予め定めた第一駆動温度Td1、第二駆動温度Td2と比較して、停止フラグ、もしくは出力制限フラグをセットすることとしてもよい。そのようにすれば、冷却器温度または外気温度の与える影響を除外して精密に温度比較ができるからである。
図5、図6のフローチャートは温度検出手段が設けられた各スイッチング素子について制御部210が実行する処理について述べたが、電力変換装置10の下アーム20および上アーム30について制御部210が実行する処理にも適用できる。制御部210は、スイッチング装置9ごと、もしくは下アーム20ごと、上アーム30ごとに備えられてもよいが、電力変換装置10全体として一体の制御部210を備えてもよい。
以上の様な手順で、温度検出手段の出力を用いてスイッチング素子の昇温不良を判定することができ、スイッチング素子が断線しスイッチング装置9が電流検出機能を喪失していることを判定することができる。これによって、スイッチング装置9、電力変換装置10が重大な問題を発生させる前に、スイッチング制御、電力変換制御の停止もしくは出力制限を実施することができる。第一の実施の形態におけるスイッチング装置9および電力変換装置10によれば、温度検出手段を備えたIGBTが一つの場合であっても、電流検出機能を喪失したまま動作することを防止しつつ、過電流保護と過熱保護が可能となる。
並列に設けられた複数のスイッチング素子のうちの一個にのみ、電流検出手段と温度検出手段が一つずつ設けられたスイッチング装置に適用することができる。このようにすると、スイッチング素子の過熱と電流検出機能の喪失の検出を可能としつつ、IGBTチップサイズを縮小し信号線長さを短縮することができる。その結果、モジュールサイズ縮小、基板面積縮小が可能となり、スイッチング装置9の小型化、軽量化、コスト低減に寄与することができる。
また、ここで温度検出手段の出力が過熱または昇温不良を示す場合、温度検出手段の断線、天絡、地絡、固着、誤差大に起因することがある。よって、これら温度検出手段の各種異常について、過熱または昇温異常と兼ねて判定してもよい。または、別途温度検出手段の各種異常を細かく判定することとしてもよい。
2.実施の形態2
実施の形態2は、実施の形態1と同じ構成のスイッチング装置9および電力変換装置10について、温度検出による昇温不良の判定の手順を変更している。ハードウェア構成は同一である。
<昇温不良判定のフローチャート>
図7に、実施の形態2に係る制御部210で実行する温度検出手段による昇温不良の判定の処理手順を示すフローチャートを示す。図7のフローチャートは所定時間(例えば5ms)ごとに実行される。実行タイミングは所定時間ごとではなく、スイッチング素子が制御される信号に応じて実行する、またはその他外部のイベントに応じて実行することにしてもよい。
ステップS301から開始した処理は、ステップS302で、IGBT21a温度、IGBT21b温度、冷却器温度を取り込む処理の後、ステップS303に進む。ステップS303では、IGBT21a温度とIGBT21b温度の差の絶対値が、第一の温度閾値Tth1以上であるかどうか判定する。温度の差の絶対値が、第一の温度閾値Tth1以上であれば、二つのIGBTの温度に大きな開きがあるということであり、異常があるということで、少なくとも出力制限をすべきと判断できる。温度の差の絶対値が、第一の温度閾値Tth1以上の場合(判定がYESの時)は、ステップS304へ進む。温度の差の絶対値が、第一の温度閾値Tth1以上でない場合(判定がNOの時)は、ステップS312へ進んで停止カウンタと出力制限カウンタをクリアしてステップS319で処理を終了する。
ステップS304で、IGBT21a温度と冷却器温度の差の絶対値が、第二の温度閾値Tth2以下であるかどうか判定する。ここでは、電流検出手段を持つIGBT21aと冷却器温度を比較し、温度差が第二の温度閾値Tth2以下の場合(判定はYESの時)は、IGBT21aはオープン故障のため電流を導通させておらず温度上昇していない異常状態であると判定する。このため、ステップS305へ進んで、停止カウンタを加算し、ステップS306へ進む。
ステップS304で、温度差が第二の温度閾値Tth2以下でない場合(判定はNOの時)は、ステップS308へ進み停止カウンタをクリアし、ステップS309へ進み出力制限カウンタを加算する。出力制限カウンタは、IGBT21aのオープン故障以外の何らかの異常があると考えられるため、出力電力を制限しながら動作を継続する出力制限制御を実行するための出力制限カウンタである。その後、ステップS310へ進む。なお、第一の温度閾値Tth1、第二の温度閾値Tth2は、温度検出用ダイオード等の回路バラつき、並列IGBTの分流バラつき、他IGBTからの伝熱などを考慮して決定される。
ステップS306では、停止カウンタの値が所定の停止確定時間Csより大きいかどうか判定する。大きくない場合(判定がNOの時)はステップS306へ進む。停止カウンタの値が停止確定時間Csより大きい場合(判定がYESの時)はステップS307で、昇温不良の判定を確定し停止制御を実行する。昇温不良が判断されたのが、瞬間的なものではなく、継続して判断されている場合に、迅速にスイッチング装置9の停止処理を行い、スイッチング素子がダメージを受けることを回避することができる。ステップS307の後、ステップS319で処理を終了する。
ステップS310では、出力制限カウンタの値が所定の出力制限確定時間Clより大きいかどうか判定する。大きくない場合(判定がNOの時)はステップS319へ進んで処理を終了する。出力制限カウンタの値が出力制限確定時間Clより大きい場合(判定がYESの時)はステップS311で、出力制限制御を実行する。出力制限が判断されたのが、瞬間的なものではなく、継続して判断されている場合に、迅速にスイッチング装置9の出力制限処理を行い、スイッチング素子がダメージを受けることを回避することができる。ステップS311の後、ステップS119で処理を終了する。
第2の実施の形態におけるスイッチング装置9および、そのスイッチング装置9を下アーム20、上アーム30に使用した電力変換装置10によれば、複数並列接続されたIGBTのうち電流検出手段を備えたIGBT21aは併せて温度検出手段を備え、かつ制御回路6において温度の異常を判定することにより、電流検出手段を備えたIGBT21aのオープン故障時に昇温不良を判定することで電流検出機能の喪失を検出可能となる。また、電流検出手段を保有していないIGBT21b、21cのオープン故障時は、スイッチング装置9としては電流検出可能かつ過熱保護可能となる。これにより、電流検出機能を喪失したまま動作継続することを防止しつつ、スイッチング装置9、電力変換装置10の過電流保護と過熱保護が可能となる。
電流検出手段を有するIGBTを、IGBT並列数よりも少なくしても保護機能を喪失したまま動作継続することを防止できるため、コスト低減とIGBTモジュールサイズおよび基板面積の低減につながる。
同アーム内に温度検出手段を有したIGBTを複数備える場合、アーム内のIGBT同士の温度比較によって昇温不良を判定できる。オープン故障したIGBTは温度上昇が無く、オープン故障していない他のIGBTは電流が集中して正常時以上に温度が上昇するため、オープン故障したIGBTと正常なIGBTとの温度差で昇温不良を判定しやすい。このため、複数のIGBTの温度を比較することは意義がある。
下アーム20、上アーム30を備えた主回路構成を持つ電力変換装置10では、下アーム20、上アーム30の両方で電流検出機能の不能期間の問題を回避することができる。さらに、下アーム20、上アーム30のそれぞれに過電流保護手段を持った駆動回路をそれぞれ備え、駆動回路の過電流保護手段は、例えばゲートオフ期間中に過電流検出しない回路構成であっても同様の効果を得ることができる。下アーム20と上アーム30では異なる相補的なタイミングでオンオフし、過電流検出しない期間が異なり相互にカバーできるからである。そして、それぞれのスイッチング素子の温度を検出することで昇温不良を判定し電流検出機能の喪失を検出することが可能となり、信頼性を向上できる。
オープン故障したIGBTでは発熱がないため冷却器温度に近づくことを利用し、冷却器温度検出用サーミスタ7からの冷却器温度との比較でオープン故障したIGBTの特定がしやすくなる。冷却器温度が変化した場合、IGBTの温度はその影響を受けるが、冷却器温度と比較することでその影響も相殺される。
下アーム20と上アーム30のアーム内の2つのIGBT温度、および冷却器温度といった3つ以上の温度情報を比較することにより、昇温不良を生じているIGBTを特定することができる。2つのみの温度情報の比較では、どちらの温度が異常であるか判断できない問題を解決できる。また、アーム内または他アームの3つ以上のIGBT温度を比較して昇温不良が生じているIGBTを検出してもよい。その場合、他のIGBT温度よりも所定温度を超えて低い温度のIGBTを特定して昇温不良と判定することができる。あるいは、IGBT温度の平均値よりも所定温度を超えて低い温度のIGBTを特定して昇温不良と判定してもよい。
電流検出手段を有しているIGBTが昇温不良であると判定された場合にスイッチング装置、電力変換装置の動作を停止することにより、オープン故障により電流検出機能を喪失したまま動作継続しないようにすることができる。これにより、信頼性を高めることができ意義が大きい。
電流検出機能を有していないIGBTが昇温不良であると判定された場合にはスイッチング装置、電力変換装置の出力制限をするなどして動作継続することにより、異常があっても極力動作を継続することができる。これによって、スイッチング装置、電力変換装置の稼働を継続でき、システムとしての故障耐性を高めることができる。
実施の形態2ではアームの電流検出手段を有するIGBTが1つのみの場合を図3で示した。しかし、電流検出手段を有するIGBTは複数であってもよい。例えば三並列中、二つのIGBTが電流検出手段を有することで、アーム内の導通電流のバラつきを考慮しつつ過電流保護が成立する保護閾値を設定できる場合がある。しかし、電流検出手段を有するIGBTが1つオープン故障した場合にも過電流保護機能を喪失することとなる。これに対して、電流検出手段を有するIGBTに温度検出手段も持たせることにより、実施の形態2で説明した場合と同様に昇温不良により電流検出機能の喪失を検出することができる。そのため、電流検出機能を全IGBTが保有することなくコスト低減につながる。
実施の形態2では図3に示したように、アームの温度検出手段は三並列中、二つのIGBTが有していたが、すべてのIGBTが温度検出手段を保有していてもよい。これにより、すべてのIGBTのオープン故障による昇温不良を判定することができる。
なお、実施の形態2では冷却器温度検出用サーミスタ7により電力変換装置10の冷却器温度を検出していたが、冷却器ではなく冷却水、空気といった冷媒自体の温度を検出するようにしてもよい。冷却器温度は冷媒温度に近くなるため、同様の効果が得られる。また、冷却器及び冷媒の温度は電力変換装置10の外部から得られる温度情報であってもよい。
制御回路6は駆動回路28、38から温度情報を得ているが、駆動回路を介さずにIGBTから直接、制御回路6に入力されるものであってもよい。
3.実施の形態3
図8は、第3の実施の形態における電力変換装置40の構成を示す図である。電力変換装置40は、複数のIGBTが並列接続された下アーム100、120、140と上アーム110、130、150のそれぞれの直列回路が三並列で構成されるインバータである。図8では、アームごとの複数のIGBTの記載を省略し単一のIGBTに代表させて表している。上下アームの直列回路と並列に入力コンデンサ13、および電源1が接続され、各上下アームの接続点はそれぞれ負荷である三相モータ12に接続されている。
下アーム100、120、140および上アーム110、130、150はそれぞれ駆動回路108、128、148および118、138、158を備え、各駆動回路は制御回路46と接続されている。制御回路46の指令による、上下アームの適切なスイッチング動作によってインバータ動作が行われるとともに各アームのセンシング情報を制御回路46が受け取り、センシング情報に基づいて適切な保護動作が行われる。なお、制御回路46と駆動回路108、118、128、138、148、158によって制御部240が構成される。図8では、冷却器温度検出用サーミスタ7の記載を省略しているが、図1と同様制御回路46に接続されているものとする。
図9は、下アーム100の構成の詳細、および駆動回路108、制御回路46との接続を示し、全体としてスイッチング装置39を構成する。なお、その他の上下アーム110、120、130、140、150、および駆動回路118、118、128、138、148、158も同様の構成であるので図示は省略する。
下アーム100はダイオードが逆並列接続された2つのIGBT100a、100bが並列接続されて構成される。IGBT100aは電流検出手段である電流検出用セル103aと、IGBT100aの温度検出手段である温度検出用ダイオード104aを備え、電流情報と温度情報を駆動回路108へ伝える。
IGBT100a、100bのゲート端子は共通のゲート駆動信号線102で接続され、駆動回路108から出力されるゲート信号によりオンオフ駆動される。駆動回路108は、制御回路46から出力されたPWM信号105をIGBTのゲート駆動信号としてゲート駆動信号線102へ出力する。
駆動回路108は過電流保護手段を有し、電流検出用セル103aからの電流情報を受けて過電流保護を実施するとともに、過電流異常信号106を制御回路46へ伝える。駆動回路108は温度検出用ダイオード104aから受けた温度情報を温度信号107として制御回路46へ伝え、制御回路46が備える温度異常検出手段によってIGBT100aの温度異常を検出する。
電力変換装置40の電力変換の動作原理について説明する。下アーム100、120、140および上アーム110、130、150をオンオフ制御することにより、三相モータ12の線間電圧および相電圧を生成することで三相モータ12を制御する。
駆動回路108における電流検出回路は、第一および第二の実施の形態の図4と同様であるため説明を省略する。
電力変換装置40の温度異常を検出する方法、及び温度異常時の動作について説明する。制御回路46は駆動回路108、118、128、138、148、158からそれぞれ温度信号として伝えられるIGBT100a、110a、120a、130a、140a、150aのIGBT温度を用いて温度異常を検出する(110aから150aは不図示)。制御回路46は各IGBT温度および冷却器温度が所定温度以上となったときに過熱と判断して出力電力を低減して動作継続する、または動作停止する過熱保護を実施するが、これに加えて次の手順によって昇温不良を判定する。
電力変換装置40の下アーム100のIGBT温度について、下アーム120、下アーム140のIGBT温度と比較して昇温不良を判定する。すなわち、IGBT100a温度とIGBT120a温度の差の絶対値が、第三の温度閾値Tth3(不図示)以上で、かつ、IGBT100a温度とIGBT140a温度の差の絶対値が、第三の温度閾値Tth3以上であって、IGBT100a温度<IGBT120a温度、かつ、IGBT100a温度<IGBT140a温度である場合に、IGBT100aの昇温不良を判定する。
また、同様に上アーム110のIGBT温度について、下アーム120、下アーム140のIGBT温度と比較して昇温不良を判定する。すなわち、IGBT110a温度とIGBT130a温度の差の絶対値が、第三の温度閾値Tth3以上で、かつ、IGBT110a温度とIGBT150a温度の差の絶対値が、第三の温度閾値Tth3以上であって、IGBT110a温度<IGBT130a温度、かつ、IGBT110a温度<IGBT150a温度である場合に、IGBT110aの昇温不良を判定する。
下アーム100のIGBT100aの昇温不良を判定する場合には、IGBT100aと別の相のIGBT120a、140aの温度と比較することで判別できる。上アーム110のIGBT110aの昇温不良を判定する場合にも、別の相のIGBT130a、150aの温度と比較することで判別できる。他の下アーム120、140、および上アーム130、150についても同様の考え方で昇温不良を判定することができる。本判定条件により昇温不良を判定した場合は、IGBTオープン故障による昇温不良の可能性があり、電流検出機能を喪失している可能性があるため、動作を停止する。なお、第三の温度閾値Tth3は、温度検出用ダイオード等の回路バラつき、並列IGBTの分流バラつき、他IGBTからの伝熱、各相のバラつきなどを考慮して決定される。
電力変換装置40のように上下アームが複数並列接続された複数相を持つ構成において、複数の相間のIGBT温度情報を比較することにより、より多数のIGBT温度の比較により昇温不良を判定することができる。特にアーム内の温度検出手段が少ない場合には、別の相のIGBT温度と比較することにより昇温不良を判定できるようになる。さらに、上アームと下アームではIGBTのようなスイッチング素子において発生する損失が異なるため、各相の上アーム同士、下アーム同士のIGBT温度を比較することにより、より高精度に昇温不良を判定できる。
実施の形態3では各相の上アーム同士、下アーム同士でIGBT温度を比較する例を示したが、上アームと下アームのIGBT温度を比較することで昇温不良を判定しても良い。故障箇所を特定するためには3つ以上の温度情報を参照することが望ましい。
実施の形態1、2では、複数のIGBT温度および冷却器温度の差分が所定の温度閾値を超過または下回ることで昇温不良を判定しているが、温度情報を用いて異常検出するものであればこれに限るものではない。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
9、39 スイッチング装置、10、40 電力変換装置、21a、21b、21c、31a、31b、31c、100a、100b、110a、120a、130a、140a、150a IGBT、23a、33a、103a 電流検出用セル、24a、24b、34a、104a 温度検出用ダイオード、210、240 制御部、280 電流検出回路

Claims (21)

  1. 制御端子への入力信号に応じて第一端子と第二端子との導通と遮断を切り替える、並列に接続された複数のスイッチング素子、
    複数の前記スイッチング素子のうち、少なくとも一つのスイッチング素子に設けられた電流検出手段および温度検出手段、
    前記制御端子と前記電流検出手段と前記温度検出手段とに接続され、前記スイッチング素子のオン、オフを切り替え、前記電流検出手段の出力に基づいて前記電流検出手段が設けられた前記スイッチング素子の過電流を判定し、前記温度検出手段の出力に基づいて前記温度検出手段が設けられた前記スイッチング素子の過熱および昇温不良を判定し、前記過電流の判定結果と前記過熱および前記昇温不良の判定結果に基づいて複数のスイッチング素子を制御する制御部、を備えたスイッチング装置。
  2. 前記温度検出手段は前記複数のスイッチング素子のうち少なくとも前記電流検出手段が設けられたスイッチング素子を含めて複数のスイッチング素子に設けられ、
    前記制御部は、複数の前記温度検出手段の出力を比較して前記スイッチング素子の昇温不良を判定する請求項1に記載のスイッチング装置。
  3. 前記スイッチング素子を冷却する冷却部と、
    前記冷却部の温度を検出する冷却部温度検出手段と、を備え、
    前記制御部は、前記温度検出手段と前記冷却部温度検出手段の出力に基づいて前記スイッチング素子の昇温不良を判定する請求項1または2に記載のスイッチング装置。
  4. 前記制御部は、起動時の前記温度検出手段の出力と起動後の前記温度検出手段の出力に基づいて前記スイッチング素子の昇温不良を判定する請求項1から3のいずれか一項に記載のスイッチング装置。
  5. 前記電流検出手段の数は、前記スイッチング素子の数未満である請求項1から4のいずれか一項に記載のスイッチング装置。
  6. 前記電流検出手段は、一個のみ備えられた請求項1から5のいずれか一項に記載のスイッチング装置。
  7. 前記温度検出手段は、三個以上備えられ、
    前記制御部は三個以上の前記温度検出手段の出力を比較して前記スイッチング素子の昇温不良を判定する請求項1から6のいずれか一項に記載のスイッチング装置。
  8. 前記温度検出手段は、すべての前記スイッチング素子に設けられた、請求項1から7のいずれか一項に記載のスイッチング装置。
  9. 前記温度検出手段は、一個のみ備えられた請求項1に記載のスイッチング装置。
  10. 前記制御部は、前記スイッチング素子の昇温不良を判定した場合に前記複数のスイッチング素子をオフする請求項1から9のいずれか一項に記載のスイッチング装置。
  11. 前記制御部は、前記電流検出手段が設けられず温度検出手段が設けられたスイッチング素子の昇温不良を判定した場合に、前記複数のスイッチング素子のオン、オフの切り替えを継続する請求項1から9のいずれか一項に記載のスイッチング装置。
  12. 直列に接続された、正極側の電流を供給する上側アームと、負極側の電流を供給する下側アームとを備えた電力変換装置において、
    請求項1から請求項11のいずれか一項に記載のスイッチング装置を前記上側アームと前記下側アームに用いたことを特徴とする電力変換装置。
  13. 前記制御部は、前記スイッチング素子の導通期間の電流を検出する請求項12に記載の電力変換装置。
  14. 前記直列に接続された前記上側アームと前記下側アームを複数組備え、
    前記制御部は、異なる組に備えられた温度検出手段の出力を比較して前記スイッチング素子の昇温不良を判定する請求項12または13に記載の電力変換装置。
  15. 前記制御部は、前記直列に接続された前記上側アームと前記下側アームの複数組の中で、異なる組の上側アームに備えられた温度検出手段の出力を比較して前記スイッチング素子の昇温不良を判定する請求項14に記載の電力変換装置。
  16. 前記制御部は、前記直列に接続された前記上側アームと前記下側アームの複数組の中で、異なる組の下側アームに備えられた温度検出手段の出力を比較して前記スイッチング素子の昇温不良を判定する請求項14に記載の電力変換装置。
  17. 前記制御部は、前記上側アームに備えられた温度検出手段の出力と、前記下側アームに備えられた温度検出手段の出力を比較して前記スイッチング素子の昇温不良を判定する請求項12から14のいずれか一項に記載の電力変換装置。
  18. 前記制御部は、三個以上の前記温度検出手段の出力に基づいて前記スイッチング素子の昇温不良を判定する請求項12から17のいずれか一項に記載の電力変換装置。
  19. 前記制御部は、前記スイッチング素子の昇温不良を判定した場合に電力変換を停止させる請求項12から18のいずれか一項に記載の電力変換装置。
  20. 前記制御部は、前記電流検出手段が設けられず温度検出手段が設けられたスイッチング素子の昇温不良を判定した場合に、電力変換を継続させる請求項12から18のいずれか一項に記載の電力変換装置。
  21. 前記上側アームの制御部が、前記下側アームの制御部と一体である請求項12から20のいずれか一項に記載の電力変換装置。
JP2020149564A 2020-09-07 2020-09-07 スイッチング装置および電力変換装置 Active JP6995175B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020149564A JP6995175B1 (ja) 2020-09-07 2020-09-07 スイッチング装置および電力変換装置
US17/388,122 US11652402B2 (en) 2020-09-07 2021-07-29 Switching apparatus and electric-power conversion apparatus
CN202111021396.4A CN114243643B (zh) 2020-09-07 2021-09-01 开关装置及功率转换装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020149564A JP6995175B1 (ja) 2020-09-07 2020-09-07 スイッチング装置および電力変換装置

Publications (2)

Publication Number Publication Date
JP6995175B1 true JP6995175B1 (ja) 2022-01-14
JP2022044106A JP2022044106A (ja) 2022-03-17

Family

ID=80448006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020149564A Active JP6995175B1 (ja) 2020-09-07 2020-09-07 スイッチング装置および電力変換装置

Country Status (3)

Country Link
US (1) US11652402B2 (ja)
JP (1) JP6995175B1 (ja)
CN (1) CN114243643B (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290222A (ja) 2001-03-28 2002-10-04 Auto Network Gijutsu Kenkyusho:Kk 負荷駆動回路
WO2020203842A1 (ja) 2019-03-29 2020-10-08 ダイキン工業株式会社 保守契約料金算出システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3241279B2 (ja) * 1996-11-14 2001-12-25 株式会社日立製作所 保護機能付きスイッチ回路
JP3684866B2 (ja) * 1998-10-16 2005-08-17 株式会社日立製作所 導通,遮断制御装置
JP4177392B2 (ja) 2006-06-08 2008-11-05 三菱電機株式会社 半導体電力変換装置
JP5404432B2 (ja) * 2010-01-05 2014-01-29 三菱電機株式会社 半導体装置およびそれを用いた駆動回路
JP2014073045A (ja) * 2012-10-01 2014-04-21 Toyota Motor Corp スイッチング回路
JP6492965B2 (ja) * 2015-05-22 2019-04-03 株式会社デンソー パワートランジスタ駆動装置
JP6623556B2 (ja) * 2015-05-27 2019-12-25 株式会社デンソー 半導体装置
WO2017098849A1 (ja) * 2015-12-07 2017-06-15 富士電機株式会社 電圧生成回路および過電流検出回路
CN108450045A (zh) * 2016-06-03 2018-08-24 富士电机株式会社 半导体元件的驱动装置
WO2018034137A1 (ja) * 2016-08-17 2018-02-22 株式会社デンソー トランジスタ駆動回路及びモータ駆動制御装置
JP6724706B2 (ja) * 2016-10-11 2020-07-15 株式会社デンソー スイッチング素子の駆動回路
JP6844589B2 (ja) * 2018-06-27 2021-03-17 株式会社デンソー 電流検出装置
JP2020058192A (ja) * 2018-10-04 2020-04-09 東芝三菱電機産業システム株式会社 電力変換装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290222A (ja) 2001-03-28 2002-10-04 Auto Network Gijutsu Kenkyusho:Kk 負荷駆動回路
WO2020203842A1 (ja) 2019-03-29 2020-10-08 ダイキン工業株式会社 保守契約料金算出システム

Also Published As

Publication number Publication date
CN114243643B (zh) 2024-05-10
CN114243643A (zh) 2022-03-25
US11652402B2 (en) 2023-05-16
US20220077765A1 (en) 2022-03-10
JP2022044106A (ja) 2022-03-17

Similar Documents

Publication Publication Date Title
US7675763B2 (en) Semiconductor power converter apparatus
US8296093B2 (en) Semiconductor device with thermal fault detection
JP3635988B2 (ja) 半導体装置
JP6506644B2 (ja) 駆動装置
CN102299507A (zh) 用于半导体元件的驱动装置
JP4942804B2 (ja) 半導体電力変換装置
JP6284683B1 (ja) パワーモジュール
KR101769650B1 (ko) 게이트 전압 감지를 통한 igbt 고장 확인 회로
CN111313731B (zh) 智能功率模块
JP2004129378A (ja) 電力用半導体素子のゲート駆動回路
JP6995175B1 (ja) スイッチング装置および電力変換装置
JP2011023569A (ja) パワーモジュール
JP2007330028A (ja) 電力変換装置及び電力変換装置の保護方法
JP2011066989A (ja) 電力変換装置
JP2004117260A (ja) 半導体モジュールの温度検出装置
JP7450036B2 (ja) インバータ装置
US20230261653A1 (en) Drive control circuit for power semiconductor element, power semiconductor module, and power converter
JP4599926B2 (ja) 電力スイッチング回路、電力変換装置、開放故障検出方法及びモジュール型半導体スイッチング素子の駆動方法
CN212380935U (zh) 制动电阻保护电路及变频器
JP6797233B2 (ja) 電力変換装置
US10573909B2 (en) Fuel cell system
JP4687086B2 (ja) 電力変換器の試験装置および試験方法
JP7438157B2 (ja) 故障検出装置、故障検出方法及び半導体スイッチ装置
JP2024092125A (ja) ゲートドライブ制御装置
CN116979186A (zh) 电池管理系统、电池包及储能设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211214

R151 Written notification of patent or utility model registration

Ref document number: 6995175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151