WO2013027342A1 - 電磁石コイルの駆動装置 - Google Patents

電磁石コイルの駆動装置 Download PDF

Info

Publication number
WO2013027342A1
WO2013027342A1 PCT/JP2012/004921 JP2012004921W WO2013027342A1 WO 2013027342 A1 WO2013027342 A1 WO 2013027342A1 JP 2012004921 W JP2012004921 W JP 2012004921W WO 2013027342 A1 WO2013027342 A1 WO 2013027342A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
capacitor
resistor
charging
circuit
Prior art date
Application number
PCT/JP2012/004921
Other languages
English (en)
French (fr)
Inventor
晃 森田
貴裕 田口
Original Assignee
富士電機機器制御株式会社
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機機器制御株式会社, 富士電機株式会社 filed Critical 富士電機機器制御株式会社
Priority to KR1020137028687A priority Critical patent/KR20140052989A/ko
Priority to US14/116,240 priority patent/US9112503B2/en
Priority to CN201280023761.8A priority patent/CN103534767B/zh
Priority to EP12826434.8A priority patent/EP2750147B1/en
Publication of WO2013027342A1 publication Critical patent/WO2013027342A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6877Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the control circuit comprising active elements different from those used in the output circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/064Circuit arrangements for actuating electromagnets

Definitions

  • the present invention relates to an electromagnet coil driving device for driving an electric current through an electromagnet coil.
  • This conventional drive device is connected in series to a coil of an electromagnet, compares a semiconductor switch for controlling a current supplied to the coil, a capacitor, and the voltage of the capacitor with two voltages, and according to the comparison result, the semiconductor switch And a comparator with a hysteresis function for generating a signal for turning on and off, and a charge / discharge circuit for charging and discharging the capacitor.
  • the semiconductor switch is turned on / off by a signal output from the comparator, whereby a predetermined current is supplied to the coil of the electromagnet and the coil is excited. Since the exciting force of an electromagnet coil is determined by the supplied current, it is desirable to measure the current flowing through the coil to a constant value. For this reason, conventionally, the current flowing in the coil is measured by a Hall element, a current detection resistor, or the like, and the measurement current is controlled to be constant.
  • An object of the present invention is to provide a driving apparatus.
  • An electromagnet coil driving apparatus includes a semiconductor switch that is connected in series to an electromagnet coil, controls a current supplied to the coil, a capacitor, and two different voltages for charging and discharging the capacitor. And a comparator that generates a signal for turning on and off the semiconductor switch according to the comparison result, a first charging circuit that charges the capacitor based on an applied voltage of the coil, and a discharge that discharges the capacitor.
  • the first charging circuit includes a first resistor and at least one compensation circuit connected in parallel with the first resistor.
  • the compensation circuit includes a resistor and a Zener diode. It is connected in series.
  • the electromagnet coil driving device may further include a second charging circuit that charges the capacitor based on a stabilized voltage.
  • the compensation circuit includes a first compensation circuit in which a second resistor and a first Zener diode are connected in series, and a second resistor in which a third resistor and a second Zener diode are connected in series.
  • the first Zener diode and the second Zener diode may have different Zener voltages.
  • the first charging circuit may further include a temperature sensitive resistance element connected in series with the first resistance element. Further, the temperature sensitive resistance element may have a positive temperature coefficient.
  • a driving device for an electromagnet coil which is connected in series to an electromagnet coil, a semiconductor switch for controlling a current supplied to the coil, a capacitor, and a charge / discharge voltage of the capacitor.
  • a comparator for generating a signal for turning on and off the semiconductor switch according to a comparison result a first charging circuit for charging the capacitor based on an applied voltage of the coil, and discharging the capacitor
  • the second charging circuit includes a first resistor and a temperature-sensitive resistor element, and the first resistor and the temperature-sensitive resistor element are connected in series or in parallel. It is characterized by that.
  • the electromagnet coil driving device may further include a second charging circuit that charges the capacitor based on a stabilized voltage. Further, the temperature sensitive resistance element may have a positive temperature coefficient.
  • 1 is a circuit diagram of a first embodiment of an electromagnetic coil drive device of the present invention. It is a figure which shows the example of a waveform of the operation
  • FIG. 1 is a circuit diagram of a first embodiment of an electromagnetic coil driving apparatus according to the present invention.
  • a current is supplied from the power source 20 to the electromagnet coil 10 and a constant current flows through the coil 10 even when the power source voltage VDD of the power source 20 changes.
  • a field effect transistor Q1 which is a semiconductor switch, a comparator 30 with a hysteresis function, inverters 41 and 42, a capacitor C1, and a capacitor C1 are charged.
  • Two charging circuits 50 and 60 and a discharging circuit 70 for discharging the electric charge of the capacitor C1 are provided.
  • the resistor R6 and the Zener diode ZD1 are connected in series between the power supply line 80 and the ground, and the common connection portion between the resistor R6 and the Zener diode ZD1. Is used to obtain a stabilized internal voltage VCC.
  • One end of the electromagnet coil 10 is connected to the power supply line 80 and directly applied with the power supply voltage VDD. This is to increase the efficiency of the power source.
  • the other end of the coil 10 is connected to the drain of the field effect transistor Q1. Both ends of the coil 10 are connected in parallel with a diode D1 for a flywheel.
  • the diode D1 functions to flow a current through the coil 10 using a voltage generated by a counter electromotive force generated in the coil 10 when the field effect transistor Q1 is off.
  • the field effect transistor Q1 is connected in series with the coil 10 and controls the current supplied from the power source 20 to the coil 10. For this reason, the drain of the field effect transistor Q1 is connected to the coil 10, and the source of the field effect transistor Q1 is grounded. The gate of the field effect transistor Q1 is connected to the output terminal of the inverter 42.
  • the comparator 30 compares the charge / discharge voltage (both ends voltage) Vc of the capacitor C1 with the two voltages VH and VL (see FIG. 2), and a signal corresponding to the comparison result is used as a signal for turning on / off the field effect transistor Q1. Output.
  • the comparator 30 includes an operational amplifier (op-amp) IC1, and a resistor R7 and a resistor R8 for providing hysteresis.
  • the operational amplifier IC1 is an open collector type, and can output a voltage by connecting a resistor R11 to the output stage as shown in FIG.
  • the inverting input terminal ( ⁇ ) of the operational amplifier IC1 is connected to one end of the capacitor C1, and the other end of the capacitor C1 is grounded.
  • the reference voltage Vref is applied to the non-inverting input terminal (+) of the operational amplifier IC1 through the resistor R7.
  • a resistor R8 is connected between the non-inverting input terminal (+) and the output terminal of the operational amplifier IC1.
  • the internal voltage VCC is supplied to one power supply terminal of the operational amplifier IC1, and the other power supply terminal of the operational amplifier IC1 is grounded.
  • the comparator 30 having such a configuration, by using the reference voltage Vref applied to one end of the resistor R7, the upper limit threshold voltage VH used when comparing the voltage Vc across the capacitor C1 and the lower limit threshold.
  • the value voltage VL can be obtained (see FIG. 2).
  • the inverter 41 logically inverts the output of the comparator 30 and supplies the binary signal obtained by the logical inversion to the inverter 42.
  • the inverter 42 logically inverts the output of the inverter 41 and supplies the logically inverted binary signal to the gate of the field effect transistor Q1.
  • the charging circuit 50 is a circuit that charges the capacitor C1 based on the voltage applied to the coil 10.
  • One end side of the charging circuit 50 is connected to the power line 80, and the other end side is one end of the capacitor C1 via the diode D2. It is connected to the.
  • the charging circuit 50 includes a feedback resistor R1, and a first compensation circuit 51 and a second compensation circuit 52 connected in parallel to the feedback resistor R1.
  • One end of the feedback resistor R1 is connected to the power supply line 80, and the other end of the feedback resistor R1 is connected to one end of the capacitor C1 through the diode D2.
  • a resistor R2 and a Zener diode ZD2 are connected in series, and the series circuit is connected in parallel to the feedback resistor R1.
  • a resistor R3 and a Zener diode ZD3 are connected in series, and the series circuit is connected in parallel to the feedback resistor R1.
  • the charging circuit 60 is a circuit that charges the capacitor C1 based on the stabilized internal voltage VCC generated across the Zener diode ZD1. For this reason, the charging circuit 60 includes a voltage dividing circuit that includes the resistors R4 and R5 and divides the internal voltage VCC. And the common connection part of resistance R4 and resistance R5 is connected to the end of the capacitor
  • a resistor R9 and a diode D3 are connected in series, one end of the resistor R9 is connected to one end of the capacitor C1, and the cathode of the diode D3 is connected to the output terminal of the operational amplifier IC1.
  • the charging current Ii for charging the capacitor C1 consists of two components, current I1 and current I2, as shown in FIG.
  • the two currents I1 and I2 charge the capacitor C1 through the diode D2.
  • the current I1 is supplied from the power supply voltage VDD, which is an applied voltage of the coil 10, through the charging circuit 50.
  • the current I2 is supplied based on a voltage obtained by dividing the stabilized internal voltage VCC by the resistors R4 and R5 of the charging circuit 60.
  • the discharge of the capacitor C1 proceeds, and when the voltage Vc of the capacitor C1 becomes equal to or lower than the lower limit threshold voltage VL of the comparator 30 at time t3 in FIG. 2, the output voltage Vout of the comparator 30 changes from the low level to the high level. .
  • charging of the capacitor C1 by the charging circuit 50 and the charging circuit 60 is started.
  • the capacitor C1 is repeatedly charged and discharged, and the comparator 30 outputs a corresponding pulse as the output voltage Vout.
  • the output voltage Vout of the comparator 30 is logically inverted by the inverters 41 and 42, and the on / off control of the field effect transistor Q1 is performed by the pulse output from the inverter 42.
  • the charging current Ii of the capacitor C1 is composed of two components, the current I1 and the current I2. Under such an operation, when the power supply voltage VDD rises, the current I2 does not increase and is constant. This is because the current I2 is based on a voltage obtained by dividing the internal voltage VCC obtained by stabilizing the power supply voltage VDD by the resistors R4 and R5 of the charging circuit 60.
  • the charging circuit 50 includes a feedback resistor R1, and a first compensation circuit 51 and a second compensation circuit 52 connected in parallel to the feedback resistor R1.
  • the resistor R2 of the first compensation circuit 51 and the resistor R3 of the second compensation circuit 52 are connected in parallel to the feedback resistor R1 along with the increase, contributing to charging of the charging current Ii. To come. This point will be described below.
  • the increase in the voltage difference (VDD ⁇ VCC) between the power supply voltage VDD and the internal voltage VCC reflects the increase in the power supply voltage VDD.
  • the Zener voltage VZD2 of the Zener diode ZD2 of the first compensation circuit 51 and the Zener voltage VZD3 of the Zener diode ZD3 of the second compensation circuit 52 are in a relationship of VZD2 ⁇ VZD3.
  • VDD ⁇ VCC voltage difference between the power supply voltage VDD and the internal voltage VCC and the Zener voltages VZD2 and VZD3
  • Equation (1) is a case where the voltage difference (VDD ⁇ VCC) accompanying the rise of the power supply voltage VDD is lower than the Zener voltage VZD2 of the Zener diode ZD2, and no current flows through the Zener diode ZD2. At this time, no current flows through the Zener diode ZD3. Therefore, the resistor R1 is the only resistor that contributes to charging of the charging circuit 50.
  • the resistors contributing to the charging of the charging circuit 50 are the resistors R1 and R2, and these two resistors R1 and R2 are connected in parallel to form a parallel circuit.
  • the resistors contributing to the charging of the charging circuit 50 are the resistors R1, R2, and R3, and these three resistors R1, R2, and R3 are connected in parallel to form a parallel circuit.
  • the combined resistance value of the resistors contributing to the charging of the charging circuit 50 becomes smaller as the increase of the power supply voltage VDD becomes larger. For this reason, when the power supply voltage VDD increases, the charging current Ii to the capacitor C1 increases, and the charging period T1 of the capacitor C1 is shortened. On the other hand, even if the power supply voltage VDD rises, the resistance value of the resistor R9, which is a discharge resistor, does not change, so the discharge current Io of the capacitor C1 is constant and the discharge time T2 is constant.
  • the output voltage Vout of the comparator 30 is short during the high level period, but is constant during the low level period. Then, the output voltage Vout of the comparator is logically inverted by the inverter 41, further logically inverted by the inverter 42, and applied to the gate of the field effect transistor Q1.
  • the on-operation time of the field effect transistor Q1 can be shortened, and an increase in the current flowing through the coil 10 can be suppressed.
  • FIG. 3 shows a relationship between the power supply voltage VDD and the current flowing through the coil 10 of the electromagnet when the compensation circuits 51 and 52 of the charging circuit 50 are not provided in the first embodiment. According to the curve a, it can be seen that when the power supply voltage VDD rises, the current flowing through the coil 10 of the electromagnet increases with this rise.
  • a curve b in FIG. 3 shows the relationship between the power supply voltage VDD and the current flowing through the coil 10 of the electromagnet of the first embodiment.
  • the operation of the compensation circuits 51 and 52 of the charging circuit 50 makes the current flowing through the coil 10 of the electromagnet almost constant and increases the current even when the power supply voltage VDD rises. Can be suppressed.
  • the power supply voltage is bent at (VZD2 + VCC) and (VZD3 + VCC), and the current of the coil 10 is suppressed. This is because when the power supply voltage corresponds to the two voltages, the resistors R2 and R3 of the compensation circuits 51 and 52 function as charging resistors.
  • the resistance R2 of the compensation circuit 51 is connected in parallel to the resistance R1, and the value of the charging resistance of the charging circuit 50 decreases. For this reason, the charging current to the capacitor C1 increases, the charging period T1 is shortened, and the high level period of the output voltage Vout of the comparator 30 is shortened. As a result, the on-time of the field effect transistor Q1 is shortened, and an increase in the current flowing through the coil 10 is suppressed.
  • the charging circuit 50 includes the feedback resistor R1, and the first compensation circuit 51 and the second compensation circuit 52 connected in parallel to the feedback resistor R1. It was made to provide. For this reason, according to 1st Embodiment, when a power supply voltage rises, the change of the electric current which flows into the coil 10 of an electromagnet can be suppressed as much as possible, and stabilization of a coil current can be aimed at.
  • FIG. 4 is a circuit diagram of a second embodiment of the electromagnetic coil driving apparatus of the present invention.
  • current is supplied from the power source 20 to the coil 10 of the electromagnet, and when the temperature of the coil 10 rises and the resistance value of the coil 10 rises to change the current, the current is compensated. However, a constant current flows.
  • a field effect transistor Q1 which is a semiconductor switch, a comparator 30 with a hysteresis function, inverters 41 and 42, a capacitor C1, and a capacitor C1 are charged.
  • Two charging circuits 50a and 60 and a discharging circuit 70 for discharging the electric charge of the capacitor C1 are provided.
  • the second embodiment is based on the configuration of the first embodiment shown in FIG. 1, and the charging circuit 50 shown in FIG. 1 is replaced with the charging circuit 50a shown in FIG. Therefore, in the following description of the configuration, the same components are denoted by the same reference numerals, and detailed description thereof will be omitted as much as possible.
  • the charging circuit 50a includes a feedback resistor R1 and a temperature sensitive resistance element RT1, and these are connected in series. One end of this series circuit is connected to one end of the electromagnet coil 10, and the other end is connected to one end of the capacitor C1 via the diode D2.
  • one end of the temperature sensitive resistance element RT1 is connected to one end of the coil 10
  • one end of the feedback resistor R1 is connected to one end of the capacitor C1 via the diode D2.
  • the temperature sensitive resistance element RT1 is an element whose resistance value changes according to a temperature change.
  • the temperature-sensitive resistance element RT1 has a positive temperature characteristic, and a thermistor having a positive characteristic can be used. Since the basic operation of the second embodiment having such a configuration is the same as the basic operation of the first embodiment, the description thereof is omitted.
  • the operation when the environmental temperature rises and the resistance value of the electromagnet coil 10 increases thereby will be described with reference to FIG.
  • the current flowing through the coil 10 decreases as the resistance value of the coil 10 increases.
  • the increase in the environmental temperature increases the resistance value of the temperature sensitive resistance element RT1 of the charging circuit 50a.
  • This increase in the resistance value increases the charging resistance of the charging circuit 50a, so that the current I1 decreases, the charging time of the capacitor C1 increases, and the high level period of the output voltage Vout of the comparator 30 increases.
  • the on-time of the field effect transistor Q1 is lengthened, the current flowing through the coil 10 is increased, and the current flowing through the coil 10 can be stabilized.
  • the charging circuit 50a in which the feedback resistor R1 and the temperature sensitive resistance element RT1 are connected in series is provided. For this reason, according to 2nd Embodiment, when environmental temperature rises and the resistance value of the electromagnet coil 10 increases, the change of the electric current which flows into the electromagnet coil 10 is suppressed as much as possible, and stabilization of a coil current is aimed at. be able to.
  • FIG. 5 is a circuit diagram of a third embodiment of the electromagnetic coil driving apparatus of the present invention.
  • This third embodiment suppresses this change when the applied voltage of the electromagnet coil 10 rises or the environmental temperature rises, and there is a change (increase / decrease) in the current flowing through the coil 10 that accompanies them. Thus, a constant current flows through the coil 10.
  • a field effect transistor Q1 which is a semiconductor switch, a comparator 30 with a hysteresis function, inverters 41 and 42, a capacitor C1, and a capacitor C1 are charged.
  • Two charging circuits 50b and 60 and a discharging circuit 70 for discharging the electric charge of the capacitor C1 are provided.
  • the third embodiment is based on the configuration of the first embodiment shown in FIG. 1 and replaces the charging circuit 50 shown in FIG. 1 with the charging circuit 50b shown in FIG. Therefore, in the following description of the configuration, the same components are denoted by the same reference numerals, and detailed description thereof will be omitted as much as possible.
  • the charging circuit 50b is obtained by adding a temperature sensitive resistance element RT2 to the charging circuit 50 of FIG.
  • the temperature sensitive resistance element RT2 has a positive temperature characteristic, and a positive temperature coefficient thermistor or the like can be used.
  • the charging circuit 50b connects the charging circuit 50 and the temperature sensitive resistance element RT1 in series. One end of the series circuit is connected to one end of the coil 10, and the other end is connected to one end of the capacitor C1 through the diode D2.
  • the operation of the third embodiment will be described with reference to FIG.
  • the on-operation time of the field effect transistor Q1 is shortened by the same operation as the first embodiment, and the coil The electric current which flows into 10 is decreased.
  • the inverters 41 and 42 are provided between the comparator 30 and the field effect transistor Q1 (see, for example, FIG. 1). May be.
  • the charging circuit 60 is provided (see, for example, FIG. 1), but this is not always necessary and may be omitted.
  • the temperature sensitive resistance element RT1 of the charging circuit 50a is connected in series to the feedback resistance R1, but instead of this, the temperature sensitive resistance element RT1. May be connected in parallel to the feedback resistor R1.
  • Electromagnetic coil 20 ... Power supply, 30 ... Comparator, 41, 42 ... Inverter, 50, 50a, 50b, 60 ... Charging circuit, 51 ... 1st compensation circuit, 52 ... 2nd compensation circuit, 70 ... Discharge circuit, 80 ... Power supply line, Q1 ... Field effect transistor, C1 ... Capacitor, R1 ... Feedback resistor, R2, R3 ... Resistance, ZD2, ZD3 ... Zener diode, RT1, RT2 ... Temperature sensitive resistor element

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

 電磁石のコイルに流れる電流の変化を抑制し、コイル電流の安定化を図るようにした電磁石コイルの駆動装置の提供。この発明は、電磁石のコイル(10)に直列に接続され、コイル(10)に供給する電流を制御する半導体スイッチ(Q1)と、コンデンサ(C1)と、コンデンサ(C1)の充放電の電圧を2つの異なる電圧と比較し、比較結果に応じて半導体スイッチ(Q1)をオンオフ動作する信号を生成するコンパレータ(30)と、コイル(10)の印加電圧に基づいてコンデンサ(C1)を充電する充電回路(50)と、安定化された電圧に基づいてコンデンサ(C1)を充電する充電回路(60)と、コンデンサ(C1)の放電を行う放電回路(70)とを備える。充電回路(50)は、抵抗(R1)と、抵抗(R1)と並列に接続される補償回路(51、52)とを備える。補償回路(51、52)のそれぞれは、抵抗とツェナーダイオードとが直列に接続されている。

Description

電磁石コイルの駆動装置
 本発明は、電磁石のコイルに電流を流してそのコイルを駆動させる電磁石コイルの駆動装置に関する。
 従来、この種の駆動装置として、例えば特許文献1に記載のものが知られている。
 この従来の駆動装置は、電磁石のコイルに直列に接続され、そのコイルに供給する電流を制御する半導体スイッチと、コンデンサと、コンデンサの電圧を2つの電圧と比較し、比較結果に応じて半導体スイッチをオンオフ動作する信号を生成するヒステリシス機能付きのコンパレータと、そのコンデンサの充電と放電を行う充放電回路と、を備えている。
 このような構成の駆動装置では、コンパレータから出力される信号により半導体スイッチがオンオフ動作し、これにより電磁石のコイルに所定の電流が供給されて、コイルが励磁される。
 電磁石のコイルは供給される電流によって励磁力が決まるので、コイルに流す電流を測定し一定値にすることが望ましい。このため、従来は、コイルに流れる電流をホール素子や電流検出抵抗などで測定し、その測定電流が一定になるように制御することが行われている。
特許第3365181号公報
 しかし、ホール素子を利用する場合には外部磁界の影響や製作費用が嵩むという課題があり、検出抵抗を使用する場合には検出抵抗での電力損失があって望ましくない。
 このような背景の下では、これらの課題を解決するとともに、電磁石のコイルの印加電圧が上昇してコイルの電流が増加する場合、あるいは環境温度が変化してコイルの電流が減少する場合に、それらの電流の変化に対処し、コイル電流の安定化を図ることが求められる。
 そこで、本発明は、上記の点に着目してなされたものであり、電磁石のコイルの印加電圧の上昇などによるコイル電流の変化をできるだけ抑制し、コイル電流の安定化を図るようにした電磁石コイルの駆動装置を提供することを目的とする。
 上記の目的を達成するために、本発明は、以下のような構成からなる。
 本発明の一態様による電磁石コイルの駆動装置は、電磁石のコイルに直列に接続され、前記コイルに供給する電流を制御する半導体スイッチと、コンデンサと、前記コンデンサの充放電の電圧を2つの異なる電圧と比較し、比較結果に応じて前記半導体スイッチをオンオフ動作する信号を生成するコンパレータと、前記コイルの印加電圧に基づいて前記コンデンサを充電する第1の充電回路と、前記コンデンサの放電を行う放電回路とを備え、前記第1の充電回路は、第1の抵抗と、前記第1の抵抗と並列に接続される少なくとも1つの補償回路とを備え、前記補償回路は、抵抗とツェナーダイオードとが直列に接続されていることを特徴とする。
 また、前記電磁石コイルの駆動装置は、安定化された電圧に基づいて前記コンデンサを充電する第2の充電回路を、さらに備え得る。
 また、前記補償回路は、第2の抵抗と第1のツェナーダイオードとが直列に接続される第1の補償回路と、第3の抵抗と第2のツェナーダイオードとが直列に接続される第2の補償回路と、を備え、前記第1のツェナーダイオードと前記第2のツェナーダイオードのそれぞれは、ツェナー電圧が異なり得る。
 また、前記第1の充電回路は、前記第1の抵抗素子と直列に接続される感温抵抗素子を、さらに備え得る。
 また、前記感温抵抗素子は、正の温度係数を有し得る。
 また、本発明の他の態様による電磁石コイルの駆動装置は、電磁石のコイルに直列に接続され、前記コイルに供給する電流を制御する半導体スイッチと、コンデンサと、前記コンデンサの充放電の電圧を2つの異なる電圧と比較し、比較結果に応じて前記半導体スイッチをオンオフ動作する信号を生成するコンパレータと、前記コイルの印加電圧に基づいて前記コンデンサを充電する第1の充電回路と、前記コンデンサの放電を行う放電回路とを備え、前記第2の充電回路は、第1の抵抗と感温抵抗素子とを備え、前記第1の抵抗と前記感温抵抗素子とが直列または並列に接続されていることを特徴とする。
 また、前記電磁石コイルの駆動装置は、安定化された電圧に基づいて前記コンデンサを充電する第2の充電回路を、さらに備え得る。
 また、前記感温抵抗素子は、正の温度係数を有し得る。
 このような構成の本発明では、電磁石のコイルの印加電圧の上昇などによるコイル電流の変化をできるだけ抑制し、コイル電流の安定化を図ることができる。
本発明の電磁石コイルの駆動装置の第1実施形態の回路図である。 第1実施形態の動作の波形例を示す図である。 電磁石のコイルの印加電圧と電流の関係を示す図である。 本発明の電磁石コイルの駆動装置の第2実施形態の回路図である。 本発明の電磁石コイルの駆動装置の第3実施形態の回路図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
(第1実施形態の構成)
 図1は、本発明の電磁石コイルの駆動装置の第1実施形態の回路図である。
 この第1実施形態は、電磁石のコイル10に電源20から電流を供給するとともに、電源20の電源電圧VDDが変化してもコイル10に一定の電流が流れるようにしたものである。
 このため、第1実施形態は、図1に示すように、半導体スイッチである電界効果型トランジスタQ1と、ヒステリシス機能付きのコンパレータ30と、インバータ41、42と、コンデンサC1と、コンデンサC1を充電する2つの充電回路50、60と、コンデンサC1の電荷を放電する放電回路70とを備えている。
 また、この第1実施形態では、図1に示すように、抵抗R6とツェナーダイオードZD1とが、電源ライン80とグランドとの間に直列に接続され、抵抗R6とツェナーダイオードZD1との共通接続部から安定化された内部電圧VCCを得るようにしている。
 電磁石のコイル10の一端は、電源ライン80に接続されて電源電圧VDDが直接印加される。これは電源の効率を高めるためである。また、コイル10の他端は、電界効果型トランジスタQ1のドレインに接続されている。コイル10の両端には、フライホイール用のダイオードD1が並列に接続されている。ダイオードD1は、電界効果型トランジスタQ1がオフのときに、コイル10に発生する逆起電力によって生じる電圧を利用してコイル10に電流を流す働きをする。
 電界効果型トランジスタQ1は、コイル10と直列に接続され、コイル10に電源20から供給する電流を制御する。このため、電界効果型トランジスタQ1のドレインはコイル10に接続され、電界効果型トランジスタQ1のソースは接地されている。また、電界効果型トランジスタQ1のゲートは、インバータ42の出力端子に接続されている。
 コンパレータ30は、コンデンサC1の充放電電圧(両端電圧)Vcを2つの電圧VH、VLと比較し(図2参照)、この比較結果に応じた信号を電界効果型トランジスタQ1をオンオフ動作させる信号として出力する。このため、コンパレータ30は、図1に示すように、演算増幅器(オペアンプ)IC1と、ヒステリシスを持たせるための抵抗R7および抵抗R8と、を備えている。また、演算増幅器IC1は、オープンコレクタタイプであり、図1に示すように出力段に抵抗R11を接続して電圧が出力可能となっている。
 演算増幅器IC1の反転入力端子(-)はコンデンサC1の一端に接続され、コンデンサC1の他端は接地されている。演算増幅器IC1の非反転入力端子(+)には、抵抗R7を介して基準電圧Vrefが印加される。演算増幅器IC1の非反転入力端子(+)と出力端子との間には、抵抗R8が接続されている。演算増幅器IC1の一方の電源端子には内部電圧VCCが供給され、演算増幅器IC1の他方の電源端子は接地されている。
 このような構成のコンパレータ30によれば、抵抗R7の一端に印加される基準電圧Vrefを用いることにより、コンデンサC1の両端電圧Vcを比較するときに使用する上限しきい値電圧VHと下限しきい値電圧VLとを得ることができる(図2参照)。
 インバータ41は、コンパレータ30の出力を論理反転し、この論理反転した2値信号をインバータ42に供給する。インバータ42は、インバータ41の出力を論理反転し、この論理反転した2値信号を電界効果型トランジスタQ1のゲートに供給する。
 充電回路50は、図1に示すように、コイル10の印加電圧に基づいてコンデンサC1を充電する回路であり、一端側が電源ライン80に接続され、他端側がダイオードD2を介してコンデンサC1の一端に接続されている。そして、充電回路50は、帰還抵抗R1と、帰還抵抗R1に並列に接続される第1補償回路51および第2補償回路52とを備えている。
 帰還抵抗R1の一端が電源ライン80に接続され、帰還抵抗R1の他端がダイオードD2を介してコンデンサC1の一端に接続されている。第1補償回路51は、抵抗R2とツェナーダイオードZD2とが直列に接続され、その直列回路が帰還抵抗R1に並列に接続されている。第2補償回路52は、抵抗R3とツェナーダイオードZD3とが直列に接続され、その直列回路が帰還抵抗R1に並列に接続されている。
 充電回路60は、図1に示すように、ツェナーダイオードZD1の両端に発生する安定化された内部電圧VCCに基づいてコンデンサC1を充電する回路である。このため、充電回路60は、抵抗R4と抵抗R5からなり内部電圧VCCを分圧する分圧回路を備えている。そして、抵抗R4と抵抗R5との共通接続部が、ダイオードD2を介してコンデンサC1の一端に接続されている。また、抵抗R4と抵抗R5との共通接続部は、ダイオードD5を介して演算増幅器IC1の出力端子に接続されている。
 放電回路70は、図1に示すように、抵抗R9とダイオードD3とが直列に接続され、抵抗R9の一端がコンデンサC1の一端に接続され、ダイオードD3のカソードが演算増幅器IC1の出力端子に接続されている。
(第1実施形態の動作)
 次に、第1実施形態の動作の一例について、図1および図2を参照して説明する。
 図2の時刻t1において、図1に示すコンデンサC1の電圧Vcがコンパレータ30の下限しきい値電圧VL以下になると、コンパレータ30の出力電圧Voutはローレベルからハイレベルに変化する。
 この変化に伴い、コンデンサC1は、充電回路50と充電回路60とによる充電がそれぞれ開始される。この充電時には、コンデンサC1を充電する充電電流Iiは、図1に示すように電流I1と電流I2の2つの成分からなる。この2つの電流I1、I2は、ダイオードD2を経てコンデンサC1を充電する。電流I1は、コイル10の印加電圧である電源電圧VDDから充電回路50を通って供給されるものである。また、電流I2は、安定化された内部電圧VCCを充電回路60の抵抗R4、R5で分圧した電圧に基づいて供給されるものである。
 その後、コンデンサC1の充電が進み、図2の時刻t2において、コンデンサC1の電圧Vcがコンパレータ30の上限しきい値電圧VH以上になると、コンパレータ30の出力電圧Voutはハイレベルからローレベルに変化する。
 この変化に伴い、コンデンサC1の充電電荷は、放電回路70による放電を開始する。コンデンサC1からの放電電流Ioは、抵抗R9およびダイオードD3を経由して演算増幅器IC1の出力端子に流れ込む。
 その後、コンデンサC1の放電が進み、図2の時刻t3において、コンデンサC1の電圧Vcがコンパレータ30の下限しきい値電圧VL以下になると、コンパレータ30の出力電圧Voutはローレベルからハイレベルに変化する。この変化に伴い、コンデンサC1は、充電回路50と充電回路60とによる充電が開始される。
 このような一連の動作により、コンデンサC1は充電と放電を繰り返し、コンパレータ30からはそれに応じたパルスが出力電圧Voutとして出力される。コンパレータ30の出力電圧Voutは、インバータ41、42のそれぞれで論理反転され、インバータ42から出力されるパルスにより電界効果型トランジスタQ1のオンオフ制御が行われる。
 次に、第1実施形態において、電源電圧VDDが上昇する場合の充電回路50、60および放電回路70の各動作について、図1を参照して詳述する。
 上記のように、第1実施形態では、コンデンサC1の充電電流Iiは、電流I1と電流I2の2つの成分からなる。このような動作の下で、電源電圧VDDが上昇した場合に、電流I2は増加せずに一定である。この理由は、電流I2は、電源電圧VDDを安定化した内部電圧VCCを充電回路60の抵抗R4、R5で分圧した電圧に基づくものだからである。
 一方、電流I1は、電源電圧VDDが上昇すると、すなわちコイル10の印加電圧が上昇すると、この上昇に伴って増加しようとする。しかし、電流I1は、電源電圧VDDから充電回路50を通って供給される。そして、充電回路50は、図1に示すように、帰還抵抗R1と、帰還抵抗R1に並列に接続される第1補償回路51および第2補償回路52とを備えている。
 このため、電源電圧VDDが上昇する場合に、この上昇に伴い第1補償回路51の抵抗R2と第2補償回路52の抵抗R3が帰還抵抗R1に並列に接続され、充電電流Iiの充電に寄与するようになる。以下に、この点について説明する。
 第1実施形態では、内部電圧VCCは安定化されているので、電源電圧VDDと内部電圧VCCとの電圧差(VDD-VCC)の増加は、電源電圧VDDの増加が反映されたものとなる。そして、第1補償回路51のツェナーダイオードZD2のツェナー電圧VZD2と、第2補償回路52のツェナーダイオードZD3のツェナー電圧VZD3とは、VZD2<VZD3の関係にあるものとする。
 そこで、電源電圧VDDと内部電圧VCCとの電圧差(VDD-VCC)と、ツェナー電圧VZD2、VZD3との大小関係は、以下の(1)~(3)式の場合に分けられる。
 (VDD-VCC)<VZD2 ・・・(1)
 VZD2<(VDD-VCC)<VZD3 ・・・(2)
 VZD3<(VDD-VCC) ・・・(3)
 (1)式は、電源電圧VDDの上昇に伴う電圧差(VDD-VCC)が、ツェナーダイオードZD2のツェナー電圧VZD2を下回って、ツェナーダイオードZD2に電流が流れない場合である。このときには、ツェナーダイオードZD3にも電流が流れない。したがって、充電回路50の充電に寄与する抵抗は抵抗R1だけとなる。
 (2)式は、電源電圧VDDの上昇に伴う電圧差(VDD-VCC)が、ツェナーダイオードZD2のツェナー電圧VZD2以上であるが、ツェナーダイオードZD3のツェナー電圧VZD3以下の場合である。この場合には、ツェナーダイオードZD3には電流が流れないが、ツェナーダイオードZD2には電流が流れる。このため、充電回路50の充電に寄与する抵抗は抵抗R1、R2となり、これら2つの抵抗R1、R2が並列接続されて並列回路を形成する。
 (3)式は、電源電圧VDDの上昇に伴う電圧差(VDD-VCC)が、ツェナーダイオードZD3のツェナー電圧VZD3以上の場合である。この場合には、ツェナーダイオードZD2、ZD3の双方に電流が流れる。このため、充電回路50の充電に寄与する抵抗は抵抗R1、R2、R3となり、これらの3つの抵抗R1、R2、R3が並列接続されて並列回路を形成する。
 このような動作により、第1実施形態では、電源電圧VDDの上昇が大きいほど充電回路50の充電に寄与する抵抗の合成抵抗値が小さくなる。このため、電源電圧VDDが増加する場合にはコンデンサC1への充電電流Iiが増加し、コンデンサC1の充電期間T1が短くなる。一方、電源電圧VDDが上昇しても、放電抵抗である抵抗R9の抵抗値に変化はないので、コンデンサC1の放電電流Ioは一定であり、その放電時間T2は一定である。
 このため、コンパレータ30の出力電圧Voutは、ハイレベルの期間が短くなるが、ローレベルの期間は一定である。そして、コンパレータの出力電圧Voutは、インバータ41で論理反転されたのち、さらにインバータ42で論理反転されて電界効果型トランジスタQ1のゲートに印加される。
 この結果、第1実施形態では、電源電圧VDDが上昇した場合には、電界効果型トランジスタQ1のオン動作の時間を短くすることができ、コイル10に流れる電流の増加を抑制することができる。
 次に、第1実施形態の具体的な効果について、図3を参照して説明する。
 図3の曲線aは、第1実施形態において、充電回路50の補償回路51、52がない場合の電源電圧VDDと電磁石のコイル10に流れる電流の関係を示す。曲線aによれば、電源電圧VDDが上昇すると、この上昇に伴って電磁石のコイル10に流れる電流が増加することがわかる。
 図3の曲線bは、第1実施形態の電源電圧VDDと電磁石のコイル10に流れる電流の関係を示す。曲線bによれば、第1実施形態では、充電回路50の補償回路51、52の動作により、電源電圧VDDが上昇しても、電磁石のコイル10に流れる電流をほぼ一定にし、電流の増加を抑制できる。
 また、図3の曲線bによれば、電源電圧が(VZD2+VCC)と(VZD3+VCC)のところで折れ曲がり、コイル10の電流が抑制されている。これは、電源電圧がその2つの電圧に該当する場合に、補償回路51、52の抵抗R2、R3が充電抵抗として機能するためである。
 例えば、電源電圧VDDが(VZD2+VCC)を越えると、補償回路51の抵抗R2が抵抗R1に並列に接続され、充電回路50の充電抵抗の値が小さくなる。このため、コンデンサC1への充電電流が増加して充電期間T1が短くなり、コンパレータ30の出力電圧Voutのハイレベルの期間が短くなる。これにより、電界効果型トランジスタQ1のオン時間が短くなり、コイル10に流れる電流の増加が抑制される。
 以上説明したように、第1実施形態は、図1に示すように、帰還抵抗R1と、帰還抵抗R1に並列に接続される第1補償回路51および第2補償回路52とを備える充電回路50を設けるようにした。このため、第1実施形態によれば、電源電圧が上昇した場合に、電磁石のコイル10に流れる電流の変化をできるだけ抑制し、コイル電流の安定化を図ることができる。
(第2実施形態)
 図4は、本発明の電磁石コイルの駆動装置の第2実施形態の回路図である。
 この第2実施形態は、電磁石のコイル10に電源20から電流を供給するとともに、コイル10の温度が上昇してそのコイル10の抵抗値が上昇して電流が変化する場合に、その電流を補償し、一定の電流が流れるようにしたものである。
 このため、第2実施形態は、図4に示すように、半導体スイッチである電界効果型トランジスタQ1と、ヒステリシス機能付きのコンパレータ30と、インバータ41、42と、コンデンサC1と、コンデンサC1を充電する2つの充電回路50a、60と、コンデンサC1の電荷を放電する放電回路70とを備えている。
 言い換えると、第2実施形態は、図1に示す第1実施形態の構成を基本にし、図1に示す充電回路50を図4に示す充電回路50aに置き換えたものである。したがって、以下の構成の説明では、同一構成要素には同一符号を付し、その詳細な説明はできるだけ省略する。
 充電回路50aは、図4に示すように、帰還抵抗R1と感温抵抗素子RT1とからなり、これらが直列接続されている。この直列回路の一端が電磁石のコイル10の一端に接続され、その他端がダイオードD2を介してコンデンサC1の一端に接続されている。この例では、感温抵抗素子RT1の一端がコイル10の一端に接続され、帰還抵抗R1の一端がダイオードD2を介してコンデンサC1の一端に接続されている。
 感温抵抗素子RT1は、温度変化に応じて抵抗値が変化する素子である。ここでは、感温抵抗素子RT1は、正の温度特性を有するものであり、正特性のサーミスタなどを使用することができる。
 このような構成の第2実施形態の基本的な動作は、第1実施形態の基本的な動作と同様であるので、その説明は省略する。
 次に、この第2実施形態において、環境温度が上昇し、これにより電磁石のコイル10の抵抗値が増加した場合の動作について、図4を参照して説明する。
 この場合には、コイル10の抵抗値の増加に伴い、コイル10に流れる電流が減少する。また、環境温度の上昇は、充電回路50aの感温抵抗素子RT1の抵抗値を増加させる。この抵抗値の増加は、充電回路50aの充電抵抗を増加させるので、電流I1が減少してコンデンサC1の充電時間が長くなり、コンパレータ30の出力電圧Voutのハイレベルの期間が長くなる。これにより、電界効果型トランジスタQ1のオン時間が長くなってコイル10に流れる電流が増加し、コイル10に流れる電流の安定化が図れる。
 以上説明したように、第2実施形態では、図4に示すように、帰還抵抗R1と感温抵抗素子RT1とを直列に接続した充電回路50aを設けるようにした。このため、第2実施形態によれば、環境温度が上昇し電磁石のコイル10の抵抗値が増加した場合に、電磁石のコイル10に流れる電流の変化をできるだけ抑制し、コイル電流の安定化を図ることができる。
(第3実施形態)
 図5は、本発明の電磁石コイルの駆動装置の第3実施形態の回路図である。
 この第3実施形態は、電磁石のコイル10の印加電圧が上昇し、あるいは環境温度が上昇し、これらに伴って生ずるコイル10に流れる電流に変化(増減)がある場合に、この変化を抑制してコイル10に一定の電流が流れるようにしたものである。
 このため、第3実施形態は、図5に示すように、半導体スイッチである電界効果型トランジスタQ1と、ヒステリシス機能付きのコンパレータ30と、インバータ41、42と、コンデンサC1と、コンデンサC1を充電する2つの充電回路50b、60と、コンデンサC1の電荷を放電する放電回路70とを備えている。
 言い換えると、第3実施形態は、図1に示す第1実施形態の構成を基本にし、図1に示す充電回路50を図5に示す充電回路50bに置き換えたものである。したがって、以下の構成の説明では、同一構成要素には同一符号を付し、その詳細な説明はできるだけ省略する。
 充電回路50bは、図5に示すように、図1の充電回路50に感温抵抗素子RT2を追加したものである。感温抵抗素子RT2は、正の温度特性を有するものであり、正特性のサーミスタなどを使用することができる。
 充電回路50bは、充電回路50と感温抵抗素子RT1とを直列に接続させている。そして、この直列回路の一端側をコイル10の一端に接続させ、その他端側をダイオードD2を介してコンデンサC1の一端に接続させている。
 次に、第3実施形態の動作について、図5を参照して説明する。
 この第3実施形態では、電源電圧VDDが上昇してコイル10の電流が増加する場合には、第1実施形態と同様の動作により、電界効果型トランジスタQ1のオン動作の時間を短くし、コイル10に流れる電流を減少させる。
 一方、環境温度が上昇し、コイル10の抵抗値が増加する場合には、コイル10に流れる電流が減少する。また、環境温度の上昇は、充電回路50aの感温抵抗素子RT2の抵抗値を増加させる。この抵抗値の増加は、充電回路50bの充電抵抗を増加させるので、電流I1が減少してコンデンサC1の充電時間が長くなり、コンパレータ30の出力電圧Voutのハイレベルの期間が長くなる。これにより、電界効果型トランジスタQ1のオン時間が長くなってコイル10に流れる電流を増加させる。
 このため、第3実施形態では、電磁石のコイル10の印加電圧が上昇し、あるいは環境温度が上昇し、これらに伴ってコイル10の電流が増減する場合に、この増減を抑制してコイル10に一定の電流を流すことができる。
(実施形態の変形例など)
(1)上記の各実施形態では、コンパレータ30と電界効果型トランジスタQ1との間に、インバータ41、42を設けるようにしたが(例えば図1参照)、これらは必ずしも必要ではなく省略するようにしても良い。
(2)上記の各実施形態では、充電回路60を設けるようにしたが(例えば図1参照)、これは必ずしも必要ではなく省略するようにしても良い。
(3)上記の第2実施形態では、図4に示すように、充電回路50aの感温抵抗素子RT1を帰還抵抗R1に直列に接続するようにしたが、これに代えて感温抵抗素子RT1を帰還抵抗R1に並列に接続するようにしても良い。
 10…電磁石のコイル、20…電源、30…コンパレータ、41、42…インバータ、50、50a、50b、60…充電回路、51…第1補償回路、52…第2補償回路、70…放電回路、80…電源ライン、Q1…電界効果型トランジスタ、C1…コンデンサ、R1…帰還抵抗、R2、R3…抵抗、ZD2、ZD3…ツェナーダイオード、RT1、RT2…感温抵抗素子

Claims (8)

  1.  電磁石のコイルに直列に接続され、前記コイルに供給する電流を制御する半導体スイッチと、
     コンデンサと、
     前記コンデンサの充放電の電圧を2つの異なる電圧と比較し、比較結果に応じて前記半導体スイッチをオンオフ動作する信号を生成するコンパレータと、
     前記コイルの印加電圧に基づいて前記コンデンサを充電する第1の充電回路と、
     前記コンデンサの放電を行う放電回路とを備え、
     前記第1の充電回路は、第1の抵抗と、前記第1の抵抗と並列に接続される少なくとも1つの補償回路とを備え、
     前記補償回路は、抵抗とツェナーダイオードとが直列に接続されていることを特徴とする電磁石コイルの駆動装置。
  2.  安定化された電圧に基づいて前記コンデンサを充電する第2の充電回路を、さらに備えることを特徴とする請求項1に記載の電磁石コイルの駆動装置。
  3.  前記補償回路は、
     第2の抵抗と第1のツェナーダイオードとが直列に接続される第1の補償回路と、
     第3の抵抗と第2のツェナーダイオードとが直列に接続される第2の補償回路と、を備え、
     前記第1のツェナーダイオードと前記第2のツェナーダイオードのそれぞれは、ツェナー電圧が異なることを特徴とする請求項1または請求項2に記載の電磁石コイルの駆動装置。
  4.  前記第1の充電回路は、前記第1の抵抗素子と直列に接続される感温抵抗素子を、さらに備えることを特徴とする請求項1乃至請求項3のいずれか1項に記載の電磁石コイルの駆動装置。
  5.  前記感温抵抗素子は、正の温度係数を有することを特徴とする請求項4に記載の電磁石コイルの駆動装置。
  6.  電磁石のコイルに直列に接続され、前記コイルに供給する電流を制御する半導体スイッチと、
     コンデンサと、
     前記コンデンサの充放電の電圧を2つの異なる電圧と比較し、比較結果に応じて前記半導体スイッチをオンオフ動作する信号を生成するコンパレータと、
     前記コイルの印加電圧に基づいて前記コンデンサを充電する第1の充電回路と、
     前記コンデンサの放電を行う放電回路とを備え、
     前記第2の充電回路は、第1の抵抗と感温抵抗素子とを備え、
     前記第1の抵抗と前記感温抵抗素子とが直列または並列に接続されていることを特徴とする電磁石コイルの駆動装置。
  7.  安定化された電圧に基づいて前記コンデンサを充電する第2の充電回路を、さらに備えることを特徴とする請求項6に記載の電磁石コイルの駆動装置。
  8.  前記感温抵抗素子は、正の温度係数を有することを特徴とする請求項6または請求項7に記載の電磁石コイルの駆動装置。
     
PCT/JP2012/004921 2011-08-19 2012-08-02 電磁石コイルの駆動装置 WO2013027342A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137028687A KR20140052989A (ko) 2011-08-19 2012-08-02 전자석 코일의 구동 장치
US14/116,240 US9112503B2 (en) 2011-08-19 2012-08-02 Electromagnetic coil drive device
CN201280023761.8A CN103534767B (zh) 2011-08-19 2012-08-02 电磁铁线圈的驱动装置
EP12826434.8A EP2750147B1 (en) 2011-08-19 2012-08-02 Electromagnetic coil drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011179771A JP5876250B2 (ja) 2011-08-19 2011-08-19 電磁石コイルの駆動装置
JP2011-179771 2011-08-19

Publications (1)

Publication Number Publication Date
WO2013027342A1 true WO2013027342A1 (ja) 2013-02-28

Family

ID=47746115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004921 WO2013027342A1 (ja) 2011-08-19 2012-08-02 電磁石コイルの駆動装置

Country Status (6)

Country Link
US (1) US9112503B2 (ja)
EP (1) EP2750147B1 (ja)
JP (1) JP5876250B2 (ja)
KR (1) KR20140052989A (ja)
CN (1) CN103534767B (ja)
WO (1) WO2013027342A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504369B2 (ja) * 2013-10-30 2014-05-28 株式会社 ディー・エヌ・エー ゲームプログラム、及び、情報処理装置
CN107342147B (zh) * 2017-08-10 2018-09-18 温州大学 一种双电压合成信号脉宽调制的低功耗高速电磁铁驱动电路
JP7305987B2 (ja) * 2019-03-07 2023-07-11 富士電機株式会社 半導体集積回路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053285A (ja) * 1983-08-31 1985-03-26 Nissan Motor Co Ltd 電磁弁の制御装置
JPS61256608A (ja) * 1985-05-09 1986-11-14 Togami Electric Mfg Co Ltd 直流電磁石装置
JPS63193176U (ja) * 1987-05-30 1988-12-13
JP2002193394A (ja) * 2000-10-31 2002-07-10 Nordson Corp 自動調整式ソレノイド駆動回路および方法
JP3365181B2 (ja) 1995-12-21 2003-01-08 富士電機株式会社 交直両用の電磁石装置
JP2009065246A (ja) * 2007-09-04 2009-03-26 Yazaki Corp 負荷制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829717A (en) * 1973-01-29 1974-08-13 Ford Motor Co Reference voltage compensation for zener diode regulation circuit
FR2284037A1 (fr) * 1974-09-09 1976-04-02 Peugeot & Renault Procede et dispositif de commande d'un injecteur electromagnetique
US4503480A (en) * 1983-02-17 1985-03-05 Ncr Corporation Voltage compensating driver circuit
US4675776A (en) * 1984-11-23 1987-06-23 General Electric Company Bistable undervoltage release circuit for circuit breakers
KR910003489B1 (ko) * 1987-10-02 1991-06-01 지이제루 기기 가부시기가이샤 구동회로
KR100230753B1 (ko) 1991-01-23 1999-11-15 도꾜 일렉트론 큐슈리미티드 액도포 시스템
US5910890A (en) * 1998-02-12 1999-06-08 Eaton Corporation Circuit for controlling application of electricity to a coil of and electric current switching apparatus
US6317248B1 (en) * 1998-07-02 2001-11-13 Donnelly Corporation Busbars for electrically powered cells
US8864373B2 (en) * 2011-09-12 2014-10-21 National Semiconductor Corporation Small highly accurate battery temperature monitoring circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053285A (ja) * 1983-08-31 1985-03-26 Nissan Motor Co Ltd 電磁弁の制御装置
JPS61256608A (ja) * 1985-05-09 1986-11-14 Togami Electric Mfg Co Ltd 直流電磁石装置
JPS63193176U (ja) * 1987-05-30 1988-12-13
JP3365181B2 (ja) 1995-12-21 2003-01-08 富士電機株式会社 交直両用の電磁石装置
JP2002193394A (ja) * 2000-10-31 2002-07-10 Nordson Corp 自動調整式ソレノイド駆動回路および方法
JP2009065246A (ja) * 2007-09-04 2009-03-26 Yazaki Corp 負荷制御装置

Also Published As

Publication number Publication date
EP2750147B1 (en) 2018-05-30
CN103534767B (zh) 2016-03-02
EP2750147A1 (en) 2014-07-02
US9112503B2 (en) 2015-08-18
US20140092515A1 (en) 2014-04-03
KR20140052989A (ko) 2014-05-07
JP5876250B2 (ja) 2016-03-02
EP2750147A4 (en) 2015-04-08
JP2013042088A (ja) 2013-02-28
CN103534767A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
US8912780B2 (en) Switching control circuit
KR101017656B1 (ko) 동기 정류형 스위칭 레귤레이터
JP4902390B2 (ja) カレント検出回路及び電流モード型スイッチングレギュレータ
JP6468368B2 (ja) 電圧生成回路および過電流検出回路
JP6070841B2 (ja) 過電流検出回路
JP6151956B2 (ja) 絶縁型スイッチング電源装置
US20100194364A1 (en) Switching Power-Supply Control Circuit
JP5006791B2 (ja) 電力供給制御装置
KR20150106044A (ko) 스위치 제어 회로, 스위치 제어 방법 및 이를 이용한 변환기
TWI545881B (zh) Dc/dc轉換器
JP5876250B2 (ja) 電磁石コイルの駆動装置
US10468981B2 (en) Switching power supply device
JP5994740B2 (ja) スイッチング電源装置
JP5798328B2 (ja) スイッチングレギュレータ制御回路及びスイッチングレギュレータ
KR101316667B1 (ko) 전압 생성 회로
JP2009153249A (ja) Dc−dcコンバータ
EP1351061B1 (en) Power switch with current sense circuit
KR101854754B1 (ko) 신호 전달 회로
JP2015012252A (ja) 電流検出回路
JP2008158744A (ja) レギュレータ回路
JP5806604B2 (ja) 磁場検出回路
JP2012170232A (ja) 直流電圧変換装置及びその制御方法
JP2020150605A (ja) パルス信号発生回路
JP2015171214A (ja) スイッチング電源装置
JP2012257348A (ja) 集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137028687

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012826434

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14116240

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE