WO2017090564A1 - 構造体のケース - Google Patents

構造体のケース Download PDF

Info

Publication number
WO2017090564A1
WO2017090564A1 PCT/JP2016/084501 JP2016084501W WO2017090564A1 WO 2017090564 A1 WO2017090564 A1 WO 2017090564A1 JP 2016084501 W JP2016084501 W JP 2016084501W WO 2017090564 A1 WO2017090564 A1 WO 2017090564A1
Authority
WO
WIPO (PCT)
Prior art keywords
skeleton
holes
case
cross
oil
Prior art date
Application number
PCT/JP2016/084501
Other languages
English (en)
French (fr)
Inventor
上杉 達也
忠俊 渡邉
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to CN201680055208.0A priority Critical patent/CN108351017B/zh
Priority to MX2018005125A priority patent/MX2018005125A/es
Priority to US15/760,544 priority patent/US10465789B2/en
Priority to DE112016005375.4T priority patent/DE112016005375B4/de
Publication of WO2017090564A1 publication Critical patent/WO2017090564A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/03Gearboxes; Mounting gearing therein characterised by means for reinforcing gearboxes, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/031Gearboxes; Mounting gearing therein characterised by covers or lids for gearboxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0435Pressure control for supplying lubricant; Circuits or valves therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles

Definitions

  • the present invention relates to a case of a structure.
  • the case is generally formed entirely using a metal material such as aluminum. Ribs may be formed in the metal case of the structure.
  • the designer can use an alloy having a small specific gravity as the metal material of the case and can give the case high rigidity.
  • the designer can set the thickness of the case to a small value.
  • metal material is used for the entire case, designers may face the limitations of weight reduction even with ribs.
  • Resin may be used as part of the structure case.
  • a case having a structure in which a metal frame member and a resin cover member are combined is known.
  • Patent document 1 discloses the side cover which comprises a part of case of a transmission.
  • the side cover of Patent Document 1 includes a plurality of metal frame members and a resin cover member. The cover member closes an opening formed between the plurality of frame members.
  • the combination of a metal frame member and a resin cover member can contribute to high rigidity and light weight of the case of the structure.
  • further weight reduction is required for the case of the structure.
  • An object of the present invention is to provide a case of a lightweight structure having high rigidity and a method for manufacturing the case.
  • the case according to one aspect of the present invention is used as a case of a vehicle structure in which mechanical elements are accommodated.
  • the case includes a wall surface portion that forms an outer surface of the case, and a skeleton portion that bulges from the wall surface portion inward and outward of the case and is integrated with the wall surface portion.
  • the skeleton part includes a first porous part in which a plurality of first hole parts extending in a first direction are formed, and a first part that does not include the plurality of first hole parts and surrounds the first porous part.
  • at least one skeleton member having a skin layer.
  • the cross-sectional area of the plurality of first holes is set so as to increase from the outer peripheral surface of the at least one skeleton member toward the center of the at least one skeleton member in a cross section intersecting the first direction. .
  • the above-mentioned case is lightweight and can have high rigidity.
  • FIG. 3 is a cross-sectional view of the structure case taken along line Y3-Y3 shown in FIG. 2. It is sectional drawing of the 1st frame
  • FIG. 7 is a cross-sectional view of the case of the structure body taken along line Y7-Y7 shown in FIG. FIG.
  • FIG. 7 is a cross-sectional view of the structure case taken along line Y8-Y8 shown in FIG. 6;
  • FIG. 8 is a cross-sectional view of the case of the structure body taken along line Y9-Y9 shown in FIG. It is sectional drawing of the 1st frame
  • FIG. 1 is a side view of the case of the structure according to the first embodiment.
  • FIG. 2 is a top view of the case of the structure.
  • FIG. 3 is a cross-sectional view of the case of the structural body taken along line Y3-Y3 shown in FIG.
  • the case of the first embodiment will be described with reference to FIGS. 1 to 3. Terms indicating directions such as “front”, “rear”, “left”, “right”, “up” and “down” are used with reference to the vehicle body.
  • the case 1 of the structure according to the first embodiment is used as a case of a transmission constituting a power transmission device mounted on a vehicle.
  • the vehicle is a front engine / rear drive vehicle.
  • the transmission is a vertical-type manual transmission.
  • An input shaft S1 (see FIG. 3) of the transmission is arranged on substantially the same axis as an output shaft (not shown) of the transmission.
  • the vehicle structure is exemplified by a manual transmission.
  • a speed change mechanism (not shown) is disposed in the case 1.
  • the transmission mechanism has an axis extending in the front-rear direction of the vehicle body.
  • the speed change mechanism includes an output shaft and a counter shaft S2 (see FIG. 3) in addition to the above-described input shaft S1.
  • the input shaft S1 is connected to a drive source (for example, an engine) disposed in front of the case 1 via a clutch.
  • the output shaft is disposed on the same axis as the input shaft S1.
  • the counter shaft S2 is parallel to the input shaft S1 and the output shaft.
  • the input shaft S1, the output shaft, and the counter shaft S2 are rotatably supported by the case 1.
  • the mechanical element is exemplified by a transmission mechanism.
  • the case 1 includes a main body 2 and an extension housing 3.
  • the main body 2 includes a clutch housing and a transmission case formed integrally with the clutch housing.
  • the clutch is housed in a clutch housing.
  • the transmission mechanism is accommodated in the transmission case.
  • the extension housing 3 is disposed behind the main body 2.
  • the extension housing 3 is coupled to the main body 2.
  • the main body 2 has a flange 2 a that forms the rear end of the main body 2.
  • the extension housing 3 has a flange portion 3 a that forms a front end portion of the extension housing 3.
  • the flange portions 2a and 3a are fastened by bolts and nuts.
  • Case 1 includes a skeleton part 10 and a plurality of wall surface parts 20.
  • the skeleton part 10 forms the skeleton of the case 1.
  • the plurality of wall surface portions 20 form portions (that is, non-skeleton portions) excluding the skeleton portion 10 of the case 1. As shown in FIG. 3, the skeleton part 10 bulges from the wall part 20 inward and outward of the case 1.
  • the skeleton part 10 includes a plurality of first skeleton parts 11 and a plurality of second skeleton parts 16.
  • the plurality of first skeleton parts 11 extend in the front-rear direction of the vehicle body (that is, the axial direction of the case 1).
  • the plurality of second skeleton parts 16 extend in the circumferential direction of the case 1 in a cross section orthogonal to the axial direction of the case 1. As shown in FIGS. 1 and 2, the plurality of first skeleton parts 11 and the plurality of second skeleton parts 16 form an orthogonal lattice.
  • the plurality of wall surface portions 20 block a plurality of rectangular spaces surrounded by the plurality of first skeleton portions 11 and the plurality of second skeleton portions 16 and form most of the outer surface of the case 1.
  • the plurality of first skeleton parts 11, the plurality of second skeleton parts 16, and the plurality of wall surface parts 20 are integrated with each other.
  • the skeleton member is exemplified by the first skeleton part 11 or the second skeleton part 16.
  • the first direction is exemplified by the axial direction or the circumferential direction of the case 1.
  • FIG. 3 shows a cross section orthogonal to the axial direction of the case 1.
  • the plurality of first skeleton parts 11 are arranged at intervals in the circumferential direction of the case 1.
  • FIG. 3 shows an input shaft S1 and a counter shaft S2 in addition to the plurality of first skeleton parts 11.
  • the input shaft S1 and the counter shaft S2 are disposed in the case 1.
  • FIG. 3 further shows the gears G1, G2.
  • the gear G1 is attached to the input shaft S1.
  • the gear G2 is attached to the counter shaft S2.
  • the gear G2 meshes with the gear G1.
  • FIG. 4 is an enlarged cross-sectional view of one of the plurality of first skeleton parts 11.
  • the first skeleton part 11 will be described with reference to FIGS. 1 to 4.
  • the first skeleton portion 11 extends in the axial direction of the case 1.
  • the first skeleton part 11 has a substantially rectangular cross section orthogonal to the axial direction of the case 1.
  • the first skeleton part 11 has a porous structure.
  • the plurality of holes 12 appearing in the cross section of the first skeleton part 11 extend in the axial direction of the first skeleton part 11.
  • the plurality of first holes may be exemplified by the plurality of holes 12.
  • the first skeleton part 11 has a porous part 11a and a skin layer 11b surrounding the porous part 11a.
  • the plurality of holes 12 are formed in the porous portion 11a, but are not formed in the skin layer 11b.
  • the skin layer 11b has a predetermined thickness. Therefore, the plurality of hole portions 12 are formed at positions away from the outer peripheral surface of the first skeleton portion 11 by a predetermined thickness (that is, the thickness of the skin layer 11b) or more.
  • Each of the plurality of hole portions 12 has a substantially circular cross section.
  • the hole 12 formed near or near the center of the cross section of the first skeleton part 11 is larger in cross-sectional area than the hole 12 formed near the skin layer 11b.
  • the cross-sectional area of the hole 12 is set so as to increase from the outer peripheral side to the inner peripheral side of the first skeleton part 11.
  • the first porous portion may be exemplified by the porous portion 11a.
  • the first skin layer may be exemplified by the skin layer 11b.
  • FIG. 4 shows a plurality of holes 12, that is, 48 holes 121, 32 holes 122, 24 holes 123, 8 holes 124, and one hole 125.
  • the hole part 125 has a center that substantially coincides with the center of the cross section of the first skeleton part 11.
  • the hole 125 is the largest among the plurality of holes 12.
  • Forty-eight holes 121 are formed at substantially equal intervals along a square outline virtually drawn in the cross section of the first skeleton part 11.
  • the center of the square virtually drawn by the 48 hole portions 121 substantially coincides with the center of the hole portion 125.
  • Each of the 48 holes 121 has the smallest cross-sectional area among the plurality of holes 12.
  • the 32 hole parts 122 are formed at substantially equal intervals along a square outline virtually drawn in the cross section of the first skeleton part 11.
  • the square virtually drawn by the 32 holes 122 is smaller than the square virtually drawn by the 48 holes 121.
  • the center of the square virtually drawn by the 32 hole portions 122 substantially coincides with the center of the hole portion 125.
  • Each of the 32 holes 122 has a larger cross-sectional area than each of the 48 holes 121, but has a smaller cross-sectional area than the holes 125.
  • the 24 hole portions 123 are formed at substantially equal intervals along a square outline virtually drawn in the cross section of the first skeleton portion 11.
  • the square virtually drawn by the 24 holes 123 is smaller than the square virtually drawn by the 32 holes 122.
  • the center of the square virtually drawn by the 24 holes 123 substantially coincides with the center of the hole 125.
  • Each of the 24 holes 123 has a larger cross-sectional area than each of the 32 holes 122, while having a smaller cross-sectional area than the holes 125.
  • the eight holes 124 are formed at substantially equal intervals along a square outline virtually drawn in the cross section of the first skeleton part 11.
  • the square virtually drawn by the eight holes 124 is smaller than the square virtually drawn by the 24 holes 123.
  • the center of the square virtually drawn by the eight holes 124 substantially coincides with the center of the hole 125.
  • Each of the eight holes 124 has a larger cross-sectional area than each of the 24 holes 123, while having a smaller cross-sectional area than the hole 125.
  • the symbol “S1” shown in FIG. 4 means the cross-sectional area of each of the 48 holes 121.
  • the symbol “S2” shown in FIG. 4 means the cross-sectional area of each of the 32 holes 122.
  • the symbol “S3” shown in FIG. 4 means the cross-sectional area of each of the 24 holes 123.
  • the symbol “S4” shown in FIG. 4 means the cross-sectional area of each of the eight holes 124.
  • the symbol “S5” shown in FIG. 4 means the cross-sectional area of the hole 125. A relationship represented by the inequality shown in FIG. 4 is established between these cross-sectional areas.
  • FIG. 5 shows a cross section of one of the plurality of second skeleton parts 16 along the line Y5-Y5 shown in FIG.
  • the second skeleton part 16 will be described with reference to FIGS. 1 to 3 and FIG.
  • the plurality of second skeleton parts 16 are arranged at intervals in the axial direction of the case 1.
  • Each of the plurality of second skeleton parts 16 extends in the circumferential direction of the case 1.
  • each of the plurality of second skeleton parts 16 has a substantially circular cross section orthogonal to the circumferential direction of the case 1.
  • the second skeleton part 16 has a porous structure. That is, the plurality of hole portions 17 are formed in the second skeleton portion 16.
  • Each of the plurality of hole portions 17 extends in the axial direction of the second skeleton portion 16 (that is, the extending direction of the second skeleton portion 16).
  • Each of the plurality of second skeleton parts 16 includes a porous part 16a and a skin layer 16b.
  • the skin layer 16b surrounds the porous portion 16a.
  • the plurality of hole portions 17 are formed in the porous portion 16a, but are not formed in the skin layer 16b.
  • the skin layer 16b has a predetermined thickness. Accordingly, the plurality of hole portions 17 are formed at positions away from the outer peripheral surface of the second skeleton portion 16 by a thickness equal to or greater than the thickness of the skin layer 16b.
  • Each of the plurality of hole portions 17 has a substantially circular cross section.
  • the hole 17 formed near or near the center of the cross section of the second skeleton part 16 is larger in cross-sectional area than the hole 17 formed near the skin layer 16b.
  • the cross-sectional area of the hole portion 17 is set so as to increase from the outer peripheral side to the inner peripheral side of the second skeleton portion 16.
  • the first porous portion may be exemplified by the porous portion 16a.
  • the first skin layer may be exemplified by the skin layer 16b.
  • FIG. 5 shows 45 holes 171, 45 holes 172, 45 holes 173, 28 holes 174, 18 holes 175 as a plurality of holes 17. 7 holes 176 and one hole 177 are shown.
  • the hole portion 177 has a center that substantially coincides with the center of the cross section of the second skeleton portion 16.
  • the hole 177 is the largest among the plurality of holes 17.
  • the 45 holes 171 are formed at substantially equal intervals along a circular outline virtually drawn in the cross section of the second skeleton part 16.
  • a circular center virtually drawn by the 45 holes 171 substantially coincides with the center of the hole 177.
  • Each of the 45 holes 171 has the smallest cross-sectional area among the plurality of holes 17.
  • the 45 hole portions 172 are formed at substantially equal intervals along a circular outline virtually drawn in the cross section of the second skeleton portion 16.
  • the circle virtually drawn by the 45 holes 172 is smaller than the circle virtually drawn by the 45 holes 171.
  • a circular center virtually drawn by the 45 holes 172 substantially coincides with the center of the hole 177.
  • Each of the 45 holes 172 has a larger cross-sectional area than each of the 45 holes 121, while having a smaller cross-sectional area than the holes 177.
  • the 45 hole portions 173 are formed at substantially equal intervals along a circular outline virtually drawn in the cross section of the second skeleton portion 16.
  • the circle virtually drawn by the 45 holes 173 is smaller than the circle virtually drawn by the 45 holes 172.
  • the circular center virtually drawn by the 45 holes 173 substantially coincides with the center of the hole 177.
  • Each of the 45 holes 173 has a larger cross-sectional area than each of the 45 holes 172, while having a smaller cross-sectional area than the holes 177.
  • the twenty-eight hole portions 174 are formed at substantially equal intervals along a circular outline virtually drawn in the cross section of the second skeleton portion 16.
  • the circle virtually drawn by the 28 holes 174 is smaller than the circle virtually drawn by the 45 holes 173.
  • a circular center virtually drawn by the 28 holes 174 substantially coincides with the center of the hole 177.
  • Each of the 28 holes 174 has a larger cross-sectional area than each of the 45 holes 173, while having a smaller cross-sectional area than the holes 177.
  • the 18 holes 175 are formed at substantially equal intervals along a circular outline virtually drawn in the cross section of the second skeleton part 16.
  • the circle virtually drawn by the 18 holes 175 is smaller than the circle virtually drawn by the 28 holes 174.
  • the center of the circle virtually drawn by the 18 holes 175 substantially coincides with the center of the hole 177.
  • Each of the 18 holes 175 has a larger cross-sectional area than each of the 28 holes 174, while having a smaller cross-sectional area than the holes 177.
  • the seven holes 176 are formed at substantially equal intervals along a circular outline virtually drawn in the cross section of the second skeleton part 16.
  • the circle virtually drawn by the seven holes 176 is smaller than the circle virtually drawn by the eighteen holes 175.
  • a circular center virtually drawn by the seven holes 176 substantially coincides with the center of the hole 177.
  • Each of the seven holes 176 has a larger cross-sectional area than each of the eighteen holes 175, while having a smaller cross-sectional area than the holes 177.
  • the symbol “T1” shown in FIG. 5 means the cross-sectional area of each of the 45 holes 171.
  • the symbol “T2” shown in FIG. 5 means the cross-sectional area of each of the 45 holes 172.
  • the symbol “T3” shown in FIG. 5 means the cross-sectional area of each of the 45 holes 173.
  • the symbol “T4” shown in FIG. 5 means the sectional area of each of the 28 holes 174.
  • the symbol “T5” shown in FIG. 5 means the cross-sectional area of the 18 holes 175.
  • the symbol “T6” shown in FIG. 5 means the sectional area of the seven holes 176.
  • the symbol “T7” shown in FIG. 5 means the cross-sectional area of the hole 177. A relationship represented by the inequality shown in FIG. 5 is established between these cross-sectional areas.
  • the plurality of wall surface portions 20 closes the opening surrounded by the first skeleton portion 11 and the second skeleton portion 16. As shown in FIG. 3, each of the plurality of wall surface parts 20 is thinner than the skeleton part 10 (that is, the first skeleton part 11 and / or the second skeleton part 12). Each of the plurality of wall surfaces 20 has a flat plate shape as a whole.
  • Case 1 is formed using a 3D printer (so-called three-dimensional additive manufacturing method). If a 3D printer is used, the plurality of holes 12 and 17 in the skeleton 10 are easily formed. In addition, the 3D printer can easily integrate the plurality of wall surface portions 20 into the skeleton portion 10.
  • a 3D printer so-called three-dimensional additive manufacturing method. If a 3D printer is used, the plurality of holes 12 and 17 in the skeleton 10 are easily formed. In addition, the 3D printer can easily integrate the plurality of wall surface portions 20 into the skeleton portion 10.
  • the principle of this embodiment is not limited to a specific printing technique of the three-dimensional additive manufacturing method.
  • a metal such as aluminum is used as the material for the case 1
  • the operator may spread the metal powder to form a layer of metal powder.
  • the operator may irradiate the desired position of the metal powder layer with an electron beam or a laser.
  • the metal powder in the irradiated region is sintered.
  • the sintered metal powder forms part of the case 1.
  • the operator then forms a new layer of metal powder and irradiates with an electron beam or a laser so as to conform to the shape of the case 1.
  • the case 1 As a result of repeated formation of a layer of metal powder and irradiation with an electron beam or laser (that is, a result of the powder sintering additive manufacturing method), the case 1 is easily and accurately formed. If necessary, the worker may perform finishing on the case formed by the 3D printer.
  • the metal powder remains in the holes 12 and 17 formed in the skeleton part 10. Therefore, a communication hole that extends from the holes 12 and 17 to the inner surface or the outer surface of the case 1 may be formed. The metal powder remaining in the holes 12 and 17 is removed from the holes 12 and 17 through the communication holes.
  • the skeleton part 10 is formed integrally with the wall part 20 by a three-dimensional additive manufacturing method.
  • the operator may form the skeleton part 10 using the three-dimensional additive manufacturing method, while forming the wall surface part 20 by die casting.
  • an operator can form the skeleton part 10 by integrally forming the plurality of first skeleton parts 11 and the plurality of second skeleton parts 16.
  • the created skeleton 10 is placed in a mold. Thereafter, a molten metal material (for example, aluminum) is supplied into the mold (die casting), and the wall surface 20 integrated with the skeleton 10 is formed.
  • a molten metal material for example, aluminum
  • injection molding using a resin material may be used for molding the wall portion 20 instead of die casting.
  • an operator can form the skeleton part 10 by integrally forming the plurality of first skeleton parts 11 and the plurality of second skeleton parts 16.
  • the created skeleton 10 is placed in a mold. Thereafter, the molten thermoplastic resin is injected into the mold, and the wall surface 20 integrated with the skeleton 10 is formed.
  • the skeleton part 10 includes a plurality of first skeleton parts 11 extending in the axial direction of the case 1 and a plurality of second skeleton parts 16 extending in the circumferential direction of the case 1.
  • the designer may design a skeleton having an optimal shape by using a topology optimization method. For example, a designer can use a topology optimization technique to give the case the most lightweight shape with the desired stiffness.
  • the designer who uses the topology optimization method may create an analysis model of the case.
  • the internal space of the analysis model is filled except for the portion where the components such as the clutch and the transmission mechanism are arranged.
  • the designer may apply predetermined constraint conditions related to rigidity, such as bending rigidity and torsional rigidity, to the analysis model to identify a part that contributes to improvement in rigidity and a part that does not contribute to improvement in rigidity.
  • the designer forms a space in a part that does not contribute to the improvement of rigidity, while leaving the part that contributes to the improvement of rigidity in the analysis model.
  • the designer can set the shape of the part finally remaining in the analysis model as the shape of the case.
  • a plurality of holes 12 and 17 extending in the axial direction of the skeleton 10 are formed inside the skeleton 10.
  • the conventional skeleton is very heavy because it is completely solid. Since the skeleton part 10 of the present embodiment is formed with a plurality of holes 12 and 17, it is sufficiently lighter than the conventional skeleton part.
  • the plurality of hole portions 12 appear in a cross section intersecting with the extending axis of the first skeleton portion 11.
  • the plurality of hole portions 17 appear in a cross section that intersects the extending axis of the second skeleton portion 16.
  • the holes 12 and 17 formed near the outer peripheral surfaces of the first skeleton part 11 and the second skeleton part 16 are the centers of the first skeleton part 11 and the second skeleton part 16 (that is, extending axes) or near the center. It is smaller in cross-sectional area than the holes 12 and 17 formed in. That is, the cross-sectional areas of the holes 12 and 17 increase from the outer peripheral surfaces of the first skeleton part 11 and the second skeleton part 16 toward the center.
  • the rigidity of the skeleton member in which a plurality of common holes in the cross-sectional area are dispersed tends to be low.
  • the cross-sectional areas of the holes 12 and 17 of the present embodiment increase from the outer peripheral surfaces of the first skeleton part 11 and the second skeleton part 16 toward the center, and thus the first skeleton part 11 and the second skeleton part 16.
  • the rigidity of is maintained at a high level.
  • the plurality of hole portions 12 and 17 are formed only in the porous portions 11a and 16a surrounded by the skin layers 11b and 16b. Since the plurality of hole portions 12 and 17 are not formed in the skin layers 11b and 16b, a predetermined depth from the outer peripheral surfaces of the first skeleton portion 11 and the second skeleton portion 16 (that is, the thickness of the skin layers 11b and 16b). ) Is solid. Therefore, the rigidity of the first skeleton part 11 and the second skeleton part 16 is maintained at a high level.
  • the skeleton part 10 is formed by a three-dimensional additive manufacturing method.
  • the plurality of holes 12 and 17 extending in the axial direction of the first skeleton part 11 and the second skeleton part 16 are easily formed in the first skeleton part 11 and the second skeleton part 16. Therefore, the skeleton 10 that is much lighter than the conventional solid skeleton is easily created by the three-dimensional additive manufacturing method.
  • FIG. 6 is a side view of the case of the structure according to the second embodiment.
  • FIG. 7 is a cross-sectional view of the case of the structure body taken along line Y7-Y7 shown in FIG.
  • FIG. 8 is a cross-sectional view of the case of the structural body taken along line Y8-Y8 shown in FIG.
  • FIG. 9 is a cross-sectional view of the case of the structural body taken along line Y9-Y9 shown in FIG. 6 to 9 also show components disposed in the case.
  • the case 31 of the structure of the second embodiment includes a skeleton that forms the skeleton of the case 31 and a wall surface that is a portion excluding the skeleton of the case 31. .
  • the inside of the skeleton has a porous structure. That is, a plurality of holes extending in the axial direction of the skeleton are formed in the skeleton. At least one of the plurality of holes is used as a liquid flow path for circulating a liquid such as oil.
  • the case 31 of the structure of the second embodiment is a case of a transmission that constitutes a power transmission device mounted on a vehicle.
  • the transmission is a vertical automatic transmission mounted on a front engine / rear drive vehicle.
  • the input shaft of the transmission is disposed on substantially the same axis as the output shaft of the transmission.
  • the vehicle structure is exemplified by an automatic transmission.
  • the torque converter 41 and the transmission mechanism 42 are disposed in the case 31.
  • the torque converter is connected to a drive source such as an engine disposed in front of the case 31.
  • the speed change mechanism 42 is connected to the output portion of the torque converter 41.
  • the axis of the speed change mechanism 42 extends in the front-rear direction of the vehicle body.
  • the transmission mechanism 42 includes an input shaft 43, an output shaft 44, a plurality of planetary gear sets (planetary gear mechanisms), and a plurality of frictional engagement elements such as clutches and brakes.
  • the input shaft 43 is connected to the output part of the torque converter 41.
  • the output shaft 44 is disposed on the same axis as the input shaft 43.
  • the speed change mechanism 42 selectively fastens the frictional engagement elements and switches the power transmission path via each planetary gear set. As a result, the speed change mechanism 42 can achieve an appropriate shift speed so as to suit the driving state of the vehicle.
  • An oil pump 45 and a valve control unit 46 are further arranged in the case 31.
  • the oil pump 45 is disposed behind the torque converter 41.
  • the oil pump 45 is driven by the rotation of the drive source and discharges oil.
  • the valve control unit 46 is disposed below the speed change mechanism 42.
  • the valve control unit 46 includes a hydraulic control circuit that controls the pressure of oil supplied to the frictional engagement element and the like.
  • the valve control unit 46 has a hydraulic control valve for adjusting the discharge pressure of the oil pump 45 to the line pressure supplied to the frictional engagement element.
  • the valve control unit 46 further includes a hydraulic control valve that supplies a fastening hydraulic pressure to a frictional engagement element such as a clutch or a brake.
  • the mechanical elements are exemplified by a torque converter 41, a transmission mechanism 42, an oil pump 45, and a valve control unit 46.
  • the fastening oil is supplied from the valve control unit 46 to a frictional engagement element such as a clutch or a brake.
  • Oil discharged from a hydraulic control valve or the like for adjusting the discharge pressure of the oil pump 45 to the line pressure is used as lubricating oil for cooling the frictional heat generated between the friction plates of the frictional engagement element, the input shaft 43 and the output shaft. 44 is supplied to the frictional fastening element, the bearing portion 47, and the like for lubrication of the bearing portion 47.
  • the case 31 includes a converter housing 32, a transmission case 33, and an extension housing 34.
  • the torque converter 41 is housed in the converter housing 32.
  • the transmission mechanism 42 is housed in the transmission case 33.
  • the extension housing 34 is disposed behind the transmission case 33.
  • the extension housing 34 is coupled to the transmission case 33.
  • the flange portion 32 a forms the rear end portion of the converter housing 32.
  • the flange portion 33 a forms the front end portion of the vehicle body of the transmission case 33.
  • the flange portion 32a is fastened to the flange portion 33a by bolts and nuts.
  • the flange portion 33 b forms the rear end portion of the transmission case 33.
  • the flange portion 34 b forms the front end portion of the extension housing 34.
  • the flange portion 33b is fastened to the flange portion 34b by bolts and nuts. As a result, the case 31 is formed.
  • the case 31 includes a skeleton part 50 and a wall part 60.
  • the skeleton part 50 forms the skeleton of the case 31.
  • the wall surface portion 60 forms a portion excluding the skeleton portion 50 of the case 31.
  • the skeleton part 50 includes a plurality of first skeleton parts 51 and a plurality of second skeleton parts 56.
  • the plurality of first skeleton portions 51 extend in the front-rear direction of the vehicle body (that is, the axial direction of the case 31).
  • the plurality of second skeleton portions 56 extend in the circumferential direction of the case 31 in a cross section orthogonal to the axial direction of the case 31.
  • FIG. 7 shows the speed change mechanism 42 and the valve control unit 46 disposed in the case 1.
  • FIG. 10 is a schematic enlarged cross-sectional view of the first skeleton 51 shown by the arrow A in FIG.
  • the first skeleton part 51 will be described with reference to FIG.
  • the first skeleton 51 extends in the axial direction of the case 31. As shown in FIGS. 7 and 10, it has a substantially rectangular cross section.
  • the first skeleton part 51 has a porous structure. That is, the plurality of hole portions 52 are formed inside the first skeleton portion 51.
  • the plurality of hole portions 52 extend in the axial direction of the first skeleton portion 51.
  • the skeleton member is exemplified by the first skeleton part 51.
  • the first direction is exemplified by the axial direction of the case 31.
  • the first skeleton part 51 has a porous part 51a and a skin layer 51b surrounding the porous part 51a.
  • the plurality of hole portions 52 are formed in the porous portion 51a, but are not formed in the skin layer 51b.
  • the skin layer 51b has a predetermined thickness. Therefore, the plurality of hole portions 52 are formed inward from the outer peripheral surface of the first skeleton portion 51 by a predetermined thickness (thickness of the skin layer 51b) or more.
  • Each of the plurality of hole portions 52 has a substantially circular cross section. The cross-sectional area of the hole 52 increases from the outer periphery of the first skeleton 51 to the inside.
  • FIG. 10 shows 48 holes 521, 32 holes 522, 24 holes 523, and one hole 524 as the plurality of holes 52.
  • the hole 524 has a center that substantially coincides with the center of the cross section of the first skeleton 51.
  • the hole 524 is the largest among the plurality of holes 52.
  • Forty-eight hole portions 521 are formed at substantially equal intervals along a square outline virtually drawn in the cross section of the first skeleton portion 51.
  • the center of the square virtually drawn by the 48 holes 521 substantially coincides with the center of the hole 524.
  • Each of the 48 holes 521 has the smallest cross-sectional area among the plurality of holes 52.
  • the 32 holes 522 are formed at substantially equal intervals along a square outline virtually drawn in the cross section of the first skeleton 51.
  • the square virtually drawn by the 32 holes 522 is smaller than the square virtually drawn by the 48 holes 521.
  • the center of the square virtually drawn by the 32 holes 522 substantially coincides with the center of the hole 525.
  • Each of the 32 holes 522 has a larger cross-sectional area than each of the 48 holes 521, while having a smaller cross-sectional area than the holes 524.
  • the 24 holes 523 are formed at substantially equal intervals along a square outline virtually drawn in the cross section of the first skeleton 51.
  • the square virtually drawn by the 24 holes 523 is smaller than the square virtually drawn by the 32 holes 522.
  • the center of the square virtually drawn by the 24 holes 523 substantially coincides with the center of the hole 524.
  • Each of the 24 holes 523 has a larger cross-sectional area than each of the 32 holes 522, while having a smaller cross-sectional area than the holes 524.
  • the symbol “U1” shown in FIG. 10 means the cross-sectional area of each of the 48 holes 521.
  • the symbol “U2” shown in FIG. 10 means the cross-sectional area of each of the 32 holes 522.
  • the symbol “U3” shown in FIG. 10 means the cross-sectional area of each of the 24 holes 523.
  • the symbol “U4” shown in FIG. 10 means the cross-sectional area of the hole 524. A relationship represented by the inequality shown in FIG. 10 is established between these cross-sectional areas.
  • the hole 524 provided in the center of the first skeleton 51 has the largest cross-sectional area among the plurality of holes 52 formed in the first skeleton 51.
  • a hole 524 formed in the first skeleton 51 indicated by an arrow A in FIG. 7 is used as a liquid flow path L1 for supplying oil to the speed change mechanism 42.
  • the fluid flow path L1 extends in the axial direction of the case 31 above the first, second, and third brakes 61, 62, 63.
  • the conduit may be exemplified by the fluid flow path L1.
  • the frictional engagement element is exemplified by first, second and third brakes 61, 62, 63.
  • the first, second and third brakes 61, 62, 63 are arranged in the case 31 and are aligned at intervals in the axial direction of the case 31.
  • the first, second, and third brakes 61, 62, 63 lock the transmission mechanism 42.
  • the first brake 61 is located in front of the second brake 62 and the third brake 63.
  • the third brake 63 is located behind the first brake 61 and the second brake 62.
  • Each of the first, second, and third brakes 61, 62, and 63 includes friction plate sets 61a, 62a, and 63a, and hydraulic chambers 61b, 62b, and 63b.
  • Each of the friction plate sets 61a, 62a, 63a includes a fixed side friction plate and a rotation side friction plate.
  • the fixed friction plate is spline-engaged with the case 31.
  • the rotation side friction plate is spline-engaged with a predetermined rotation member.
  • the fixed friction plate and the rotation friction plate are alternately arranged.
  • the fastening oil for moving the piston for fastening the fixed side friction plate and the rotation side friction plate is supplied to the hydraulic chambers 61b, 62, 63b.
  • Each of the first, second, and third brakes 61, 62, and 63 moves the piston toward the friction plate set 61a, 62a, and 63a when the fastening oil is supplied to the hydraulic chambers 61b, 62b, and 63b. .
  • the fixed friction plate is fastened to the rotation side friction plate, and a predetermined rotating member is fixed.
  • the hole 524 that forms the liquid flow path L1 is opened on the inner peripheral surface of the case 1.
  • the hole 524 is in communication with the valve control unit 46.
  • the hole 524 extends from the front end of the transmission case 33 to the rear end of the extension housing 34.
  • the hole 524 is connected to the friction plate sets 61a, 62a, 63a of the first, second, and third brakes 61, 62, 63, respectively.
  • the hole portion 524 is connected to a bearing portion 47 disposed at the rear end portion of the extension housing 34.
  • the oil from the valve control unit 46 is supplied to the friction plate sets 61a, 62a, 63a, the bearing portion 47, and the like through the hole 524 of the first skeleton 51 that forms the liquid flow path L1 extending in the case 31.
  • the plurality of holes 52 extending in the axial direction of the first skeleton 51 are the first skeleton other than the first skeleton 51 indicated by the arrow A in FIG. 7. 51 is formed inside.
  • the hole 524 provided in the central portion of the other first skeleton 51 may be used as a liquid channel through which oil flows.
  • FIG. 11 is a schematic enlarged cross-sectional view of the second skeleton part 56 indicated by the arrow B in FIG. With reference to FIG. 11, the 2nd frame
  • the second skeleton part 56 extends in the circumferential direction of the case 31 and intersects the plurality of first skeleton parts 51. As shown in FIG. 11, the second skeleton part 56 has a substantially circular cross section. Similar to the first skeleton 51, the second skeleton 56 also has a porous structure. That is, the plurality of hole portions 57 are formed inside the second skeleton portion 56. The plurality of hole portions 57 extend in the axial direction of the second skeleton portion 56. Regarding the present embodiment, the second direction is exemplified by the circumferential direction of the case 31.
  • the second skeleton part 56 includes a porous part 56a and a skin layer 56b surrounding the porous part 56a.
  • the plurality of hole portions 57 are formed in the porous portion 56a, but are not formed in the skin layer 56b.
  • the skin layer 56b has a predetermined thickness. Accordingly, the plurality of hole portions 57 are formed inward from the outer peripheral surface of the second skeleton portion 56 by a predetermined thickness (that is, the thickness of the skin layer 56b) or more.
  • Each of the plurality of hole portions 57 has a substantially circular cross section. The cross-sectional area of the hole portion 57 increases from the outer peripheral side of the second skeleton portion 56 inward.
  • the second porous portion is exemplified by the porous portion 56a.
  • the second skin layer is exemplified by the skin layer 56b.
  • the plurality of second holes are exemplified by the plurality of holes 57.
  • FIG. 11 shows 45 holes 571, 45 holes 572, 45 holes 573, 28 holes 574, 18 holes 575 as a plurality of holes 57.
  • One hole 576 is shown.
  • the hole portion 576 has a center that substantially coincides with the center of the cross section of the second skeleton portion 56.
  • the hole 576 is the largest among the plurality of holes 57.
  • the 45 hole portions 571 are formed at substantially equal intervals along a circular outline virtually drawn in the cross section of the second skeleton portion 56.
  • the circular center virtually drawn by the 45 holes 571 substantially coincides with the center of the hole 576.
  • Each of the 45 holes 571 has the smallest cross-sectional area among the plurality of holes 57.
  • the 45 hole portions 572 are formed at substantially equal intervals along a circular outline virtually drawn in the cross section of the second skeleton portion 56.
  • the circle virtually drawn by the 45 holes 572 is smaller than the circle virtually drawn by the 45 holes 571.
  • the circular center virtually drawn by the 45 holes 572 substantially coincides with the center of the hole 577.
  • Each of the 45 holes 572 has a larger cross-sectional area than each of the 45 holes 521, while having a smaller cross-sectional area than the holes 576.
  • the 45 holes 573 are formed at substantially equal intervals along a circular outline virtually drawn in the cross section of the second skeleton part 56.
  • the circle virtually drawn by the 45 holes 573 is smaller than the circle virtually drawn by the 45 holes 572.
  • a circular center virtually drawn by the 45 holes 573 substantially coincides with the center of the hole 576.
  • Each of the 45 holes 573 has a larger cross-sectional area than each of the 45 holes 572, while having a smaller cross-sectional area than the holes 576.
  • the twenty-eight hole portions 574 are formed at substantially equal intervals along a circular outline virtually drawn in the cross section of the second skeleton portion 56.
  • the circle virtually drawn by the 28 holes 574 is smaller than the circle virtually drawn by the 45 holes 573.
  • a circular center virtually drawn by the 28 holes 574 substantially coincides with the center of the hole 576.
  • Each of the 28 holes 574 has a larger cross-sectional area than each of the 45 holes 573, while having a smaller cross-sectional area than the holes 576.
  • the 18 holes 575 are formed at substantially equal intervals along a circular outline virtually drawn in the cross section of the second skeleton part 56.
  • the circle virtually drawn by the 18 holes 575 is smaller than the circle virtually drawn by the 28 holes 574.
  • a circular center virtually drawn by the 18 holes 575 substantially coincides with the center of the hole 576.
  • Each of the 18 holes 575 has a larger cross-sectional area than each of the 28 holes 574, while having a smaller cross-sectional area than the holes 576.
  • the symbol “V1” shown in FIG. 11 means the cross-sectional area of each of the 45 holes 571.
  • the symbol “V2” shown in FIG. 11 means the cross-sectional area of each of the 45 holes 572.
  • the symbol “V3” shown in FIG. 11 means the cross-sectional area of each of the 45 holes 573.
  • the symbol “V4” shown in FIG. 11 means the cross-sectional area of each of the 28 holes 574.
  • the symbol “V5” shown in FIG. 11 means the cross-sectional area of the 18 holes 575.
  • the symbol “V6” shown in FIG. 11 means the cross-sectional area of the hole 576. A relationship represented by the inequality shown in FIG. 11 is established between these cross-sectional areas.
  • the hole 576 provided at the center of the second skeleton 56 is the largest among the plurality of holes 57 formed in the second skeleton 56.
  • a hole 576 formed in the second skeleton portion 56 indicated by an arrow B in FIG. 9 is used as a liquid flow path L2 for supplying oil to the speed change mechanism 42.
  • another line may be exemplified by the fluid flow path L2.
  • the hole 576 that forms the liquid flow path L ⁇ b> 2 is opened on the inner peripheral surface of the case 31.
  • the hole 576 communicates with the valve control unit 46 disposed at the bottom of the case 31.
  • the hole 576 extends upward from the valve control unit 46 along the transmission case 33.
  • the hole 576 is formed at the center of the transmission case 33 in the vertical direction (that is, the height position between the valve control unit 46 and the first skeleton 51 where the fluid flow path L1 is formed). Connected to the hydraulic chamber 61b.
  • the oil from the valve control unit 46 is supplied to the hydraulic chamber 61b of the first brake 61 through the hole 57a of the second skeleton 56 that forms the liquid flow path L2 in the case 31.
  • the plurality of hole portions 57 are arranged inside the second skeleton portion 56 indicated by the arrows C and D in FIG. Extend in the direction.
  • the hole 576 formed at the center of the second skeleton 56 indicated by arrows C and D in FIG. 9 has a larger cross-sectional area than the other holes 57.
  • a hole 576 formed at the center of the second skeleton 56 shown by arrows C and D in FIG. 9 is used as liquid flow paths L3 and L4 for circulating oil.
  • each of the hole 576 that forms the liquid flow paths L3 and L4 is opened on the inner peripheral surface of the case 1.
  • Each of the hole portions 576 forming the liquid flow paths L3 and L4 communicates with the valve control unit 46.
  • Each of the holes 576 forming the liquid flow paths L3 and L4 extends upward along the transmission case 33.
  • Each of the holes 576 forming the liquid flow paths L3 and L4 is connected to the hydraulic chambers 62b and 63b of the second and third brakes 62 and 63 at the center in the vertical direction of the transmission case 33.
  • Oil from the valve control unit 46 is supplied to the hydraulic chambers 62b and 63b of the second and third brakes 62 and 63, respectively, through the holes 57a of the second skeleton part 56 that form the liquid flow paths L3 and L4.
  • the plurality of hole portions 57 are formed inside the second skeleton portion 56 other than the second skeleton portion 56 indicated by arrows B, C, and D in FIG. 9. Is also formed.
  • the hole 576 formed in the center of the other second skeleton part 56 may be used as a liquid channel for circulating oil.
  • the wall surface 60 of the case 31 is disposed so as to close the opening of the skeleton 50 (that is, the opening surrounded by the first skeleton 51 and the second skeleton 56). As shown in FIG. 7, the wall surface portion 60 is a flat plate that is thinner than the skeleton portion 50.
  • the case 31 of the structure of the second embodiment is formed using a 3D printer (that is, a three-dimensional additive manufacturing method).
  • the plurality of holes 52 and 57 are formed inside the skeleton 50 that forms the skeleton of the case 31 by a three-dimensional additive manufacturing method.
  • the skeleton part 50 of the case 31 may be integrated with the wall surface part 60 of the case 31 by a three-dimensional additive manufacturing method.
  • one of the plurality of holes 52 and 57 provided in the skeleton 50 is used as a liquid channel through which oil flows.
  • a plurality of holes may be used as the liquid channel.
  • at least one hole 526 and 576 can be used as a liquid channel through which oil flows.
  • at least one of the holes 526 and 576 may be used as a liquid channel through which a liquid such as cooling water flows.
  • the structure case 31 includes a skeleton 50 and a wall 60.
  • a plurality of holes 52 and 57 extending in the axial direction of the skeleton 50 are formed inside the skeleton 50.
  • the conventional skeleton is very heavy because it is completely solid.
  • the skeleton part 50 of the present embodiment is sufficiently lighter than the conventional skeleton part because a plurality of holes 52 and 57 are formed.
  • the holes 526 and 576 are used as the liquid channels L1, L2, L3, and L4 through which the liquid flows. Accordingly, the holes 526 and 576 are effective for the flow of a liquid such as oil or cooling water supplied to the frictional engagement elements 61, 62, 63 and the bearing 47 provided in the case 31 of the structure. Used.
  • a plurality of hole portions are formed in each of a plurality of skeleton members (that is, a plurality of first skeleton portions and a plurality of second skeleton portions) used for forming the case.
  • some of the plurality of skeleton members used for forming the case may have a solid structure (that is, a structure in which no hole is formed). Even in this case, since the hole is formed in the other skeleton member, the case is reduced in weight.
  • the skeletal member having a solid structure may be selectively used in a part that requires rigidity in the case. In this case, the case can have high rigidity. Or the designer can give a big value to the arrangement
  • the formation pattern of the plurality of holes matches the cross-sectional shape of the skeleton member. That is, if the cross section of the skeleton member is rectangular, the plurality of holes draw a rectangular pattern on the cross section. If the cross section of the skeleton member is circular, the plurality of holes draw a circular pattern on the cross section. However, the formation pattern of the plurality of holes may not match the cross-sectional shape of the skeleton member. When the cross section of the skeleton member is rectangular, the plurality of holes may draw a circular pattern. When the cross section of the skeleton member is circular, the plurality of holes may draw a rectangular pattern.
  • the skeleton member has a rectangular or circular cross section.
  • the cross section of the skeleton member may have other shapes. The designer may determine the cross-sectional shape of the skeleton member so that the rigidity required for the case is obtained. Therefore, the cross section of the skeleton member may be a triangle, a hexagon, or another shape.
  • the principle of the above-described embodiment is not limited to a specific shape of the cross section of the skeleton member.
  • the exemplary case described in connection with the above embodiment mainly includes the following features.
  • the case according to one aspect of the above-described embodiment is used as a case of a vehicle structure in which mechanical elements are accommodated.
  • the case includes a wall surface portion that forms an outer surface of the case, and a skeleton portion that bulges from the wall surface portion inward and outward of the case and is integrated with the wall surface portion.
  • the skeleton part includes a first porous part in which a plurality of first hole parts extending in a first direction are formed, and a first part that does not include the plurality of first hole parts and surrounds the first porous part.
  • at least one skeleton member having a skin layer. The cross-sectional area of the plurality of first holes increases from the outer peripheral surface of the at least one skeleton member toward the center of the at least one skeleton member in a cross section that intersects the first direction.
  • the skeleton bulges out from the wall surface inward and outward of the case and is integrated with the wall surface, so the case has a thick skeleton and has a strong structure.
  • the cross-sectional area of the plurality of first holes increases from the outer peripheral surface of at least one skeleton member toward the center of at least one skeleton member in a cross section intersecting the first direction, and the first porous portion is Since it is surrounded by the first skin layer in which the plurality of first holes are formed, at least one skeleton member can have sufficiently high rigidity. Therefore, the case can also have sufficiently high rigidity.
  • At least one of the plurality of first holes may form a liquid conduit to be supplied to the machine element.
  • At least one of the plurality of first holes forms a liquid conduit to be supplied to the machine element, so that the designer can supply the pipe member to supply the liquid to the machine element. It is not necessary to prepare. Therefore, the designer can also reduce the weight of the vehicle structure.
  • the vehicle structure may be an automatic transmission.
  • the mechanical element may include an oil pump that discharges oil as the fluid, and a plurality of frictional engagement elements disposed at intervals in the first direction.
  • the at least one skeleton member may be a first skeleton portion extending in the first direction.
  • the oil may be supplied from the oil pump through the pipe line to the plurality of frictional engagement elements to drive the plurality of frictional engagement elements.
  • the oil is supplied from the oil pump to the plurality of frictional engagement elements through the valve control unit and the pipeline of the first skeleton part, and drives the plurality of frictional engagement elements. It is not necessary to prepare a tube member for supplying liquid to the element. Therefore, the designer can also reduce the weight of the vehicle structure.
  • the mechanical element may include a valve oil control unit that adjusts a discharge pressure of the oil.
  • the skeleton part may include a second skeleton part extending in the second direction so as to intersect the first skeleton part.
  • the second skeleton part does not include the second porous part in which a plurality of second hole parts extending in the second direction are formed, and the second porous part.
  • a surrounding second skin layer At least one of the plurality of second holes forms another pipe through which oil supplied from the oil pump to the plurality of frictional engagement elements flows through the valve control unit and the pipe. May be.
  • the second skeleton portion has the second porous portion in which a plurality of second hole portions extending in the second direction are formed, and thus does not become excessively heavy. Since the second porous portion is surrounded by the second skin layer that does not include a plurality of second pores, the second skeleton portion can have sufficiently high rigidity as with the first skeleton portion. At least one of the plurality of second holes forms another pipe through which oil supplied from the oil pump to the plurality of frictional engagement elements flows through the valve control unit and the pipe. Therefore, the designer does not need to prepare a pipe member for supplying liquid to the machine element. Therefore, the designer can also reduce the weight of the vehicle structure.
  • the mechanical element may include a valve oil control unit that adjusts a discharge pressure of the oil.
  • the skeleton part may include a plurality of second skeleton parts extending in the second direction so as to intersect the first skeleton part.
  • Each of the plurality of second skeleton parts includes a second porous part in which a plurality of second holes extending in the second direction are formed, and does not include the plurality of second holes, and the second porous part.
  • the plurality of frictional engagement elements may be arranged corresponding to the plurality of second skeleton portions. At least one of the plurality of second holes of each of the plurality of second skeleton parts is configured such that oil supplied from the oil pump to the corresponding frictional engagement element flows through the valve control unit and the conduit. Another pipe line may be formed.
  • each of the plurality of second skeleton portions has the second porous portion in which the plurality of second hole portions extending in the second direction is formed, and thus does not become excessively heavy. Since the second porous portion is surrounded by the second skin layer that does not include the plurality of second pores, each of the plurality of second skeleton portions can have sufficiently high rigidity, similarly to the first skeleton portion. . At least one of the plurality of second holes of each of the plurality of second skeleton portions is another pipe through which oil supplied from the oil pump to the corresponding frictional engagement element flows through the valve control unit and the pipe line. Since the path is formed, the designer does not have to prepare a pipe member for supplying liquid to the machine element. Therefore, the designer can also reduce the weight of the vehicle structure.
  • the pipe line formed by the first skeleton portion may extend in the first direction above the plurality of frictional engagement elements.
  • the pipe line formed by each of the plurality of second skeleton parts extends upward from the valve control unit disposed at the bottom of the case, and extends between the pipe line extending in the first direction and the valve control unit. It may be connected to the corresponding frictional engagement element at a height position between.
  • the pipe line formed by the first skeleton part extends in the first direction above the plurality of friction fastening elements, while the pipe line formed by each of the plurality of second skeleton parts is a case.
  • the first skeleton portion is formed at the height position between the valve control unit arranged at the bottom of the valve control unit and in the height direction between the pipe line extending in the first direction and the valve control unit.
  • the pipe is not connected to the pipe formed by each of the plurality of second skeleton parts. Therefore, the oil flowing through the pipe line formed by the first skeleton part does not affect the pipe line formed by each of the plurality of second skeleton parts. Therefore, the control over the supply of oil to the frictional engagement element is simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)

Abstract

本出願は、機械要素が収容される車両用構造体のケースを開示する。前記ケースは、前記ケースの外表面を形成する壁面部と、前記ケースの内方及び外方へ前記壁面部から膨出し、且つ、前記壁面部と一体化された骨格部と、を備える。前記骨格部は、第1方向に延びる複数の第1孔部が形成された第1多孔質部と、前記複数の第1孔部を含まず、且つ、前記第1多孔質部を取り囲む第1スキン層と、を有する少なくとも1つの骨格部材を含む。前記複数の第1孔部の断面積は、前記第1方向に交差する断面において、前記少なくとも1つの骨格部材の外周面から前記少なくとも1つの骨格部材の中心に向けて大きくなる。

Description

構造体のケース
 本発明は、構造体のケースに関する。
 高い剛性及び小さな重量が、車両に搭載される変速機といった構造体のケースに要求されるので、ケースは、多くの場合、アルミニウムといった金属材料を用いて、全体的に形成されている。リブが、構造体の金属製ケースに形成されることもある。この場合、設計者は、比重の小さな合金をケースの金属材料に利用し、且つ、高い剛性をケースに与えることができる。加えて、設計者は、ケースの肉厚を小さな値に設定することもできる。しかしながら、金属材料がケース全体に利用されるので、設計者は、リブを用いても、軽量化の限界に直面することもある。
 樹脂が、構造体のケースの一部に利用されることもある。金属製のフレーム部材及び樹脂製のカバー部材が組み合わせられた構造を有するケースは、既知である。特許文献1は、変速機のケースの一部を構成するサイドカバーを開示する。特許文献1のサイドカバーは、複数の金属製フレーム部材と、樹脂製のカバー部材と、を含む。カバー部材は、複数のフレーム部材の間に形成された開口部を塞ぐ。
 特許文献1に教示されるように、金属製のフレーム部材と樹脂製のカバー部材との組み合わせは、構造体のケースの高い剛性と軽量化とに貢献することができる。しかしながら、車両の燃費性能向上を目的として、更なる軽量化が、構造体のケースに要求されている。
特開2013-117240号公報
 本発明は、高い剛性を有する軽量の構造体のケース及びケースの製造方法を提供することを目的とする。
 本発明の一の局面に係るケースは、機械要素が収容される車両用構造体のケースとして用いられる。ケースは、前記ケースの外表面を形成する壁面部と、前記ケースの内方及び外方へ前記壁面部から膨出し、且つ、前記壁面部と一体化された骨格部と、を備える。前記骨格部は、第1方向に延びる複数の第1孔部が形成された第1多孔質部と、前記複数の第1孔部を含まず、且つ、前記第1多孔質部を取り囲む第1スキン層と、を有する少なくとも1つの骨格部材を含む。前記複数の第1孔部の断面積は、前記第1方向に交差する断面において、前記少なくとも1つの骨格部材の外周面から前記少なくとも1つの骨格部材の中心に向けて大きくなるように設定される。
 上述のケースは、軽量であり、且つ、高い剛性を有することができる。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
第1実施形態に係る構造体のケースの側面図である。 図1に示される構造体のケースの上面図である。 図2に示されるY3-Y3線に沿った構造体のケースの断面図である。 図1に示される構造体のケースの第1骨格部の断面図である。 図1に示される構造体のケースの第2骨格部の断面図である。 第2実施形態に係る構造体のケースの側面図である。 図6に示されるY7-Y7線に沿った構造体のケースの断面図である。 図6に示されるY8-Y8線に沿った構造体のケースの断面図である。 図7に示されるY9-Y9線に沿った構造体のケースの断面図である。 図6に示される構造体のケースの第1骨格部の断面図である。 図6に示される構造体のケースの第2骨格部の断面図である。
<第1実施形態>
 図1は、第1実施形態に係る構造体のケースの側面図である。図2は、前記構造体のケースの上面図である。また、図3は、図2に示されるY3-Y3線に沿う構造体のケースの断面図である。図1乃至図3を参照して、第1実施形態のケースが説明される。「前」、「後」、「左」、「右」、「上」及び「下」といった方向を表す用語は、車体を基準に用いられる。
 図1及び図2に示されるように、第1実施形態に係る構造体のケース1は、車両に搭載される動力伝達装置を構成する変速機のケースとして利用される。車両は、フロントエンジン・リアドライブ車である。変速機は、縦置き式の手動変速機である。変速機の入力軸S1(図3を参照)は、変速機の出力軸(図示せず)と略同一の軸線上に配置される。本実施形態に関して、車両用構造体は、手動変速機によって例示される。
 変速機構(図示せず)は、ケース1内に配設される。変速機構は、車体の前後方向に延びる軸線を有する。変速機構は、上述の入力軸S1に加えて、出力軸と、カウンタ軸S2(図3を参照)と、を有する。入力軸S1は、ケース1の前方に配設された駆動源(たとえば、エンジン)に、クラッチを介して接続される。出力軸は、入力軸S1と同一の軸線上に配置されている。カウンタ軸S2は、入力軸S1及び出力軸に平行である。入力軸S1、出力軸及びカウンタ軸S2は、ケース1によって回転可能に支持されている。本実施形態に関して、機械要素は、変速機構によって例示される。
 ケース1は、本体部2と、エクステンションハウジング3と、を含む。本体部2は、クラッチハウジングと、クラッチハウジングと一体的に形成されたトランスミッションケースと、を含む。クラッチは、クラッチハウジングに収容される。変速機構は、トランスミッションケースに収容される。
 エクステンションハウジング3は、本体部2の後方に配置されている。エクステンションハウジング3は、本体部2に結合されている。本体部2は、本体部2の後端部を形成するフランジ部2aを有する。エクステンションハウジング3は、エクステンションハウジング3の前端部を形成するフランジ部3aを有する。フランジ部2a,3aは、ボルトとナットとによって、締結される。
 ケース1は、骨格部10と、複数の壁面部20と、を含む。骨格部10は、ケース1の骨格を形成する。複数の壁面部20は、ケース1の骨格部10を除く部分(すなわち、非骨格部)を形成する。図3に示されるように、骨格部10は、ケース1の内方及び外方に壁面部20から膨出する。
 骨格部10は、複数の第1骨格部11と、複数の第2骨格部16と、を含む。複数の第1骨格部11は、車体の前後方向(すなわち、ケース1の軸方向)に延びる。複数の第2骨格部16は、ケース1の軸方向と直交する断面において、ケース1の周方向に延びる。図1及び図2に示されるように、複数の第1骨格部11及び複数の第2骨格部16は、直交格子を形成する。複数の壁面部20は、複数の第1骨格部11と複数の第2骨格部16とによって囲まれた複数の矩形状空間を塞ぎ、ケース1の外表面の大部分を形成する。複数の第1骨格部11、複数の第2骨格部16及び複数の壁面部20は、互いに一体化される。本実施形態に関して、骨格部材は、第1骨格部11又は第2骨格部16によって例示される。第1方向は、ケース1の軸方向又は周方向によって例示される。
 図3は、ケース1の軸方向に直交する断面を示す。図3に示されるように、複数の第1骨格部11は、ケース1の周方向に、間隔を空けて並べられる。図3は、複数の第1骨格部11に加えて、入力軸S1及びカウンタ軸S2を示す。入力軸S1及びカウンタ軸S2は、ケース1内に配設されている。図3は、ギアG1,G2を更に示す。ギヤG1は、入力軸S1に取り付けられている。ギヤG2は、カウンタ軸S2に取り付けられている。ギヤG2は、ギヤG1と噛み合う。
 図4は、複数の第1骨格部11のうち1つの拡大断面図である。図1乃至図4を参照して、第1骨格部11が説明される。
 図1及び図2に示されるように、第1骨格部11は、ケース1の軸方向に延びる。図3及び図4に示されるように、第1骨格部11は、ケース1の軸方向に直交する略四角形状の断面を有する。図4に示されるように、第1骨格部11は、多孔質構造を有する。第1骨格部11の断面内に現れる複数の孔部12は、第1骨格部11の軸方向に延びる。本実施形態に関して、複数の第1孔部は、複数の孔部12によって例示されてもよい。
 第1骨格部11は、多孔質部11aと、多孔質部11aを取り囲むスキン層11bと、を有する。複数の孔部12は、多孔質部11aに形成されている一方で、スキン層11bには形成されていない。スキン層11bは、所定の厚さを有する。したがって、複数の孔部12は、第1骨格部11の外周面から所定の厚さ(すなわち、スキン層11bの厚さ)以上離れた位置に形成される。複数の孔部12それぞれは、略円形の断面を有する。第1骨格部11の断面の中心又は中心の近くに形成された孔部12は、スキン層11bの近くに形成された孔部12よりも断面積において大きい。すなわち、孔部12の断面積は、第1骨格部11の外周側から内周側に向けて大きくなるように設定されている。本実施形態に関して、第1多孔質部は、多孔質部11aによって例示されてもよい。第1スキン層は、スキン層11bによって例示されてもよい。
 図4は、複数の孔部12として、48個の孔部121と、32個の孔部122と、24個の孔部123と、8個の孔部124と、1個の孔部125と、を示す。孔部125は、第1骨格部11の断面の中心に略一致する中心を有する。孔部125は、複数の孔部12の中で最も大きい。48個の孔部121は、第1骨格部11の断面内に仮想的に描かれた正方形状の輪郭に沿って、略等間隔に形成されている。48個の孔部121によって仮想的に描かれる正方形の中心は、孔部125の中心に略一致する。48個の孔部121それぞれは、複数の孔部12の中で最も小さい断面積を有する。32個の孔部122は、第1骨格部11の断面内に仮想的に描かれた正方形状の輪郭に沿って、略等間隔に形成されている。32個の孔部122によって仮想的に描かれる正方形は、48個の孔部121によって仮想的に描かれる正方形よりも小さい。32個の孔部122によって仮想的に描かれる正方形の中心は、孔部125の中心に略一致する。32個の孔部122それぞれは、48個の孔部121それぞれよりも大きな断面積を有する一方で、孔部125よりも小さい断面積を有する。24個の孔部123は、第1骨格部11の断面内に仮想的に描かれた正方形状の輪郭に沿って、略等間隔に形成されている。24個の孔部123によって仮想的に描かれる正方形は、32個の孔部122によって仮想的に描かれる正方形よりも小さい。24個の孔部123によって仮想的に描かれる正方形の中心は、孔部125の中心に略一致する。24個の孔部123それぞれは、32個の孔部122それぞれよりも大きな断面積を有する一方で、孔部125よりも小さい断面積を有する。8個の孔部124は、第1骨格部11の断面内に仮想的に描かれた正方形状の輪郭に沿って、略等間隔に形成されている。8個の孔部124によって仮想的に描かれる正方形は、24個の孔部123によって仮想的に描かれる正方形よりも小さい。8個の孔部124によって仮想的に描かれる正方形の中心は、孔部125の中心に略一致する。8個の孔部124それぞれは、24個の孔部123それぞれよりも大きな断面積を有する一方で、孔部125よりも小さい断面積を有する。
 図4に示される記号「S1」は、48個の孔部121それぞれの断面積を意味する。図4に示される記号「S2」は、32個の孔部122それぞれの断面積を意味する。図4に示される記号「S3」は、24個の孔部123それぞれの断面積を意味する。図4に示される記号「S4」は、8個の孔部124それぞれの断面積を意味する。図4に示される記号「S5」は、孔部125の断面積を意味する。これらの断面積の間には、図4に示される不等式によって表される関係が成立する。
 図5は、図2に示されるY5-Y5線に沿った複数の第2骨格部16のうち1つの断面を示している。図1乃至図3及び図5を参照して、第2骨格部16が説明される。
 図1及び図2に示されるように、複数の第2骨格部16は、ケース1の軸方向に、間隔を空けて配置されている。複数の第2骨格部16それぞれは、ケース1の周方向に延びる。図5に示されるように、複数の第2骨格部16それぞれは、ケース1の周方向に直交する略円形状の断面を有する。第1骨格部11と同様に、第2骨格部16は、多孔質構造を有する。すなわち、複数の孔部17は、第2骨格部16内に形成される。複数の孔部17それぞれは、第2骨格部16の軸方向(すなわち、第2骨格部16の延設方向)に延びる。
 複数の第2骨格部16それぞれは、多孔質部16aと、スキン層16bと、を有する。スキン層16bは、多孔質部16aを取り囲む。複数の孔部17は、多孔質部16aに形成される一方で、スキン層16bには形成されない。スキン層16bは、所定の厚さを有する。したがって、複数の孔部17は、第2骨格部16の外周面から、スキン層16bの厚さ以上離れた位置において形成される。複数の孔部17それぞれは、略円形状の断面を有する。第2骨格部16の断面の中心又は中心の近くに形成された孔部17は、スキン層16bの近くに形成された孔部17よりも断面積において大きい。すなわち、孔部17の断面積は、第2骨格部16の外周側から内周側に向けて大きくなるように設定される。本実施形態に関して、第1多孔質部は、多孔質部16aによって例示されてもよい。第1スキン層は、スキン層16bによって例示されてもよい。
 図5は、複数の孔部17として、45個の孔部171と、45個の孔部172と、45個の孔部173と、28個の孔部174と、18個の孔部175と、7個の孔部176と、1つの孔部177と、を示す。孔部177は、第2骨格部16の断面の中心に略一致する中心を有する。孔部177は、複数の孔部17の中で最も大きい。45個の孔部171は、第2骨格部16の断面内に仮想的に描かれた円形状の輪郭に沿って、略等間隔に形成されている。45個の孔部171によって仮想的に描かれる円形の中心は、孔部177の中心に略一致する。45個の孔部171それぞれは、複数の孔部17の中で最も小さい断面積を有する。45個の孔部172は、第2骨格部16の断面内に仮想的に描かれた円形状の輪郭に沿って、略等間隔に形成されている。45個の孔部172によって仮想的に描かれる円形は、45個の孔部171によって仮想的に描かれる円形よりも小さい。45個の孔部172によって仮想的に描かれる円形の中心は、孔部177の中心に略一致する。45個の孔部172それぞれは、45個の孔部121それぞれよりも大きな断面積を有する一方で、孔部177よりも小さい断面積を有する。45個の孔部173は、第2骨格部16の断面内に仮想的に描かれた円形状の輪郭に沿って、略等間隔に形成されている。45個の孔部173によって仮想的に描かれる円形は、45個の孔部172によって仮想的に描かれる円形よりも小さい。45個の孔部173によって仮想的に描かれる円形の中心は、孔部177の中心に略一致する。45個の孔部173それぞれは、45個の孔部172それぞれよりも大きな断面積を有する一方で、孔部177よりも小さい断面積を有する。28個の孔部174は、第2骨格部16の断面内に仮想的に描かれた円形状の輪郭に沿って、略等間隔に形成されている。28個の孔部174によって仮想的に描かれる円形は、45個の孔部173によって仮想的に描かれる円形よりも小さい。28個の孔部174によって仮想的に描かれる円形の中心は、孔部177の中心に略一致する。28個の孔部174それぞれは、45個の孔部173それぞれよりも大きな断面積を有する一方で、孔部177よりも小さい断面積を有する。18個の孔部175は、第2骨格部16の断面内に仮想的に描かれた円形状の輪郭に沿って、略等間隔に形成されている。18個の孔部175によって仮想的に描かれる円形は、28個の孔部174によって仮想的に描かれる円形よりも小さい。18個の孔部175によって仮想的に描かれる円形の中心は、孔部177の中心に略一致する。18個の孔部175それぞれは、28個の孔部174それぞれよりも大きな断面積を有する一方で、孔部177よりも小さい断面積を有する。7個の孔部176は、第2骨格部16の断面内に仮想的に描かれた円形状の輪郭に沿って、略等間隔に形成されている。7個の孔部176によって仮想的に描かれる円形は、18個の孔部175によって仮想的に描かれる円形よりも小さい。7個の孔部176によって仮想的に描かれる円形の中心は、孔部177の中心に略一致する。7個の孔部176それぞれは、18個の孔部175それぞれよりも大きな断面積を有する一方で、孔部177よりも小さい断面積を有する。
 図5に示される記号「T1」は、45個の孔部171それぞれの断面積を意味する。図5に示される記号「T2」は、45個の孔部172それぞれの断面積を意味する。図5に示される記号「T3」は、45個の孔部173それぞれの断面積を意味する。図5に示される記号「T4」は、28個の孔部174それぞれの断面積を意味する。図5に示される記号「T5」は、18個の孔部175の断面積を意味する。図5に示される記号「T6」は、7個の孔部176の断面積を意味する。図5に示される記号「T7」は、孔部177の断面積を意味する。これらの断面積の間には、図5に示される不等式によって表される関係が成立する。
 複数の壁面部20は、第1骨格部11と第2骨格部16とによって囲まれた開口部を塞ぐ。図3に示されるように、複数の壁面部20それぞれは、骨格部10(すなわち、第1骨格部11及び/又は第2骨格部12)よりも薄い。複数の壁面部20それぞれは、全体的に、平板形状である。
 ケース1は、3Dプリンタを用いて、形成される(いわゆる三次元積層造形法)。3Dプリンタが用いられるならば、骨格部10内の複数の孔部12,17は、容易に形成される。加えて、3Dプリンタは、複数の壁面部20を骨格部10に容易に一体化することができる。
 本実施形態の原理は、三次元積層造形法の特定のプリント技術に限定されない。アルミニウムといった金属が、ケース1の材料として用いられるならば、作業者は、金属粉末を敷き詰め、金属粉末の層を形成してもよい。作業者は、金属粉末の層の所望の位置に、電子ビーム又はレーザを照射してもよい。電子ビーム又はレーザの照射の結果、照射領域の金属粉末は、焼結される。焼結された金属粉末は、ケース1の一部を形成する。作業者は、更にその後、金属粉末の新たな層を形成し、ケース1の形状に適合するように、電子ビーム又はレーザを照射する。金属粉末の層の形成及び電子ビーム又はレーザの照射が繰り返される結果(すなわち、粉末焼結積層造形法の結果)、ケース1は、容易且つ精度よく形成される。必要に応じて、作業者は、3Dプリンタによって形成されたケースに仕上加工を施与してもよい。
 骨格部10が、三次元積層造形法によって形成されると、金属粉末は、骨格部10の内部に形成される孔部12,17に残留することになる。したがって、孔部12,17からケース1の内表面又は外表面に連なる連通孔が、形成されてもよい。孔部12,17に残留している金属粉末は、連通孔を通じて孔部12,17から除去される。
 本実施形態に関して、骨格部10は、三次元積層造形法によって、壁面部20と一体的に形成されている。しかしながら、作業者は、三次元積層造形法を用いて、骨格部10を作成する一方で、壁面部20をダイカスト鋳造によって形成してもよい。たとえば、作業者は、複数の第1骨格部11及び複数の第2骨格部16を一体的に形成し、骨格部10を作成することができる。作成された骨格部10は、成形型内に配置される。その後、溶融された金属材料(たとえば、アルミニウム)が、成形型内に供給され(ダイカスト鋳造)、骨格部10と一体化された壁面部20が形成される。
 更に代替的に、樹脂材料を利用する射出成形が、ダイカスト鋳造に代えて壁面部20の成形に利用されてもよい。たとえば、作業者は、複数の第1骨格部11及び複数の第2骨格部16を一体的に形成し、骨格部10を作成することができる。作成された骨格部10は、成形型内に配置される。その後、溶融された熱可塑性樹脂が、成形型内に射出され、骨格部10と一体化された壁面部20が形成される。
 本実施形態に関して、骨格部10は、ケース1の軸方向に延びる複数の第1骨格部11と、ケース1の周方向に延びる複数の第2骨格部16と、を含む。設計者は、トポロジ最適化手法を用いて、最適な形状を有する骨格部を設計してもよい。たとえば、設計者は、トポロジ最適化手法を用いて、所望の剛性を有する最も軽量化された形状をケースに与えることができる。
 トポロジ最適化手法を用いる設計者は、ケースの解析モデルを作成してもよい。解析モデルの内部空間は、クラッチや変速機構といった構成要素が配置された部分を除いて充填されている。設計者は、曲げ剛性や捻り剛性といった剛性に関する所定の制約条件を、解析モデルに適用し、剛性の向上に寄与する部位及び剛性の向上に寄与しない部位を見極めてもよい。設計者は、剛性の向上に寄与しない部位に空間を形成する一方で、剛性の向上に寄与する部位を解析モデルに残存させる。設計者は、解析モデルに最終的に残存する部位の形状を、ケースの形状として設定することができる。
 本実施形態に関して、骨格部10の軸方向に延びる複数の孔部12,17が、骨格部10の内部に形成される。従来の骨格部は、完全に中実であるので、非常に重い。本実施形態の骨格部10は、複数の孔部12,17が形成されているので、従来の骨格部よりも十分に軽量である。
 上述の如く、複数の孔部12は、第1骨格部11の延設軸に交差する断面に現れる。同様に、複数の孔部17は、第2骨格部16の延設軸に交差する断面に現れる。第1骨格部11及び第2骨格部16の外周面の近くに形成された孔部12,17は、第1骨格部11及び第2骨格部16の中心(すなわち、延設軸)或いは中心近くに形成された孔部12,17よりも断面積において小さい。すなわち、孔部12,17の断面積は、第1骨格部11及び第2骨格部16の外周面から中心に向けて大きくなる。断面積において共通する複数の孔部が分散された骨格部材の剛性は、低くなりやすい。一方、本実施形態の孔部12,17の断面積は、第1骨格部11及び第2骨格部16の外周面から中心に向けて大きくなるので、第1骨格部11及び第2骨格部16の剛性は、高い水準に維持される。
 複数の孔部12、17は、スキン層11b,16bに囲まれた多孔質部11a,16aにのみ形成される。複数の孔部12、17は、スキン層11b,16bには形成されないので、第1骨格部11及び第2骨格部16の外周面から所定の深さ(すなわち、スキン層11b、16bの厚さ)の領域は、中実である。したがって、第1骨格部11及び第2骨格部16の剛性は、高い水準に維持される。
 本実施形態に関して、骨格部10は、三次元積層造形法によって形成される。この結果、第1骨格部11及び第2骨格部16の軸方向に延びる複数の孔部12,17は、第1骨格部11及び第2骨格部16内に容易に形成される。したがって、従来の中実の骨格部よりも非常に軽い骨格部10は、三次元積層造形法によって容易に作成されることになる。
<第2実施形態>
 図6は、第2実施形態の構造体のケースの側面図である。図7は、図6に示されるY7-Y7線に沿う構造体のケースの断面図である。図8は、図6に示されるY8-Y8線に沿う構造体のケースの断面図である。図9は、図7に示されるY9-Y9線に沿った構造体のケースの断面図である。図6乃至図9は、ケース内に配設される構成要素も示されている。
 第1実施形態の構造体のケースと同様に、第2実施形態の構造体のケース31は、ケース31の骨格を形成する骨格部とケース31の骨格部を除く部分である壁面部とを含む。骨格部の内部は、多孔質構造である。すなわち、骨格部の軸方向に延びる複数の孔部が、骨格部の内部に形成される。複数の孔部の少なくとも1つの孔部は、オイルといった液体を流通させるための液体流路として用いられる。
 図6乃至図9に示されるように、第2実施形態の構造体のケース31は、車両に搭載される動力伝達装置を構成する変速機のケースである。変速機は、フロントエンジン・リアドライブ車に搭載される縦置き式の自動変速機である。変速機の入力軸は、変速機の出力軸と略同一の軸線上に配置されている。本実施形態に関して、車両用構造体は、自動変速機によって例示される。
 トルクコンバータ41及び変速機構42は、ケース31内に配置されている。トルクコンバータは、ケース31の前方に配設されるエンジンといった駆動源に連結されている。変速機構42は、トルクコンバータ41の出力部に連結されている。変速機構42の軸線は、車体の前後方向に延びている。
 変速機構42は、入力軸43と、出力軸44と、複数のプラネタリギヤセット(遊星歯車機構)と、クラッチやブレーキといった複数の摩擦締結要素と、を含む。入力軸43は、トルクコンバータ41の出力部に連結されている。出力軸44は、入力軸43と同一軸線上に配置されている。変速機構42は、摩擦締結要素を選択的に締結し、プラネタリギヤセットそれぞれを経由する動力伝達経路を切り換える。この結果、変速機構42は、車両の運転状態に適合するように適切な変速段を達成することができる。
 オイルポンプ45及びバルブコントロールユニット46が、ケース31内に更に配置される。オイルポンプ45は、トルクコンバータ41の後方に配設されている。オイルポンプ45は、駆動源の回転によって駆動され、オイルを吐出する。バルブコントロールユニット46は、変速機構42の下方に配設されている。バルブコントロールユニット46は、摩擦締結要素などに供給されるオイルの圧力を制御する油圧制御回路を有する。バルブコントロールユニット46は、オイルポンプ45の吐出圧を摩擦締結要素に供給するライン圧に調整するための油圧制御弁を有する。バルブコントロールユニット46は、クラッチやブレーキといった摩擦締結要素に締結油圧を供給する油圧制御弁を更に有する。本実施形態に関して、機械要素は、トルクコンバータ41、変速機構42、オイルポンプ45及びバルブコントロールユニット46によって例示される。
 本実施形態に関して、締結用オイルは、バルブコントロールユニット46から、クラッチやブレーキといった摩擦締結要素に供給される。オイルポンプ45の吐出圧をライン圧に調整するための油圧制御弁などから排出されるオイルは、潤滑用オイルとして、摩擦締結要素の摩擦板間に生じる摩擦熱の冷却や入力軸43及び出力軸44の軸受部47の潤滑などのために摩擦締結要素や軸受部47などに供給される。
 ケース31は、コンバータハウジング32と、トランスミッションケース33と、エクステンションハウジング34と、を含む。トルクコンバータ41は、コンバータハウジング32に収納される。変速機構42は、トランスミッションケース33に収納される。エクステンションハウジング34は、トランスミッションケース33の後方に配置される。エクステンションハウジング34は、トランスミッションケース33に結合されている。
 フランジ部32aは、コンバータハウジング32の後端部を形成する。フランジ部33aは、トランスミッションケース33の車体の前端部を形成する。フランジ部32aは、ボルト及びナットによって、フランジ部33aに締結される。
 フランジ部33bは、トランスミッションケース33の後端部を形成する。フランジ部34bは、エクステンションハウジング34の前端部を形成する。フランジ部33bは、ボルト及びナットによって、フランジ部34bに締結される。この結果、ケース31が、形成される。
 ケース1と同様に、ケース31は、骨格部50と、壁面部60と、を含む。骨格部50は、ケース31の骨格を形成する。壁面部60は、ケース31の骨格部50を除く部分を形成する。骨格部50は、複数の第1骨格部51と、複数の第2骨格部56と、を含む。複数の第1骨格部51は、車体の前後方向(すなわち、ケース31の軸方向)に延びる。複数の第2骨格部56は、ケース31の軸方向と直交する断面において、ケース31の周方向に延びる。
 図7に示されるように、複数の第1骨格部51は、ケース31の軸方向と直交する断面において、ケース31の周方向に離間している。図7は、ケース1内に配設される変速機構42及びバルブコントロールユニット46を示す。
 図10は、図7の矢印Aによって示される第1骨格部51の概略的な拡大断面図である。図10を参照して、第1骨格部51が説明される。
 第1骨格部51は、ケース31の軸方向に延びる。図7及び図10に示されるように、略四角形状の断面を有する。第1骨格部51は、多孔質構造を有する。すなわち、複数の孔部52は、第1骨格部51の内部に形成される。複数の孔部52は、第1骨格部51の軸方向に延びる。本実施形態に関して、骨格部材は、第1骨格部51によって例示される。第1方向は、ケース31の軸方向によって例示される。
 第1骨格部51は、多孔質部51aと、多孔質部51aを取り囲むスキン層51bと、を有する。複数の孔部52は、多孔質部51aに形成される一方で、スキン層51bには形成されない。スキン層51bは、所定の厚さを有する。したがって、複数の孔部52は、第1骨格部51の外周面から所定厚さ(スキン層51bの厚さ)以上、内方に形成される。複数の孔部52それぞれは、略円形状の断面を有する。孔部52の断面積は、第1骨格部51の外周から内方に向けて大きくなる。
 図10は、複数の孔部52として、48個の孔部521と、32個の孔部522と、24個の孔部523と、1個の孔部524と、を示す。孔部524は、第1骨格部51の断面の中心に略一致する中心を有する。孔部524は、複数の孔部52の中で最も大きい。48個の孔部521は、第1骨格部51の断面内に仮想的に描かれた正方形状の輪郭に沿って、略等間隔に形成されている。48個の孔部521によって仮想的に描かれる正方形の中心は、孔部524の中心に略一致する。48個の孔部521それぞれは、複数の孔部52の中で最も小さい断面積を有する。32個の孔部522は、第1骨格部51の断面内に仮想的に描かれた正方形状の輪郭に沿って、略等間隔に形成されている。32個の孔部522によって仮想的に描かれる正方形は、48個の孔部521によって仮想的に描かれる正方形よりも小さい。32個の孔部522によって仮想的に描かれる正方形の中心は、孔部525の中心に略一致する。32個の孔部522それぞれは、48個の孔部521それぞれよりも大きな断面積を有する一方で、孔部524よりも小さい断面積を有する。24個の孔部523は、第1骨格部51の断面内に仮想的に描かれた正方形状の輪郭に沿って、略等間隔に形成されている。24個の孔部523によって仮想的に描かれる正方形は、32個の孔部522によって仮想的に描かれる正方形よりも小さい。24個の孔部523によって仮想的に描かれる正方形の中心は、孔部524の中心に略一致する。24個の孔部523それぞれは、32個の孔部522それぞれよりも大きな断面積を有する一方で、孔部524よりも小さい断面積を有する。
 図10に示される記号「U1」は、48個の孔部521それぞれの断面積を意味する。図10に示される記号「U2」は、32個の孔部522それぞれの断面積を意味する。図10に示される記号「U3」は、24個の孔部523それぞれの断面積を意味する。図10に示される記号「U4」は、孔部524の断面積を意味する。これらの断面積の間には、図10に示される不等式によって表される関係が成立する。
 本実施形態に関して、第1骨格部51の中央部に設けられる孔部524は、第1骨格部51に形成される複数の孔部52の中で最も大きな断面積を有する。図7の矢印Aによって示される第1骨格部51の内部に形成される孔部524は、変速機構42へオイルを供給するための液体流路L1として用いられる。流体流路L1は、第1、第2及び第3ブレーキ61、62、63の上方でケース31の軸方向に延びる。本実施形態に関して、管路は、流体流路L1によって例示されてもよい。摩擦締結要素は、第1、第2及び第3ブレーキ61、62、63によって例示される。
 図9に示されるように、第1、第2及び第3ブレーキ61、62、63は、ケース31内に配置され、ケース31の軸方向において、間隔をおいて整列される。第1、第2及び第3ブレーキ61、62、63は、変速機構42を係止する。第1ブレーキ61は、第2ブレーキ62及び第3ブレーキ63の前方に位置する。第3ブレーキ63は、第1ブレーキ61及び第2ブレーキ62の後方に位置する。第1、第2、第3ブレーキ61、62、63それぞれは、摩擦板セット61a、62a、63aと、油圧室61b、62b、63bと、を有する。摩擦板セット61a、62a、63aそれぞれは、固定側摩擦板と、回転側摩擦板と、を有する。固定側摩擦板は、ケース31にスプライン係合されている。回転側摩擦板は、所定の回転部材にスプライン係合されている。固定側摩擦板及び回転側摩擦板は、交互に配置されている。固定側摩擦板と回転側摩擦板とを締結するためのピストンを移動させる締結用オイルは、油圧室61b、62,63bに供給される。
 第1、第2、第3ブレーキ61、62、63それぞれは、油圧室61b、62b、63bに締結用オイルが供給されたときに、ピストンを摩擦板セット61a、62a、63aに向けて移動させる。この結果、固定側摩擦板は、回転側摩擦板に締結され、所定の回転部材が固定される。
 液体流路L1を形成する孔部524は、ケース1の内周面に開口されている。孔部524は、バルブコントロールユニット46に連通されている。孔部524は、トランスミッションケース33の前端部からエクステンションハウジング34の後端部に延びる。孔部524は、第1、第2、第3ブレーキ61、62、63の摩擦板セット61a、62a、63aそれぞれに繋がる。加えて、孔部524は、エクステンションハウジング34の後端部に配設された軸受部47に繋がる。
 バルブコントロールユニット46からのオイルは、ケース31内で延びる液体流路L1を形成する第1骨格部51の孔部524を通じて、摩擦板セット61a、62a、63aや軸受部47などに供給される。
 図10に示される第1骨格部51と同様に、第1骨格部51の軸方向に延びる複数の孔部52は、図7の矢印Aによって示される第1骨格部51以外の第1骨格部51の内部に形成される。他の第1骨格部51の中央部に設けられる孔部524は、オイルが流通される液体流路として用いられてもよい。
 図11は、図9の矢印Bによって示される第2骨格部56の概略的な拡大断面図である。図11を参照して、第2骨格部56が説明される。
 第2骨格部56は、ケース31の周方向に延び、複数の第1骨格部51と交差する。図11に示されるように、第2骨格部56は、略円形状の断面を有する。第1骨格部51と同様に、第2骨格部56も、多孔質構造を有する。すなわち、複数の孔部57は、第2骨格部56の内部に形成される。複数の孔部57は、第2骨格部56の軸方向に延びる。本実施形態に関して、第2方向は、ケース31の周方向によって例示される。
 第2骨格部56は、多孔質部56aと、多孔質部56aを取り囲むスキン層56bと、を有する。複数の孔部57は、多孔質部56aに形成される一方で、スキン層56bには形成されない。スキン層56bは、所定の厚さを有する。したがって、複数の孔部57は、第2骨格部56の外周面から所定厚さ(すなわち、スキン層56bの厚さ)以上、内方に形成されている。複数の孔部57それぞれは、略円形状の断面を有する。孔部57の断面積は、第2骨格部56の外周側から内方に向けて大きくなる。本実施形態に関して、第2多孔質部は、多孔質部56aによって例示される。第2スキン層は、スキン層56bによって例示される。複数の第2孔部は、複数の孔部57によって例示される。
 図11は、複数の孔部57として、45個の孔部571と、45個の孔部572と、45個の孔部573と、28個の孔部574と、18個の孔部575と、1つの孔部576と、を示す。孔部576は、第2骨格部56の断面の中心に略一致する中心を有する。孔部576は、複数の孔部57の中で最も大きい。45個の孔部571は、第2骨格部56の断面内に仮想的に描かれた円形状の輪郭に沿って、略等間隔に形成されている。45個の孔部571によって仮想的に描かれる円形の中心は、孔部576の中心に略一致する。45個の孔部571それぞれは、複数の孔部57の中で最も小さい断面積を有する。45個の孔部572は、第2骨格部56の断面内に仮想的に描かれた円形状の輪郭に沿って、略等間隔に形成されている。45個の孔部572によって仮想的に描かれる円形は、45個の孔部571によって仮想的に描かれる円形よりも小さい。45個の孔部572によって仮想的に描かれる円形の中心は、孔部577の中心に略一致する。45個の孔部572それぞれは、45個の孔部521それぞれよりも大きな断面積を有する一方で、孔部576よりも小さい断面積を有する。45個の孔部573は、第2骨格部56の断面内に仮想的に描かれた円形状の輪郭に沿って、略等間隔に形成されている。45個の孔部573によって仮想的に描かれる円形は、45個の孔部572によって仮想的に描かれる円形よりも小さい。45個の孔部573によって仮想的に描かれる円形の中心は、孔部576の中心に略一致する。45個の孔部573それぞれは、45個の孔部572それぞれよりも大きな断面積を有する一方で、孔部576よりも小さい断面積を有する。28個の孔部574は、第2骨格部56の断面内に仮想的に描かれた円形状の輪郭に沿って、略等間隔に形成されている。28個の孔部574によって仮想的に描かれる円形は、45個の孔部573によって仮想的に描かれる円形よりも小さい。28個の孔部574によって仮想的に描かれる円形の中心は、孔部576の中心に略一致する。28個の孔部574それぞれは、45個の孔部573それぞれよりも大きな断面積を有する一方で、孔部576よりも小さい断面積を有する。18個の孔部575は、第2骨格部56の断面内に仮想的に描かれた円形状の輪郭に沿って、略等間隔に形成されている。18個の孔部575によって仮想的に描かれる円形は、28個の孔部574によって仮想的に描かれる円形よりも小さい。18個の孔部575によって仮想的に描かれる円形の中心は、孔部576の中心に略一致する。18個の孔部575それぞれは、28個の孔部574それぞれよりも大きな断面積を有する一方で、孔部576よりも小さい断面積を有する。
 図11に示される記号「V1」は、45個の孔部571それぞれの断面積を意味する。図11に示される記号「V2」は、45個の孔部572それぞれの断面積を意味する。図11に示される記号「V3」は、45個の孔部573それぞれの断面積を意味する。図11に示される記号「V4」は、28個の孔部574それぞれの断面積を意味する。図11に示される記号「V5」は、18個の孔部575の断面積を意味する。図11に示される記号「V6」は、孔部576の断面積を意味する。これらの断面積の間には、図11に示される不等式によって表される関係が成立する。
 本実施形態に関して、第2骨格部56の中心に設けられる孔部576は、第2骨格部56に形成される複数の孔部57の中で最も大きい。図9の矢印Bによって示される第2骨格部56の内部に形成される孔部576は、変速機構42へオイルを供給するための液体流路L2として用いられる。本実施形態に関して、他のもう1つの管路は、流体流路L2によって例示されてもよい。
 図8に示されるように、液体流路L2を形成する孔部576は、ケース31の内周面に開口されている。孔部576は、ケース31の底部に配置されたバルブコントロールユニット46に連通される。孔部576は、バルブコントロールユニット46からトランスミッションケース33に沿って上方へ延びる。孔部576は、トランスミッションケース33の上下方向の中央部(すなわち、バルブコントロールユニット46と流体流路L1が形成された第1骨格部51との間の高さ位置)において、第1ブレーキ61の油圧室61bに繋がる。
 バルブコントロールユニット46からのオイルは、ケース31内で液体流路L2を形成する第2骨格部56の孔部57aを通じて、第1ブレーキ61の油圧室61bに供給される。
 図9の矢印Bによって示される第2骨格部56と同様に、複数の孔部57は、図9の矢印C、Dによって示される第2骨格部56の内部で、第2骨格部56の軸方向に延びる。図9の矢印C、Dによって示される第2骨格部56の中心に形成される孔部576は、他の孔部57よりも大きな断面積を有する。図9の矢印C、Dによって示される第2骨格部56の中心に形成される孔部576は、オイルを流通させるための液体流路L3、L4として用いられる。
 液体流路L2を形成する孔部57aと同様に、液体流路L3、L4を形成する孔部576それぞれは、ケース1の内周面に開口されている。液体流路L3、L4を形成する孔部576それぞれは、バルブコントロールユニット46に連通される。液体流路L3、L4を形成する孔部576それぞれは、トランスミッションケース33に沿って上方へ延びる。液体流路L3、L4を形成する孔部576それぞれは、トランスミッションケース33の上下方向の中央部において、第2、第3ブレーキ62、63の油圧室62b、63bに繋がる。
 バルブコントロールユニット46からのオイルは、液体流路L3、L4を形成する第2骨格部56の孔部57aを通じて、第2、第3ブレーキ62、63の油圧室62b、63bにそれぞれ供給される。
 図11に示される第2骨格部56と同様に、複数の孔部57は、図9の矢印B、C、Dによって示される第2骨格部56以外の他の第2骨格部56の内部にも形成されている。他の第2骨格部56の中心に形成されている孔部576は、オイルを流通させるための液体流路として用いられてもよい。
 ケース31の壁面部60は、骨格部50の開口部(すなわち、第1骨格部51と第2骨格部56とによって囲まれる開口部)を塞ぐように配置される。図7に示されるように、壁面部60は、骨格部50よりも薄い平板である。
 第1実施形態の構造体のケース1と同様に、第2実施形態の構造体のケース31は、3Dプリンタを用いて、形成される(すなわち、三次元積層造形法)。複数の孔部52、57は、三次元積層造形法によって、ケース31の骨格を形成する骨格部50の内部に形成される。ケース31の骨格部50は、三次元積層造形法によって、ケース31の壁面部60に一体化されてもよい。
 本実施形態に関して、骨格部50の内部に設けられる複数の孔部52、57のうち1つの孔部526、576は、オイルが流通する液体流路として用いられる。代替的に、複数の孔部が、液体流路として用いられてもよい。骨格部50の内部に設けられる複数の孔部52、57のうち少なくとも1つの孔部526、576が、オイルが流通する液体流路として用いられ得る。骨格部50の内部に形成される複数の孔部52、57のうち少なくとも1つの孔部526、576は、冷却用の水といった液体が流通する液体流路として用いられてもよい。
 本実施形態に関して、構造体のケース31は、骨格部50と壁面部60とを含む。骨格部50の軸方向に延びる複数の孔部52、57は、骨格部50の内部に形成される。従来の骨格部は、完全に中実であるので、非常に重い。本実施形態の骨格部50は、複数の孔部52,57が形成されているので、従来の骨格部よりも十分に軽量である。
 複数の孔部52、57のうち少なくとも1つの孔部526、576は、液体が流通する液体流路L1、L2、L3、L4として用いられる。したがって、孔部526,576は、構造体のケース31内に配設される摩擦締結要素61、62、63や軸受部47などに供給するオイルや冷却用の水などの液体の流通に有効に利用される。
 上述の実施形態の原理は、本発明の要旨を逸脱しない範囲において、種々の改良及び設計上の変更が可能であり、上述の説明及び図面は、限定的に解釈されるべきではない。
 上述の実施形態に関して、ケースの形成に用いられる複数の骨格部材(すなわち、複数の第1骨格部及び複数の第2骨格部)それぞれに複数の孔部が形成されている。しかしながら、ケースの形成に用いられる複数の骨格部材のうちいくつかは、中実構造(すなわち、孔部が形成されていない構造)を有してもよい。この場合においても、他の骨格部材には、孔部が形成されるので、ケースは軽量化される。中実構造を有する骨格部材は、ケースの中で剛性を必要とする部位に選択的に利用されてもよい。この場合、ケースは、高い剛性を有することができる。あるいは、設計者は、ケース中の複数の骨格部材の配設間隔に大きな値を与えることができる。
 上述の実施形態に関して、複数の孔部の形成パターンは、骨格部材の断面形状に一致している。すなわち、骨格部材の断面が矩形状であるならば、複数の孔部は、断面上で矩形パターンを描く。骨格部材の断面が円形であるならば、複数の孔部は、断面上で円形パターンを描く。しかしながら、複数の孔部の形成パターンは、骨格部材の断面形状に一致していなくてもよい。骨格部材の断面が矩形状であるとき、複数の孔部は、円形パターンを描いてもよい。骨格部材の断面が円形であるとき、複数の孔部は、矩形パターンを描いてもよい。
 上述の実施形態に関して、骨格部材は、矩形又は円形の断面を有する。しかしながら、骨格部材の断面は、他の形状を有してもよい。設計者は、ケースに要求される剛性が得られるように、骨格部材の断面形状を決定してもよい。したがって、骨格部材の断面は、三角形であってもよいし、六角形であってもよいし、他の形状であってもよい。上述の実施形態の原理は、骨格部材の断面の特定の形状に限定されない。
 上述の実施形態に関連して説明された例示的なケースは、以下の特徴を主に備える。
 上述の実施形態の一の局面に係るケースは、機械要素が収容される車両用構造体のケースとして用いられる。ケースは、前記ケースの外表面を形成する壁面部と、前記ケースの内方及び外方へ前記壁面部から膨出し、且つ、前記壁面部と一体化された骨格部と、を備える。前記骨格部は、第1方向に延びる複数の第1孔部が形成された第1多孔質部と、前記複数の第1孔部を含まず、且つ、前記第1多孔質部を取り囲む第1スキン層と、を有する少なくとも1つの骨格部材を含む。前記複数の第1孔部の断面積は、前記第1方向に交差する断面において、前記少なくとも1つの骨格部材の外周面から前記少なくとも1つの骨格部材の中心に向けて大きくなる。
 上述の構成によれば、骨格部は、ケースの内方及び外方へ壁面部から膨出し、且つ、壁面部と一体化されるので、ケースは、太い骨格部を有し、強固な構造を有することができる。第1方向に延びる複数の第1孔部が、骨格部の少なくとも1つの骨格部材に形成されるので、ケースは、軽量になる。複数の第1孔部の断面積は、第1方向に交差する断面において、少なくとも1つの骨格部材の外周面から少なくとも1つの骨格部材の中心に向けて大きくなり、且つ、第1多孔質部は、複数の第1孔部が形成された第1スキン層によって取り囲まれるので、少なくとも1つの骨格部材は、十分に高い剛性を有することができる。したがって、ケースも十分に高い剛性を有することができる。
 上述の構成に関して、前記複数の第1孔部のうち少なくとも1つは、前記機械要素に供給される液体の管路を形成してもよい。
 上述の構成によれば、複数の第1孔部のうち少なくとも1つは、機械要素に供給される液体の管路を形成するので、設計者は、機械要素に液体を供給するための管部材を用意しなくてもよい。したがって、設計者は、車両用構造体も軽量化することができる。
 上述の構成に関して、前記車両用構造体は、自動変速機であってもよい。前記機械要素は、前記流体としてオイルを吐出するオイルポンプと、前記第1方向に間隔をおいて配置された複数の摩擦締結要素と、を含んでもよい。前記少なくとも1つの骨格部材は、前記第1方向に延びる第1骨格部であってもよい。前記オイルは、前記オイルポンプから前記管路を通じて、前記複数の摩擦締結要素へ供給され、前記複数の摩擦締結要素を駆動してもよい。
 上述の構成によれば、オイルは、オイルポンプからバルブコントロールユニット及び第1骨格部の管路を通じて、複数の摩擦締結要素へ供給され、複数の摩擦締結要素を駆動するので、設計者は、機械要素に液体を供給するための管部材を用意しなくてもよい。したがって、設計者は、車両用構造体も軽量化することができる。
 上述の構成に関して、前記機械要素は、前記オイルの吐出圧を調整するバルブオイルコントロールユニットを含んでもよい。前記骨格部は、前記第1骨格部に交差するように第2方向に延びる第2骨格部を含んでもよい。前記第2骨格部は、前記第2方向に延びる複数の第2孔部が形成された第2多孔質部と、前記複数の第2孔部を含まず、且つ、前記第2多孔質部を取り囲む第2スキン層と、を有してもよい。前記複数の第2孔部のうち少なくとも1つは、前記オイルポンプから前記バルブコントロールユニット及び前記管路を通じて、前記複数の摩擦締結要素へ供給されるオイルが流れる他のもう1つの管路を形成してもよい。
 上述の構成によれば、第2骨格部は、第2方向に延びる複数の第2孔部が形成された第2多孔質部を有するので、過度に重くならない。第2多孔質部は、複数の第2孔部を含まない第2スキン層によって囲まれるので、第1骨格部と同様に、第2骨格部も十分に高い剛性を有することができる。複数の第2孔部のうち少なくとも1つは、前記オイルポンプから前記バルブコントロールユニット及び前記管路を通じて、前記複数の摩擦締結要素へ供給されるオイルが流れる他のもう1つの管路を形成するので、設計者は、機械要素に液体を供給するための管部材を用意しなくてもよい。したがって、設計者は、車両用構造体も軽量化することができる。
 上述の構成に関して、前記機械要素は、前記オイルの吐出圧を調整するバルブオイルコントロールユニットを含んでもよい。前記骨格部は、前記第1骨格部に交差するように第2方向に延びる複数の第2骨格部を含んでもよい。前記複数の第2骨格部それぞれは、前記第2方向に延びる複数の第2孔部が形成された第2多孔質部と、前記複数の第2孔部を含まず、且つ、前記第2多孔質部を取り囲む第2スキン層と、を有してもよい。前記複数の摩擦締結要素は、前記複数の第2骨格部に対応して配置されてもよい。前記複数の第2骨格部それぞれの前記複数の第2孔部のうち少なくとも1つは、前記オイルポンプから前記バルブコントロールユニット及び前記管路を通じて、対応する摩擦締結要素へ供給されるオイルが流れる他のもう1つの管路を形成してもよい。
 上述の構成によれば、複数の第2骨格部それぞれは、第2方向に延びる複数の第2孔部が形成された第2多孔質部を有するので、過度に重くならない。第2多孔質部は、複数の第2孔部を含まない第2スキン層によって囲まれるので、第1骨格部と同様に、複数の第2骨格部それぞれも十分に高い剛性を有することができる。複数の第2骨格部それぞれの複数の第2孔部のうち少なくとも1つは、オイルポンプからバルブコントロールユニット及び管路を通じて、対応する摩擦締結要素へ供給されるオイルが流れる他のもう1つの管路を形成するので、設計者は、機械要素に液体を供給するための管部材を用意しなくてもよい。したがって、設計者は、車両用構造体も軽量化することができる。
 上述の構成に関して、前記第1骨格部が形成する前記管路は、前記複数の摩擦締結要素の上方で前記第1方向に延びてもよい。前記複数の第2骨格部それぞれが形成する前記管路は、前記ケースの底部に配置された前記バルブコントロールユニットから上方に延び、前記第1方向に延びる前記管路と前記前記バルブコントロールユニットとの間の高さ位置において、前記対応する摩擦締結要素に繋がってもよい。
 上述の構成によれば、第1骨格部が形成する管路は、複数の摩擦締結要素の上方で前記第1方向に延びる一方で、複数の第2骨格部それぞれが形成する管路は、ケースの底部に配置されたバルブコントロールユニットから上方に延び、第1方向に延びる管路とバルブコントロールユニットとの間の高さ位置において、対応する摩擦締結要素に繋がるので、第1骨格部が形成する管路は、複数の第2骨格部それぞれが形成する管路と連結されない。したがって、第1骨格部が形成する管路を流れるオイルは、複数の第2骨格部それぞれが形成する管路に影響を与えない。したがって、摩擦締結要素へのオイルの供給に対する制御は、簡素化される。
 上述の実施形態の原理は、車両の製造産業分野において好適に利用される。

Claims (6)

  1.  機械要素が収容される車両用構造体のケースであって、
     前記ケースの外表面を形成する壁面部と、
     前記ケースの内方及び外方へ前記壁面部から膨出し、且つ、前記壁面部と一体化された骨格部と、を備え、
     前記骨格部は、第1方向に延びる複数の第1孔部が形成された第1多孔質部と、前記複数の第1孔部を含まず、且つ、前記第1多孔質部を取り囲む第1スキン層と、を有する少なくとも1つの骨格部材を含み、
     前記複数の第1孔部それぞれの断面積は、前記第1方向に交差する断面において、前記少なくとも1つの骨格部材の外周面から前記少なくとも1つの骨格部材の中心に向けて大きくなるように設定される
     ケース。
  2.  前記複数の第1孔部のうち少なくとも1つは、前記機械要素に供給される液体の管路を形成する
     請求項1に記載のケース。
  3.  前記車両用構造体は、自動変速機であり、
     前記機械要素は、前記流体としてオイルを吐出するオイルポンプと、前記第1方向に間隔をおいて配置された複数の摩擦締結要素と、を含み、
     前記少なくとも1つの骨格部材は、前記第1方向に延びる第1骨格部であり、
     前記オイルは、前記オイルポンプから前記管路を通じて、前記複数の摩擦締結要素へ供給され、前記複数の摩擦締結要素を駆動する
     請求項2に記載のケース。
  4.  前記機械要素は、前記オイルの吐出圧を調整するバルブオイルコントロールユニットを含み、
     前記骨格部は、前記第1骨格部に交差するように第2方向に延びる第2骨格部を含み、
     前記第2骨格部は、前記第2方向に延びる複数の第2孔部が形成された第2多孔質部と、前記複数の第2孔部を含まず、且つ、前記第2多孔質部を取り囲む第2スキン層と、を有し、
     前記複数の第2孔部のうち少なくとも1つは、前記オイルポンプから前記バルブコントロールユニット及び前記管路を通じて、前記複数の摩擦締結要素へ供給されるオイルが流れる他のもう1つの管路を形成する
     請求項3に記載のケース。
  5.  前記機械要素は、前記オイルの吐出圧を調整するバルブオイルコントロールユニットを含み、
     前記骨格部は、前記第1骨格部に交差するように第2方向に延びる複数の第2骨格部を含み、
     前記複数の第2骨格部それぞれは、前記第2方向に延びる複数の第2孔部が形成された第2多孔質部と、前記複数の第2孔部を含まず、且つ、前記第2多孔質部を取り囲む第2スキン層と、を有し、
     前記複数の摩擦締結要素は、前記複数の第2骨格部に対応して配置され、
     前記複数の第2骨格部それぞれの前記複数の第2孔部のうち少なくとも1つは、前記オイルポンプから前記バルブコントロールユニット及び前記管路を通じて、対応する摩擦締結要素へ供給されるオイルが流れる他のもう1つの管路を形成する
     請求項3に記載のケース。
  6.  前記第1骨格部が形成する前記管路は、前記複数の摩擦締結要素の上方で前記第1方向に延び、
     前記複数の第2骨格部それぞれが形成する前記管路は、前記ケースの底部に配置された前記バルブコントロールユニットから上方に延び、前記第1方向に延びる前記管路と前記前記バルブコントロールユニットとの間の高さ位置において、前記対応する摩擦締結要素に繋がる
     請求項5に記載のケース。
PCT/JP2016/084501 2015-11-24 2016-11-21 構造体のケース WO2017090564A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680055208.0A CN108351017B (zh) 2015-11-24 2016-11-21 结构体的壳体
MX2018005125A MX2018005125A (es) 2015-11-24 2016-11-21 Carcasa de estructura.
US15/760,544 US10465789B2 (en) 2015-11-24 2016-11-21 Case of structure
DE112016005375.4T DE112016005375B4 (de) 2015-11-24 2016-11-21 Eine Struktur aufweisendes Gehäuse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-228607 2015-11-24
JP2015228607A JP6288050B2 (ja) 2015-11-24 2015-11-24 構造体のケース及びその製造方法

Publications (1)

Publication Number Publication Date
WO2017090564A1 true WO2017090564A1 (ja) 2017-06-01

Family

ID=58764286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084501 WO2017090564A1 (ja) 2015-11-24 2016-11-21 構造体のケース

Country Status (6)

Country Link
US (1) US10465789B2 (ja)
JP (1) JP6288050B2 (ja)
CN (1) CN108351017B (ja)
DE (1) DE112016005375B4 (ja)
MX (1) MX2018005125A (ja)
WO (1) WO2017090564A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114135653A (zh) * 2018-02-26 2022-03-04 加特可株式会社 动力传递装置
KR102462691B1 (ko) * 2018-07-05 2022-11-02 엘에스엠트론 주식회사 유압 트랜스미션 케이스
WO2020074118A1 (de) * 2018-10-12 2020-04-16 Sew-Eurodrive Gmbh & Co. Kg Getriebe mit getriebegehäuse
CN110953327B (zh) * 2020-01-06 2021-05-04 宁海县宏瑞汽车部件有限公司 一种具有自动换挡装置的变速器
JP7317455B2 (ja) * 2020-07-31 2023-07-31 ダイハツ工業株式会社 ケースの補剛構造
JP7309292B2 (ja) * 2020-07-31 2023-07-18 ダイハツ工業株式会社 ケースの油路構造
EP4001701A1 (en) * 2020-11-23 2022-05-25 Ningbo Geely Automobile Research & Development Co. Ltd. A composite transmission housing
JP7037694B1 (ja) 2021-03-02 2022-03-16 株式会社シンセイ 複合部材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117240A (ja) * 2011-12-01 2013-06-13 Jatco Ltd トランスミッションケース
JP2015042475A (ja) * 2013-08-26 2015-03-05 新日鉄住金マテリアルズ株式会社 補強金属製中空部材、及び、金属製中空部材の内面の繊維強化プラスチックによる補強方法
WO2015146914A1 (ja) * 2014-03-28 2015-10-01 本田技研工業株式会社 変速機のセンサ取付部構造

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1226429B (de) * 1962-01-31 1966-10-06 Daimler Benz Ag Leichtmetallgehaeuse fuer Zahnraedergetriebe von Kraftfahrzeugen, insbesondere Zahnraeder-wechselgetriebe
US3587732A (en) * 1969-08-14 1971-06-28 Olin Mathieson Heat exchanger formed by modules
SE455716B (sv) * 1987-02-24 1988-08-01 Hypeco Ab Vermevexlingsanordning for kylning av en maskin
JPH0575553U (ja) * 1992-03-13 1993-10-15 ジャトコ株式会社 自動変速機の冷却装置
JP3445391B2 (ja) * 1994-11-11 2003-09-08 株式会社 神崎高級工機製作所 トラクタのトランスミッション装置
AT503361B1 (de) * 1998-10-02 2011-10-15 Daimler Ag Antrieb
US7128532B2 (en) * 2003-07-22 2006-10-31 The Boeing Company Transpiration cooling system
EP1533113A1 (de) * 2003-11-14 2005-05-25 Siemens Aktiengesellschaft Hochtemperatur-Schichtsystem zur Wärmeableitung und Verfahren zu dessen Herstellung
JP4730408B2 (ja) * 2008-07-18 2011-07-20 マツダ株式会社 自動変速機
CN201330837Y (zh) * 2009-01-21 2009-10-21 莱州新忠耀机械有限公司 低温高韧性抗冲击高速地铁线专用齿轮箱体
EP2989659B1 (en) * 2013-04-23 2019-06-12 Alexiou & Tryde Holding ApS Heat sink having a cooling structure with decreasing structure density

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117240A (ja) * 2011-12-01 2013-06-13 Jatco Ltd トランスミッションケース
JP2015042475A (ja) * 2013-08-26 2015-03-05 新日鉄住金マテリアルズ株式会社 補強金属製中空部材、及び、金属製中空部材の内面の繊維強化プラスチックによる補強方法
WO2015146914A1 (ja) * 2014-03-28 2015-10-01 本田技研工業株式会社 変速機のセンサ取付部構造

Also Published As

Publication number Publication date
MX2018005125A (es) 2018-06-06
CN108351017A (zh) 2018-07-31
US20180259056A1 (en) 2018-09-13
CN108351017B (zh) 2021-02-26
DE112016005375T5 (de) 2018-08-02
JP6288050B2 (ja) 2018-03-07
JP2017096385A (ja) 2017-06-01
DE112016005375B4 (de) 2021-08-12
US10465789B2 (en) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2017090564A1 (ja) 構造体のケース
US10302185B2 (en) Oil passage structure for power transmission device
JP5712156B2 (ja) トランスミッションケース用鋳型構造及びトランスミッションケース
US10302191B2 (en) Automatic transmission and method of manufacturing the same
JP6390574B2 (ja) 変速機及びその製造方法
JP6350410B2 (ja) 油圧制御装置のバルブボディ及びその製造方法
JP2015016760A5 (ja)
WO2016208185A1 (ja) 油圧制御装置のバルブボディ及びその製造方法
JP6414560B2 (ja) 構造体の製造方法
JP6341154B2 (ja) 油圧制御装置のバルブボディ
JP2017053421A (ja) 油圧制御装置のバルブボディアセンブリ及びその製造方法
JP4759477B2 (ja) 変速機ハウジング
JP6365449B2 (ja) 自動変速機及びその製造方法
JP4670708B2 (ja) 自動変速機
JP2010265933A (ja) 作業車両のトランスミッションケース
JP6332207B2 (ja) 自動変速機及びその製造方法
WO2024069813A1 (ja) ギア構造
KR101704225B1 (ko) 차량용 변속기
JP2011112161A (ja) 変速機の充填材取り付け構造
JP2007285381A5 (ja)
JP5586724B2 (ja) 船外機の内燃機関
WO2015030024A1 (ja) 動力伝達装置
JP2017025991A (ja) 変速機
ITMI20111984A1 (it) Assieme parastrappi con inserti removibili.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868511

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15760544

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/005125

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 112016005375

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868511

Country of ref document: EP

Kind code of ref document: A1