WO2017090546A1 - 物体検出装置及び物体検出方法 - Google Patents

物体検出装置及び物体検出方法 Download PDF

Info

Publication number
WO2017090546A1
WO2017090546A1 PCT/JP2016/084376 JP2016084376W WO2017090546A1 WO 2017090546 A1 WO2017090546 A1 WO 2017090546A1 JP 2016084376 W JP2016084376 W JP 2016084376W WO 2017090546 A1 WO2017090546 A1 WO 2017090546A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
ultrasonic sensor
received
temperature
sensor
Prior art date
Application number
PCT/JP2016/084376
Other languages
English (en)
French (fr)
Inventor
卓也 野村
充保 松浦
岳人 原田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680068217.3A priority Critical patent/CN108291966B/zh
Priority to US15/778,027 priority patent/US10877135B2/en
Priority to DE112016005377.0T priority patent/DE112016005377B4/de
Publication of WO2017090546A1 publication Critical patent/WO2017090546A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S7/52006Means for monitoring or calibrating with provision for compensating the effects of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/524Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S2007/52007Means for monitoring or calibrating involving adjustment of transmitted power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/938Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area

Definitions

  • the present disclosure relates to an object detection apparatus and an object detection method for detecting an object existing around a host vehicle by transmitting and receiving ultrasonic waves using an ultrasonic sensor.
  • Patent Document 1 proposes to suppress variation in detection accuracy of an object due to the influence of the outside air temperature by correcting the reception sensitivity of the ultrasonic sensor based on the detected value of the outside air temperature by the outside air temperature sensor. Yes.
  • This disclosure is intended to provide an object detection device that can suppress variation in detection accuracy of an object based on temperature characteristics of an ultrasonic sensor.
  • an object detection device (20) comprising an object detection unit for detecting an existing object, the temperature acquisition unit (13) for acquiring the temperature of the ultrasonic sensor, and the temperature of the ultrasonic sensor by the temperature acquisition unit
  • a correction unit that corrects at least one of reception sensitivity of the reception wave and transmission intensity of the transmission wave based on the detection value of the ultrasonic sensor, and the object detection unit is based on the correction unit
  • the object is detected using the received wave after correction.
  • the detection accuracy of the object by the ultrasonic sensor changes depending on the temperature characteristics of the ultrasonic sensor. Therefore, in the object detection device that is an aspect of the technology of the present disclosure, the temperature of the ultrasonic sensor is detected, and at least one of the reception sensitivity of the reception wave and the transmission intensity of the transmission wave is based on the detected value of the temperature. Was corrected. As described above, in the object detection apparatus, variation in object detection accuracy due to the influence of the temperature characteristics of the ultrasonic sensor can be suppressed.
  • FIG. 1 is a top view showing an attachment position of the ultrasonic sensor.
  • FIG. 2 is a schematic diagram of a vertical cross-section at the position where the ultrasonic sensor is attached.
  • FIG. 3 is a diagram illustrating a detection range of an object by the ultrasonic sensor.
  • FIG. 4 is a timing chart of the drive signal of the ultrasonic sensor.
  • FIG. 5 is a map relating to correction based on outside air temperature.
  • FIG. 6 is a map relating to correction based on sensor temperature.
  • FIG. 7 is a flowchart illustrating the procedure of the object detection process.
  • an object detection device according to an aspect of the technology of the present disclosure is embodied will be described with reference to the drawings.
  • an example will be described in which an object detection device is applied to a vehicle system that detects an object existing around a host vehicle by transmitting and receiving ultrasonic waves by an ultrasonic sensor mounted on the host vehicle.
  • the vehicle system 100 mounted on the host vehicle 50 includes an ultrasonic sensor 10, an ECU 20, an outside air temperature sensor 31, a brake device 41, an alarm device 42, and the like. These are communicably connected to each other via an electric signal line.
  • the ultrasonic sensor 10 transmits ultrasonic waves in a predetermined frequency band (for example, a range of 20 to 100 kHz) as a transmission wave.
  • the ultrasonic sensor 10 receives a reflected wave reflected from an object as a received wave.
  • the ultrasonic sensor 10 includes a vibrator 11 accommodated in a housing H and a sonar circuit 12.
  • the vibrator 11 is configured by incorporating a piezoelectric element 11b inside a resonator 11a such as aluminum.
  • the sonar circuit 12 includes a driving circuit that drives the piezoelectric element 11b, a receiving circuit that receives ultrasonic waves to detect an object and calculates a distance, a communication circuit that communicates with the ECU 20, and the like. Further, the sonar circuit 12 is provided with a temperature sensor 13 for detecting the temperature in the housing H (sensor temperature which is the temperature of the ultrasonic sensor 10). The temperature sensor 13 functions as a temperature acquisition unit that acquires the temperature of the ultrasonic sensor 10.
  • the ultrasonic sensor 10 is attached to the bumper 15 at the front of the vehicle and the rear of the vehicle. Specifically, the ultrasonic sensor 10 is embedded in a hole provided in the bumper 15 via a cushion 14 made of a rubber member, for example.
  • One surface of the resonator 11a of the vibrator 11 is exposed from the front surface of the bumper 15 and serves as a transmission surface for transmitting ultrasonic waves.
  • the transmission surface of the resonator 11a is disposed so as to be flush with the front surface of the bumper 15, for example.
  • the ultrasonic sensor 10 is not limited to the bumper 15 and may be embedded in the body or body exterior of the host vehicle 50.
  • a plurality of ultrasonic sensors 10 are provided in the bumper 15 at the front and rear of the vehicle.
  • two ultrasonic sensors 10 (10 a, 10 b) are separated from each other and provided side by side in a bumper 15 at the front part of the vehicle at positions symmetrical with respect to the center line O. It has been.
  • two ultrasonic sensors 10 (10a, 10b) are separated from each other and provided side by side in a bumper 15 at the rear of the vehicle at a position that is symmetrical with respect to the center line O of the vehicle width.
  • the number and installation position of the ultrasonic sensor 10 shown in FIG. 1 are examples. The number and installation positions of the ultrasonic sensors 10 are not limited to this.
  • object detection ranges S1 (first detection range) and S2 (second detection range) are defined for the ultrasonic sensors 10a (first sensor) and 10b (second sensor), respectively.
  • the ultrasonic sensor 10a can receive the transmission wave transmitted from the sensor 10a as a direct wave. Further, the ultrasonic sensor 10a can receive the transmission wave transmitted from the ultrasonic sensor 10b as an indirect wave. Similarly, the ultrasonic sensor 10b can receive the transmission wave transmitted from the sensor 10b as a direct wave. Further, the ultrasonic sensor 10b can receive the transmission wave transmitted from the ultrasonic sensor 10a as an indirect wave.
  • a transmission wave is transmitted from the ultrasonic sensor 10a
  • the received wave is received as a direct wave by the ultrasonic sensor 10a itself.
  • the ultrasonic sensor 10b can receive the transmission wave from the ultrasonic sensor 10a between the detection ranges S1 and S2 of the adjacent ultrasonic sensors 10a and 10b. If so, the received wave is received as an indirect wave by the ultrasonic sensor 10b.
  • Each detection range S1, S2 can be changed as appropriate. As for each detection range S1, S2, a part of adjacent detection range may mutually overlap, for example.
  • an outside air temperature sensor 31 that detects the ambient temperature of the host vehicle 50 is provided inside the lower part of the bumper 15 that is not easily affected by solar radiation or the like.
  • the outside air temperature sensor 31 functions as an external temperature acquisition unit that acquires the outside air temperature (external temperature) of the ultrasonic sensor 10.
  • a muffler 61 that exhausts exhaust gas to the outside is provided on one side of the vehicle rear portion via the center line O.
  • the brake device 41 is a braking device that brakes the host vehicle 50.
  • the brake device 41 increases (assists) the braking force of the brake operation by the driver, or performs automatic braking regardless of whether the driver has operated the brake.
  • the warning device 42 outputs a warning message, a warning sound, etc. according to a control command from the ECU 20, and notifies the driver of the danger of a collision.
  • the safety device may be provided with at least one of the brake device 41 and the alarm device 42.
  • the ECU 20 corresponds to the object detection device according to the present embodiment.
  • the ECU 20 is a computer that includes a CPU, a ROM, a RAM, an I / O, and the like.
  • the ECU20 detects an object using the direct wave or indirect wave received by the ultrasonic sensor 10.
  • FIG. 4 the ECU 20 gives a predetermined drive signal to the piezoelectric element 11 b of the ultrasonic sensor 10 between times t0 and t1.
  • the ultrasonic sensor 10 transmits an ultrasonic wave having a predetermined frequency as a transmission wave.
  • the transmitted wave is reflected by the object.
  • the received wave is received as a direct wave by the vibrator 11 of the sensor.
  • the reception wave is received as an indirect wave by the vibrator 11 of the sensor.
  • the received wave is input to the sonar circuit 12 of the ultrasonic sensor 10 at time t2.
  • the sonar circuit 12 performs a filtering process on the input received wave (direct wave or indirect wave). In the filtering process, a noise component included in the received wave is cut by extracting a signal in a predetermined frequency band.
  • the ECU 20 corrects at least one of the transmission intensity and the reception sensitivity of the ultrasonic sensor 10 based on the detected value of the outside air temperature (outside temperature) by the outside air temperature sensor 31.
  • the ease of propagation of ultrasonic waves in the air (degree of attenuation) varies depending on the outside air temperature. Therefore, the transmission intensity of the ultrasonic wave transmitted from the ultrasonic sensor 10 and the reception sensitivity of the received wave received by the ultrasonic sensor 10 change under the influence of the outside air temperature.
  • the ECU 20 uses a map (a map related to correction) indicating the correlation between the object detection distance and the amplification degree (gain) shown in FIG. At least one of transmission intensity and reception sensitivity is corrected.
  • FIG. 5 shows the correlation between the object detection distance and the amplitude of the ultrasonic wave for each outside air temperature.
  • an object detection distance and an amplification degree (correction amount) are associated in advance for each outside air temperature.
  • the amplification degree of the amplitude of the ultrasonic wave is set to increase as the distance from the object increases. This is because the degree of attenuation of the ultrasonic wave increases as the distance from the object increases.
  • the map is data that can specify the amplification degree based on the detection distance of the object by data association.
  • the data is stored in advance in a storage device (predetermined storage area) such as a ROM provided in the ECU 20.
  • the ECU 20 can correct the transmission intensity and reception sensitivity of the ultrasonic sensor 10 based on the outside air temperature by referring to such a map (functions as a second correction unit).
  • the ECU 20 corrects at least one of transmission intensity and reception sensitivity for each ultrasonic sensor 10 based on the detected value of the sensor temperature of the ultrasonic sensor 10.
  • the ECU 20 functions as a correction unit that corrects at least one of the reception sensitivity of the reception wave and the transmission intensity of the transmission wave based on the detected temperature value of the ultrasonic sensor 10.
  • the ECU 20 uses a map (map related to correction) indicating the correlation between the sensor temperature and the amplification degree (gain) shown in FIG. 6, and based on the sensor temperature, out of the transmission intensity and the reception sensitivity of the ultrasonic sensor 10. Correct at least one of the following.
  • FIG. 6 shows a correlation between the sensor temperature and the amplitude amplification degree of the ultrasonic wave (transmitted wave / received wave).
  • the sensor temperature and the amplification degree (correction amount) are associated in advance.
  • the amplification degree is set individually for the transmission wave (transmission intensity) and the reception wave (reception sensitivity). This is because it is considered that there is a difference in the influence of the sensor temperature between the transmission intensity and the reception sensitivity.
  • FIG. 6 shows a case where the amplification degree is set to a positive value and a case where the amplification degree is set to a negative value according to the sensor temperature. This is because adjustment is performed so that the reception sensitivity falls within a predetermined sensitivity range by correction.
  • the detection target object can be appropriately extracted by adjusting the reception sensitivity to be within a predetermined sensitivity range. In other words, in the present embodiment, problems such as unnecessary operation of the safety device due to erroneous detection of an object that is not a detection target can be avoided.
  • the map shown in FIG. 6 is data that can specify the amplification degree based on the sensor temperature by data association, similarly to the map shown in FIG.
  • the ECU 20 can correct the transmission intensity and the reception sensitivity of the ultrasonic sensor 10 based on the sensor temperature by referring to such a map.
  • the correction process based on the outside air temperature and the correction process based on the sensor temperature are performed in combination using the map relating to the correction shown in FIGS.
  • variation in the detection accuracy of the object by the influence of external temperature and sensor temperature is suppressed.
  • the maps shown in FIGS. 5 and 6 are examples. The map relating to the correction only needs to be set according to the characteristics of each ultrasonic sensor 10.
  • the ultrasonic sensor 10 a is provided at a position relatively far from the muffler 61 in the rear part of the vehicle.
  • the ultrasonic sensor 10 b is provided at a position relatively close to the muffler 61.
  • the ultrasonic sensor 10b is more likely to be affected by the heat than the ultrasonic sensor 10a. Therefore, the sensor temperature tends to be higher in the ultrasonic sensor 10b than in the ultrasonic sensor 10a.
  • the sensor temperature of one ultrasonic sensor 10 that transmits and receives ultrasonic waves affects both transmission intensity and reception sensitivity.
  • the temperature of the ultrasonic sensor 10 on the transmission side affects the transmission intensity
  • the temperature of the ultrasonic sensor 10 on the reception side affects the reception sensitivity.
  • the received wave is received as a direct wave.
  • the received wave is received as an indirect wave.
  • the ECU 20 determines whether the received wave is a direct wave or an indirect wave. Based on the command signal, the ECU 20 specifies the ultrasonic sensor 10 that has transmitted the transmission wave, and specifies the ultrasonic sensor 10 that has received the reception wave. The ECU 20 determines whether the received wave is a direct wave or an indirect wave based on this identification result. Specifically, the ECU 20 makes a determination by determining whether the ultrasonic sensor 10 matches or does not match between the transmission side and the reception side.
  • the ECU 20 corrects both the transmission intensity and the reception sensitivity based on the sensor temperature of one ultrasonic sensor 10 that has transmitted and received ultrasonic waves.
  • the reception wave is an indirect wave
  • the transmission intensity is corrected based on the sensor temperature of the ultrasonic sensor 10 on the transmission side
  • the reception sensitivity is adjusted based on the sensor temperature of the ultrasonic sensor 10 on the reception side. to correct.
  • the ECU 20 compares the voltage level of the received wave amplitude after the correction process with the voltage level of the predetermined threshold Th. As a result, when the amplitude of the received wave is larger than the predetermined threshold Th, the ECU 20 determines that an object has been detected and obtains detection information.
  • the sonar circuit 12 transmits to the ECU 20 a required time from the start of transmission of ultrasonic waves until reception of a received wave.
  • the ECU 20 converts the required time and calculates the distance from the host vehicle 50 to the object.
  • the sonar circuit 12 may convert the required time into a distance.
  • this embodiment demonstrates the example in which one of the sonar circuit 12 and ECU20 performs the various arithmetic processing mentioned later, it is not this limitation. Either of the sonar circuit 12 and the ECU 20 may execute various arithmetic processes described later.
  • the ECU 20 performs driving support control of the host vehicle 50 based on the detection result of the object. Specifically, the ECU 20 activates the safety device when it is determined that the risk of collision with an object has increased based on the acquired object detection information and the calculated distance to the object. For example, when an object is detected within a few meters from the host vehicle 50 in a place where the vehicle speed is low, such as a parking lot, and the risk of collision with the object increases, the ECU 20 activates the safety device.
  • the correction process is continuously executed while the ECU 20 is in a driving state. It should be noted that the execution timing of the correction process may be set in advance so that the ECU 20 is repeatedly executed according to a predetermined interval (with a predetermined cycle).
  • the ECU 20 acquires the outside air temperature (step S11). At this time, the ECU 20 acquires the detected value of the outside air temperature from the outside air temperature sensor 31. Next, the ECU 20 acquires the sensor temperature (step S12). At this time, the ECU 20 acquires the detected value of each sensor temperature (the detected value of the temperature sensor 13) from the ultrasonic sensor 10 mounted on the host vehicle 50. Next, the ECU 20 acquires a correction amount for the reception sensitivity based on the outside air temperature (step S13). In this process, the correction amount of the reception sensitivity is acquired as follows. The ECU 20 refers to the map data shown in FIG.
  • the ECU 20 selects setting data indicating the correlation between the object detection distance and the amplification degree corresponding to the outside air temperature based on the outside air temperature acquired in the process of step S11. Thereby, ECU20 specifies the amplification degree of the amplitude of the ultrasonic wave matched with the detection distance of an object from setting data, and acquires the specified amplification degree as a correction amount of receiving sensitivity.
  • the ECU 20 acquires a transmission intensity correction amount based on the sensor temperature (step S14).
  • the transmission intensity correction amount is acquired as follows.
  • the ECU 20 refers to the map data shown in FIG.
  • the ECU 20 selects setting data indicating the correlation between the sensor temperature and the amplification degree, based on the sensor temperature acquired in step S12 (the sensor temperature of the ultrasonic sensor 10 that has transmitted the transmission wave).
  • ECU20 specifies the amplification degree of the amplitude of the transmission wave matched with sensor temperature from setting data, and acquires the specified amplification degree as a correction amount of transmission intensity.
  • the ECU 20 determines whether or not the received wave is a direct wave (step S15).
  • step S15 determines that the received wave is a direct wave (step S15: YES)
  • the ECU 20 refers to the data of the map shown in FIG. Based on the sensor temperature, a correction amount of the reception sensitivity is acquired (step S16).
  • the ECU 20 specifies the amplification degree of the amplitude of the reception wave associated with the sensor temperature from the setting data, and acquires the specified amplification degree as a correction amount of the reception sensitivity.
  • step S15 If the ECU 20 determines that the received wave is not a direct wave but an indirect wave (step S15: NO), the ECU 20 is based on the sensor temperature of the ultrasonic sensor 10 that has received the received wave (sensor temperature on the receiving side). The correction amount of the reception sensitivity is acquired (step S17).
  • the ECU 20 corrects the transmission intensity and the reception sensitivity of the ultrasonic sensor 10 using the correction amount acquired in the above process (step S18).
  • the ECU 20 corrects the transmission intensity of the ultrasonic sensor 10 using the transmission intensity correction amount acquired in the process of step S14.
  • the ECU 20 corrects the reception sensitivity of the ultrasonic sensor 10 by using the reception sensitivity correction amount acquired in step S13 and the reception sensitivity correction amount acquired in step S16 or step S17.
  • the ECU 20 determines whether or not the amplitude of the received wave after correction is larger than a predetermined threshold Th (step S19).
  • step S19: YES If it is determined that the amplitude of the received wave is greater than the predetermined threshold Th (step S19: YES), the ECU 20 determines that an object is present in front of the host vehicle 50 (step S20). When the ECU 20 determines that the amplitude of the received wave is equal to or less than the predetermined threshold Th (step S19: NO), the ECU 20 determines that no object exists in front of the host vehicle 50 (step S21). If the ECU 20 determines that an object is present in front of the host vehicle 50, the ECU 20 calculates a distance from the host vehicle 50 to the object (step S22). At this time, the ECU 20 calculates the distance from the host vehicle 50 to the object by converting the required time received from the sonar circuit 12.
  • the object detection device (ECU 20) according to the present embodiment can provide the following excellent effects.
  • the object detection apparatus detects the sensor temperature of the ultrasonic sensor 10 and corrects at least one of the reception sensitivity of the reception wave and the transmission intensity of the transmission wave based on the detected value. I made it. Thereby, in the object detection device according to the present embodiment, variation in the detection accuracy of the object due to the influence of the temperature characteristic of the ultrasonic sensor 10 can be suppressed.
  • the sensor temperature differs for each ultrasonic sensor 10 due to the difference in the mounting position. Further, it is assumed that there is a difference in temperature characteristics for each ultrasonic sensor 10. Furthermore, when a plurality of ultrasonic sensors 10 are provided side by side, the received wave is detected as an indirect wave by the ultrasonic sensor 10 different from the ultrasonic sensor 10 (transmission-side sensor) that transmits the transmission wave.
  • the ultrasonic sensor 10 that has received the indirect wave based on the detected value of the sensor temperature of the ultrasonic sensor 10 that has received the indirect wave.
  • the reception sensitivity of was corrected.
  • the ultrasonic sensor that has received the direct wave based on the detected value of the sensor temperature of the ultrasonic sensor 10 that has received the direct wave. 10 reception sensitivity is corrected.
  • the influence of the sensor temperature of the ultrasonic sensor 10 on the reception sensitivity can be removed.
  • variations in object detection accuracy due to the influence of sensor temperature when an object is detected using one ultrasonic sensor 10 can be suppressed.
  • the transmission intensity of the ultrasonic sensor 10 that has transmitted the transmission wave is corrected based on the detection value of the sensor temperature of the ultrasonic sensor 10 that has transmitted the transmission wave.
  • the object detection device when an object is detected as an indirect wave (when the received wave is an indirect wave), the detected value of the sensor temperature of the ultrasonic sensor 10 that has received the received wave is used. Based on this, the reception sensitivity is corrected. In the object detection device, the transmission intensity is corrected based on the detected value of the sensor temperature of the ultrasonic sensor 10 that has transmitted the transmission wave. On the other hand, when the object is detected as a direct wave (when the received wave is a direct wave), both the reception sensitivity and the transmission intensity are corrected based on the detected value of the sensor temperature of the ultrasonic sensor 10 that has transmitted the transmitted wave. .
  • the transmission intensity depends on whether the object is detected by an indirect wave or a direct wave (whether the received wave is an indirect wave or a direct wave). And the reception sensitivity correction process are switched.
  • the ultrasonic wave is detected both when the object is detected using one ultrasonic sensor 10 and when the object is detected using a plurality of ultrasonic sensors 10. Variations in object detection accuracy due to the sensor temperature of the sensor 10 can be suppressed.
  • the object detection ranges S1 and S2 are defined for each of the ultrasonic sensors 10a and 10b.
  • the object can be detected as follows. If an object exists in one of the detection ranges S1 and S2, the object can be detected using a direct wave. On the other hand, if an object exists in the detection range S3 between the detection ranges S1 and S2, the object can be detected using an indirect wave.
  • the transmission intensity is corrected based on the detected value of the sensor temperature of the ultrasonic sensor 10a.
  • the reception sensitivity is corrected based on the detected value of the sensor temperature of the ultrasonic sensor 10b.
  • the object detection device when an object is detected using the ultrasonic sensors 10a and 10b (a plurality of ultrasonic sensors 10), the variation in detection accuracy of the object due to the influence of the sensor temperature varies. It can be suppressed.
  • both reception sensitivity and transmission intensity are corrected based on the sensor temperature of the ultrasonic sensor 10 that has received the direct wave.
  • correction is performed so that the reception sensitivity of the ultrasonic sensor 10 falls within a predetermined sensitivity range. Thereby, the object detection apparatus according to the present embodiment can appropriately detect the object to be detected.
  • the object detection device it is possible to determine the presence or absence of an object on the condition that the amplitude of the received wave after correction is greater than a predetermined threshold Th. That is, in the object detection device according to the present embodiment, the presence or absence of an object can be determined by using the corrected amplitude of the received wave as a determination parameter.
  • the detection accuracy of the object by the ultrasonic sensor 10 changes under the influence of the outside air temperature (external temperature). Therefore, the object detection device according to the present embodiment detects the outside air temperature, and corrects both the reception sensitivity and the transmission intensity of the ultrasonic sensor 10 based on the detected value. Thereby, in the object detection device according to the present embodiment, variation in the detection accuracy of the object due to the influence of the outside air temperature can be suppressed.
  • the map shown in FIG. 6 is used to acquire the amplification degree (gain) of the amplitude of the transmission wave based on the sensor temperature and correct the transmission intensity based on the acquired amplification degree (correction amount).
  • the transmission intensity may be corrected by adjusting the output of the transmission wave of the ultrasonic sensor 10 based on the sensor temperature.
  • the output of the transmission wave of the ultrasonic sensor 10 is changed by changing at least one of the current, voltage, and number of pulses when the piezoelectric element 11b is vibrated based on the sensor temperature. May be adjusted.
  • the transmission intensity variation due to the influence of the sensor temperature of the ultrasonic sensor 10 can be suppressed by adjusting the output of the transmission wave of the ultrasonic sensor 10 as the transmission intensity correction process. .
  • the ultrasonic sensor 10 includes the temperature sensor 13 for detecting the sensor temperature of the sensor and detects the sensor temperature from the inside.
  • the present invention is not limited to this.
  • the sensor temperature of the ultrasonic sensor 10 may be detected from the outside.
  • the ECU 20 only needs to perform correction processing of at least one of reception sensitivity and transmission intensity.
  • correction processing for only reception sensitivity for example, the following processing example is given.
  • the ECU 20 omits the process of step S14. Then, the ECU 20 performs reception sensitivity correction processing according to whether the received wave is a direct wave or an indirect wave.
  • the object detection apparatus can remove the influence on the reception sensitivity due to the sensor temperature of the ultrasonic sensor 10 that has received the reception wave even when only the reception sensitivity is corrected. As a result, in the object detection apparatus, variations in object detection accuracy due to the influence of the sensor temperature can be suppressed.
  • the ECU 20 may omit steps S11 and S13 in the flowchart shown in FIG. That is, the correction process based on the outside air temperature may be omitted. In this case, transmission intensity and reception sensitivity are corrected using only the sensor temperature. Thereby, in the object detection apparatus, variation in detection accuracy of the object due to the influence of the sensor temperature can be suppressed.
  • the presence / absence of an object is determined by comparing the corrected amplitude of the received wave with the threshold Th.
  • the presence / absence of an object may be determined based on the absolute value of the amplitude of the received wave after correction.
  • the detection range shown in FIG. 3 may partially overlap the object detection range S1 by the ultrasonic sensor 10a and the object detection range S2 by the ultrasonic sensor 10b.
  • the detection range shown in FIG. 3 may not be set for each ultrasonic sensor 10. Also in this case, the ECU 20 determines whether or not the ultrasonic sensor 10 that has transmitted the transmission wave matches the ultrasonic sensor 10 that has received the ultrasonic wave. Thereby, in an object detection apparatus, it can be specified whether a received wave is a direct wave or an indirect wave.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

物体検出装置は、超音波センサ10から送信波として送信された超音波の物体による反射波を受信波として受信した場合に、その受信波に基づいて、自車両の周囲に存在する物体を検出する物体検出部を備える。物体検出装置は、超音波センサ10の温度を取得する温度センサ13を備え、超音波センサ10の温度の検出値に基づいて、超音波センサ10による受信波の受信感度及び送信波の送信強度のうちの少なくとも一方を補正する。そして、補正後の受信波を用いて物体を検出する。

Description

物体検出装置及び物体検出方法
 本開示は、超音波センサによる超音波の送受信により、自車両の周囲に存在する物体を検出する物体検出装置、及び物体検出方法に関する。
 従来では、超音波センサから送信波を送信し、物体による反射波を受信波として受信した場合に、その受信波に基づいて、自車両の周囲に存在する物体を検出する物体検出装置が知られている。このような装置において、超音波センサによる受信波の受信感度は、外気温の影響を受けて変化する。そこで、例えば特許文献1には、外気温センサによる外気温の検出値に基づき超音波センサの受信感度を補正することによって、外気温の影響による物体の検出精度のばらつきを抑えることが提案されている。
特開2014-89071号公報
 超音波センサによる送信波の送信強度や受信波の受信感度は、超音波センサ自体の温度の影響を受けて変わるため、このことが物体の検出精度に影響する。しかし、従来技術では、この点について考慮されていない。
 本開示は、超音波センサの温度特性に基づく物体の検出精度のばらつきを抑制できる物体検出装置を提供することを目的とする。
 本開示の技術の一態様は、超音波センサ(10)から送信波として送信された超音波の物体による反射波を受信波として受信した場合に、前記受信波に基づいて、自車両の周囲に存在する物体を検出する物体検出部を備える、物体検出装置(20)であって、前記超音波センサの温度を取得する温度取得部(13)と、前記温度取得部による前記超音波センサの温度の検出値に基づいて、前記超音波センサによる前記受信波の受信感度及び前記送信波の送信強度のうちの少なくとも一方を補正する補正部と、を備え、前記物体検出部は、前記補正部による補正後の前記受信波を用いて、前記物体を検出する。
 超音波センサによる物体の検出精度は、超音波センサの温度特性の影響を受けて変化する。そこで、本開示の技術の一態様である上記物体検出装置では、超音波センサの温度を検出し、温度の検出値に基づいて、受信波の受信感度及び送信波の送信強度のうちの少なくとも一方を補正するようにした。以上により、上記物体検出装置では、超音波センサの温度特性の影響による物体の検出精度のばらつきが抑えられる。
図1は、超音波センサの取付け位置を示す上視図である。 図2は、超音波センサの取付け位置における鉛直断面の模式図である。 図3は、超音波センサによる物体の検出範囲を示す図である。 図4は、超音波センサの駆動信号のタイミングチャートである。 図5は、外気温に基づく補正に関するマップである。 図6は、センサ温度に基づく補正に関するマップである。 図7は、物体の検出処理の手順を示すフローチャートである。
 以下、本開示の技術の一態様である物体検出装置を具現化した実施形態について、図面を参照し説明する。本実施形態では、自車両に搭載された超音波センサによる超音波の送受信によって、自車両の周囲に存在する物体を検出する車両システムに、物体検出装置を適用した例を説明する。
 図1,図2に示すように、自車両50に搭載された車両システム100は、超音波センサ10、ECU20、外気温センサ31、ブレーキ装置41、警報装置42等を備えている。これらは、電気信号線を介して互いに通信可能に接続されている。
 超音波センサ10は、所定の周波数帯域(例えば20~100kHzの範囲)の超音波を送信波として送信する。また、超音波センサ10は、物体から反射された反射波を受信波として受信する。
 図2に示すように、超音波センサ10は、ハウジングH内に収容された振動子11と、ソナー回路12とを備えている。振動子11は、アルミ等の共振体11aの内部に、圧電素子11bを内蔵することによって構成されている。
 ソナー回路12は、圧電素子11bを駆動する駆動回路、超音波を受信して物体の検出や距離の算出を行う受信回路、及びECU20との通信を行う通信回路等によって構成されている。また、ソナー回路12には、ハウジングH内の温度(超音波センサ10の温度であるセンサ温度)を検出するための温度センサ13が設けられている。温度センサ13は、超音波センサ10の温度を取得する温度取得部として機能する。
 超音波センサ10は、車両前部及び車両後部のバンパー15に取り付けられる。詳しくは、超音波センサ10は、例えばゴム部材のクッション14を介して、バンパー15に設けられた孔部に埋め込まれる。振動子11の共振体11aの一面は、バンパー15の前面から露出しており、超音波が送信される送信面となっている。共振体11aの送信面は、例えば、バンパー15の前面と面一になるように配置されている。なお、超音波センサ10は、バンパー15に限らず、自車両50のボディやボディ外装品に埋め込まれていてもよい。
 本実施形態では、複数の超音波センサ10が、車両前部及び車両後部のバンパー15に設けられている。図1に示す例では、車両前部のバンパー15には、中心線Oを介して左右対称となる位置に、2個の超音波センサ10(10a,10b)が互いに離間し、かつ横並びに設けられている。同様に、車両後部のバンパー15には、車幅の中心線Oを介して左右対称となる位置に、2個の超音波センサ10(10a,10b)が互いに離間し、かつ横並びに設けられている。なお、図1に示す超音波センサ10の個数及び設置位置は一例である。超音波センサ10の個数及び設置位置はこれに限らない。
 図3に示すように、各超音波センサ10a(第1センサ),10b(第2センサ)には、それぞれ物体の検出範囲S1(第1検出範囲),S2(第2検出範囲)が定められている。超音波センサ10aは、当該センサ10aから送信された送信波を、直接波として受信することが可能である。また、超音波センサ10aは、超音波センサ10bから送信された送信波を、間接波として受信することが可能である。同様に、超音波センサ10bは、当該センサ10bから送信された送信波を、直接波として受信することが可能である。また、超音波センサ10bは、超音波センサ10aから送信された送信波を、間接波として受信することが可能である。
 超音波センサ10aから送信波が送信される場合を例に挙げて説明する。例えば、超音波センサ10aの検出範囲S1内の位置Aに物体が存在している場合には、超音波センサ10a自身によって、受信波が直接波として受信される。
 一方、隣り合う各超音波センサ10a,10bの検出範囲S1,S2の間における、超音波センサ10aからの送信波を超音波センサ10bで受信可能な検出範囲S3内の位置Bに物体が存在している場合には、超音波センサ10bによって、受信波が間接波として受信される。なお、各検出範囲S1,S2は、適宜の変更が可能である。各検出範囲S1,S2は、例えば、隣り合う検出範囲の一部が互いに重複していてもよい。
 図1の説明に戻る。車両前部において、日射等に影響されにくいバンパー15の下部の内側等には、自車両50の周囲温度を検出する外気温センサ31が設けられている。外気温センサ31は、超音波センサ10の外気温(外部温度)を取得する外部温度取得部として機能する。車両後部において、中心線Oを介して一方の側には、排気ガスを外部に排出するマフラー61が設けられている。
 また図2において、ブレーキ装置41は、自車両50を制動する制動装置である。ブレーキ装置41は、ECU20からの制御指令に従って、運転者によるブレーキ操作の制動力を強くしたり(アシストしたり)、運転者によるブレーキ操作の有無に関係なく自動制動を行ったりする。
 警報装置42は、ECU20からの制御指令に従って、警報メッセージや警告音等を出力し、運転者に衝突の危険を報知する。なお、安全装置としては、ブレーキ装置41及び警報装置42のうちの少なくとも一方を備えていればよい。
 ECU20は、本実施形態に係る物体検出装置に相当する。ECU20は、CPU、ROM、RAM、及びI/O等を備えたコンピュータである。ECU20は、例えばCPUがROMに格納されているプログラムを実行することによって、本実施形態に係る物体検出装置が有する各種機能を実現する。
 ECU20は、超音波センサ10によって受信された直接波又は間接波を用いて物体を検出する。詳しくは、図4に示すように、ECU20は、時刻t0~t1の間、所定の駆動信号を、超音波センサ10の圧電素子11bに与える。これにより、時刻t0~t1の間、超音波センサ10からは、所定周波数の超音波が送信波として送信される。その後、送信波は物体によって反射される。その結果、所定時間の経過後に送信波を送信したセンサと同じ超音波センサ10(自身のセンサ)では、該センサの振動子11によって、受信波が直接波として受信される。又は、送信波を送信したセンサとは異なる(隣接する)超音波センサ10(他のセンサ)では、該センサの振動子11によって、受信波が間接波として受信される。
 その後、受信波は、時刻t2で、超音波センサ10のソナー回路12に入力される。ソナー回路12は、入力された受信波(直接波又は間接波)に対して、フィルタリング処理を実施する。フィルタリング処理では、所定の周波数帯域の信号を抽出することによって、受信波に含まれるノイズ成分をカットする。
 また、ECU20は、外気温センサ31による外気温(外部温度)の検出値に基づいて、超音波センサ10の送信強度及び受信感度のうちの少なくとも一方を補正する。空気中における超音波の伝搬のしやすさ(減衰の度合い)は、外気温に応じて変わる。そのため、超音波センサ10から送信される超音波の送信強度と、超音波センサ10で受信される受信波の受信感度とは、外気温の影響を受けて変化する。
 そこで、本実施形態に係るECU20は、図5に示す物体の検出距離と増幅度(ゲイン)との相関関係を示すマップ(補正に関するマップ)を用い、外気温に基づいて、超音波センサ10の送信強度及び受信感度のうちの少なくとも一方を補正する。図5には、物体の検出距離と超音波の振幅の増幅度との相関関係が、外気温ごとに示されている。当該マップは、例えば、物体の検出距離と増幅度(補正量)とが、外気温ごとに予め対応付けられている。図5に示すマップでは、物体との距離が大きくなるほど、超音波の振幅の増幅度が大きくなるように設定されている。これは、物体との距離が大きくなるほど、超音波の減衰の度合いが高くなるためである。なお、ここでいうマップとは、データの対応付けにより、物体の検出距離を基に増幅度を特定可能なデータである。当該データは、ECU20が備えるROM等の記憶装置(所定の記憶領域)に予め記憶されている。ECU20は、このようなマップを参照することで、外気温に基づいて、超音波センサ10の送信強度や受信感度を補正できる(第2補正部として機能する)。
 また、超音波センサ10の共振体11aの振動のしやすさは、超音波センサ10のセンサ温度に応じて変わる。そのため、超音波の送信強度及び受信感度は、センサ温度の影響を受けて変化する。そこで、本実施形態に係るECU20は、超音波センサ10のセンサ温度の検出値に基づいて、超音波センサ10ごとの送信強度及び受信感度のうちの少なくとも一方を補正する。ECU20は、超音波センサ10の温度の検出値に基づいて、超音波センサ10による受信波の受信感度及び送信波の送信強度のうちの少なくとも一方を補正する補正部として機能する。
 すなわち、ECU20は、図6に示すセンサ温度と増幅度(ゲイン)との相関関係を示すマップ(補正に関するマップ)を用い、センサ温度に基づいて、超音波センサ10の送信強度及び受信感度のうちの少なくとも一方を補正する。図6には、センサ温度と超音波(送信波・受信波)の振幅の増幅度との相関関係が示されている。当該マップは、例えば、センサ温度と増幅度(補正量)とが、予め対応付けられている。図6に示すマップでは、送信波(送信強度)と受信波(受信感度)とで、増幅度が個別に設定されている。これは、送信強度と受信感度とで、センサ温度の影響に違いがあることを考慮しているためである。
 また図6では、センサ温度に応じて、増幅度がプラスの値に設定されている場合と、マイナスの値に設定されている場合とが示されている。これは、補正により、受信感度が所定の感度範囲となるように調整するためである。このように、本実施形態では、受信感度を所定の感度範囲となるように調整することによって、検出対象の物体を適切に抽出できる。換言すると、本実施形態では、検出対象ではない物体が誤検出されることにより、安全装置の不要作動が生じる等の問題を回避できる。なお、図6に示すマップも、図5に示すマップと同様に、データの対応付けにより、センサ温度を基に増幅度を特定可能なデータである。ECU20は、このようなマップを参照することで、センサ温度に基づいて、超音波センサ10の送信強度や受信感度を補正できる。
 以上のように、本実施形態に係るECU20では、図5と図6との補正に関するマップを用いて、外気温に基づく補正処理と、センサ温度に基づく補正処理とを組み合わせて実施する。これにより、本実施形態では、外気温及びセンサ温度の影響による物体の検出精度のばらつきが抑えられる。なお、図5,図6に示すマップは一例である。上記補正に関するマップは、超音波センサ10ごとの特性に応じて設定されていればよい。
 ところで、複数の超音波センサ10が車両に搭載されている場合には、取り付け位置の違いによって、超音波センサ10ごとに受ける熱の影響が異なる。図1に示す例では、車両後部において、超音波センサ10aはマフラー61から比較的遠い位置に設けられている。一方、超音波センサ10bはマフラー61から比較的近い位置に設けられている。このような場合には、超音波センサ10aよりも超音波センサ10bの方が、受ける熱の影響が大きくなりやすい。そのため、超音波センサ10aよりも超音波センサ10bの方が、センサ温度が高くなる傾向にある。同様に、車両前部と車両後部とに設けられた超音波センサ10を比較した場合にも、その取り付け位置や外部の熱源の影響等により、温度差が生じる可能性がある。
 また、複数の超音波センサ10が横並びで車両に搭載されている場合には、上述したように、自車両50の周囲に存在する物体の位置に応じて、物体の検出のされ方が異なる。具体的には、1つの超音波センサ10を用いて物体が検出される場合と、隣接する複数の超音波センサ10を用いて物体が検出される場合とが存在する。
 1つの超音波センサ10を用いて物体が検出される場合には、超音波の送受信を行う1つの超音波センサ10のセンサ温度が、送信強度と受信感度との両方に影響する。一方、複数の超音波センサ10を用いて物体が検出される場合には、送信側の超音波センサ10の温度が送信強度に影響し、受信側の超音波センサ10の温度が受信感度に影響する。なお、1つの超音波センサ10を用いて物体が検出される場合には、受信波は直接波として受信される。一方、複数の超音波センサ10を用いて物体が検出される場合には、受信波は間接波として受信される。
 そこで、本実施形態に係るECU20は、受信波が、直接波であるか、間接波であるかを判定する。ECU20は、指令信号に基づいて、送信波を送信した超音波センサ10を特定し、受信波を受信した超音波センサ10を特定する。ECU20は、この特定結果に基づいて、受信波が、直接波であるか、間接波であるかを判定する。詳しくは、ECU20は、送信側と受信側との超音波センサ10の一致・不一致を求めることにより判定する。
 そしてECU20は、受信波が直接波である場合には、超音波の送受信を行った1つの超音波センサ10のセンサ温度に基づいて、送信強度と受信感度の両方を補正する。一方、受信波が間接波である場合には、送信側の超音波センサ10のセンサ温度に基づいて、送信強度を補正し、受信側の超音波センサ10のセンサ温度に基づいて、受信感度を補正する。
 以上により、本実施形態では、物体が、直接波で検出される場合と、間接波で検出される場合との両方において、センサ温度の影響による物体の検出精度のばらつきが抑えられる。
 そしてECU20は、外気温及びセンサ温度に基づく補正処理を実施した後は、補正処理後の受信波の振幅の電圧レベルと、所定の閾値Thの電圧レベルとを比較する。その結果、ECU20は、受信波の振幅が所定の閾値Thよりも大きい場合には、物体を検出したと判定し、検出情報を得る。
 また、ソナー回路12は、超音波の送信を開始してから受信波を受信するまでの所要時間をECU20へ送信する。ECU20は、所要時間を換算して、自車両50から物体までの距離を算出する。なお、ソナー回路12が、所要時間を距離に換算してもよい。また、本実施形態では、ソナー回路12及びECU20のうちの一方が、後述する各種演算処理を実行する例について説明するが、この限りでない。後述する各種演算処理は、ソナー回路12とECU20とのどちらが実行してもよい。
 その後、ECU20は、物体の検出結果に基づいて、自車両50の運転支援制御を実施する。詳しくは、ECU20は、取得した物体の検出情報、及び、算出した物体までの距離に基づいて、物体との衝突の危険性が高まったと判定した場合に、安全装置を作動させる。例えば、駐車場等の車速が低速度となる場所において、自車両50から数m以内に物体が検出され、その物体との衝突の危険性が高まった場合に、ECU20は安全装置を作動させる。
 本実施形態に係る車両システム100では、上記補正処理は、ECU20が駆動状態の間、継続して実行される。なお、上記補正処理の実行タイミングは、ECU20において、所定の間隔に従って(所定の周期で)繰り返し実行されるように、予め設定されていてもよい。
 次に、本実施形態に係るECU20(物体検出装置)による物体の検出処理の手順について、図7のフローチャートを用いて説明する。本実施形態では、以下の処理は、ECU20が繰り返し実行するものとする。
 まず、ECU20は、外気温を取得する(ステップS11)。このときECU20は、外気温センサ31から外気温の検出値を取得する。次にECU20は、センサ温度を取得する(ステップS12)。このときECU20は、自車両50に搭載された超音波センサ10から、それぞれのセンサ温度の検出値(温度センサ13の検出値)を取得する。次にECU20は、外気温に基づく受信感度の補正量を取得する(ステップS13)。本処理では、受信感度の補正量を次のようにして取得する。ECU20は、図5に示すマップのデータを参照する。ECU20は、ステップS11の処理で取得した外気温に基づいて、当該外気温に対応する、物体の検出距離と増幅度との相関関係を示す設定データを選択する。これにより、ECU20は、物体の検出距離に対応付けられている超音波の振幅の増幅度を、設定データから特定し、特定した増幅度を受信感度の補正量として取得する。
 次にECU20は、センサ温度に基づく送信強度の補正量を取得する(ステップS14)。本処理では、送信強度の補正量を次のようにして取得する。ECU20は、図6に示すマップのデータを参照する。ECU20は、ステップS12の処理で取得したセンサ温度(送信波を送信した超音波センサ10のセンサ温度)に基づいて、当該センサ温度と増幅度との相関関係を示す設定データを選択する。これにより、ECU20は、センサ温度に対応付けられている送信波の振幅の増幅度を、設定データから特定し、特定した増幅度を送信強度の補正量として取得する。次にECU20は、受信波が直接波であるか否か判定する(ステップS15)。ECU20は、受信波が直接波であると判定した場合には(ステップS15:YES)、図6に示すマップのデータを参照し、送信波を送信した超音波センサ10のセンサ温度(送信側のセンサ温度)に基づいて、受信感度の補正量を取得する(ステップS16)。このときECU20は、センサ温度に対応付けられている受信波の振幅の増幅度を、設定データから特定し、特定した増幅度を受信感度の補正量として取得する。
 ECU20は、受信波が直接波ではなく、間接波であると判定した場合には(ステップS15:NO)、受信波を受信した超音波センサ10のセンサ温度(受信側のセンサ温度)に基づいて、受信感度の補正量を取得する(ステップS17)。
 次にECU20は、上記処理で取得した補正量を用いて、超音波センサ10の送信強度及び受信感度を補正する(ステップS18)。本処理では、ECU20は、ステップS14の処理で取得した送信強度の補正量を用いて、超音波センサ10の送信強度を補正する。また、ECU20は、ステップS13の処理で取得した受信感度の補正量、及び、ステップS16又はステップS17の処理で取得した受信感度の補正量を用いて、超音波センサ10の受信感度を補正する。その後、ECU20は、補正後の受信波の振幅が所定の閾値Thよりも大きいか否かを判定する(ステップS19)。ECU20は、受信波の振幅が所定の閾値Thよりも大きいと判定した場合には(ステップS19:YES)、自車両50の前方に物体が存在していると判定する(ステップS20)。ECU20は、受信波の振幅が所定の閾値Th以下と判定した場合には(ステップS19:NO)、自車両50の前方に物体が存在していないと判定する(ステップS21)。そしてECU20は、自車両50の前方に物体が存在していると判定した場合には、自車両50から物体までの距離を算出する(ステップS22)。このときECU20は、ソナー回路12から受信した所要時間を換算して、自車両50から物体までの距離を算出する。
 以上のように、本実施形態に係る物体検出装置(ECU20)では、以下の優れた効果を奏することができる。
 (1)超音波センサ10による物体の検出精度は、超音波センサ10の温度特性の影響を受けて変化する。そこで、本実施形態に係る物体検出装置では、超音波センサ10のセンサ温度を検出し、その検出値に基づいて、受信波の受信感度及び送信波の送信強度のうちの少なくとも一方を補正するようにした。これにより、本実施形態に係る物体検出装置では、超音波センサ10の温度特性の影響による物体の検出精度のばらつきが抑えられる。
 (2)自車両50に超音波センサ10が複数設けられている場合には、取り付け位置の違いに起因して、超音波センサ10ごとにセンサ温度が異なる。また、超音波センサ10ごとの温度特性にも違いがあることが想定される。さらに、超音波センサ10が横並びで複数設けられている場合には、送信波を送信した超音波センサ10(送信側のセンサ)とは異なる超音波センサ10によって、受信波が間接波として検出される。
 そこで、本実施形態に係る物体検出装置では、間接波が受信された場合には、間接波を受信した超音波センサ10のセンサ温度の検出値に基づいて、間接波を受信した超音波センサ10の受信感度を補正するようにした。これにより、本実施形態に係る物体検出装置では、送信側と受信側とで異なる超音波センサ10が用いられる場合において、受信側のセンサ温度による受信感度への影響を取り除ける。その結果、本実施形態に係る物体検出装置では、複数の超音波センサ10を用いて物体が検出される場合における、センサ温度の影響による物体の検出精度のばらつきが抑えられる。
 (3)本実施形態に係る物体検出装置では、直接波が受信された場合には、直接波を受信した超音波センサ10のセンサ温度の検出値に基づいて、直接波を受信した超音波センサ10の受信感度を補正する。これにより、本実施形態に係る物体検出装置では、1つの超音波センサ10を用いて物体が検出される場合において、当該超音波センサ10のセンサ温度による受信感度への影響を取り除ける。その結果、本実施形態に係る物体検出装置では、1つの超音波センサ10を用いて物体が検出される場合における、センサ温度の影響による物体の検出精度のばらつきが抑えられる。
 (4)本実施形態に係る物体検出装置では、送信波を送信した超音波センサ10のセンサ温度の検出値に基づいて、送信波を送信した超音波センサ10の送信強度を補正する。これにより、本実施形態に係る物体検出装置では、超音波センサ10のセンサ温度の影響による送信強度のばらつきが抑えられる。
 (5)本実施形態に係る物体検出装置では、物体が間接波で検出された場合(受信波が間接波の場合)には、受信波を受信した超音波センサ10のセンサ温度の検出値に基づき受信感度を補正する。また、物体検出装置では、送信波を送信した超音波センサ10のセンサ温度の検出値に基づき送信強度を補正する。一方、物体が直接波で検出された場合(受信波が直接波の場合)には、送信波を送信した超音波センサ10のセンサ温度の検出値に基づき受信感度及び送信強度の両方を補正する。このように、本実施形態に係る物体検出装置では、物体が、間接波で検出されたか、又は、直接波で検出されたか(受信波が間接波か又は直接波か)に応じて、送信強度及び受信感度の補正処理を切り替える。これにより、本実施形態に係る物体検出装置では、物体が1つの超音波センサ10を用いて検出された場合と、複数の超音波センサ10を用いて検出された場合との両方において、超音波センサ10のセンサ温度の影響による物体の検出精度のばらつきが抑えられる。
 (6)例えば図3に示すように、超音波センサ10a,10bが横並びに設けられており、且つ、超音波センサ10a,10bごとに物体の検出範囲S1,S2が定められている場合には、次のようにして物体を検出できる。検出範囲S1,S2のいずれかの範囲内に物体が存在していれば、直接波を用いて物体を検出できる。一方、検出範囲S1とS2との間の検出範囲S3に物体が存在していれば、間接波を用いて物体を検出できる。
 (7)本実施形態に係る物体検出装置では、送信波を送信する超音波センサ10aについては、当該超音波センサ10aのセンサ温度の検出値に基づき送信強度の補正を行う。一方、受信波を受信する超音波センサ10bについては、当該超音波センサ10bのセンサ温度の検出値に基づき受信感度を補正する。これにより、本実施形態に係る物体検出装置では、送信側の超音波センサ10aと受信側の超音波センサ10bとの各々において、センサ温度の影響を取り除ける。その結果、本実施形態に係る物体検出装置では、超音波センサ10a、10b(複数の超音波センサ10)を用いて物体が検出される場合における、センサ温度の影響による物体の検出精度のばらつきが抑えられる。
 (8)直接波で物体が検出された場合には、直接波を受信した超音波センサ10のセンサ温度に基づき受信感度及び送信強度の両方を補正する。これにより、本実施形態に係る物体検出装置では、超音波センサ10のセンサ温度の影響による物体の検出精度のばらつきが抑えられる。
 (9)本実施形態に係る物体検出装置では、超音波センサ10の受信感度が所定の感度範囲となるように補正をする。これにより、本実施形態に係る物体検出装置では、検出対象の物体を適切に検出できる。
 (10)本実施形態に係る物体検出装置では、補正後の受信波の振幅が所定の閾値Thよりも大きくなったことを条件に、物体の有無を判定できる。つまり、本実施形態に係る物体検出装置では、補正後の受信波の振幅を判定パラメータとして用いることで、物体の有無を判定できる。
 (11)超音波センサ10による物体の検出精度は、外気温(外部温度)の影響を受けて変化する。そこで、本実施形態に係る物体検出装置では、外気温を検出し、その検出値に基づいて、超音波センサ10の受信感度及び送信強度の両方を補正する。これにより、本実施形態に係る物体検出装置では、外気温の影響による物体の検出精度のばらつきが抑えられる。
 上記実施形態は、例えば次のように変更してもよい。なお、以下の説明において、上記実施形態に示した構成と同様の構成については、同一の参照符号を付し、詳述は省略する。
 ・上記実施形態では、図6に示すマップを用いて、センサ温度に基づき送信波の振幅の増幅度(ゲイン)を取得し、取得した増幅度(補正量)に基づき送信強度を補正する例を示したが、この限りでない。これ以外の方法としては、センサ温度に基づいて、超音波センサ10の送信波の出力を調整することによって、送信強度を補正するようにしてもよい。また、他の例としては、センサ温度に基づいて、圧電素子11bを振動させる際の電流、電圧、及びパルス数のうちの少なくとも1つを変化させることにより、超音波センサ10の送信波の出力を調整するようにしてもよい。以上のように、物体検出装置では、送信強度の補正処理として、超音波センサ10の送信波の出力を調整することによっても、超音波センサ10のセンサ温度の影響による送信強度のばらつきが抑えられる。
 ・上記実施形態では、超音波センサ10が、当該センサのセンサ温度を検出するための温度センサ13を内蔵し、センサ温度を内部から検出する構成例を示したが、この限りでない。超音波センサ10のセンサ温度は、外部から検出する構成であってもよい。
 ・超音波センサ10の種類によっては、受信感度及び送信強度のうちの少なくとも一方が、センサ温度の影響を受けにくい場合も想定される。そこで、ECU20では、受信感度及び送信強度のうちの少なくとも一方の補正処理が行われればよい。受信感度のみの補正処理を行う場合には、例えば次のような処理例が挙げられる。上記図7に示すフローチャートにおいて、ECU20は、ステップS14の処理を省略する。そして、ECU20は、受信波が、直接波であるか、間接波であるかに応じて、受信感度の補正処理を行う。このように、物体検出装置では、受信感度の補正のみが行われる場合においても、受信波を受信した超音波センサ10のセンサ温度による受信感度への影響を取り除ける。その結果、物体検出装置では、センサ温度の影響による物体の検出精度のばらつきが抑えられる。
 ・また、他の例としては、ECU20は、上記図7に示すフローチャートにおいて、ステップS11,S13の処理を省略してもよい。すなわち、外気温に基づく補正処理を省略してもよい。この場合には、センサ温度のみを用いて、送信強度及び受信感度が補正される。これにより、物体検出装置では、センサ温度の影響による物体の検出精度のばらつきが抑えられる。
 ・上記実施形態では、補正後の受信波の振幅と閾値Thとを比較して、物体の有無を判定する例を示したが、この限りでない。これ以外の方法としては、補正後の受信波の振幅の絶対値に基づいて、物体の有無を判定するようにしてもよい。
 ・上記図3に示す検出範囲は、超音波センサ10aによる物体の検出範囲S1と、超音波センサ10bによる物体の検出範囲S2との一部が重複していてもよい。
 ・上記図3に示す検出範囲は、超音波センサ10ごとに設定されていなくてもよい。この場合にも、ECU20は、送信波を送信した超音波センサ10と、超音波を受信した超音波センサ10の一致・不一致を判定する。これにより、物体検出装置では、受信波が、直接波であるか、間接波であるかを特定できる。
 10…超音波センサ、13…温度センサ、20…ECU。

Claims (13)

  1.  超音波センサ(10)から送信波として送信された超音波の物体による反射波を受信波として受信した場合に、前記受信波に基づいて、自車両の周囲に存在する物体を検出する物体検出部を備える、物体検出装置であって、
     前記超音波センサの温度を取得する温度取得部(13)と、
     前記温度取得部による前記超音波センサの温度の検出値に基づいて、前記超音波センサによる前記受信波の受信感度及び前記送信波の送信強度のうちの少なくとも一方を補正する補正部と、を備え、
     前記物体検出部は、
     前記補正部による補正後の前記受信波を用いて、前記物体を検出する、物体検出装置。
  2.  前記超音波センサが横並びで複数設けられている車両に適用され、
     前記物体検出部は、前記送信波を送信した前記超音波センサとは異なる前記超音波センサによって受信された前記受信波である間接波を用いて、前記物体を検出するものであって、
     前記補正部は、前記間接波を受信した前記超音波センサの温度の検出値に基づいて、前記間接波を受信した前記超音波センサの受信感度を補正する、請求項1に記載の物体検出装置。
  3.  前記超音波センサが横並びで複数設けられている車両に適用され、
     前記物体検出部は、前記送信波を送信した前記超音波センサと同じ前記超音波センサによって受信された前記受信波である直接波を用いて、前記物体を検出するものであって、
     前記補正部は、前記直接波を受信した前記超音波センサの温度の検出値に基づいて、前記直接波を受信した前記超音波センサの受信感度を補正する、請求項1又は2に記載の物体検出装置。
  4.  前記補正部は、前記送信波を送信した前記超音波センサの温度の検出値に基づいて、前記送信波の送信強度を補正する、請求項1乃至3のいずれか一項に記載の物体検出装置。
  5.  前記超音波センサが横並びで複数設けられている車両に適用され、
     前記物体検出部は、前記送信波を送信した前記超音波センサとは異なる前記超音波センサによって受信された前記受信波である間接波を用いて、前記物体を検出し、且つ、前記送信波を送信した前記超音波センサと同じ前記超音波センサによって受信された前記受信波である直接波を用いて、前記物体を検出するものであって、
     前記物体検出部が、前記受信波が、前記直接波か前記間接波かを判定する判定部を備え、
     前記補正部は、
     前記判定部により、前記受信波が前記間接波と判定された場合には、前記間接波を受信した前記超音波センサの温度の検出値に基づいて、前記間接波を受信した前記超音波センサの受信感度を補正し、且つ、前記送信波を送信した前記超音波センサの温度の検出値に基づいて、前記送信波を送信した前記超音波センサの送信強度を補正し、
     前記判定部により、前記受信波が前記直接波と判定された場合には、前記直接波を受信した前記超音波センサの温度の検出値に基づいて、前記直接波を受信した前記超音波センサの受信感度及び送信強度の両方を補正する、請求項1に記載の物体検出装置。
  6.  複数の前記超音波センサとして、所定の第1検出範囲内の前記物体を検出する第1センサ(10a)と、所定の第2検出範囲内の前記物体を検出する第2センサ(10b)とを備えており、
     前記物体検出部は、
     前記第1検出範囲及び前記第2検出範囲のいずれかの範囲内に前記物体が存在している場合には、前記直接波を用いて前記物体を検出し、
     前記第1検出範囲及び前記第2検出範囲の間に前記物体が存在している場合には、前記間接波を用いて前記物体を検出する、請求項5に記載の物体検出装置。
  7.  前記温度取得部は、前記第1センサの温度を第1温度として取得し、前記第2センサの温度を第2温度として取得するものであって、
     前記補正部は、前記第1センサから送信された前記送信波が前記第2センサによって前記間接波として受信された場合において、前記第1温度の検出値に基づいて、前記第1センサの送信強度を補正するとともに、前記第2温度の検出値に基づいて、第2センサの受信感度を補正する、請求項6に記載の物体検出装置。
  8.  前記補正部は、前記直接波が受信されたことを条件に、前記直接波を受信した前記超音波センサの受信感度及び送信強度の両方を補正する、請求項6又は7に記載の物体検出装置。
  9.  前記補正部は、前記超音波センサによる前記送信波の送信強度として、前記送信波の増幅度及び前記送信波の出力のうちの少なくとも1つを補正する、請求項1乃至8のいずれか一項に記載の物体検出装置。
  10.  前記補正部は、前記超音波センサによる前記受信波の受信感度が所定の感度範囲となるように補正をする、請求項1乃至9のいずれか一項に記載の物体検出装置。
  11.  前記物体検出部は、補正後の前記受信波の振幅が所定の閾値よりも大きくなることを条件に、物体の有無を判定する、請求項1乃至10のいずれか一項に記載の物体検出装置。
  12.  前記超音波センサの外部温度を取得する外部温度取得部(31)と、
     前記外部温度取得部により取得された前記外部温度を用いて、前記超音波センサの受信感度及び送信強度を補正する第2補正部と、
     を備える、請求項1乃至11のいずれか一項に記載の物体検出装置。
  13.  超音波センサ(10)から送信波として送信された超音波の物体による反射波を受信波として受信することによって、自車両の周囲に存在する物体を検出する物体検出部を備える物体検出装置に適用される物体検出方法であって、
     前記超音波センサの温度を取得するステップと、
     前記超音波センサの温度の検出値に基づいて、前記超音波センサによる前記受信波の受信感度及び前記送信波の送信強度のうちの少なくとも一方を補正するステップと、
     補正後の前記受信波を用いて、前記物体を検出するステップと、を含む物体検出方法。
PCT/JP2016/084376 2015-11-24 2016-11-21 物体検出装置及び物体検出方法 WO2017090546A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680068217.3A CN108291966B (zh) 2015-11-24 2016-11-21 物体检测装置以及物体检测方法
US15/778,027 US10877135B2 (en) 2015-11-24 2016-11-21 Object detection apparatus and object detecting method
DE112016005377.0T DE112016005377B4 (de) 2015-11-24 2016-11-21 Objekterkennungsvorrichtung und objekterfassungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015229149A JP6445419B2 (ja) 2015-11-24 2015-11-24 物体検出装置、及び物体検出方法
JP2015-229149 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090546A1 true WO2017090546A1 (ja) 2017-06-01

Family

ID=58764101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084376 WO2017090546A1 (ja) 2015-11-24 2016-11-21 物体検出装置及び物体検出方法

Country Status (5)

Country Link
US (1) US10877135B2 (ja)
JP (1) JP6445419B2 (ja)
CN (1) CN108291966B (ja)
DE (1) DE112016005377B4 (ja)
WO (1) WO2017090546A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018077661A1 (de) * 2016-10-31 2018-05-03 Robert Bosch Gmbh Verfahren und vorrichtung zum betreiben eines sicherheitssystems eines kraftfahrzeugs, sicherheitssystem für ein kraftfahrzeug
EP3623841A4 (en) * 2017-06-06 2020-05-27 Mitsubishi Electric Corporation OBJECT DETECTION DEVICE
JP2020098157A (ja) * 2018-12-18 2020-06-25 株式会社Soken 物体検知装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10968168B2 (en) 2017-05-15 2021-04-06 Asahi Kasei Kabushiki Kaisha Isocyanate production method
KR102084486B1 (ko) * 2017-09-29 2020-03-04 센서텍(주) 온도 신뢰성을 향상시키기 위한 초음파 센서 구동 장치
EP3579020B1 (de) * 2018-06-05 2021-03-31 Elmos Semiconductor SE Verfahren zur erkennung eines hindernisses mit hilfe von reflektierten ultraschallwellen
DE102019203190A1 (de) * 2019-03-08 2020-09-10 Robert Bosch Gmbh Verfahren und Fahrerassistenzsystem zum Erkennen eines Fahrbahnzustands
CN110399852B (zh) * 2019-07-30 2021-07-20 Oppo广东移动通信有限公司 超声波模组的控制方法及相关产品
JP7253748B2 (ja) * 2019-12-23 2023-04-07 パナソニックIpマネジメント株式会社 補正量設定装置、超音波式物体検出装置、補正量設定方法、及び、補正量設定プログラム
DE102020133305A1 (de) * 2019-12-23 2021-06-24 Panasonic Intellectual Property Management Co., Ltd. Korrekturbetrag-einstellvorrichtung, ultraschall-objekterfassungsvorrichtung, korrekturbetrag-einstellverfahren und korrekturbetrag-einstellprogramm
CN112629568A (zh) * 2020-12-04 2021-04-09 上海索迪龙自动化有限公司 一种接近传感器电路及检测距离的方法
CN113155166A (zh) * 2021-04-09 2021-07-23 深圳市豪恩汽车电子装备股份有限公司 一种基于分离元器件的超声波传感系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189571A (ja) * 1982-04-28 1983-11-05 West Electric Co Ltd 超音波測距装置
JP2005121509A (ja) * 2003-10-17 2005-05-12 Daihatsu Motor Co Ltd 超音波測定装置
JP2008309512A (ja) * 2007-06-12 2008-12-25 Denso Corp 超音波センサの自己診断方法
US8676438B2 (en) * 2012-07-31 2014-03-18 Ford Global Technologies Method and system for implementing ultrasonic sensor signal strength calibrations
JP2015191441A (ja) * 2014-03-28 2015-11-02 三菱電機株式会社 衝突判定装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4338743C2 (de) * 1993-11-12 2003-06-26 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betrieb eines Ultraschallsensors
US20140070943A1 (en) * 2002-06-11 2014-03-13 Intelligent Technologies International, Inc. Atmospheric and Chemical Monitoring Techniques
US6674687B2 (en) * 2002-01-25 2004-01-06 Navcom Technology, Inc. System and method for navigation using two-way ultrasonic positioning
DE102004038496A1 (de) 2004-08-07 2006-03-16 Robert Bosch Gmbh Verfahren und Vorrichtung zur Abstandsmessung eines sich in der Umgebung eines Kraftfahrzeuges befindlichen Hindernisses
DE102005062539A1 (de) * 2005-12-27 2007-07-05 Robert Bosch Gmbh Verfahren zur Kalibrierung eines Sensorsystems
JP2009058362A (ja) 2007-08-31 2009-03-19 Denso Corp 超音波送信方法及び超音波送信装置
JP4787298B2 (ja) * 2008-08-01 2011-10-05 株式会社日本自動車部品総合研究所 超音波式物体方位検出装置
CN101750612A (zh) * 2008-12-11 2010-06-23 联创汽车电子有限公司 倒车雷达系统
JP4799631B2 (ja) * 2009-02-27 2011-10-26 株式会社日本自動車部品総合研究所 物体検出装置
DE102010045657A1 (de) 2010-09-17 2012-03-22 Wabco Gmbh Umfeld-Überwachungssystem für ein Fahrzeug
US20140148992A1 (en) * 2012-07-31 2014-05-29 Ford Global Technologies Method for sensor threshold compensation
US8682523B2 (en) * 2012-07-31 2014-03-25 Ford Global Technologies Method and system for implementing ultrasonic sensor signal strength calibrations
DE102012215493B4 (de) 2012-08-31 2023-10-26 Robert Bosch Gmbh Robustheitserhöhung von Ultraschallsystemen
JP6073646B2 (ja) * 2012-10-29 2017-02-01 株式会社デンソー 補正値設定装置、および距離検出装置
CN105629215B (zh) * 2014-10-27 2018-09-25 同致电子科技(厦门)有限公司 一种车辆超声波传感器校正方法及系统
DE102017210109A1 (de) * 2017-06-16 2018-12-20 Volkswagen Aktiengesellschaft Verfahren zum Unterstützen eines Manövriervorganges eines Kraftfahrzeugs und System zum Unterstützen eines Manövriervorganges eines Kraftfahrzeugs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189571A (ja) * 1982-04-28 1983-11-05 West Electric Co Ltd 超音波測距装置
JP2005121509A (ja) * 2003-10-17 2005-05-12 Daihatsu Motor Co Ltd 超音波測定装置
JP2008309512A (ja) * 2007-06-12 2008-12-25 Denso Corp 超音波センサの自己診断方法
US8676438B2 (en) * 2012-07-31 2014-03-18 Ford Global Technologies Method and system for implementing ultrasonic sensor signal strength calibrations
JP2015191441A (ja) * 2014-03-28 2015-11-02 三菱電機株式会社 衝突判定装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018077661A1 (de) * 2016-10-31 2018-05-03 Robert Bosch Gmbh Verfahren und vorrichtung zum betreiben eines sicherheitssystems eines kraftfahrzeugs, sicherheitssystem für ein kraftfahrzeug
US11780393B2 (en) 2016-10-31 2023-10-10 Robert Bosch Gmbh Method and device for operating a safety system of a motor vehicle, and safety system for a motor vehicle
EP3623841A4 (en) * 2017-06-06 2020-05-27 Mitsubishi Electric Corporation OBJECT DETECTION DEVICE
JP2020098157A (ja) * 2018-12-18 2020-06-25 株式会社Soken 物体検知装置
WO2020129449A1 (ja) * 2018-12-18 2020-06-25 株式会社Soken 物体検知装置
JP7243171B2 (ja) 2018-12-18 2023-03-22 株式会社Soken 物体検知装置

Also Published As

Publication number Publication date
DE112016005377T5 (de) 2018-08-09
JP6445419B2 (ja) 2018-12-26
JP2017096771A (ja) 2017-06-01
DE112016005377B4 (de) 2021-12-23
CN108291966B (zh) 2021-12-03
CN108291966A (zh) 2018-07-17
US10877135B2 (en) 2020-12-29
US20180329044A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2017090546A1 (ja) 物体検出装置及び物体検出方法
CN107735693B (zh) 驾驶辅助装置以及驾驶辅助方法
US7522472B2 (en) Obstacle detection system
CN107209256B (zh) 超声波式物体检测装置
JP6888506B2 (ja) 物体検知装置
JP6715456B2 (ja) 検出装置、検出方法、および検出プログラム
KR101180797B1 (ko) 자동차용 초음파식 침입 검출 경보 시스템 및 방법
JP2002286443A (ja) 自動車における側面衝突検出のための装置
JP6086488B2 (ja) 物体検出装置
US11294043B2 (en) Ultrasonic sensor device and sensing method of ultrasonic sensor device
JP2016191614A (ja) 障害物検出装置、湿度補正値算出方法、および超音波受波しきい値決定方法
JP7230619B2 (ja) 物体検出装置
US20210318432A1 (en) Object detection device and object detection system
JP2016194451A (ja) 障害物検出装置および超音波センサ調整方法
KR101887902B1 (ko) 초음파 센서 근거리 측정 구동 방법
KR101503125B1 (ko) 차량용 초음파 물체 감지시 오경보 방지 방법 및 오경보 방지를 위한 차량용 초음파 물체 감지 장치
JP2002006036A (ja) 超音波の反射波検出方法および超音波センサ装置
US11719815B2 (en) Object detection device
WO2023276825A1 (ja) 物体検出装置
US11698456B2 (en) Object detection system
WO2023277097A1 (ja) 物体検出装置
JP2011131688A (ja) 路面状況検出用モジュールおよびこれを備えたタイヤ空気圧検出用モジュール
JP2002350540A (ja) 超音波の伝播時間算出装置及び車両用障害物検知システム
JP2017167096A (ja) 取り付け状態判定装置および取り付け状態判定方法
JP2021071405A (ja) 物体検知装置、超音波センサ、物体検知方法、および、物体検知プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868493

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15778027

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016005377

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868493

Country of ref document: EP

Kind code of ref document: A1