WO2017090242A1 - 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池 - Google Patents

非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池 Download PDF

Info

Publication number
WO2017090242A1
WO2017090242A1 PCT/JP2016/004912 JP2016004912W WO2017090242A1 WO 2017090242 A1 WO2017090242 A1 WO 2017090242A1 JP 2016004912 W JP2016004912 W JP 2016004912W WO 2017090242 A1 WO2017090242 A1 WO 2017090242A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
secondary battery
composition
aqueous secondary
organic particles
Prior art date
Application number
PCT/JP2016/004912
Other languages
English (en)
French (fr)
Inventor
一輝 浅井
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP16868193.0A priority Critical patent/EP3382777B1/en
Priority to CN201680066984.0A priority patent/CN108292735B/zh
Priority to KR1020187013871A priority patent/KR102613891B1/ko
Priority to JP2017552271A priority patent/JP7179463B2/ja
Priority to PL16868193T priority patent/PL3382777T3/pl
Priority to US15/776,540 priority patent/US10615379B2/en
Publication of WO2017090242A1 publication Critical patent/WO2017090242A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/33Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • H01M2300/0097Composites in the form of layered products, e.g. coatings with adhesive layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous secondary battery adhesive layer composition, a non-aqueous secondary battery adhesive layer, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes abbreviated as “secondary batteries”) have the characteristics of being small and lightweight, having high energy density, and capable of repeated charge and discharge. It is used for a wide range of purposes.
  • the secondary battery generally includes a battery member such as a positive electrode, a negative electrode, and a separator that separates the positive electrode and the negative electrode and prevents a short circuit between the positive electrode and the negative electrode.
  • an electrode formed by further forming an adhesive layer on an electrode base material provided with an electrode mixture layer on a current collector, or a separator formed by forming an adhesive layer on a separator base material is a battery member.
  • This adhesive layer is usually a slurry-like composition for a non-aqueous secondary battery adhesive layer (hereinafter referred to as “adhesive layer composition”) containing a binder component and a dispersion medium such as water. Is provided on an appropriate substrate such as an electrode substrate or a separator substrate and dried (see, for example, Patent Document 1).
  • Patent Document 1 an electrode base material having an electrode mixture layer and a separator base material are bonded and integrated by an adhesive layer to suppress the swelling of cells and the increase in the distance between electrode plates due to repeated charge and discharge. Thus, a technique for improving the electrical characteristics of the non-aqueous secondary battery has been proposed. In Patent Document 1, an attempt is made to exhibit good battery characteristics by forming an adhesive layer with a small amount of adhesive.
  • Patent Document 1 Although the adhesive layer formed using the composition for adhesive layers in Patent Document 1 is excellent in thin layer properties, the adhesive properties of the adhesive layer and the low-temperature output characteristics of a non-aqueous secondary battery including such an adhesive layer There was room for improvement in terms of improving the balance.
  • this invention provides the composition for non-aqueous secondary battery contact bonding layers which can form the contact bonding layer which is excellent in adhesiveness and can improve the low temperature output characteristic of a non-aqueous secondary battery.
  • Another object of the present invention is to provide an adhesive layer for a non-aqueous secondary battery that has excellent adhesiveness and can exhibit excellent low-temperature output characteristics for a non-aqueous secondary battery.
  • an object of the present invention is to provide a non-aqueous secondary battery having excellent low-temperature output characteristics.
  • the present inventor has repeatedly studied that the viscous behavior of the adhesive layer composition has a great influence on the adhesive layer adhesion and the low-temperature output characteristics of a non-aqueous secondary battery including such an adhesive layer. I came to pay attention. Specifically, for the purpose of improving ion diffusibility between battery members and reducing the cost, conventionally, the thinning of the adhesive layer has been studied as in Patent Document 1, but the present inventor If the viscosity of the adhesive layer composition is simply lowered so that the layer composition is thinly coated on the substrate, the ion permeability of the adhesive layer formed using the adhesive layer composition may be impaired. Newly found.
  • the present inventor makes the viscosity ⁇ 0 under a low shear condition (shear rate 100 sec ⁇ 1 ) within a specific range, so that the solid component in the composition for the adhesive layer after coating is reduced.
  • the viscosity ⁇ 1 under a high shear condition is within the range in which application is easy.
  • the composition for a non-aqueous secondary battery adhesive layer of the present invention comprises a non-aqueous secondary containing organic particles and a water-soluble polymer.
  • the ratio is ⁇ 200 mPa ⁇ s and the ratio of ⁇ 0 to the viscosity ⁇ 1 at a shear rate of 10,000 sec ⁇ 1 is 1.5 to 5.0.
  • the non-aqueous secondary battery adhesive layer composition having such properties can form an adhesive layer that is rich in adhesiveness and can exhibit excellent low-temperature output characteristics for the secondary battery.
  • a polymer is “water-soluble” means that an insoluble content is less than 1.0% by mass when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C. Say. A substance whose solubility changes depending on the pH of water is considered to be “water-soluble” if it falls under the above-mentioned “water-soluble” at least at any pH.
  • the “1% by weight aqueous solution viscosity” of the water-soluble polymer was prepared by preparing a 1% by weight aqueous solution of the water-soluble polymer and using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm under the condition of pH 8. It is the value when measured.
  • “the viscosity eta 1 at a shear rate of 10000 sec -1” and “viscosity eta 0 at a shear rate of 100 sec -1” of the adhesive layer composition is a viscosity at a measurement temperature of 25 ° C. at each shear rate, It can measure using the measuring method as described in the Example of this specification.
  • the said water-soluble polymer contains 20 to 70 mass% of ethylenically unsaturated carboxylic acid monomer units. If the content ratio of the ethylenically unsaturated carboxylic acid monomer unit in the water-soluble polymer is within a specific range, the adhesiveness of the adhesive layer and the low-temperature output characteristics of the secondary battery can be improved in a more balanced manner.
  • “comprising a monomer unit” means “a polymer-derived structural unit is contained in a polymer obtained using the monomer”.
  • the organic particles preferably include an acid group-containing monomer unit. If the organic particles contain an acid group-containing monomer unit, the dispersibility and coating properties of the composition for a non-aqueous secondary battery adhesive layer can be improved, and the adhesiveness of the adhesive layer can be further improved.
  • the organic particles include a (meth) acrylamide monomer unit. If the organic particles contain a (meth) acrylamide monomer unit, the dispersibility and coating property of the composition for a non-aqueous secondary battery adhesive layer can be improved, and the adhesiveness of the adhesive layer can be further improved. Moreover, if the organic particles contain a (meth) acrylamide monomer unit, the low-temperature output characteristics of a secondary battery having an adhesive layer formed using the composition for a non-aqueous secondary battery adhesive layer can be further improved. .
  • the adhesive layer for non-aqueous secondary batteries of this invention uses the composition for non-aqueous secondary battery adhesive layers mentioned above. It is formed. Such a non-aqueous secondary battery adhesive layer is excellent in adhesiveness and can improve the low-temperature output characteristics of the secondary battery.
  • the non-aqueous secondary battery of this invention is equipped with the contact bonding layer for non-aqueous secondary batteries mentioned above, It is characterized by the above-mentioned. It is.
  • the low temperature output characteristic of a secondary battery can be improved by providing the adhesive layer of this invention in a secondary battery.
  • the non-aqueous secondary battery of the present invention is preferably a wound type or a stacked type. This is because when the secondary battery is molded into a wound type or a laminated type, good adhesive properties are exhibited by the adhesive layer of the present invention, so that good low-temperature output characteristics can be obtained.
  • non-aqueous secondary battery adhesive layer composition capable of forming an adhesive layer that exhibits excellent adhesiveness and can provide excellent low-temperature output characteristics for a secondary battery. it can.
  • the adhesive layer for non-aqueous secondary batteries which is excellent in adhesiveness and can exhibit the low-temperature output characteristic excellent in the non-aqueous secondary batteries can be provided.
  • the composition for non-aqueous secondary battery adhesive layers of the present invention is used as a material for preparing an adhesive layer for adhering battery members such as separator substrates and electrode substrates to each other.
  • the adhesive layer for non-aqueous secondary batteries of this invention is formed using the said composition for non-aqueous secondary battery adhesive layers.
  • the non-aqueous secondary battery of this invention is equipped with the contact bonding layer for non-aqueous secondary batteries of this invention at least.
  • composition for non-aqueous secondary battery adhesive layer is a slurry composition containing at least organic particles and a water-soluble polymer, and optionally containing other components, using water or the like as a dispersion medium. Furthermore, the composition for a non-aqueous secondary battery adhesive layer has a 1% by weight aqueous solution viscosity of the water-soluble polymer within a specific range, and further has a viscosity ⁇ 0 at a shear rate of 100 sec ⁇ 1 and a shear rate. The ratio of ⁇ 0 to viscosity ⁇ 1 at 10000 sec ⁇ 1 is in a specific range.
  • the adhesive layer formed using the composition for non-aqueous secondary battery adhesive layer of the present invention exhibits excellent adhesiveness due to the contribution of the viscous behavior of the adhesive layer composition, and further, the secondary layer The battery can have excellent battery characteristics.
  • the composition for a non-aqueous secondary battery adhesive layer of the present invention has a 1% by weight aqueous solution viscosity of a water-soluble polymer of 500 mPa ⁇ s to 9000 mPa ⁇ s, and a shear rate of 100 sec ⁇ 1.
  • viscosity eta 0 is within a specific range in, for a ratio of the eta 0 on the viscosity eta 1 at a shear rate of 10000 sec -1 is within a specific range, the coating to the substrate of the adhesive layer composition
  • the flow of the solid component after application can be reduced while securing the properties, the densification of the adhesive layer can be suppressed, and the low-temperature output characteristics of the secondary battery can be improved.
  • the organic particles contained in the non-aqueous secondary battery adhesive layer composition have a function of exhibiting excellent adhesiveness in the adhesive layer formed using the non-aqueous secondary battery adhesive layer composition.
  • the organic particles may include a (meth) acrylic acid ester monomer unit.
  • the organic particles preferably include an acid group-containing monomer unit. If the organic particles contain an acid group-containing monomer unit, the dispersibility and coating properties of the composition for a non-aqueous secondary battery adhesive layer can be improved, and the adhesiveness of the adhesive layer can be further improved.
  • the organic particles preferably contain a (meth) acrylamide monomer unit.
  • the organic particles contain a (meth) acrylamide monomer unit
  • the dispersibility and coating property of the composition for a non-aqueous secondary battery adhesive layer can be improved, and the adhesiveness of the adhesive layer can be further improved.
  • the organic particles contain a (meth) acrylamide monomer unit
  • the low-temperature output characteristics of a secondary battery having an adhesive layer formed using the composition for a non-aqueous secondary battery adhesive layer can be further improved.
  • (meth) acryl means acryl and / or methacryl.
  • (Meth) acrylic acid ester monomer unit examples of the (meth) acrylate monomer that can form a (meth) acrylate monomer unit include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2 And (meth) acrylic acid ester monomers such as ethylhexyl acrylate.
  • the content ratio of the (meth) acrylic acid ester monomer unit in the organic particle is preferably 50.0% by mass or more when the total monomer unit contained in the organic particle is 100% by mass, 55 It is more preferably 0.0% by mass or more, still more preferably 65.0% by mass or more, preferably 99.0% by mass or less, and more preferably 95.0% by mass or less. If the content ratio of the (meth) acrylic acid ester monomer unit in the organic particles is equal to or higher than the above lower limit value, the glass transition temperature of the organic particles is avoided from being excessively reduced, and the resulting adhesive layer has a blocking resistance. Can be improved. If the adhesive layer has high anti-blocking properties, it is possible to prevent the separator and electrode adjacent to each other from adhering to each other when the separator or electrode formed with the adhesive layer is stored in a stacking state via the adhesive layer. can do.
  • acid group-containing monomer unit examples include monomers having an acid group, such as monomers having a carboxylic acid group, monomers having a sulfonic acid group, and phosphoric acid. And a monomer having a group and a monomer having a hydroxyl group.
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acid and dicarboxylic acid.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
  • examples of the monomer having a phosphoric acid group include phosphoric acid-2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate.
  • examples of the monomer having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl methacrylate.
  • (meth) allyl means allyl and / or methallyl
  • (meth) acryloyl means acryloyl and / or methacryloyl.
  • the content ratio of the acid group-containing monomer units in the organic particles is preferably 0.1% by mass or more when the total monomer units contained in the organic particles are 100% by mass, and 0.5% by mass. % Or more, more preferably 1.0% by mass or more, further preferably 4.5% by mass or less, and more preferably 4.0% by mass or less.
  • the adhesiveness of the adhesive layer can be further improved.
  • the density of the adhesive layer is suppressed from being excessively increased, and the low temperature output characteristics of the obtained secondary battery are further improved. It can be improved.
  • (Meth) acrylamide monomer unit examples of the monomer that can form a (meth) acrylamide monomer unit include (meth) acrylamide monomers such as N-hydroxymethyl (meth) acrylamide, acrylamide, and methacrylamide.
  • the content ratio of the (meth) acrylamide monomer unit in the organic particle is preferably 0.1% by mass or more when the total monomer unit contained in the organic particle is 100% by mass, The content is more preferably at least mass%, preferably at most 10.0 mass%, more preferably at most 5.0 mass%. If the content ratio of the (meth) acrylamide monomer unit in the organic particles is equal to or higher than the lower limit, the low-temperature output characteristics of the secondary battery having an adhesive layer formed using the composition for the non-aqueous secondary battery adhesive layer Can be further improved.
  • the content ratio of the (meth) acrylamide monomer unit in the organic particles is not more than the above upper limit value, the low temperature output characteristics of the secondary battery having an adhesive layer formed using the composition for the adhesive layer of the non-aqueous secondary battery In addition, the viscosity at a low shear rate can be prevented from excessively decreasing.
  • the organic particles are not particularly limited as long as they can exhibit adhesiveness, and the above-described (meth) acrylic acid ester monomer unit, acid group-containing monomer unit, and (meth) acrylamide monomer Monomer units other than units may be included.
  • Examples of the monomer capable of forming such a monomer unit include the following various monomers.
  • Vinyl chloride monomers such as vinyl chloride and vinylidene chloride; vinyl acetate monomers such as vinyl acetate; aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, styrenesulfonic acid, butoxystyrene, vinylnaphthalene; Vinylamine monomers such as vinylamine; vinylamide monomers such as N-vinylformamide and N-vinylacetamide; (meth) acrylonitrile monomers such as acrylonitrile and methacrylonitrile; 2- (perfluorohexyl) ethyl methacrylate , Fluorine-containing (meth) acrylate monomers such as 2- (perfluorobutyl) ethyl acrylate; maleimide; maleimide derivatives such as phenylmaleimide; diene monomers such as 1,3-butadiene and isoprene; .
  • (meth) acrylate means acrylate and / or methacrylate
  • (meth) acrylonitrile means acrylonitrile and / or methacrylonitrile
  • the organic particles preferably contain a crosslinkable monomer unit in addition to these monomer units.
  • the crosslinkable monomer that can form a crosslinkable monomer unit is a monomer that can form a crosslinked structure during or after polymerization by heating or irradiation with energy rays.
  • crosslinkable monomer examples include polyfunctional monomers having two or more polymerization reactive groups in the monomer.
  • polyfunctional monomers include divinyl compounds such as divinylbenzene and allyl methacrylate; di (meth) such as diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, and 1,3-butylene glycol diacrylate.
  • Acrylic ester compounds; tri (meth) acrylic ester compounds such as trimethylolpropane trimethacrylate and trimethylolpropane triacrylate; ethylenically unsaturated monomers containing epoxy groups such as allyl glycidyl ether and glycidyl methacrylate; Can be mentioned.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the combination and blending ratio of the various monomers can be arbitrarily changed according to the use of the composition for the adhesive layer.
  • the organic particles may have any structure, and for example, may have a core-shell structure including a core part and a shell part that covers the outer surface of the core part.
  • the shell part may partially cover the outer surface of the core part. That is, the shell part of the organic particles may cover the outer surface of the core part, but may be a covering aspect that does not cover the entire outer surface of the core part.
  • the organic particle may include arbitrary constituent elements other than the core part and the shell part described above as long as the intended effect is not significantly impaired.
  • the organic particles may have a portion formed of a polymer different from the core portion inside the core portion.
  • the seed particles used when the organic particles are produced by the seed polymerization method may remain inside the core portion.
  • the organic particles preferably have a glass transition temperature of 30 ° C or higher, more preferably 40 ° C or higher, preferably 130 ° C or lower, more preferably 120 ° C or lower, and 110 ° C or lower. More preferably it is.
  • the glass transition temperature of the polymer forming the shell part is preferably within the above range. If the glass transition temperature of the organic particles is within the above range, both the blocking resistance and the adhesiveness of the adhesive layer can be satisfactorily achieved.
  • the glass transition temperature of the organic particles can be adjusted to a desired temperature by changing the composition and molecular weight of the organic particles.
  • the glass transition temperature of the shell portion has a strong influence on the blocking resistance.
  • the adhesiveness of the adhesive layer is determined by the glass transition temperatures of both the core part and the shell part.
  • the “glass transition temperature” of the organic particles can be measured using the measuring method described in the examples of the present specification.
  • the organic particles are not particularly limited and can be prepared by a known polymerization method.
  • the polymerization mode is not particularly limited, and any mode such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • As the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • seed polymerization using seed particles may be employed.
  • emulsifiers, dispersants, polymerization initiators, polymerization aids and the like used for the polymerization can be used, and the amount used can also be a commonly used amount.
  • the water-soluble polymer contained in the non-aqueous secondary battery adhesive layer composition has a function of adjusting the viscosity of the non-aqueous secondary battery adhesive layer composition to a desired range.
  • the water-soluble polymer has adhesiveness and electrolytic solution resistance, and plays a role of assisting adhesion between the components in the adhesive layer and between the battery members in the secondary battery.
  • the water-soluble polymer needs to have a 1% by mass aqueous solution viscosity of 500 mPa ⁇ s or more and 9000 mPa ⁇ s or less.
  • the 1% by weight aqueous solution viscosity of the water-soluble polymer is preferably 3000 mPa ⁇ s or more, more preferably 4000 mPa ⁇ s or more, preferably 8000 mPa ⁇ s or less, and 7000 mPa ⁇ s or less. More preferably.
  • the concentration of the composition for the non-aqueous secondary battery adhesive layer can be easily adjusted to the specific range described above.
  • the viscosity of the water-soluble polymer is set to the above lower limit value or more, it becomes possible to develop an appropriate structural viscosity in the composition for the non-aqueous secondary battery adhesive layer, which is applied onto the substrate.
  • the flow of the solid component in the composition for the adhesive layer can be suppressed, and the adhesive layer can be prevented from being excessively densified. More specifically, by suppressing the flow of the solid component, sedimentation of the solid component is suppressed, and for example, it is possible to make it difficult to clog a base material having a gap such as a separator base material. In this way, while suppressing densification of the adhesive layer itself, it is possible to secure a void in a battery member such as a separator provided with the adhesive layer. Battery characteristics can be improved.
  • the viscosity of the water-soluble polymer can be adjusted, and excessive voids in the obtained adhesive layer can be increased. Since it can suppress and the adhesiveness of an contact bonding layer is ensured, a low-temperature output characteristic can be improved.
  • the water-soluble polymer is not particularly limited as long as the 1% by weight aqueous solution viscosity is within the above range, and examples thereof include natural polymers, semi-synthetic polymers, and synthetic polymers. Mention may be made of molecules.
  • Natural polymer examples include plant- or animal-derived polysaccharides and proteins, fermentation-treated products of these microorganisms, and heat-treated products thereof. These natural polymers can be classified into plant-based natural polymers, animal-based natural polymers, microorganism-produced natural polymers, and the like.
  • plant-based natural polymers include gum arabic, gum tragacanth, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, cannan, quince seed (malmello), arche colloid (gasso extract), starch (rice, corn, potato, wheat) Etc.) and glycyrrhizin.
  • animal natural polymers include collagen, casein, albumin, and gelatin.
  • the microorganism-produced natural polymer include xanthan gum, dextran, succinoglucan, and bullulan.
  • Examples of the semisynthetic polymer include cellulose semisynthetic polymers.
  • the cellulose semisynthetic polymers can be classified into nonionic cellulose semisynthetic polymers, anionic cellulose semisynthetic polymers, and cationic cellulose semisynthetic polymers.
  • Nonionic cellulose-based semisynthetic polymers include, for example, alkyl celluloses such as methyl cellulose, methyl ethyl cellulose, ethyl cellulose, and microcrystalline cellulose; hydroxyethyl cellulose, hydroxybutyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxy Examples thereof include hydroxyalkylcelluloses such as propylmethylcellulose stearoxy ether, carboxymethylhydroxyethylcellulose, alkylhydroxyethylcellulose, and nonoxynylhydroxyethylcellulose.
  • anionic cellulose semisynthetic polymer examples include substituted products obtained by substituting the above nonionic cellulose semisynthetic polymer with various derivative groups and salts thereof (sodium salt, ammonium salt, etc.). Specific examples include sodium cellulose sulfate, methyl cellulose, methyl ethyl cellulose, ethyl cellulose, carboxymethyl cellulose (CMC) and salts thereof.
  • Examples of the cationic cellulose semisynthetic polymer include low nitrogen hydroxyethylcellulose dimethyl diallylammonium chloride (polyquaternium-4), chloride O- [2-hydroxy-3- (trimethylammonio) propyl] hydroxyethylcellulose (polyquaternium-10). ), And O- [2-hydroxy-3- (lauryldimethylammonio) propyl] hydroxyethylcellulose (polyquaternium-24) chloride.
  • the synthetic polymer is a synthetic polymer obtained by polymerizing a monomer composition containing an ethylenically unsaturated carboxylic acid compound composed of at least one of an ethylenically unsaturated carboxylic acid and a salt thereof in a predetermined ratio. Can be mentioned.
  • the synthetic polymer is used as a water-soluble polymer, the internal resistance of the secondary battery can be further reduced.
  • the ethylenically unsaturated carboxylic acid compound at least one of an ethylenically unsaturated carboxylic acid and a salt thereof can be used.
  • ethylenically unsaturated carboxylic acid examples include ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof, and derivatives thereof.
  • ethylenically unsaturated carboxylate examples include sodium salts, potassium salts and lithium salts of ethylenically unsaturated carboxylic acids.
  • ethylenically unsaturated carboxylic acid and its salt may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • examples of the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • examples of the ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic. Acid, ⁇ -diaminoacrylic acid and the like.
  • examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, diacrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and the like.
  • examples of the ethylenically unsaturated dicarboxylic acid derivative include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, and fluoromaleic acid.
  • the proportion of the above-described ethylenically unsaturated carboxylic acid compound is preferably 20% by mass or more, more preferably 25% by mass or more, and 30% by mass. % Or more, more preferably 70% by mass or less, more preferably 65% by mass or less, and further preferably 60% by mass or less.
  • the synthetic polymer is used as a water-soluble polymer in the present invention. This is because the viscosity of the 1% by mass aqueous solution concentration of the water-soluble polymer can be in the range as described above.
  • the proportion of the structural unit formed by polymerizing a certain monomer in the polymer is used for polymerization of the polymer. This corresponds to the ratio (preparation ratio) of the certain monomer in all monomers.
  • the monomer composition may contain other compounds copolymerizable with the ethylenically unsaturated carboxylic acid compound.
  • other compounds include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, T-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate (Meth) acrylate esters such as lauryl (meth) acrylate, n-tetradecyl (meth) acrylate, stearyl (meth) acrylate, perfluoroalkylethyl (meth)
  • the monomer composition preferably has a (meth) acrylic acid ester content of 15% by mass or more, more preferably 40% by mass or more, and preferably 80% by mass or less. 70 mass% or less is more preferable. If the content ratio of the (meth) acrylic acid ester is not less than the above lower limit value, an adhesive layer formed using the composition for an adhesive layer containing a synthetic polymer obtained using such a monomer composition is used. The low temperature output characteristics of the secondary battery provided can be further improved. Moreover, if the content rate of (meth) acrylic acid ester is below the said upper limit, it forms using the viscosity of the composition for adhesive bond layers containing the synthetic polymer obtained using this monomer composition. In addition to suppressing an excessive increase in the density of the adhesive layer, it is possible to improve adhesiveness.
  • additives added to the monomer composition used for the preparation of the synthetic polymer cross-linking agents such as ethylene glycol dimethacrylate, polymerization initiators such as potassium persulfate, and polymerization acceleration such as tetramethylethylenediamine
  • cross-linking agents such as ethylene glycol dimethacrylate
  • polymerization initiators such as potassium persulfate
  • polymerization acceleration such as tetramethylethylenediamine
  • additives that can be used in the polymerization reaction such as an agent.
  • the kind and compounding quantity of an additive can be arbitrarily selected according to a polymerization method etc.
  • a polymerization solvent to be blended in the monomer composition used for preparing the synthetic polymer a known solvent capable of dissolving or dispersing the above-described monomer can be used depending on the polymerization method and the like.
  • water is preferably used as the polymerization solvent.
  • the polymerization solvent an aqueous solution of an arbitrary compound or a mixed solution of a small amount of an organic medium and water may be used.
  • the synthetic polymer can be obtained, for example, by radical polymerization of a monomer composition obtained by mixing the above-described monomer, crosslinking agent, additive and polymerization solvent by a known method.
  • the solution containing the synthetic polymer and the polymerization solvent obtained by polymerizing the monomer composition may be used as it is for the preparation of the adhesive layer composition, or may be replaced with a solvent or optionally You may use for preparation of the composition for contact bonding layers, after adding these components.
  • examples of the polymerization method of the synthetic polymer include known polymerization methods such as aqueous solution polymerization, slurry polymerization, suspension polymerization, and emulsion polymerization.
  • aqueous solution polymerization using water as a polymerization solvent is preferable.
  • the monomer composition is adjusted to a predetermined concentration, and the dissolved oxygen in the reaction system is sufficiently replaced with an inert gas. Then, a radical polymerization initiator is added, and if necessary, heating or ultraviolet rays are added. It is a method of performing a polymerization reaction by irradiating light.
  • the pH of the aqueous solution is adjusted to 8 or more and 9 or less after polymerization. Is preferred.
  • the mixing ratio of the water-soluble polymer in the composition for a non-aqueous secondary battery adhesive layer is preferably 0.05 parts by mass or more, and 0.1 parts by mass or more with respect to 100 parts by mass of the organic particles. Is more preferably 0.5 parts by mass or more, more preferably 5 parts by mass or less, and even more preferably 3 parts by mass or less.
  • the water-soluble polymer functions to improve the adhesion of the adhesive layer by imparting viscosity to the composition for the adhesive layer, but if added in excess, the flexibility and ion diffusibility of the adhesive layer. This is because the low temperature output characteristics of the secondary battery may be deteriorated.
  • the composition for non-aqueous secondary battery adhesive layers may contain any other component in addition to the organic particles and the water-soluble polymer described above.
  • these other components include known additives such as a binder for an adhesive layer different from the organic particles described above, a wetting agent, a viscosity modifier, and an electrolytic solution additive. These other components may be used individually by 1 type, and may be used in combination of 2 or more types. By using the binder for the adhesive layer, it is possible to suppress components such as organic particles from falling off the adhesive layer.
  • ⁇ Binder for adhesive layer As the binder for the adhesive layer that can be contained in the composition for the non-aqueous secondary battery adhesive layer of the present invention, a known binder that is water-insoluble and dispersible in a dispersion medium such as water, for example, heat A plastic elastomer is mentioned. And as a thermoplastic elastomer, a conjugated diene polymer and an acrylic polymer are preferable, and an acrylic polymer is more preferable.
  • the conjugated diene polymer refers to a polymer containing a conjugated diene monomer unit. Specific examples of the conjugated diene polymer include aromatic vinyl such as styrene-butadiene copolymer (SBR).
  • an acrylic polymer refers to the polymer containing a (meth) acrylic acid ester monomer unit.
  • the (meth) acrylic acid ester monomer capable of forming the (meth) acrylic acid ester monomer unit the same monomers as those used for preparing the organic particles can be used.
  • these binder materials for adhesive layers may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the acrylic polymer as the binder for the adhesive layer more preferably contains a (meth) acrylonitrile monomer unit. Thereby, the strength of the adhesive layer can be increased.
  • the binder for the adhesive layer preferably has a glass transition temperature of ⁇ 50 ° C. or higher, more preferably ⁇ 40 ° C. or higher, and preferably 10 ° C. or lower.
  • the glass transition temperature of the binder for the adhesive layer is within the above range, the adhesiveness of the adhesive layer can be further enhanced.
  • the “glass transition temperature” of the binder for the adhesive layer can be measured using the measuring method described in the examples of the present specification.
  • Examples of the method for producing the binder for the adhesive layer include a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • the emulsion polymerization method and the suspension polymerization method can be polymerized in water, and an aqueous dispersion containing a particulate adhesive layer binder can be suitably used as a material for the adhesive layer composition.
  • the reaction system preferably contains a dispersant.
  • the binder for the adhesive layer is generally formed of a polymer that substantially constitutes the binder, but may be accompanied by optional components such as additives used in the polymerization.
  • blending the binder for adhesive layers with the composition for non-aqueous secondary battery adhesive layers is 10 mass parts or more and 50 masses with respect to 100 mass parts of organic particles. Part or less.
  • composition for non-aqueous secondary battery adhesive layer ⁇ Method for producing composition for non-aqueous secondary battery adhesive layer>
  • the method for producing the composition for the adhesive layer is used as necessary, with organic particles, a water-soluble polymer having a 1% by mass aqueous solution viscosity of 500 mPa ⁇ s or more and 9000 mPa ⁇ s or less, water as a dispersion medium, and the like.
  • a step of mixing with other components is not particularly limited, in order to disperse each component efficiently, mixing is usually performed using a disperser as a mixing device.
  • the disperser is preferably an apparatus capable of uniformly dispersing and mixing the above components.
  • Examples include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer.
  • a high dispersion apparatus such as a bead mill, a roll mill, or a fill mix is also included.
  • the viscosity ⁇ 0 at a shear rate of 100 sec ⁇ 1 of the obtained composition for a non-aqueous secondary battery adhesive layer needs to be 10 mPa ⁇ s or more and 200 mPa ⁇ s or less, preferably 50 mPa ⁇ s or more. More preferably, it is 60 mPa ⁇ s or more, and preferably 150 mPa ⁇ s or less.
  • ⁇ 0 is equal to or more than the lower limit of the above range, it is difficult for the solid component to flow in the composition for the adhesive layer applied on the base material, and the adhesive layer is prevented from being densified. Can do.
  • the solid component is less likely to flow, sedimentation of the solid component is suppressed, and clogging of the base material can be prevented. Therefore, the space
  • ⁇ 0 is not more than the upper limit of the above range, the surface of the adhesive layer obtained by improving the leveling property of the composition for the adhesive layer can be flattened and excessive in the obtained adhesive layer. Since the increase in voids can be suppressed and the adhesiveness of the adhesive layer in the electrolytic solution is ensured, the low-temperature output characteristics of the secondary battery can be improved.
  • the nonaqueous secondary battery adhesive layer composition viscosity eta 0 ratio of a shear rate 100 sec -1 for viscosities eta 1 at a shear rate of 10000sec -1 ( ⁇ 0 / ⁇ 1 ) is 1.5 or more It is necessary to be 5.0 or less, preferably 2.0 or more, more preferably 2.5 or more, and preferably 4.0 or less.
  • ⁇ 0 / ⁇ 1 is equal to or more than the lower limit of the above range, the increase in viscosity under high shear conditions is suppressed, and so-called “sagging” and “unevenness” occur when the adhesive layer composition is applied.
  • ⁇ 0 , ⁇ 1 and ⁇ 0 / ⁇ 1 adjust the content of the organic particles and the water-soluble polymer in the composition for the adhesive layer, the viscosity of the water-soluble polymer, the composition of the water-soluble polymer, and the like. Therefore, it can be adjusted appropriately.
  • an adhesive layer can be formed on a suitable base material using the composition for non-aqueous secondary battery adhesive layers described above.
  • the non-aqueous secondary battery adhesive layer can be formed by drying the composition for the non-aqueous secondary battery adhesive layer on an appropriate substrate. That is, the non-aqueous secondary battery adhesive layer of the present invention comprises a dried product of the above-described non-aqueous secondary battery adhesive layer composition, and usually contains the organic particles and the adhesive layer binder. Optionally, the above other components are contained.
  • the polymer in the organic particles and / or the binder for the adhesive layer includes a crosslinkable monomer unit
  • the polymer in the organic particles and / or the binder for the adhesive layer is a slurry.
  • the composition may be crosslinked at the time of drying or at the time of heat treatment optionally performed after the drying (that is, the non-aqueous secondary battery adhesive layer is composed of the organic particles and / or the adhesive layer binder described above). It may contain a cross-linked product).
  • the suitable abundance ratio of each component contained in the non-aqueous secondary battery adhesive layer is the same as the preferred abundance ratio of each component in the non-aqueous secondary battery adhesive layer composition.
  • grain in the composition for non-aqueous secondary battery contact bonding layers may maintain the original particle shape in the contact bonding layer, and may be deform
  • the core-shell structure itself is maintained even when the shape of the whole organic particle is changed from the original particle shape. It is preferable.
  • the adhesive layer for non-aqueous secondary batteries of this invention can exhibit high adhesiveness, and can improve the low temperature output characteristic of a non-aqueous secondary battery.
  • the base material for forming the adhesive layer is not particularly limited.
  • a separator base material can be used as the base material.
  • an adhesive layer is used as a member constituting a part of the electrode, an electrode substrate formed by forming an electrode mixture layer on a current collector can be used as the substrate.
  • a contact bonding layer may be formed on a separator base material etc.
  • the adhesive layer formed on the substrate may be used as an electrode, or the adhesive layer formed on the release substrate may be peeled off from the substrate once and attached to another substrate to be used as a battery member.
  • a separator substrate or an electrode substrate it is preferable to use as the substrate.
  • the separator base material on which the adhesive layer is formed is not particularly limited, and for example, those described in JP 2012-204303 A can be used. Among these, the film thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode active material in the secondary battery and increasing the capacity per volume.
  • a microporous film made of a resin such as polyethylene, polypropylene, polybutene, or polyvinyl chloride is preferable.
  • Electrode substrate Although it does not specifically limit as an electrode base material (a positive electrode base material and a negative electrode base material) which forms an contact bonding layer, The electrode base material with which the electrode compound-material layer was formed on the electrical power collector is mentioned.
  • the current collector, the components in the electrode mixture layer (for example, the electrode active material (positive electrode active material, negative electrode active material) and the electrode mixture layer binder (positive electrode mixture layer binder, negative electrode composite) As the material layer binder) and the like, and the method for forming the electrode mixture layer on the current collector known ones can be used, for example, those described in JP2013-145663A be able to.
  • the electrode base material may include an arbitrary layer having an intended function other than the adhesive layer in a part thereof.
  • Examples of the method for forming an adhesive layer on a substrate such as the separator substrate or electrode substrate described above include the following methods. : 1) A method in which the composition for an adhesive layer is applied to the surface of a separator substrate or an electrode substrate (in the case of an electrode substrate, the surface on the electrode mixture layer side, the same shall apply hereinafter) and then dried; 2) A method in which a separator substrate or an electrode substrate is immersed in the composition for an adhesive layer and then dried; 3) A method of applying an adhesive layer composition onto a release substrate and drying to produce an adhesive layer, and transferring the obtained adhesive layer to the surface of a separator substrate or an electrode substrate.
  • the method 1) is particularly preferable because the film thickness of the adhesive layer can be easily controlled.
  • the method 1) includes a step of applying a composition for an adhesive layer on a separator substrate or an electrode substrate (application step), and an adhesive layer applied on the separator substrate or the electrode substrate. A step of drying the composition to form an adhesive layer (drying step) is provided.
  • the method for applying the adhesive layer composition onto the separator substrate or the electrode substrate is not particularly limited.
  • spray coating method, doctor blade method, reverse roll method, direct roll method, gravure method examples include an extrusion method and a brush coating method.
  • the gravure method is preferable from the viewpoint of forming a thinner adhesive layer.
  • the method for drying the composition for the adhesive layer on the substrate is not particularly limited, and a known method can be used. For example, drying with warm air, hot air, low-humidity air, vacuum drying, infrared rays, A drying method by irradiation with an electron beam or the like is mentioned.
  • the drying conditions are not particularly limited, but the drying temperature is preferably 30 to 80 ° C., and the drying time is preferably 30 seconds to 10 minutes.
  • the thickness of the adhesive layer formed on the substrate is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, further preferably 0.5 ⁇ m or more, preferably 3.0 ⁇ m or less, more preferably It is 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less.
  • the thickness of the adhesive layer is not less than the lower limit value of the above range, the strength of the adhesive layer can be sufficiently ensured, and when the thickness is not more than the upper limit value of the above range, the ion diffusibility of the adhesive layer is ensured.
  • the low temperature output characteristics of the secondary battery can be further improved.
  • the non-aqueous secondary battery of the present invention includes the above-described adhesive layer for a non-aqueous secondary battery of the present invention. More specifically, the non-aqueous secondary battery of the present invention includes the non-aqueous secondary battery of the present invention on at least one of the positive electrode, the negative electrode, and the separator, or between these battery members and the battery container. A battery adhesive layer is provided. Since the nonaqueous secondary battery of the present invention includes the adhesive layer for a nonaqueous secondary battery of the present invention, it is excellent in low temperature output characteristics. In particular, the non-aqueous secondary battery of the present invention is preferably a wound type or a stacked type.
  • the secondary battery When the secondary battery is molded into a wound type or a laminated type, for example, by performing a hot press process, good adhesiveness is exhibited by the adhesive layer of the present invention, so that a good low-temperature output characteristic is obtained. Because it can be obtained.
  • the secondary battery of the present invention has an adhesive layer between at least one of the positive electrode, the negative electrode, and the separator, or between these battery members and the battery container. That is, an electrode in which an adhesive layer is provided on an electrode base material formed by forming an electrode mixture layer on a current collector can be used.
  • an electrode base material and a separator base material the thing similar to what was mentioned by the term of the "adhesive layer for non-aqueous secondary batteries" can be used.
  • the electrode which consists of an electrode base material mentioned above is not specifically limited, It can use.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used in a lithium ion secondary battery.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • electrolyte may be used individually by 1 type and may be used in combination of 2 or more types.
  • the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • dimethyl carbonate (DMC) dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC).
  • Carbonates such as propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (MEC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfolane, Sulfur-containing compounds such as dimethyl sulfoxide; are preferably used.
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted depending on the type of solvent.
  • the concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate.
  • the non-aqueous secondary battery is, for example, a battery in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween, and the obtained positive electrode-separator-negative electrode laminate is wound or folded as it is, as necessary. It can be manufactured by placing in a container and injecting the electrolyte into the battery container and sealing it.
  • an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate, or the like may be placed in the battery container as necessary to prevent an increase in pressure inside the battery or overcharge / discharge.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • the glass transition temperature of the organic particles and the binder for the adhesive layer was measured for DSC curves according to JIS K6240 using a differential thermal analyzer (EXSTAR DSC6220, manufactured by SII Nano Technology). Specifically, 10 mg of the dried measurement sample was weighed into an aluminum pan, and an empty aluminum pan was used as a reference. The curve was measured. The temperature of the endothermic peak of the differential signal (DDSC) in this temperature rising process was determined and used as the glass transition temperature of the organic particles and the binder for the adhesive layer.
  • DDSC differential thermal analyzer
  • ⁇ Viscosity of composition for adhesive layer> Using a rheometer (“MCR302” manufactured by Anton Paar Co., Ltd.) at room temperature and normal humidity (JIS Z 8703), a viscosity ⁇ 0 at a shear rate of 100 sec ⁇ 1 at a temperature of 25 ° C. and a shear rate of 10000 sec at a temperature of 25 ° C. The viscosity ⁇ 1 at -1 was measured respectively. And the resulting eta 0, using the value of eta 1, and calculating the ratio of eta 0 for ⁇ 1 ( ⁇ 0 / ⁇ 1 ).
  • ⁇ Coating properties of the adhesive layer composition The adhesive layers obtained in Examples and Comparative Examples were visually observed by applying light from the side of the substrate on which the adhesive layers were applied.
  • “streaks” and “unevenness” in the adhesive layer there is a difference that can be visually discriminated in the amount of transmitted light.
  • “streak” is mainly caused when the above-described value of ⁇ 0 / ⁇ 1 is large, due to the influence of the applicator used when applying the adhesive layer composition. The resulting surface irregularities.
  • “unevenness” is a variation in the thickness of the applied adhesive layer that can occur mainly when the value of ⁇ 0 / ⁇ 1 described above is small.
  • the composition for the adhesive layer used for forming the adhesive layer through which light can be uniformly transmitted has good coating properties, and the composition particles for the adhesive layer used for forming the adhesive layer in which "streak” or “unevenness” occurs The thing is inferior in coating property. Therefore, the following criteria were used for the evaluation of the coating properties of the adhesive layer composition. “Good”: The formed adhesive layer transmits light uniformly. “Streak”: A region in which the amount of transmitted light in a line clearly changes in the formed adhesive layer. “Unevenness”: A region where the amount of transmitted light irregularly changes in the formed adhesive layer and the boundary is unclear is generated.
  • ⁇ Adhesive layer density> Ten test pieces having a width of 10 cm and a length of 10 cm were cut out from the base material having the adhesive layer obtained in Examples and Comparative Examples, and the average value W 1 (g) of the mass of the cut out test pieces was measured. In addition, the thickness of each test piece was measured at a total of five locations at the four corners and the center of each test piece, and the average value was defined as the thickness T 1 ( ⁇ m) of each test piece. Further, Examples were respectively used in Comparative Examples was cut in the same manner each substrate prior to applying the adhesive layer, each mass by the same measurement method W 0 (g) and thickness T 0 of the ([mu] m) It was measured.
  • the density ⁇ of the adhesive layer was calculated according to the following formula.
  • the calculated density ⁇ was evaluated according to the following criteria.
  • (W 1 ⁇ W 0 ) / (T 1 ⁇ T 0 ) ⁇ 100
  • the separator except Example 8) or the electrode (Example 8) prepared in Examples and Comparative Examples is cut into a width of 10 mm and a length of 50 mm, and the separator has an adhesive layer (except for Example 8), an electrode mixture
  • the electrode has an adhesive layer, it is laminated with a separator substrate (Example 8), roll-pressed at a temperature of 80 ° C.
  • Peel strength is 10 N / m or more
  • B Peel strength is 5 N / m or more and less than 10 N / m
  • C Peel strength is less than 5 N / m ⁇ Low-temperature output characteristics>
  • the manufactured 800 mAh wound type lithium ion secondary battery was allowed to stand for 24 hours in an environment of 25 ° C. Thereafter, a charging operation was performed for 5 hours at a charging rate of 0.1 C under an environment of 25 ° C., and the voltage V 0 after the charging operation was measured.
  • Voltage change ⁇ V is less than 250 mV A: Voltage change ⁇ V is 250 mV or more and less than 350 mV B: Voltage change ⁇ V is 350 mV or more and less than 500 mV C: Voltage change ⁇ V is 500 mV or more
  • Example 1 Provide of organic particles> Organic particles 1 having a core-shell structure were prepared as organic particles.
  • ion-exchanged water 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate as a dispersant, 94 parts of butyl acrylate, 2 parts of acrylonitrile, 2 parts of methacrylic acid, N -1 part of methylol acrylamide and 1 part of allyl glycidyl ether were added and mixed to obtain a monomer mixture.
  • This monomer mixture was continuously added to the reactor described above over 4 hours to carry out a polymerization reaction. During the addition, the reaction was continued at 60 ° C. After completion of the addition, the temperature in the reactor was raised to 70 ° C. and the reaction was continued for 3 hours while stirring, and the reaction was terminated by cooling.
  • an aqueous dispersion containing a (meth) acrylic polymer as a binder for the adhesive layer was produced.
  • the glass transition temperature of the obtained binder for adhesive layer was ⁇ 38 ° C. when measured according to the above method.
  • Synthetic water-soluble polymer 1 (synthetic WP1) was prepared as the water-soluble polymer.
  • synthetic WP1 methacrylic acid as the ethylenically unsaturated carboxylic acid monomer
  • ethylene glycol dimethacrylate as the crosslinkable monomer 0 parts
  • 1.0 part of polyoxyalkylene alkenyl ether ammonium sulfate 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator were added, and after stirring sufficiently, the inside of the container was heated to 60 ° C.
  • composition for non-aqueous secondary battery adhesive layer To a container with a stirrer, 100 parts by mass of organic particles, 2 parts by mass of a water-soluble polymer aqueous solution (corresponding to solid content), and 22 parts by mass of a binder for adhesive layer (corresponding to solid content) were added and mixed. Here, 1 part of a surface tension adjusting agent (ethylene oxide-propylene oxide copolymer) was added and further diluted with ion-exchanged water to obtain a composition for an adhesive layer having a solid content concentration of 30% by mass.
  • a surface tension adjusting agent ethylene oxide-propylene oxide copolymer
  • This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing.
  • the negative electrode raw material before pressing was rolled with a roll press to obtain a negative electrode after pressing with a negative electrode active material layer having a thickness of 80 ⁇ m (single-sided negative electrode).
  • HS-100 acetylene black
  • PVDF manufactured by Kureha Co., # 7208
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry composition obtained as described above was applied onto a 20 ⁇ m-thick aluminum foil as a current collector with a comma coater so that the film thickness after drying was about 150 ⁇ m and dried. I let you. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material before pressing. The positive electrode raw material before pressing was rolled with a roll press to obtain a positive electrode after pressing with a positive electrode active material layer having a thickness of 80 ⁇ m (single-sided positive electrode).
  • the pressed positive electrode obtained as described above was cut into a 4 cm square.
  • the separator which has the contact bonding layer for non-aqueous secondary batteries obtained as mentioned above was cut out to a square piece of 5 cm square.
  • the square piece of a separator was arrange
  • the negative electrode after the press produced as described above was cut into 4.2 cm square pieces, which were further arranged on the square pieces of the separator so that the surface on the negative electrode mixture layer side faced.
  • the obtained laminate was pressed and bonded at a temperature of 60 ° C. and 0.5 MPa.
  • Example 2 The composition of the water-soluble polymer was changed as shown in Table 1, and the same procedure as in Example 1 was conducted except that the synthetic water-soluble polymer 2 (synthetic WP2) and the synthetic water-soluble polymer 3 (synthetic WP3) were prepared. Various measurements and evaluations were made. The results are shown in Table 1.
  • Example 4 As the water-soluble polymer, a water-soluble polymer aqueous solution prepared by adjusting carboxymethyl cellulose CMC1 (manufactured by Nippon Paper Industries Co., Ltd., “MAC800LC”) with ion-exchanged water to a concentration of 0.8% by mass is used.
  • MAC800LC carboxymethyl cellulose
  • Example 4 Example 4 with the exception that carboxymethylcellulose CMC2 (manufactured by Nippon Paper Industries Co., Ltd., “MAC350HC”) (Example 5) or xanthan gum (“KELZAN” manufactured by Sanki Co., Ltd.) (Example 6) was used as the water-soluble polymer. Similarly, various measurements and evaluations were performed. The results are shown in Table 1.
  • Example 7 Various measurements and evaluations were performed in the same manner as in Example 1 except that the organic particles 2 produced as described below were used as the organic particles. The results are shown in Table 1.
  • ⁇ Preparation of organic particles 2> For a 5 MPa pressure vessel with a stirrer, 65.0 parts of methyl methacrylate monomer, 30.0 parts of butyl acrylate, 4.0 parts of methacrylic acid monomer, and ethylene glycol dimethacrylate as a crosslinkable monomer 0 parts were added, 1 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator were added, and after stirring sufficiently, The polymerization was started by heating to 60 ° C. When the polymerization conversion reached 96%, the reaction was stopped by cooling. Thereby, the aqueous dispersion containing the organic particle 2 which does not have a core-shell structure was obtained
  • Example 8 In the same manner as in Example 1, organic particles and a water-soluble polymer were prepared, and a non-aqueous secondary battery adhesive layer composition was prepared. And, at the time of production of the lithium ion secondary battery, the separator base material is used as it is as a separator without forming an adhesive layer, and the negative electrode and the positive electrode are provided with a negative electrode with an adhesive layer and a positive electrode with an adhesive layer, A lithium ion secondary battery was produced in the same manner as in Example 1. Various measurements and evaluations were performed as described above. In addition, the preparation methods of the negative electrode provided with an adhesive layer and the positive electrode provided with an adhesive layer were as follows.
  • ⁇ Preparation of negative electrode / positive electrode with adhesive layer> In the same manner as in Example 1, a negative electrode / positive electrode mixture layer having a thickness of 80 ⁇ m was formed on a current collector to obtain an electrode substrate, and then the composition for the adhesive layer was formed on the surface on the negative electrode / negative electrode mixture layer side. The product was applied and dried at 50 ° C. for 3 minutes. This produced the negative electrode / positive electrode which has a 1-micrometer-thick adhesive layer on one side.
  • Example 9 Various measurements and evaluations were performed in the same manner as in Example 1 except that the organic particles 3 produced as described below were used as the organic particles. The results are shown in Table 1.
  • ⁇ Preparation of organic particles 3> First, in order to form the core part, 41.1 parts of methyl methacrylate monomer as a (meth) acrylate monomer and 28.63 parts of butyl acrylate with respect to a 5 MPa pressure vessel with a stirrer; 0.2 parts of methacrylic acid monomer as a group-containing monomer unit; 0.07 part of allyl methacrylate as a crosslinkable monomer were added.
  • Example 10 Various measurements and evaluations were performed in the same manner as in Example 1 except that the organic particles 4 produced as described below were used as the organic particles. The results are shown in Table 1.
  • ⁇ Preparation of organic particles 4> First, in order to form a core part, 37.1 parts of methyl methacrylate monomers (28.63 parts of butyl acrylate) as acid (meth) acrylate monomers with respect to a 5 MPa pressure vessel with a stirrer; 4.2 parts of methacrylic acid monomer as a group-containing monomer unit; 0.07 part of allyl methacrylate as a crosslinkable monomer were added.
  • Example 11 Various measurements and evaluations were performed in the same manner as in Example 1 except that the organic particles 5 produced as described below were used as the organic particles. The results are shown in Table 1.
  • ⁇ Preparation of organic particles 5> First, in order to form a core part, 38.3 parts of a methyl methacrylate monomer as a (meth) acrylate monomer and 28.63 parts of butyl acrylate with respect to a 5 MPa pressure vessel with a stirrer; acrylamide 0.2 parts of monomer, 2.8 parts of methacrylic acid monomer as an acid group-containing monomer unit; 0.07 part of allyl methacrylate as a crosslinkable monomer were added.
  • Example 12 In preparing the organic particles, the organic particles 6 were prepared in Example 12 in the same manner as in Example 11 except that the amounts of methyl methacrylate monomer and acrylamide monomer were changed as shown in Table 1. In Example 13, organic particles 7 were prepared. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 14 Various measurements and evaluations were performed in the same manner as in Example 1 except that the organic particles 8 produced as described below were used as the organic particles. The results are shown in Table 1.
  • ⁇ Preparation of organic particles 8> As a 5 MPa pressure vessel with a stirrer, 64.0 parts of methyl methacrylate monomer, 30.0 parts of butyl acrylate, 4.0 parts of methacrylic acid monomer, 1.0 part of acrylamide, Add 1.0 part of ethylene glycol dimethacrylate, add 1 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator, and stir well.
  • Example 1 Comparative Example 1 As in Example 1, except that carboxymethyl cellulose CMC3 (manufactured by Daicel Industries, “D1220”) was used as the water-soluble polymer, and 0.5 part by mass of the water-soluble polymer was added to 100 parts by mass of the organic particles. Various measurements and evaluations were performed. The results are shown in Table 1.
  • Example 2 Various measurements and evaluations were performed in the same manner as in Example 4 except that 3 parts by mass of the water-soluble polymer aqueous solution was used in an amount equivalent to the solid content with respect to 100 parts by mass of the organic particles in the preparation of the composition for the non-aqueous secondary battery adhesive layer. Went. The results are shown in Table 1.
  • MMA indicates methyl methacrylate
  • BA indicates butyl acrylate
  • ST indicates styrene
  • MA stands for methacrylic acid
  • AAm indicates acrylamide
  • AMA indicates allyl methacrylate
  • EDMA refers to ethylene glycol dimethacrylate
  • MAA indicates methacrylic acid
  • EA indicates ethyl acrylate
  • WP indicates a water-soluble polymer
  • CMC1 indicates MAC800LC manufactured by Nippon Paper Industries Co., Ltd.
  • CMC2 indicates MAC350HC manufactured by Nippon Paper Industries Co., Ltd.
  • CMC3 indicates D1220 manufactured by Daicel Industries.
  • a composition for a non-aqueous secondary battery adhesive layer containing organic particles and a water-soluble polymer wherein the viscosity of a 1% by weight aqueous solution of the water-soluble polymer is 500 mPa ⁇ s or more and 9000 mPa ⁇ s.
  • the viscosity ⁇ 0 at a shear rate of 100 sec ⁇ 1 is 10 mPa ⁇ s or more and 200 mPa ⁇ s or less, and the ratio of ⁇ 0 to the viscosity ⁇ 1 at a shear rate of 10,000 sec ⁇ 1 is 1.5 or more.
  • the composition for a non-aqueous secondary battery adhesive layer of 5.0 or less is rich in coating property, and the adhesive layer formed using such a composition is low in density and rich in adhesiveness, and further has such adhesion. It can be seen that the low-temperature output characteristics of the secondary battery including the layer are sufficiently improved.
  • Comparative Examples 1 to 3 in which such a composition for a secondary battery adhesive layer does not satisfy such characteristics the coating properties of the adhesive layer element organism, the density and adhesiveness of the adhesive layer, and the low-temperature output characteristics of the secondary battery are as follows. It can be seen that the balance could not be improved.
  • non-aqueous secondary battery adhesive layer composition capable of forming an adhesive layer that exhibits excellent adhesiveness and can provide excellent low-temperature output characteristics for a secondary battery. it can.
  • the adhesive layer for non-aqueous secondary batteries which is excellent in adhesiveness and can exhibit the low-temperature output characteristic excellent in the non-aqueous secondary batteries can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の非水系二次電池接着層用組成物は、有機粒子及び水溶性高分子を含み、水溶性高分子の1質量%水溶液粘度が、500mPa・s以上9000mPa・s以下であり、さらに、せん断速度100sec-1での粘度η0が10mPa・s以上200mPa・s以下であると共にせん断速度10000sec-1での粘度η1に対するη0の比が1.5以上5.0以下である。

Description

非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
 本発明は、非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池に関するものである。
 リチウムイオン二次電池などの非水系二次電池(以下、「二次電池」と略記する場合がある)は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして二次電池は、一般に、正極、負極、及び、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータなどの電池部材を備えている。
 ここで、近年、二次電池においては、耐熱性や強度の向上を目的とした多孔膜層や、電池部材間の接着性の向上を目的とした接着層などを備える電池部材が使用されている。
 具体的には、集電体上に電極合材層を設けてなる電極基材上にさらに接着層を形成してなる電極や、セパレータ基材上に接着層を形成してなるセパレータが電池部材として使用されている。そしてこの接着層は、通常、結着材成分と、水などの分散媒とを含有するスラリー状の非水系二次電池接着層用組成物(以下、「接着層用組成物」と略記する場合がある)を、電極基材またはセパレータ基材などの適切な基材上に供給し、乾燥することで形成される(例えば、特許文献1参照)。
 特許文献1では、電極合材層を有する電極基材とセパレータ基材とを接着層により接着して一体化し、充放電の繰り返しに伴うセルの膨らみや、極板間距離の拡大を抑制することにより、非水系二次電池の電気的特性を向上させる技術が提案されている。そして、特許文献1では、少量の接着剤で接着層を形成することで、良好な電池特性を発揮することが試みられている。
特開2001-84985号公報
 しかしながら、上記特許文献1に接着層用組成物を用いて形成される接着層は、薄層性に優れるものの、接着層の接着性と、かかる接着層を備える非水系二次電池の低温出力特性をバランスよく向上させるという点において改善の余地があった。
 そこで、本発明は、接着性に優れると共に、非水系二次電池の低温出力特性を向上させることが可能な接着層を形成することができる、非水系二次電池接着層用組成物を提供することを目的とする。
 また、本発明は、接着性に優れ、非水系二次電池に優れた低温出力特性を発揮させうる非水系二次電池用接着層を提供することを目的とする。
 さらに、本発明は、低温出力特性に優れる非水系二次電池を提供することを目的とする。
 かかる点に鑑みて、本発明者は検討を重ね、接着層用組成物の粘性挙動が接着層の接着性及びかかる接着層を備える非水系二次電池の低温出力特性に大きな影響を及ぼすことに着目するに至った。具体的には、電池部材間におけるイオン拡散性の向上や低コスト化を目的として、従来から、上記特許文献1のように接着層の薄層化が検討されているが、本発明者は接着層用組成物を基材上に薄く塗布すべく接着層用組成物の粘度を単に低下させると、かかる接着層用組成物を用いて形成した接着層のイオン透過性を却って損なう虞があることを新たに見出した。このような問題に対し、本発明者は、低せん断条件(せん断速度100sec-1)における粘度ηを特定の範囲内とすることで、塗布後の接着層用組成物中での固形成分の流動性を低減しつつ、基材への塗布時には接着層用組成物に通常高いせん断がかかる点を考慮し、高せん断条件(せん断速度10000sec-1)における粘度ηが塗布容易である範囲内となるような「ηに対するηの比(η/η)」を設定することで、接着層の接着性及び二次電池の電池特性をさらに高めることが可能となることを新たに見出した。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池接着層用組成物は、有機粒子及び水溶性高分子を含む非水系二次電池接着層用組成物であって、前記水溶性高分子の1質量%水溶液粘度が、500mPa・s以上9000mPa・s以下であり、さらに、せん断速度100sec-1での粘度η0が10mPa・s以上200mPa・s以下であるとともに、せん断速度10000sec-1での粘度η1に対する前記η0の比が1.5以上5.0以下であることを特徴とする。かかる性状を有する非水系二次電池接着層組成物は、接着性に富み、且つ二次電池に優れた低温出力特性を発揮させることができる接着層を形成することができる。
 ここで、本明細書において高分子が「水溶性である」とは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が1.0質量%未満であることをいう。なお、水のpHによって溶解性が変わる物質については、少なくともいずれかのpHにおいて上述した「水溶性」に該当するのであれば、その物質は「水溶性」であるとする。
 ここで、水溶性高分子の「1質量%水溶液粘度」は、水溶性高分子の1質量%水溶液を調製し、pH8の条件の下、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
 また、接着層用組成物の「せん断速度100sec-1での粘度η」及び「せん断速度10000sec-1での粘度η」は、それぞれのせん断速度における測定温度25℃での粘度であり、本明細書の実施例に記載の測定方法を用いて測定することができる。
 そして、本発明の非水系二次電池接着層用組成物は、前記水溶性高分子が、エチレン性不飽和カルボン酸単量体単位を20質量%以上70質量%以下含むことが好ましい。水溶性高分子におけるエチレン性不飽和カルボン酸単量体単位の含有割合がかかる特定範囲であれば、接着層の接着性及び二次電池の低温出力特性を一層バランスよく向上させることができる。
 なお、本発明において、「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味する。
 さらに、本発明の非水系二次電池接着層用組成物は、前記有機粒子が、酸基含有単量体単位を含むことが好ましい。有機粒子が酸基含有単量体単位を含んでいれば、非水系二次電池接着層用組成物の分散性及び塗工性を向上させるとともに、接着層の接着性を一層向上させうる。
 さらに、本発明の非水系二次電池接着層用組成物は、前記有機粒子が、(メタ)アクリルアミド単量体単位を含むことが好ましい。有機粒子が(メタ)アクリルアミド単量体単位を含んでいれば、非水系二次電池接着層用組成物の分散性及び塗工性を向上させるとともに、接着層の接着性を一層向上させうる。また、有機粒子が(メタ)アクリルアミド単量体単位を含んでいれば、非水系二次電池接着層用組成物を用いて形成した接着層を有する二次電池の低温出力特性を一層向上させうる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用接着層は、上述した非水系二次電池接着層用組成物を用いて形成したことを特徴とする。かかる、非水系二次電池用接着層は、接着性に優れると共に、二次電池の低温出力特性を向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、上述した非水系二次電池用接着層を備えることを特徴とするものである。このように、二次電池に本発明の接着層を設けることで、二次電池の低温出力特性を向上させることができる。
 そして、本発明の非水系二次電池は、捲回型又は積層型であることが好ましい。二次電池を捲回型又は積層型に成形する際に、本発明の接着層により良好な接着性が発揮されることで、良好な低温出力特性を得ることができるからである。
 本発明によれば、優れた接着性を発揮して、二次電池に優れた低温出力特性をもたらすことができる接着層を形成可能な非水系二次電池接着層用組成物を提供することができる。
 また、本発明によれば、接着性に優れ、非水系二次電池に優れた低温出力特性を発揮させうる非水系二次電池用接着層を提供することができる。
 さらに、本発明によれば、低温出力特性に優れる非水系二次電池を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池接着層用組成物は、セパレータ基材や電極基材等の電池部材を相互に接着させるための接着層を調製する際の材料として用いられる。
 また、本発明の非水系二次電池用接着層は上記非水系二次電池接着層用組成物を用いて形成される。そして、本発明の非水系二次電池は、少なくとも本発明の非水系二次電池用接着層を備えるものである。
(非水系二次電池接着層用組成物)
 非水系二次電池接着層用組成物は、少なくとも有機粒子及び水溶性高分子を含有し、任意に、その他の成分を含有する、水などを分散媒としたスラリー組成物である。さらに、非水系二次電池接着層用組成物は、水溶性高分子の1質量%水溶液粘度が特定の範囲内であること、さらには、せん断速度100sec-1での粘度η、及びせん断速度10000sec-1での粘度ηに対する前記ηの比がそれぞれ特定の範囲内であることを特徴とする。
 そして、本発明の非水系二次電池接着層用組成物を用いて形成される接着層は、接着層用組成物の粘性挙動の寄与により、優れた接着性を発揮し、さらには、二次電池に優れた電池特性をもたらすことができる。具体的には、本発明の非水系二次電池接着層用組成物は、水溶性高分子の1質量%水溶液粘度が、500mPa・s以上9000mPa・s以下であり、さらに、せん断速度100sec-1での粘度ηが特定の範囲内であると共に、せん断速度10000sec-1での粘度ηに対する前記ηの比が特定の範囲内であるため、接着層用組成物の基材への塗布性を確保しつつ塗布後の固形成分の流動を低減して、接着層の高密度化を抑制することができ、二次電池の低温出力特性を向上させることができる。
<有機粒子>
 非水系二次電池接着層用組成物に含有される有機粒子は、非水系二次電池接着層用組成物を用いて形成された接着層に優れた接着性を発揮させる機能を担う。ここで、有機粒子は、(メタ)アクリル酸エステル単量体単位を含みうる。さらに、有機粒子は、酸基含有単量体単位を含むことが好ましい。有機粒子が酸基含有単量体単位を含んでいれば、非水系二次電池接着層用組成物の分散性及び塗工性を向上させるとともに、接着層の接着性を一層向上させうる。さらに、有機粒子は、(メタ)アクリルアミド単量体単位を含むことが好ましい。有機粒子が(メタ)アクリルアミド単量体単位を含んでいれば、非水系二次電池接着層用組成物の分散性及び塗工性を向上させるとともに、接着層の接着性を一層向上させうる。また、有機粒子が(メタ)アクリルアミド単量体単位を含んでいれば、非水系二次電池接着層用組成物を用いて形成した接着層を有する二次電池の低温出力特性を一層向上させうる。なお、本明細書において(メタ)アクリルとは、アクリルおよび/またはメタクリルを意味する。
[(メタ)アクリル酸エステル単量体単位]
 (メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステル単量体が挙げられる。
 有機粒子における(メタ)アクリル酸エステル単量体単位の含有割合は、有機粒子に含まれる全単量体単位を100質量%とした場合に、50.0質量%以上であることが好ましく、55.0質量%以上であることがより好ましく、65.0質量%以上であることが更に好ましく、99.0質量%以下であることが好ましく、95.0質量%以下であることがより好ましい。有機粒子における(メタ)アクリル酸エステル単量体単位の含有割合が上記下限値以上であれば、有機粒子のガラス転移温度が過剰に低下することを回避して、得られる接着層の耐ブロッキング性を向上させることができる。接着層の耐ブロッキング性が高ければ、接着層を形成したセパレータや電極を、接着層を介してスタッキングした状態で保管等した場合に、隣接するセパレータや電極同士が、相互に接着することを抑制することができる。
[酸基含有単量体単位]
 酸基含有単量体単位を形成しうる酸基含有単量体としては、酸基を有する単量体、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、および、水酸基を有する単量体が挙げられる。
 そして、カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 また、スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 さらに、リン酸基を有する単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 また、水酸基を有する単量体としては、例えば、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピルなどが挙げられる。
 なお、本発明において、(メタ)アリルとは、アリルおよび/またはメタリルを意味し、(メタ)アクリロイルとは、アクリロイルおよび/またはメタクリロイルを意味する。
 有機粒子における酸基含有単量体単位の含有割合は、有機粒子に含まれる全単量体単位を100質量%とした場合に、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1.0質量%以上であることが更に好ましく、4.5質量%以下であることが好ましく、4.0質量%以下であることがより好ましい。有機粒子中の酸基含有単量体単位の含有比率が上記下限値以上であれば、接着層の接着性を一層向上させることができる。また、有機粒子中の酸基含有単量体単位の含有比率が上記上限値以下であれば、接着層の密度が過剰に高まることを抑制して、得られる二次電池の低温出力特性を一層向上させうる。
[(メタ)アクリルアミド単量体単位]
 (メタ)アクリルアミド単量体単位を形成し得る単量体としては、N-ヒドロキシメチル(メタ)アクリルアミド、アクリルアミド、メタクリルアミド等の(メタ)アクリルアミド単量体が挙げられる。
 有機粒子における(メタ)アクリルアミド単量体単位の含有割合は、有機粒子に含まれる全単量体単位を100質量%とした場合に、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、10.0質量%以下であることが好ましく、5.0質量%以下であることがより好ましい。有機粒子中の(メタ)アクリルアミド単量体単位の含有割合が上記下限値以上であれば、非水系二次電池接着層用組成物を用いて形成した接着層を有する二次電池の低温出力特性を一層向上させうる。有機粒子中の(メタ)アクリルアミド単量体単位の含有割合が上記上限値以下であれば、非水系二次電池接着層用組成物を用いて形成した接着層を有する二次電池の低温出力特性を一層向上させるとともに、低せん断速度での粘度が過剰に低下することを抑制することができる。
[その他の単量体単位]
 そして、有機粒子は、接着性を発揮しうる限りにおいて特に限定されることなく、上述した(メタ)アクリル酸エステル単量体単位、酸基含有単量体単位、及び(メタ)アクリルアミド単量体単位以外の単量体単位を含みうる。そのような単量体単位を形成し得る単量体としては、例えば、以下のような各種単量体が挙げられる。塩化ビニル、塩化ビニリデン等の塩化ビニル系単量体;酢酸ビニル等の酢酸ビニル系単量体;スチレン、α-メチルスチレン、スチレンスルホン酸、ブトキシスチレン、ビニルナフタレン等の芳香族ビニル単量体;ビニルアミン等のビニルアミン系単量体;N-ビニルホルムアミド、N-ビニルアセトアミド等のビニルアミド系単量体;アクリロニトリル、メタクリロニトリル等の(メタ)アクリロニトリル単量体;2-(パーフルオロヘキシル)エチルメタクリレート、2-(パーフルオロブチル)エチルアクリレート等のフッ素含有(メタ)アクリレート単量体;マレイミド;フェニルマレイミド等のマレイミド誘導体;1,3-ブタジエン、イソプレン等のジエン系単量体;などが挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 なお、本発明において、(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味し、(メタ)アクリロニトリルとは、アクリロニトリルおよび/またはメタクリロニトリルを意味する。
 さらに、有機粒子は、これらの単量体単位に加え、架橋性単量体単位を含んでいることが好ましい。架橋性単量体単位を形成しうる架橋性単量体とは、加熱またはエネルギー線の照射により、重合中または重合後に架橋構造を形成しうる単量体である。
 架橋性単量体としては、例えば、当該単量体に2個以上の重合反応性基を有する多官能単量体が挙げられる。このような多官能単量体としては、例えば、ジビニルベンゼン、アリルメタクリレート等のジビニル化合物;ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート等のジ(メタ)アクリル酸エステル化合物;トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート等のトリ(メタ)アクリル酸エステル化合物;アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を含有するエチレン性不飽和単量体;などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 なお、有機粒子を調製するにあたり、上記各種単量体の組合せ及び配合割合は、接着層用組成物の用途などに応じて任意に変更することができる。
―有機粒子の構造―
 なお、有機粒子はいかなる構造を有していてもよく、例えば、コア部とコア部の外表面を覆うシェル部とを備えるコアシェル構造を有していてもよい。また、シェル部は、コア部の外表面を部分的に覆っていてもよい。即ち、有機粒子のシェル部は、コア部の外表面を覆っているが、コア部の外表面の全体を覆ってはいない被覆態様であってもよい。
 なお、有機粒子は、所期の効果を著しく損なわない限り、上述したコア部及びシェル部以外に任意の構成要素を備えていてもよい。具体的には、例えば、有機粒子は、コア部の内部に、コア部とは別の重合体で形成された部分を有していてもよい。具体例を挙げると、有機粒子をシード重合法で製造する場合に用いたシード粒子が、コア部の内部に残留していてもよい。
―有機粒子のガラス転移温度―
 有機粒子は、ガラス転移温度が30℃以上であることが好ましく、40℃以上であることがより好ましく、130℃以下であることが好ましく、120℃以下であることがより好ましく、110℃以下であることが更に好ましい。有機粒子が上述したコアシェル構造を有する場合には、シェル部を形成する重合体のガラス転移温度が上記範囲内となることが好ましい。有機粒子のガラス転移温度が上記範囲内であれば接着層の耐ブロッキング性及び接着性を良好に両立することができる。
 なお、有機粒子のガラス転移温度は、有機粒子の組成や分子量を変更することで、所望の温度に調節することができる。
 また、特に、コアシェル構造を有する場合には、シェル部のガラス転移温度が耐ブロッキング性に強い影響を及ぼす。その一方で、接着層の接着性はコア部及びシェル部の両方のガラス転移温度によって定まるものである。
 本明細書において、有機粒子の「ガラス転移温度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
―有機粒子の調製方法―
 有機粒子は、特に限定されることなく、既知の重合方法により調製することができる。重合様式は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの様式も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。また、乳化重合においては、シード粒子を用いるシード重合を採用してもよい。さらに、コアシェル構造を有する有機粒子を調製する場合には、段階的な重合法であって、先の段階で形成された重合体を後の段階で形成される重合体で順次被覆させるような、連続した多段階懸濁重合法及び多段階懸濁重合法を採用することができる。
 そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とすることができる。
<水溶性高分子>
 非水系二次電池接着層用組成物に含有される水溶性高分子は、非水系二次電池接着層用組成物の粘度を所望の範囲に調節する機能を担う。好ましくは、水溶性高分子は接着性及び耐電解液性を備え、二次電池中において、接着層中の各成分同士及び電池部材同士の接着を補助する役割を果たす。
―水溶性高分子の粘度―
 具体的には、水溶性高分子は、1質量%水溶液粘度が500mPa・s以上9000mPa・s以下である必要がある。さらに、水溶性高分子の1質量%水溶液粘度は、3000mPa・s以上であることが好ましく、4000mPa・s以上であることがより好ましく、8000mPa・s以下であることが好ましく、7000mPa・s以下であることがより好ましい。
 1質量%水溶液粘度がかかる範囲内となる水溶性高分子を配合することで、非水系二次電池接着層用組成物の濃度を上述した特定の範囲に容易に調節することが可能となり、得られた接着層の接着性を一層向上させると共に、かかる接着層を備える二次電池の低温出力特性を一層向上させることができる。具体的には、水溶性高分子の粘度を上記下限値以上とすることで、非水系二次電池接着層用組成物に適度な構造粘性を発現させることが可能となり、基材上に塗布された接着層用組成物中における固形成分の流動が抑制され、接着層が過度に高密度化するのを防ぐことができる。さらに具体的には、固形成分の流動が抑制されることで、固形成分の沈降が抑制され、例えば、セパレータ基材などの空隙を有する基材を目詰まりさせにくくすることができる。このようにして、接着層自体の高密度化を抑制すると共に、接着層を備えるセパレータなどの電池部材の空隙を確保することができ、これにより、イオン拡散性が高まるので、低温出力特性などの電池特性を向上させることができる。一方、水溶性高分子の粘度を上記上限値以下とすることで、非水系二次電池接着層用組成物のレベリング性を向上させることができると共に、得られる接着層における過度な空隙の増加を抑制することができ、接着層の接着性が確保されるため、低温出力特性を向上させることができる。
―水溶性高分子の種類―
 ここで、水溶性高分子としては、1質量%水溶液粘度が上記範囲内である水溶性の高分子であれば、特に限定されることなく、例えば、天然高分子、半合成高分子及び合成高分子を挙げることができる。
[天然高分子]
 天然高分子としては、例えば、植物または動物由来の多糖類及び蛋白質、並びにこれらの微生物等による発酵処理物、これらの熱処理物が挙げられる。
 そしてこれらの天然高分子は、植物系天然高分子、動物系天然高分子及び微生物産出天然高分子等に分類することができる。
 植物系天然高分子としては、例えば、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンナン、クインスシード(マルメロ)、アルケコロイド(ガッソウエキス)、澱粉(コメ、トウモロコシ、馬鈴薯、小麦等に由来するもの)、グリチルリチンが挙げられる。動物系天然高分子としては、コラーゲン、カゼイン、アルブミン、ゼラチンが挙げられる。微生物産生天然高分子としては、キサンタンガム、デキストラン、サクシノグルカン、ブルランが挙げられる。
[半合成高分子]
 半合成高分子としては、セルロース系半合成高分子が挙げられる。そしてセルロース系半合成高分子は、ノニオン性セルロース系半合成高分子、アニオン性セルロース系半合成高分子及びカチオン性セルロース系半合成高分子に分類することができる。
 ノニオン性セルロース系半合成高分子としては、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース、等のアルキルセルロース類;ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロース類が挙げられる。
 アニオン性セルロース系半合成高分子としては、上記のノニオン性セルロース系半合成高分子を各種誘導基により置換した置換体及びその塩(ナトリウム塩、アンモニウム塩など)が挙げられる。具体的には、セルロース硫酸ナトリウム、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース(CMC)及びそれらの塩が挙げられる。
 カチオン性セルロース系半合成高分子としては、例えば、低窒素ヒドロキシエチルセルロースジメチルジアリルアンモニウムクロリド(ポリクオタニウム-4)、塩化O-[2-ヒドロキシ-3-(トリメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-10)、塩化O-[2-ヒドロキシ-3-(ラウリルジメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-24)が挙げられる。
[合成高分子]
 合成高分子としては、エチレン性不飽和カルボン酸およびその塩の少なくとも一方よりなるエチレン性不飽和カルボン酸化合物を所定の割合で含有する単量体組成物を重合して得られる、合成高分子が挙げられる。そして、当該合成高分子を水溶性高分子として使用した場合には、二次電池の内部抵抗を一層低減することができる。
 ここで、エチレン性不飽和カルボン酸化合物としては、エチレン性不飽和カルボン酸およびその塩の少なくとも一方を用いることができる。そして、エチレン性不飽和カルボン酸としては、エチレン性不飽和モノカルボン酸およびその誘導体、エチレン性不飽和ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。また、エチレン性不飽和カルボン酸塩としては、エチレン性不飽和カルボン酸のナトリウム塩、カリウム塩、リチウム塩などが挙げられる。
 なお、エチレン性不飽和カルボン酸およびその塩は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ここで、エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。そして、エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 また、エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。そして、エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、ジアクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。さらに、エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、などが挙げられる。
 そして、合成高分子の調製に用いる単量体組成物は、上述したエチレン性不飽和カルボン酸化合物が占める割合が、20質量%以上が好ましく、25質量%以上であることがより好ましく、30質量%以上であることがさらに好ましく、70質量%以下であることが好ましく、65質量%以下であることがより好ましく、60質量%以下であることがさらに好ましい。かかる単量体組成物より調製された合成高分子におけるエチレン性不飽和カルボン酸単量体単位の含有割合を上記範囲内とすることで、かかる合成高分子を本発明において水溶性高分子として用いた場合の、水溶性高分子の1質量%水溶液濃度の粘度を上述したような範囲にすることができるからである。
 なお、通常、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される構造単位の前記重合体における割合は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 さらに、上記単量体組成物は、エチレン性不飽和カルボン酸化合物と共重合可能なその他の化合物を含有しうる。具体的には、その他の化合物としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸n-テトラデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸パーフルオロアルキルエチル、(メタ)アクリル酸フェニル、などの(メタ)アクリル酸エステル;(メタ)アクリルアミド、酢酸ビニル、グリシジルメタクリレート、2-ビニルピリジン、等が挙げられる。
 なかでも、単量体組成物は、(メタ)アクリル酸エステルの含有割合が15質量%以上であることが好ましく、40質量%以上であることがより好ましく、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。(メタ)アクリル酸エステルの含有割合が上記下限値以上であれば、かかる単量体組成物を用いて得られた合成高分子を含有する接着剤層用組成物を用いて形成した接着層を備える二次電池の低温出力特性を一層向上させることができる。また、(メタ)アクリル酸エステルの含有割合が上記上限値以下であれば、かかる単量体組成物を用いて得られた合成高分子を含有する接着剤層用組成物の粘度を用いて形成した接着層の密度の過剰な高まりを抑制するとともに、接着性を向上させることができる。
 ここで、合成高分子の調製に用いる単量体組成物に配合する添加剤としては、エチレングリコールジメタクリレート等の架橋剤や、過硫酸カリウム等の重合開始剤や、テトラメチルエチレンジアミン等の重合促進剤などの重合反応に使用し得る既知の添加剤が挙げられる。なお、添加剤の種類および配合量は、重合方法等に応じて任意に選択することができる。
 また、合成高分子の調製に用いる単量体組成物に配合する重合溶媒としては、重合方法等に応じて、前述した単量体を溶解または分散可能な既知の溶媒を用いることができる。中でも、重合溶媒としては、水を用いることが好ましい。なお、重合溶媒としては、任意の化合物の水溶液や、少量の有機媒体と水との混合溶液などを用いてもよい。
 そして、合成高分子は、上述した単量体、架橋剤、添加剤および重合溶媒を既知の方法で混合して得た単量体組成物を、例えばラジカル重合させることで得られる。なお、上記単量体組成物を重合して得られる、合成高分子と重合溶媒とを含む溶液は、そのままの状態で接着層用組成物の調製に使用してもよいし、溶媒置換や任意の成分の添加などを行なった後に接着層用組成物の調製に使用してもよい。
 ここで、合成高分子の重合方法としては、水溶液重合、スラリー重合、懸濁重合、乳化重合などの公知の重合法が挙げられるが、溶媒の除去操作が不要であり、溶媒の安全性が高く、且つ、界面活性剤の混入の問題が無いことから、重合溶媒として水を使用した水溶液重合が好ましい。なお、水溶液重合は、単量体組成物を所定の濃度に調整し、反応系内の溶存酸素を不活性ガスで十分に置換した後、ラジカル重合開始剤を添加し、必要により、加熱や紫外線などの光照射をすることによって重合反応を行う方法である。
 なお、重合溶媒として水を使用し、上述した単量体組成物を水中で重合して合成高分子を含む水溶液を調製する場合には、重合後に水溶液のpHを8以上9以下に調整することが好ましい。
―水溶性高分子の配合比率―
 非水系二次電池接着層用組成物における水溶性高分子の配合比率は、有機粒子100質量部に対して、0.05質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、0.5質量部以上であることが更に好ましく、5質量部以下であることが好ましく、3質量部以下であることがより好ましい。上述したとおり、水溶性重合体は接着層用組成物に粘度を付与して、接着層の接着性を向上させるように機能するものの、過剰に添加すれば、接着層の柔軟性やイオン拡散性を損なう虞があり、二次電池の低温出力特性を劣化させる虞があるからである。
<その他の成分>
 非水系二次電池接着層用組成物は、上述した有機粒子、水溶性高分子以外にも任意のその他の成分を含んでいてもよい。これらのその他の成分としては、例えば、上述した有機粒子とは異なる任意の接着層用結着材や、濡れ剤、粘度調整剤、電解液添加剤などの既知の添加剤が挙げられる。これらのその他の成分は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。接着層用結着材を用いることにより、有機粒子等の成分が接着層から脱落するのを抑制することができる。
―接着層用結着材―
 本発明の非水系二次電池接着層用組成物に含有させうる接着層用結着材としては、非水溶性で、水などの分散媒中に分散可能な既知の結着材、例えば、熱可塑性エラストマーが挙げられる。そして、熱可塑性エラストマーとしては、共役ジエン系重合体及びアクリル系重合体が好ましく、アクリル系重合体がより好ましい。
 ここで、共役ジエン系重合体とは、共役ジエン単量体単位を含む重合体を指し、共役ジエン系重合体の具体例としては、スチレン-ブタジエン共重合体(SBR)などの、芳香族ビニル単量体単位及び脂肪族共役ジエン単量体単位を含む重合体や、アクリルゴム(NBR)(アクリロニトリル単位及びブタジエン単位を含む重合体)などが挙げられる。また、アクリル系重合体とは、(メタ)アクリル酸エステル単量体単位を含む重合体を指す。ここで、(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、有機粒子を調製するために用いる単量体と同様のものを用いることができる。
 なお、これらの接着層用結着材は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
 さらに、接着層用結着材としてのアクリル系重合体は、(メタ)アクリロニトリル単量体単位を含むことがさらに好ましい。これにより、接着層の強度を高めることができる。
 接着層用結着材は、ガラス転移温度が-50℃以上であることが好ましく、-40℃以上であることがより好ましく、10℃以下であることが好ましい。接着層用結着材のガラス転移温度が上記範囲内であれば、接着層の接着性を一層高めることができる。なお、本明細書において、接着層用結着材の「ガラス転移温度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
 接着層用結着材の製造方法としては、例えば、溶液重合法、懸濁重合法、乳化重合法などが挙げられる。中でも、水中で重合をすることができ、粒子状の接着層用結着材を含む水分散液をそのまま接着層用組成物の材料として好適に使用できるので、乳化重合法及び懸濁重合法が好ましい。また、接着層用結着材としての重合体を製造する際、その反応系は分散剤を含むことが好ましい。接着層用結着材は、通常、実質的にそれを構成する重合体により形成されるが、重合に際して用いた添加剤等の任意の成分を同伴していてもよい。
 なお、非水系二次電池接着層用組成物に接着層用結着材を配合する場合の接着層用結着材の配合量は、有機粒子100質量部に対して、10質量部以上50質量部以下であることが好ましい。
<非水系二次電池接着層用組成物の製造方法>
 接着層用組成物の製造方法は、有機粒子と、1質量%水溶液粘度が、500mPa・s以上9000mPa・s以下である水溶性高分子と、分散媒としての水と、必要に応じて用いられるその他の成分とを混合する工程を含む。混合方法は特に制限されないが、各成分を効率よく分散させるため、通常は混合装置として分散機を用いて混合を行う。
 分散機は、上記成分を均一に分散及び混合できる装置が好ましい。例を挙げると、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどが挙げられる。また、分散時に高いせん断力を加えることができる観点から、ビーズミル、ロールミル、フィルミックス等の高分散装置も挙げられる。
<非水系二次電池接着層用組成物の性状>
 ここで、得られる非水系二次電池接着層用組成物のせん断速度100sec-1での粘度ηは、10mPa・s以上200mPa・s以下であることが必要であり、好ましくは50mPa・s以上、より好ましくは60mPa・s以上、また好ましくは150mPa・s以下である。ηが前記範囲の下限値以上であることで、基材上に塗布された接着層用組成物中にて固形成分を流動しにくくして、接着層が高密度化することを抑制することができる。また、固形成分が流動しにくくなることで固形成分の沈降が抑制され、基材の目詰まりを防ぐことができる。よって、得られるセパレータなどの電池部材の空隙を確保することができ、イオン拡散性が高まり、低温出力特性を向上させることができる。また、ηが前記範囲の上限値以下であることで、接着層用組成物のレベリング性が向上して得られる接着層の表面を平坦化することができるとともに、得られる接着層における過度な空隙の増加を抑制することができ、電解液中での接着層の接着性が確保されるため、二次電池の低温出力特性を向上させることができる。
 また、非水系二次電池接着層用組成物の、せん断速度10000sec-1での粘度ηに対するせん断速度100sec-1での粘度ηの比(η/η)は、1.5以上5.0以下である必要があり、好ましくは2.0以上であり、さらに好ましくは2.5以上であり、好ましくは4.0以下である。η/ηが前記範囲の下限値以上であることで、高せん断条件における高粘度化が抑制され、接着層用組成物の塗工時において、いわゆる「タレ」や「ムラ」が発生しにくくなり、基材上への接着層用組成物の塗布性が確保される。また、η/ηが前記範囲の上限値以下であることで、得られる接着層における過度な空隙の増加を抑制することができ、電解液中での接着層の接着性が確保されるため、低温出力特性を向上させることができる。
 なおη、ηおよびη/ηは、接着層用組成物中の有機粒子および水溶性高分子の含有量や、水溶性高分子の粘度や水溶性高分子の組成などを調節することにより、適宜調整することができる。
(非水系二次電池用接着層)
 上述した非水系二次電池接着層用組成物を用い、適切な基材上に接着層を形成することができる。具体的には、非水系二次電池接着層用組成物を適切な基材上で乾燥することにより、非水系二次電池用接着層を形成することができる。即ち、本発明の非水系二次電池用接着層は、上述した非水系二次電池接着層用組成物の乾燥物よりなり、通常、上記有機粒子及び上記接着層用結着材を含有し、任意に、上記その他の成分を含有する。なお、上述した有機粒子中の重合体及び/または接着層用結着材が架橋性単量体単位を含む場合には、有機粒子中の重合体及び/または接着層用結着材は、スラリー組成物の乾燥時、または、乾燥後に任意に実施される熱処理時に架橋されていてもよい(即ち、非水系二次電池用接着層は、上述した有機粒子及び/または接着層用結着材の架橋物を含んでいてもよい)。なお、非水系二次電池用接着層中に含まれている各成分の好適な存在比は、非水系二次電池接着層用組成物中の各成分の好適な存在比と同じである。
 また、非水系二次電池接着層用組成物中において粒子として存在する有機粒子は、接着層中においてもとの粒子形状を維持していても良いし変形していてもよい。また、接着層用組成物中においてコアシェル構造を有する有機粒子を配合した場合には、有機粒子全体としての形状は元の粒子形状から変化している場合であっても、コアシェル構造自体は維持されていることが好ましい。
 そして、本発明の非水系二次電池用接着層は、高い接着性を発揮でき、非水系二次電池の低温出力特性を向上させることができる。
<基材>
 接着層を形成する基材としては、特に限定されず、例えばセパレータの一部を構成する部材として接着層を使用する場合には、基材としてはセパレータ基材を用いることができ、また、電極の一部を構成する部材として接着層を使用する場合には、基材としては集電体上に電極合材層を形成してなる電極基材を用いることができる。また、基材上に形成した接着層の用法に特に制限は無く、例えばセパレータ基材等の上に接着層を形成してそのままセパレータ等の電池部材として使用してもよいし、電極基材上に接着層を形成して電極として使用してもよいし、離型基材上に形成した接着層を基材から一度剥離し、他の基材に貼り付けて電池部材として使用してもよい。
 しかし、接着層から離型基材を剥がす工程を省略して電池部材の製造効率を高める観点からは、基材としてセパレータ基材又は電極基材を用いることが好ましい。
[セパレータ基材]
 接着層を形成するセパレータ基材としては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
 なお、セパレータ基材に対して、接着層以外の、所期の機能を発揮し得る任意の層を適用することも可能である。
[電極基材]  
 接着層を形成する電極基材(正極基材及び負極基材)としては、特に限定されないが、集電体上に電極合材層が形成された電極基材が挙げられる。
 ここで、集電体、電極合材層中の成分(例えば、電極活物質(正極活物質、負極活物質)及び電極合材層用結着材(正極合材層用結着材、負極合材層用結着材)など)、並びに、集電体上への電極合材層の形成方法は、既知のものを用いることができ、例えば特開2013-145763号公報に記載のものを用いることができる。
 なお、電極基材は、接着層以外の、所期の機能を有する任意の層をその一部に含んでいてもよい。
[離型基材]
 接着層を形成する離型基材としては、特に限定されず、既知の離型基材を用いることができる。
<非水系二次電池用接着層の形成方法>
 上述したセパレータ基材、電極基材などの基材上に接着層を形成する方法としては、以下の方法が挙げられる。:
1)接着層用組成物をセパレータ基材または電極基材の表面(電極基材の場合は電極合材層側の表面、以下同じ)に塗布し、次いで乾燥する方法;
2)接着層用組成物にセパレータ基材または電極基材を浸漬後、これを乾燥する方法;
3)接着層用組成物を、離型基材上に塗布、乾燥して接着層を製造し、得られた接着層をセパレータ基材または電極基材の表面に転写する方法。
 これらの中でも、前記1)の方法が、接着層の膜厚制御をしやすいことから特に好ましい。該1)の方法は、詳細には、接着層用組成物をセパレータ基材または電極基材上に塗布する工程(塗布工程)と、セパレータ基材または電極基材上に塗布された接着層用組成物を乾燥させて接着層を形成する工程(乾燥工程)を備える。
 塗布工程において、接着層用組成物をセパレータ基材または電極基材上に塗布する方法は、特に制限は無く、例えば、スプレーコート法、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。なかでも、より薄い接着層を形成する点から、グラビア法が好ましい。
 また乾燥工程において、基材上の接着層用組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。乾燥条件は特に限定されないが、乾燥温度は好ましくは30~80℃で、乾燥時間は好ましくは30秒~10分である。
 なお、基材上に形成された接着層の厚みは、好ましくは0.1μm以上、より好ましくは0.3μm以上、さらに好ましくは0.5μm以上であり、好ましくは3.0μm以下、より好ましくは1.5μm以下、さらに好ましくは1.0μm以下である。接着層の厚みが、前記範囲の下限値以上であることで、接着層の強度を十分に確保することができ、前記範囲の上限値以下であることで、接着層のイオン拡散性を確保し二次電池の低温出力特性をさらに向上させることができる。
(非水系二次電池)
 本発明の非水系二次電池は、上述した本発明の非水系二次電池用接着層を備えるものである。より具体的には、本発明の非水系二次電池は、正極、負極、及びセパレータの少なくとも一つの上に、或いは、これらの電池部材と電池容器との間に、本発明の非水系二次電池用接着層を備える。
 本発明の非水系二次電池は、本発明の非水系二次電池用接着層を備えているので、低温出力特性に優れる。
 特に、本発明の非水系二次電池は、捲回型又は積層型であることが好ましい。二次電池を捲回型又は積層型に成形する際に、例えば、熱プレス工程を実施することで、本発明の接着層により良好な接着性が発揮されることで、良好な低温出力特性を得ることができるからである。
<正極及び負極>
 本発明の二次電池は、上述したように、正極、負極、及びセパレータの少なくとも一つ、或いは、これらの電池部材と電池容器との間に、接着層を有する。すなわち、集電体上に電極合材層を形成してなる電極基材の上に接着層を設けてなる電極を用いることができる。なお、電極基材及びセパレータ基材としては、「非水系二次電池用接着層」の項で挙げたものと同様のものを用いることができる。
 また、接着層を有さない正極及び負極としては、特に限定されることなく、上述した電極基材よりなる電極を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えばリチウムイオン二次電池においては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
<非水系二次電池の製造方法>
 非水系二次電池は、例えば、正極と負極とをセパレータを介して重ね合わせ、得られた正極-セパレータ-負極の積層体を、そのまま、或いは、必要に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することで製造し得る。ここで、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される構造単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 実施例及び比較例において、各種ガラス転移温度、水溶性高分子の1質量%粘度、接着層用組成物の粘度及び塗工性、接着層の密度及び接着性、並びに二次電池の低温出力特性は、下記の方法で測定及び評価した。
<ガラス転移温度>
[測定用試料の準備]
 実施例、比較例にて調製した、コアシェル構造を有する有機粒子1、3~7については、シェル部を構成する重合体の配合比率と同じ配合比率の重合体を別途調製し、ガラス転移温度測定用試料とした。また、実施例にて調製したコアシェル構造を有さない有機粒子2、8、及び接着層用結着材については、得られた水分散液から溶媒を除去し、固形分を乾燥させてガラス転移温度測定用試料とした。
[ガラス転移温度の測定]
 有機粒子及び接着層用結着材のガラス転移温度は、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製、EXSTAR DSC6220)を用い、JIS K6240に従ってDSC曲線を測定した。具体的には、乾燥させた測定試料10mgをアルミパンに計量し、リファレンスとして空のアルミパンを用い、測定温度範囲-100℃~200℃の間で、昇温速度20℃/分で、DSC曲線を測定した。この昇温過程における、微分信号(DDSC)の吸熱ピークの温度を求め、有機粒子及び接着層用結着材のガラス転移温度とした。
<水溶性高分子の1質量%粘度>
 実施例、比較例で用いた水溶性高分子を、イオン交換水により1質量%水溶液に調整した。得られた1質量%水溶液を、1%水酸化ナトリウム水溶液でpH8に調整し、B型粘度計(東機産業社製、「TVB-10M」)にて、pH8、25℃、60rpmでの粘度を測定した。使用するローターは粘度に合わせて適宜変更した。
<接着層用組成物の粘度>
 常温常湿下(JIS Z 8703)にて、レオメーター(アントンパール社製、「MCR302」)を用いて、温度25℃におけるせん断速度100sec-1での粘度η及び温度25℃におけるせん断速度10000sec-1での粘度ηをそれぞれ測定した。そして得られたη、ηの値を用いて、ηに対するηの比(η/η)を算出した。
<接着層用組成物の塗工性>
 実施例、比較例で得られた接着層を、接着層が塗布された基材側から光を当てて、目視にて観察した。ここで、接着層に「スジ」や「ムラ」がある場合は透過する光量に目視で判別可能な程度の差が生じる。ここで、本明細書にて、「スジ」とは、上述したη/ηの値が大きい場合に主として生じうる、接着層用組成物を塗工する際に用いたアプリケーターの影響などにより生じる表面の凹凸である。また、「ムラ」とは、上述したη/ηの値が小さい場合に主として生じうる、塗工された接着層の層厚のばらつきである。透過する光量の分布パターンに応じて、観察対象の接着層において「スジ」又は「ムラ」のいずれが生じているのかを目視にて判別できる。光が均一に透過可能な接着層の形成に用いた接着層用組成物は塗工性が良好であり、「スジ」又は「ムラ」が生じた接着層の形成に用いた接着層用組成粒物は塗工性に劣っている。従って、接着層用組成物の塗工性の評価は、以下の基準に従った。
 「良好」:形成された接着層が光を均一に透過する。
 「スジ」:形成された接着層にライン状の透過光量が明瞭に変化する領域が生じる。
 「ムラ」:形成された接着層に不規則的に透過光量が変化する、境界が不明瞭である領域が生じる。
<接着層の密度>
 実施例、比較例で得られた接着層を有する基材から、幅10cm、長さ10cmの試験片を10枚切り出し、切り出した試験片の質量の平均値W(g)を測定した。また、各試験片の4隅と中心の計5か所にて、試験片の厚みをそれぞれ測定し、その平均値を各試験片の厚さT(μm)とした。また、実施例、比較例にてそれぞれ使用した、接着層を塗布する前の各基材も同様に切り出し、同様の測定方法にて各質量W(g)及び厚さT(μm)を測定した。得られた数値から接着層の密度ρは次の式に従い計算した。算出した密度ρの値について、以下の基準に従って評価した。
  ρ=(W-W)/(T-T)×100
 A:接着層密度が0.6g/cm3未満
 B:接着層密度が0.6g/cm3以上0.8g/cm3未満
 C:接着層密度が0.8g/cm3以上
<接着層の接着性>
 実施例、比較例で作製したセパレータ(実施例8以外)又は電極(実施例8)を、幅10mm、長さ50mmに切り出し、セパレータが接着層を有する場合(実施例8以外)は電極合材層が形成されてなる正極又は負極基材と積層させ、電極が接着層を有する場合にはセパレータ基材と積層させ(実施例8)、温度80℃、荷重10kN/mでロールプレスし、試験片とした。得られた試験片を、電極(正極又は負極)の集電体側の面を下にし、予め水平な試験台上に接着面を上側にして固定しておいたセロハンテープ(JIS Z 1522)の接着面に対して貼り付けた。そして、試験片のセパレータ側の一端を鉛直上方に引張速度50mm/分で引っ張って剥がしたときの応力を測定した。かかる測定を、セパレータ-正極、セパレータ-負極の構造を有する各試験片について3回ずつ、合計6回実施し、得られた測定結果の平均値をピール強度とした。ピール強度が高いほど、セパレータ-正極/負極間の接着性が高いことを示す。接着性を以下の基準に従って評価し、結果を表1に示す。
 A:ピール強度が10N/m以上
 B:ピール強度が5N/m以上10N/m未満
 C:ピール強度が5N/m未満
<低温出力特性>
 製造した800mAh捲回型リチウムイオン二次電池を、25℃の環境下で24時間静置した。その後、25℃の環境下で、0.1Cの充電レートで5時間の充電操作を行い、充電操作後の電圧Vを測定した。
 次に、-10℃環境下で、1Cの放電レートにて放電操作を行い、放電開始から15秒後の電圧Vを測定した。そして、電圧変化ΔVを、ΔV=V-Vの式にて計算した。当該電圧変化ΔVの値が小さいほど、二次電池の低温出力特性が優れていることを示す。二次電池の低温出力特性を以下の基準に従って評価し、結果を表1に示す。
 SA:電圧変化ΔVが250mV未満
 A:電圧変化ΔVが250mV以上350mV未満
 B:電圧変化ΔVが350mV以上500mV未満
 C:電圧変化ΔVが500mV以上
(実施例1)
<有機粒子の作製>
 有機粒子として、コアシェル構造を有する有機粒子1を調製した。まず、コア部を形成するために、攪拌機付き5MPa耐圧容器に対して、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル単量体38.5部及びアクリル酸ブチル28.63部;酸基含有単量体単位としてのメタクリル酸単量体2.8部;架橋性単量体としてのアリルメタクリレート0.07部を添加した。さらに、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始させた。重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン29.7部、メタクリル酸単量体0.3部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、有機粒子1を含む水分散液を得た。得られた有機粒子1について上述の方法に従ってガラス転移温度を測定した。結果を表1に示す。
<接着層用結着材の作製>
 撹拌機を備えた反応器に対して、イオン交換水70部、乳化剤としてラウリル硫酸ナトリウム(花王ケミカル社製、製品名「エマール2F」)0.15部、及び過流酸アンモニウム0.5部を、それぞれ供給し、気相部を窒素ガスで置換し、反応器内を60℃に昇温した。
 一方、別の容器にイオン交換水50部、分散剤としてドデシルベンゼンスルホン酸ナトリウム0.5部、並びに、重合性単量体として、アクリル酸ブチル94部、アクリロニトリル2部、メタクリル酸2部、N-メチロールアクリルアミド1部、及びアリルグリシジルエーテル1部を添加し混合して、単量体混合物を得た。この単量体混合物を4時間かけて上述した反応器に連続的に添加して、重合反応を行った。添加中は、60℃にて反応を継続させた。添加終了後、反応器内を70℃に昇温して攪拌しつつ3時間にわたり反応を継続し、冷却により反応を終了させた。これにより、接着層用結着材として(メタ)アクリル系重合体を含む水分散液を製造した。得られた接着層用結着材のガラス転移温度は上記方法に従って測定したところ、-38℃であった。
<水溶性高分子の調製>
 水溶性高分子として、合成水溶性高分子1(合成WP1)を調製した。攪拌機付き5MPa耐圧容器に、エチレン性不飽和カルボン酸単量体としてメタクリル酸34部、(メタ)アクリル酸エステル単量体としてアクリル酸エチル65部、架橋性単量体としてエチレングリコールジメタクリレート1.0部、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム1.0部、イオン交換水150部、及び重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性高分子を含む水分散液を得た。
 次に、イオン交換水を投入した、攪拌機を備える容器に対して、上記水溶性高分子を含む水分散液と、5質量%水酸化ナトリウム水溶液とを、得られる溶液のpHが8となるとともに、得られる溶液内の水溶性高分子の濃度が1質量%となるように配合を調節して投入し、十分に撹拌して水溶性高分子を溶解させた。このようにして、水溶性高分子水溶液を調製した。
<非水系二次電池接着層用組成物の作製>
 攪拌器付き容器に対して、有機粒子100質量部、水溶性高分子水溶液2質量部(固形分相当)、及び接着層用結着材22質量部(固形分相当)を添加し、混合した。ここに、表面張力調整剤(エチレンオキサイド-プロピレンオキサイド共重合体)1部を添加し、さらにイオン交換水により希釈し、固形分濃度30質量%の接着層用組成物を得た。
<非水系二次電池用接着層の形成>
 上述のようにして得られた接着層用組成物を、セパレータ基材(ポリプロピレン製、セルガード2500)上に塗布し、50℃で3分間乾燥させた。この操作をセパレータ基材の両面に施し、片面厚み1μmずつの接着層を備えるセパレータを得た。得られた接着層を備えるセパレータについて、上述の通りに密度及び接着性を評価した。結果を表1に示す。
<負極の作製>
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン33部、イタコン酸3.5部、スチレン63.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、容器内を50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状結着材(SBR)を含む混合物を得た。上記粒子状結着材を含む混合物に対して、5質量%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、粒子状結着材を含む水分散液を得た。
 人造黒鉛(平均粒子径:15.6μm)100部、増粘剤としてカルボキシメチルセルロース(日本製紙社製「MAC350HC」)の2%水溶液を固形分相当で1部、イオン交換水で固形分濃度68質量%に調整した後、25℃で60分間混合した。さらにイオン交換水で固形分濃度62質量%に調整した後、さらに25℃で15分間混合した。得られた混合液に、上述した粒子状結着材を固形分相当量で1.5部添加し、さらにイオン交換水を投入して、最終固形分濃度が52質量%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い負極用スラリー組成物を得た。
 上記で得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理してプレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmのプレス後の負極を得た(片面負極)。
<正極の作製>
 正極活物質として体積平均粒子径12μmのLiCoO100部、導電材としてアセチレンブラック(電気化学工業社製「HS-100」)2部、及びバインダーとしてPVDF(クレハ社製、#7208)2部(固形分相当)と、N-メチル-2-ピロリドン(NMP)とを混合し、全固形分濃度を70質量%に調整した。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。
 上述のようにして得られた正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の正極原反を得た。このプレス前の正極原反をロールプレスで圧延して、正極活物質層の厚みが80μmのプレス後正極を得た(片面正極)。
<リチウムイオン二次電池の製造>
 上述のようにして得られたプレス後の正極を4cm四方の正方形に切り出した。また、上述のようにして得られた非水系二次電池用接着層を有するセパレータを5cm四方の正方形片に切り出した。そして、切り出した正極の正方形片の正極合材層側の面上に、セパレータの正方形片を配置した。さらに上述のようにして作製したプレス後の負極を4.2cm四方の正方形片に切り出し、これをセパレータの正方形片上に負極合材層側の表面が対向するように、さらに配置した。次いで、得られた積層体を温度60℃、0.5MPaにてプレスし、接着させた。
 続いて接着させた積層体を、電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)/ビニレンカーボネート(VC)(体積比)=68.5/30/1.5、電解質:濃度1MのLiPF6)を空気が残らないように注入した。そして、150℃で、当該アルミ包材外装の開口をヒートシールし、アルミ包材外装を密封閉口し、40mAhの積層型リチウムイオン二次電池を製造した。
 得られた積層型リチウムイオン二次電池について、上述の通りに低温出力特性を評価した。結果を表1に示す。
(実施例2~3)
 水溶性高分子の配合を表1に示す通りに変更し、それぞれ合成水溶性高分子2(合成WP2)、合成水溶性高分子3(合成WP3)を調製した以外は実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
(実施例4)
 水溶性高分子として、カルボキシメチルセルロースCMC1(日本製紙製、「MAC800LC」)をイオン交換水により濃度が0.8質量%となるように調整した水溶性高分子水溶液を用い、かかる水溶性高分子水溶液を有機粒子100質量部に対して0.5質量部(固形分相当)配合した以外は実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
(実施例5~6)
 水溶性高分子として、カルボキシメチルセルロースCMC2(日本製紙社製、「MAC350HC」)(実施例5)又はキサンタンガム(三晶株式会社製「KELZAN」)(実施例6)を用いた以外は実施例4と同様にして、各種測定及び評価を行った。結果を表1に示す。
(実施例7)
 有機粒子として、下記のようにして作製した有機粒子2を用いた以外は、実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
<有機粒子2の作製>
 攪拌機付き5MPa耐圧容器に対して、メタクリル酸メチル単量体65.0部、アクリル酸ブチル30.0部、メタクリル酸単量体4.0部、架橋性単量体としてエチレングリコールジメタクリレート1.0部を添加した、さらに、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始させた。重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、コアシェル構造を有さない有機粒子2を含む水分散液を得た。
(実施例8)
 実施例1と同様にして、有機粒子及び水溶性高分子を調製して、非水系二次電池接着層用組成物を調製した。そして、リチウムイオン二次電池の製造時に、接着層を形成することなくセパレータ基材をそのままセパレータとして使用し、負極及び正極として、接着層を備える負極、接着層を備える正極を使用した以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。そして、上述の通りに各種測定及び評価を行った。なお、接着層を備える負極及び接着層を備える正極の作製方法は、それぞれ以下に従った。
<接着層を備える負極/正極の作製>
 実施例1と同様にして、集電体上に厚さ80μmの負極/正極合材層を形成し、電極基材を得た後、負極/負極合材層側の面に、接着層用組成物を塗布し、50℃で3分間乾燥させた。これにより、厚さ1μmの接着層を片面に備える負極/正極を作製した。
(実施例9)
 有機粒子として、下記のようにして作製した有機粒子3を用いた以外は、実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
<有機粒子3の作製>
 まず、コア部を形成するために、攪拌機付き5MPa耐圧容器に対して、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル単量体41.1部、アクリル酸ブチル28.63部;酸基含有単量体単位としてのメタクリル酸単量体0.2部;架橋性単量体としてのアリルメタクリレート0.07部を添加した。さらに、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始させた。重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン29.7部、メタクリル酸単量体0.3部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、有機粒子3を含む水分散液を得た。
(実施例10)
 有機粒子として、下記のようにして作製した有機粒子4を用いた以外は、実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
<有機粒子4の作製>
 まず、コア部を形成するために、攪拌機付き5MPa耐圧容器に対して、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル単量体37.1部、アクリル酸ブチル28.63部;酸基含有単量体単位としてのメタクリル酸単量体4.2部;架橋性単量体としてのアリルメタクリレート0.07部を添加した。さらに、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始させた。重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン29.7部、メタクリル酸単量体0.3部を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、有機粒子4を含む水分散液を得た。
(実施例11)
 有機粒子として、下記のようにして作製した有機粒子5を用いた以外は、実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
<有機粒子5の作製>
 まず、コア部を形成するために、攪拌機付き5MPa耐圧容器に対して、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル単量体38.3部、アクリル酸ブチル28.63部;アクリルアミド単量体0.2部、酸基含有単量体単位としてのメタクリル酸単量体2.8部;架橋性単量体としてのアリルメタクリレート0.07部を添加した。さらに、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始させた。重合転化率が96%になった時点で、続いて、シェル部を形成するために、上記容器に対して、スチレン29.7部、メタクリル酸単量体0.3部、を連続添加し、容器内を70℃に加温して重合を継続させ、重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、有機粒子5を含む水分散液を得た。
(実施例12~13)
 有機粒子の調製にあたり、メタクリル酸メチル単量体及びアクリルアミド単量体の仕込み量を表1に示す通りに変更した以外は実施例11と同様にして、実施例12にて有機粒子6を、実施例13にて有機粒子7をそれぞれ調製した。そして、実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
(実施例14)
 有機粒子として、下記のようにして作製した有機粒子8を用いた以外は、実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
<有機粒子8の作製>
 攪拌機付き5MPa耐圧容器に対して、メタクリル酸メチル単量体64.0部、アクリル酸ブチル30.0部、メタクリル酸単量体4.0部、アクリルアミド1.0部、架橋性単量体としてエチレングリコールジメタクリレート1.0部を添加した、さらに、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を添加し、十分に攪拌した後、容器内を60℃に加温して重合を開始させた。重合転化率が96%になった時点で、冷却し反応を停止させた。これにより、コアシェル構造を有さない有機粒子8を含む水分散液を得た。
(比較例1)
 水溶性高分子としてカルボキシメチルセルロースCMC3(ダイセル工業製、「D1220」)を使用し、かかる水溶性高分子を有機粒子100質量部に対して0.5質量部配合した以外は実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
(比較例2)
 非水系二次電池接着層用組成物の作製において水溶性高分子水溶液を有機粒子100質量部に対して固形分相当で3質量部使用した以外は実施例4と同様にして、各種測定・評価を行った。結果を表1に示す。
(比較例3)
 非水系二次電池接着層用組成物の作製において水溶性高分子水溶液を有機粒子100質量部に対して固形分相当で10質量部使用した以外は実施例5と同様にして、各種測定・評価を行った。結果を表1に示す。
 なお、以下に示す表1中、
「MMA」はメタクリル酸メチルを示し、
「BA」はアクリル酸ブチルを示し、
「ST」は、スチレンを示し、
「MA」は、メタクリル酸を示し、
「AAm」は、アクリルアミドを示し、
「AMA」は、アリルメタクリレートを示し、
「EDMA」は、エチレングリコールジメタクリレートを示し、
「MAA」は、メタクリル酸を示し、
「EA」は、アクリル酸エチルを示し、
「WP」は、水溶性高分子を示し、
「CMC1」は、日本製紙社製 MAC800LCを示し、
「CMC2」は、日本製紙社製 MAC350HCを示し、
「CMC3」は、ダイセル工業製 D1220を示す。
Figure JPOXMLDOC01-appb-T000001
 
 実施例1~14によれば、有機粒子及び水溶性高分子を含む非水系二次電池接着層用組成物であって、水溶性高分子の1質量%水溶液粘度が、500mPa・s以上9000mPa・s以下であり、さらに、せん断速度100sec-1での粘度η0が10mPa・s以上200mPa・s以下であるとともに、せん断速度10000sec-1での粘度η1に対するη0の比が1.5以上5.0以下である非水系二次電池接着層用組成物は、塗工性に富み、かかる組成物を用いて形成した接着層は低密度化されていると共に接着性に富み、さらにかかる接着層を備える二次電池の低温出力特性が十分に向上されていることが分かる。一方、かかる二次電池接着層用組成物がかかる特性を満たさない比較例1~3では、接着層要素生物の塗工性、接着層の密度及び接着性、並びに二次電池の低温出力特性をバランスよく向上させることができなかったことが分かる。
 本発明によれば、優れた接着性を発揮して、二次電池に優れた低温出力特性をもたらすことができる接着層を形成可能な非水系二次電池接着層用組成物を提供することができる。
 また、本発明によれば、接着性に優れ、非水系二次電池に優れた低温出力特性を発揮させうる非水系二次電池用接着層を提供することができる。
 さらに、本発明によれば、低温出力特性に優れる非水系二次電池を提供することができる。

Claims (7)

  1.  有機粒子及び水溶性高分子を含む非水系二次電池接着層用組成物であって、
     前記水溶性高分子の1質量%水溶液粘度が、500mPa・s以上9000mPa・s以下であり、さらに、
     せん断速度100sec-1での粘度η0が10mPa・s以上200mPa・s以下であるとともに、せん断速度10000sec-1での粘度η1に対する前記η0の比が1.5以上5.0以下である、非水系二次電池接着層用組成物。
  2.  前記水溶性高分子が、エチレン性不飽和カルボン酸単量体単位を20質量%以上70質量%以下含む、請求項1に記載の非水系二次電池接着層用組成物。
  3.  前記有機粒子が、酸基含有単量体単位を含む、請求項1又は2に記載の非水系二次電池接着層用組成物。
  4.  前記有機粒子が、(メタ)アクリルアミド単量体単位を含む、請求項1~3の何れかに記載の非水系二次電池接着層用組成物。
  5.  請求項1~4の何れかに記載の非水系二次電池接着層用組成物を用いて形成した非水系二次電池用接着層。
  6.  請求項5に記載の非水系二次電池用接着層を備える、非水系二次電池。
  7.  捲回型又は積層型である、請求項6に記載の非水系二次電池。
PCT/JP2016/004912 2015-11-27 2016-11-17 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池 WO2017090242A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16868193.0A EP3382777B1 (en) 2015-11-27 2016-11-17 Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery
CN201680066984.0A CN108292735B (zh) 2015-11-27 2016-11-17 非水系二次电池粘接层用组合物、非水系二次电池用粘接层以及非水系二次电池
KR1020187013871A KR102613891B1 (ko) 2015-11-27 2016-11-17 비수계 2차 전지 접착층용 조성물, 비수계 2차 전지용 접착층, 및 비수계 2차 전지
JP2017552271A JP7179463B2 (ja) 2015-11-27 2016-11-17 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
PL16868193T PL3382777T3 (pl) 2015-11-27 2016-11-17 Kompozycja dla warstwy klejącej niewodnej baterii akumulatorowej, warstwa klejąca do niewodnej baterii akumulatorowej oraz niewodna bateria akumulatorowa
US15/776,540 US10615379B2 (en) 2015-11-27 2016-11-17 Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-232295 2015-11-27
JP2015232295 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017090242A1 true WO2017090242A1 (ja) 2017-06-01

Family

ID=58763449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004912 WO2017090242A1 (ja) 2015-11-27 2016-11-17 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池

Country Status (7)

Country Link
US (1) US10615379B2 (ja)
EP (1) EP3382777B1 (ja)
JP (1) JP7179463B2 (ja)
KR (1) KR102613891B1 (ja)
CN (1) CN108292735B (ja)
PL (1) PL3382777T3 (ja)
WO (1) WO2017090242A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045246A1 (ja) 2018-08-29 2020-03-05 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用電池部材およびその製造方法、並びに非水系二次電池用積層体の製造方法および非水系二次電池の製造方法
KR20240051924A (ko) 2021-08-31 2024-04-22 니폰 제온 가부시키가이샤 비수계 이차 전지 접착층용 슬러리 조성물, 비수계 이차 전지용 접착층 및 그 제조 방법, 비수계 이차 전지용 부재, 그리고 비수계 이차 전지

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102493659B1 (ko) * 2014-11-28 2023-01-30 니폰 제온 가부시키가이샤 비수계 2차 전지 기능층용 조성물, 비수계 2차 전지용 기능층 및 비수계 2차 전지
CN109728350A (zh) * 2018-12-20 2019-05-07 福建师范大学 水体系羟丙基甲基纤维素的一体电池电芯的制备方法
CN112786961A (zh) * 2021-03-23 2021-05-11 上海电气集团股份有限公司 生物质基凝胶电解质、锂离子电池及制备方法、应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084985A (ja) 1999-09-17 2001-03-30 Mitsubishi Electric Corp 二次電池
JP2001181590A (ja) * 1999-12-27 2001-07-03 Nippon Nsc Ltd 粘着製品の製造方法
JP2006096809A (ja) * 2004-09-28 2006-04-13 Fuji Photo Film Co Ltd 有機溶剤系増粘・チキソトロピー付与剤、塗布組成物、機能性フィルム、および光学フィルム
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2013145763A (ja) 2013-04-30 2013-07-25 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
WO2013172415A1 (ja) * 2012-05-18 2013-11-21 コニカミノルタ株式会社 多層積層膜の製造方法
WO2015005145A1 (ja) * 2013-07-10 2015-01-15 日本ゼオン株式会社 リチウムイオン二次電池用接着剤、リチウムイオン二次電池用セパレータ、及びリチウムイオン二次電池
JP2015088253A (ja) * 2013-10-28 2015-05-07 日本ゼオン株式会社 リチウムイオン二次電池用接着剤、リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
JP2015141773A (ja) * 2014-01-27 2015-08-03 トヨタ自動車株式会社 二次電池用負極の製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144298A (ja) * 1996-11-15 1998-05-29 Sanyo Electric Co Ltd リチウム二次電池
JP4561041B2 (ja) * 2002-03-28 2010-10-13 Tdk株式会社 リチウム二次電池
DE60336483D1 (de) * 2002-07-08 2011-05-05 Asahi Glass Co Ltd Dispersion von ionenaustauscherpolymer, herstellungsverfahren dafür und verwendung davon
US7211546B2 (en) * 2003-04-11 2007-05-01 Texas United Chemical Company, Llc. Method of increasing the low shear rate viscosity of well drilling and servicing fluids containing calcined magnesia bridging solids, the fluids and methods of use
KR101934706B1 (ko) * 2011-02-25 2019-01-03 제온 코포레이션 이차 전지용 다공막, 이차 전지 다공막용 슬러리 및 이차 전지
KR101921169B1 (ko) * 2011-03-18 2018-11-22 제온 코포레이션 리튬 이온 이차 전지 부극용 슬러리 조성물, 리튬 이온 이차 전지 부극, 및 리튬 이온 이차 전지
JP6079238B2 (ja) * 2011-12-02 2017-02-15 三菱レイヨン株式会社 非水二次電池電極用バインダ樹脂、非水二次電池電極用バインダ樹脂組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極、非水二次電池
KR101325555B1 (ko) * 2011-12-09 2013-11-05 주식회사 엘지화학 구형화 천연 흑연을 음극 활물질로 포함하는 리튬 이차전지
US20150030829A1 (en) * 2012-03-06 2015-01-29 Lintec Corporation Gas barrier film laminate, adhesive film, and electronic component
KR102127876B1 (ko) * 2012-06-07 2020-06-29 제온 코포레이션 부극 슬러리 조성물, 리튬 이온 이차 전지 부극 및 리튬 이온 이차 전지
JP6111895B2 (ja) * 2012-06-28 2017-04-12 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、二次電池用負極および二次電池
JP6119750B2 (ja) * 2012-06-28 2017-04-26 日本ゼオン株式会社 負極スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
WO2014021401A1 (ja) * 2012-07-31 2014-02-06 日本ゼオン株式会社 リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
KR102067562B1 (ko) * 2012-08-09 2020-02-11 제온 코포레이션 2 차 전지용 부극, 2 차 전지, 슬러리 조성물, 및 제조 방법
KR102090111B1 (ko) * 2012-09-28 2020-03-17 제온 코포레이션 리튬 이온 2 차 전지용의 다공막 세퍼레이터의 제조 방법, 및 리튬 이온 2 차 전지용 적층체의 제조 방법
JP2014116265A (ja) * 2012-12-12 2014-06-26 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2014149936A (ja) * 2013-01-31 2014-08-21 Nippon Zeon Co Ltd 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池
CN104904042B (zh) * 2013-02-04 2017-03-15 日本瑞翁株式会社 锂离子二次电池正极用浆料
JP2014154363A (ja) * 2013-02-08 2014-08-25 Toyota Motor Corp 非水電解液二次電池,非水電解液二次電池の正極板の製造方法,および非水電解液二次電池の製造方法
US20150013249A1 (en) * 2013-07-12 2015-01-15 Bruce S. Nielsen Door Jamb Security Fixture
JP6155967B2 (ja) * 2013-08-23 2017-07-05 日本ゼオン株式会社 リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
KR102301045B1 (ko) * 2013-10-31 2021-09-09 제온 코포레이션 리튬 이온 2 차 전지의 바인더용의 입자상 중합체, 접착층 및 다공막 조성물
JP5877213B2 (ja) * 2014-01-24 2016-03-02 旭化成イーマテリアルズ株式会社 積層体、蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池および共重合体
DE102014203750A1 (de) * 2014-02-28 2015-09-03 Wacker Chemie Ag Polymerzusammensetzung als Bindersystem für Lithiumionenbatterien
US20160014078A1 (en) * 2014-07-10 2016-01-14 Sven Schrecker Communications gateway security management
JP6565935B2 (ja) 2014-12-25 2019-08-28 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用セパレータおよび非水系二次電池
JP6464428B2 (ja) * 2015-08-31 2019-02-06 株式会社ダイセル 増粘安定剤、及びそれを用いた増粘安定化組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084985A (ja) 1999-09-17 2001-03-30 Mitsubishi Electric Corp 二次電池
JP2001181590A (ja) * 1999-12-27 2001-07-03 Nippon Nsc Ltd 粘着製品の製造方法
JP2006096809A (ja) * 2004-09-28 2006-04-13 Fuji Photo Film Co Ltd 有機溶剤系増粘・チキソトロピー付与剤、塗布組成物、機能性フィルム、および光学フィルム
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
WO2013172415A1 (ja) * 2012-05-18 2013-11-21 コニカミノルタ株式会社 多層積層膜の製造方法
JP2013145763A (ja) 2013-04-30 2013-07-25 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
WO2015005145A1 (ja) * 2013-07-10 2015-01-15 日本ゼオン株式会社 リチウムイオン二次電池用接着剤、リチウムイオン二次電池用セパレータ、及びリチウムイオン二次電池
JP2015088253A (ja) * 2013-10-28 2015-05-07 日本ゼオン株式会社 リチウムイオン二次電池用接着剤、リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
JP2015141773A (ja) * 2014-01-27 2015-08-03 トヨタ自動車株式会社 二次電池用負極の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3382777A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045246A1 (ja) 2018-08-29 2020-03-05 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用電池部材およびその製造方法、並びに非水系二次電池用積層体の製造方法および非水系二次電池の製造方法
KR20210049098A (ko) 2018-08-29 2021-05-04 니폰 제온 가부시키가이샤 비수계 이차 전지 접착층용 조성물, 비수계 이차 전지용 전지 부재 및 그 제조 방법, 그리고 비수계 이차 전지용 적층체의 제조 방법 및 비수계 이차 전지의 제조 방법
US11811087B2 (en) 2018-08-29 2023-11-07 Zeon Corporation Composition for non-aqueous secondary battery adhesive layer, battery member for non-aqueous secondary battery and method of producing same, method of producing laminate for non-aqueous secondary battery, and method of producing non-aqueous secondary battery
KR20240051924A (ko) 2021-08-31 2024-04-22 니폰 제온 가부시키가이샤 비수계 이차 전지 접착층용 슬러리 조성물, 비수계 이차 전지용 접착층 및 그 제조 방법, 비수계 이차 전지용 부재, 그리고 비수계 이차 전지

Also Published As

Publication number Publication date
KR20180083333A (ko) 2018-07-20
EP3382777B1 (en) 2022-03-30
PL3382777T3 (pl) 2022-06-20
EP3382777A4 (en) 2019-07-10
JP7179463B2 (ja) 2022-11-29
EP3382777A1 (en) 2018-10-03
CN108292735B (zh) 2022-02-25
US10615379B2 (en) 2020-04-07
KR102613891B1 (ko) 2023-12-13
JPWO2017090242A1 (ja) 2018-09-13
US20180342711A1 (en) 2018-11-29
CN108292735A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
JP6601486B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP7306272B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および非水系二次電池
JP6155967B2 (ja) リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
JP7205465B2 (ja) 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用スラリー組成物、非水系二次電池用多孔膜、並びに非水系二次電池およびその製造方法
US11807698B2 (en) Binder for non-aqueous secondary battery porous membrane-use, composition for non-aqueous secondary battery porous membrane-use, porous membrane for non-aqueous secondary battery-use, and non-aqueous secondary battery
WO2016017066A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層付き基材、非水系二次電池用積層体の製造方法および非水系二次電池
JP6565935B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用セパレータおよび非水系二次電池
JP7179463B2 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
WO2016031163A1 (ja) 非水系二次電池用積層体および非水系二次電池部材の製造方法
JP6413419B2 (ja) 非水系二次電池多孔膜用複合粒子、非水系二次電池用多孔膜、非水系二次電池用電池部材、および非水系二次電池
JP2017098203A (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
JP7259746B2 (ja) 電気化学素子機能層用バインダー組成物、電気化学素子機能層用組成物、電気化学素子用機能層、及び電気化学素子
JP6589269B2 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層および非水系二次電池
JP6503790B2 (ja) 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
KR20210049098A (ko) 비수계 이차 전지 접착층용 조성물, 비수계 이차 전지용 전지 부재 및 그 제조 방법, 그리고 비수계 이차 전지용 적층체의 제조 방법 및 비수계 이차 전지의 제조 방법
JP6515574B2 (ja) 非水系二次電池機能層用バインダー、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP2016100149A (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池部材、非水系二次電池、および非水系二次電池用接着層の製造方法
JP2017103031A (ja) 非水系二次電池用積層体
JP6693101B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池機能層用組成物の製造方法、非水系二次電池用機能層及び非水系二次電池
JP6344081B2 (ja) 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
JP6337554B2 (ja) 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
WO2023033088A1 (ja) 非水系二次電池接着層用スラリー組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用部材、並びに非水系二次電池
JP2016154108A (ja) 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552271

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187013871

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15776540

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016868193

Country of ref document: EP