WO2017082546A1 - 분산성 향상 및 저항 감소를 위한 이차전지용 음극 슬러리 및 이를 포함하는 음극 - Google Patents
분산성 향상 및 저항 감소를 위한 이차전지용 음극 슬러리 및 이를 포함하는 음극 Download PDFInfo
- Publication number
- WO2017082546A1 WO2017082546A1 PCT/KR2016/011767 KR2016011767W WO2017082546A1 WO 2017082546 A1 WO2017082546 A1 WO 2017082546A1 KR 2016011767 W KR2016011767 W KR 2016011767W WO 2017082546 A1 WO2017082546 A1 WO 2017082546A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- cmc
- slurry
- secondary battery
- active material
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a negative electrode slurry for secondary batteries, which improves dispersibility and reduces battery resistance by controlling physical properties such as substitution degree and molecular weight of CMC.
- the lithium secondary battery includes a positive electrode including a positive electrode active material capable of inserting / desorbing lithium ions, a negative electrode containing a negative electrode active material capable of inserting / removing lithium ions, and an electrode having a microporous separator interposed between the positive electrode and the negative electrode. It refers to a battery containing a nonaqueous electrolyte containing lithium ions in the assembly.
- the most important task in the preparation of the negative electrode slurry for the production of the negative electrode is to increase the dispersibility of the negative electrode active material.
- a thickener which serves as a dispersant, is added in order to have sufficient dispersibility. If the thickener is added in an excessively small amount, dispersion of the negative electrode active material in the negative electrode slurry becomes insufficient, resulting in formation of large aggregates or settling of the slurry. In coating the current collector, problems such as filter clogging and electrode surface defects may occur. On the other hand, if the thickener is excessively added, it may cause a problem that the resistance of the negative electrode increases by preventing the movement of lithium ions in the negative electrode. Therefore, minimizing the amount of thickener to reduce the resistance of the negative electrode while maintaining sufficient dispersibility has become the most important task.
- the present inventors have studied carboxy methyl cellulose (CMC) as a thickener, and found that the adsorption amount of CMC adsorbed on the negative electrode active material varies depending on the properties of the degree of substitution or molecular weight of CMC. And the viscosity and sedimentation change was compared while changing the compounding amount, and finally it was possible to manufacture a secondary battery with reduced resistance while producing a negative electrode slurry excellent in dispersibility while reducing the compounding amount of CMC.
- CMC carboxy methyl cellulose
- the problem to be solved of the present invention is to improve the dispersibility of the negative electrode active material by increasing the adsorption amount of the CMC to the negative electrode active material by controlling the physical properties such as the degree of substitution and molecular weight of the CMC, while at the same time reducing the amount of CMC slurry solids It is to provide a negative electrode slurry for a secondary battery and a negative electrode comprising the same, which increases and decreases the resistance of the battery.
- the present invention is to solve the above problems, a negative electrode slurry containing a negative electrode active material and a thickener, the negative electrode active material has a tap density of 1.0 g / cc or less, the slurry solids content relative to the total weight of the slurry Provided is a negative electrode slurry for secondary batteries of 48 wt% or more.
- the present invention also provides a secondary battery negative electrode including the secondary battery negative electrode slurry, and a lithium secondary battery including the secondary battery negative electrode, a battery module and a battery pack including the same.
- the negative electrode slurry for secondary batteries of the present invention has the effect of increasing the solids content and reducing the resistance of the battery by improving the dispersibility of the negative electrode active material by increasing the adsorption amount of CMC to the negative electrode active material, and at the same time reducing the compounding amount of the CMC. have.
- the present invention provides a negative electrode slurry comprising a negative electrode active material and a thickener, the negative electrode active material has a tap density of 1.0 g / cc or less, the slurry solids content of more than 48 wt% of the total weight of the slurry provides a negative electrode slurry for secondary batteries do.
- Thickener is a cellulose-based polymer, carboxy methyl cellulose (CMC), methyl cellulose (methyl cellulose, MC), hydroxypropyl cellulose (HPC), methyl hydroxypropyl
- CMC carboxy methyl cellulose
- MC methyl cellulose
- HPC hydroxypropyl cellulose
- cellulose methyl hydroxypropyl cellulose
- EHEC ethyl hydroxyethyl cellulose
- MEHEC methyl ethyl hydroxyethyl cellulose
- It may be more than, specifically, may be carboxy methyl cellulose (CMC).
- the carboxymethyl cellulose has a property that can provide additional thickening and excellent coating properties and at the same time contribute to the adhesion with the current collector to prevent the active material from falling off from the current collector and exhibit an excellent cycle characteristics.
- the negative electrode active material according to the embodiment of the present invention may have a tap density of 1.0 g / cc or less.
- the tap density is a mass per volume of the powder composed of particles, and refers to a density that fills a gap between particles by constant tapping or vibration. Factors affecting the tap density include particle size distribution, moisture content, particle shape, cohesiveness, and the like.
- the tap density can predict the fluidity and the compressibility of the material.
- the slurry solids is a weight ratio of the solid component in the slurry to the total weight of the slurry, and is calculated as (weight of the solid component) / (weight of the solid component + weight of the liquid component) according to each compounding amount actually used, and the final slurry is After drying, remove all the water and measure the remaining weight.
- the solid component may mean an actual amount of the active material, the conductive material, the CMC thickener and the SBR binder, and the liquid component may mean water contained in the CMC and SBR solution and water which may be additionally added for viscosity control.
- achieving a slurry solid content of 48 wt% is more than that of a negative electrode active material having a tap density of 1.0 g / cc or more. It is a difficult task.
- the present invention solves the above problems, by controlling the adsorption amount of the CMC to the negative electrode active material by adjusting the physical properties such as the degree of substitution or molecular weight of the CMC, it can exhibit excellent dispersibility of the negative electrode active material and reduce the resistance of the battery
- a CMC By including a CMC, it was possible to achieve a slurry solids content of 48 wt% or more while using a negative electrode active material having a tap density of 1.0 g / cc or less.
- the carboxymethyl cellulose (CMC) may have an adsorption amount (hereinafter, CMC adsorption amount) to the negative electrode active material is 0.8 wt% or more, particularly preferably 0.8 to 0.9 wt%.
- the CMC adsorption amount can be measured by the following method.
- the active material-CMC slurry is prepared by mixing CMC in a ratio of 1.5 wt% or more with respect to the defined active material. After diluting this slurry five times in distilled water, the CMC that is not adsorbed to the distilled water and the active material is filtered through filtration using a vacuum flask. The residual slurry after filtration was dried using a TGA (thermogravimetric analyzer) in a nitrogen atmosphere and then heated up to 500 ° C. or higher at room temperature to check the weight loss.
- TGA thermogravimetric analyzer
- the CMC weight ratio (adsorbed CMC weight / active material-CMC total weight) adsorbed relative to the active material can be measured through this.
- the adsorption amount is less than 0.8 wt%, the dispersion becomes insufficient, so that the negative electrode active material particles form aggregates, and thus, the coating may not be performed smoothly, and the performance as an electrode may be degraded.
- Increasing the compounding amount it is difficult to achieve the purpose of producing a negative electrode slurry of more than 48 wt% solids concentration, another problem that is difficult to dry after coating as the slurry solids are reduced, which makes it difficult to form a uniform electrode, thereby reducing the performance of the battery Can occur.
- the amount of adsorption is greater than 0.9 wt%, an excess of CMC may be adsorbed on the surface of the negative electrode active material, thereby preventing the movement of lithium ions, thereby causing a problem of increasing resistance inside the battery.
- the negative electrode slurry for a secondary battery according to an embodiment of the present invention includes a CMC having an adsorption amount for the negative electrode active material in the above range, so that a sufficient amount of hydrophilic CMC is adsorbed onto the surface of the hydrophobic negative electrode active material, so that each negative electrode active material The particles are less likely to form aggregates, whereby the dispersed state is good. Therefore, the slurry solids content of 48 wt% or more can be achieved through a low CMC compounding amount, and at the same time, a cathode having excellent dispersibility and low resistance can be manufactured.
- the amount of CMC adsorption can be achieved through the control of physical properties such as substitution degree and molecular weight of CMC.
- the carboxymethyl cellulose (CMC) may use a CMC having a degree of substitution (DS) of 0.7 to 1.3, more preferably 0.7 to 0.9.
- DS degree of substitution
- Degree of substitution also referred to as degree of etherification, refers to the number (average value) of hydroxyl groups substituted with carboxymethyl groups among the three hydroxyl groups (OH groups) in the glucose cyclic constituting cellulose, and the value is theoretically between 0 and 3. In general, the higher the degree of substitution, the more hydrophilic it becomes and the easier it is to dissolve.
- the degree of substitution is less than 0.7, the water solubility is low, so that when dissolved in distilled water is not completely dissolved, many undissolved so-called microgels are left, which is a major cause of additional surface aggregation and poor electrode surface after coating during slurry production. If the degree of substitution is more than 0.9, the hydrophilicity is increased, solubility is improved, but the affinity with the active material is lowered may cause a problem that the adsorption amount is reduced.
- Carboxymethyl cellulose (CMC) may use a CMC having a molecular weight of 700,000 to 4.2 million, more preferably 700,000 to 3.5 million.
- the molecular weight of CMC refers to a weight average molecular weight (Mw), and refers to a value measured by Gel Permiation Chromatography (GPC) -Refractive Index (RI).
- the negative electrode active material When the molecular weight is less than 700,000, the negative electrode active material may not be evenly dispersed due to the decrease of the attractive force between the polymers forming the network when the network is formed by the thickener, and the adhesive force of the active material may be lowered, which may adversely affect the life span.
- the viscosity if the viscosity is greater than 3.5 million, the viscosity of the slurry may be so high that the coating is difficult because the viscosity at the same concentration is too high, and to prevent this, if the viscosity is reduced by further distilled water, the solid content of the slurry is reduced. Another problem may arise where the productivity of the electrode is degraded.
- the present invention includes a low molecular weight CMC having a molecular weight of 1 million or less and a high molecular weight CMC having a molecular weight of 2 million or more, wherein the blending ratio of the low molecular weight CMC: high molecular weight CMC is 1: 3 to 3: 1 by weight.
- the compounding ratio it was possible to use the CMC satisfying the weight average molecular weight range of the present invention.
- Carboxymethyl cellulose (CMC) may be included in less than 1 wt% of the total weight of the negative electrode slurry.
- the amount of the CMC is reduced too much, the dispersion of the negative electrode active material becomes insufficient, and the particles of the negative electrode active material form large aggregates. In this case, a problem may occur that the filter is clogged by the aggregates when applied to the current collector. In addition, since a sufficient amount of electrolyte does not reach inside the large aggregates, it may be difficult to move lithium ions, resulting in a problem that the battery capacity becomes small.
- the present invention provides a negative electrode slurry for secondary batteries having excellent dispersibility while controlling the amount of CMC blended according to the amount of CMC adsorbed on the negative electrode active material, thereby minimizing the amount of CMC blended to reduce internal resistance of the battery. Therefore, the negative electrode slurry of the secondary battery of the present invention may include CMC in an amount of 1 wt% or less based on the total weight of the negative electrode slurry.
- a negative electrode slurry for a secondary battery according to an embodiment of the present invention is characterized in that the slurry sedimentation rate is 7% or less.
- the slurry sedimentation rate is calculated by dividing the height of the sinking portion of the slurry by the initial height four days after the slurry production.
- the amount of CMC compounding can be reduced to increase the slurry solids content to 48 wt% or more, and a negative electrode slurry having excellent dispersion stability with a slurry settling rate of 7% or less is produced. You can do it.
- the reduction of the CMC compounding amount makes it possible to fabricate a negative electrode having a low resistance of the battery.
- the lower limit of a slurry sedimentation rate is not specifically limited.
- the binder according to an embodiment of the present invention is a copolymer of styrene-butadiene rubber (SBR), polyvinylidene fluoride (PVdF), polyhexafluoropropylene-polyvinylidene fluoride (PVdF / HFP ), Poly (vinylacetate), polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, alkylated polyethylene oxide, polyvinyl ether, poly (methyl methacrylate), poly (ethyl acrylate), polytetrafluoroethylene ( PTFE), polyvinylchloride, polyacrylonitrile, polyvinylpyridine, acrylonitrile-butadiene rubber and ethylene propylene diene monomer (EPDM), and more preferably styrene-butadiene rubber ( Styrene-Butadiene Rubber, SBR).
- SBR styrene-butadiene Rubber
- SBR St
- the styrene-butadiene rubber has a strong adhesive force and can produce a binder effect even in a small amount.
- the styrene-butadiene rubber has a high water solubility and has good properties as a thickener and a styrene-butadiene rubber as a binder to prepare an aqueous electrode. Suitable.
- the solvent used for preparing the negative electrode slurry for secondary batteries according to an embodiment of the present invention may be used without particular limitation as long as it dissolves CMC appropriately.
- the solvent may be uniformly mixed with water or water as an aqueous solvent.
- An organic solvent lower alcohol, lower ketone, etc.
- NMP N-methyl pyrrolidone
- the present invention is a lithium secondary battery comprising a secondary battery negative electrode and a positive electrode, a negative electrode, an electrolyte and a separator comprising the negative electrode slurry for the secondary battery, wherein the negative electrode comprises a negative electrode slurry for a secondary battery of the present invention To provide.
- the lithium secondary battery of the present invention can be prepared according to conventional methods known in the art. For example, it can be prepared by inserting a separator between the positive electrode and the negative electrode and the electrolyte solution in which lithium salt is dissolved.
- the electrode of the secondary battery may also be manufactured by a conventional method known in the art, for example, a slurry is prepared by mixing and stirring a solvent, a binder, a conductive material, and a thickener in a positive electrode active material or a negative electrode active material, if necessary, and then stirring the same.
- the electrode may be prepared by coating (coating) the metal current collector, compressing it, and drying the same.
- a lithium transition metal oxide may be preferably used.
- Li x CoO 2 (0.5 ⁇ x ⁇ 1.3), Li x NiO 2 (0.5 ⁇ x ⁇ 1.3), Li x MnO 2 (0.5 ⁇ x ⁇ 1.3), Li x Mn 2 O 4 (0.5 ⁇ x ⁇ 1.3), Li x (Ni a Co b Mn c ) O 2 (0.5 ⁇ x ⁇ 1.3, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, a + b + c 1), Li x Ni 1-y Co y O 2 (0.5 ⁇ x ⁇ 1.3, 0 ⁇ y ⁇ 1), LixCo 1-y Mn y O 2 (0.5 ⁇ x ⁇ 1.3, 0 ⁇ y ⁇ 1), Li x Ni 1-y Mn y O 2 (0.5 ⁇ x ⁇ 1.3, O ⁇ y ⁇ 1), Li x (Ni a Co b M
- a carbon material lithium metal, silicon, tin, or the like, in which lithium ions may be stored and released, may be used.
- a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
- Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber.
- High temperature calcined carbon such as mesophase pitch based carbon fiber, mesocarbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes.
- the current collector of the metal material is a metal having high conductivity and which the slurry of the electrode active material can easily adhere to, and can be used as long as it is not reactive in the voltage range of the battery.
- Non-limiting examples of the positive electrode current collector is a foil produced by aluminum, nickel or a combination thereof
- non-limiting examples of the negative electrode current collector is produced by copper, gold, nickel or copper alloy or a combination thereof Foil and the like.
- the conductive material is not particularly limited as long as it can be generally used in the art, for example, artificial graphite, natural graphite, carbon black, acetylene black, ketjen black, denka black, thermal black, channel black, carbon fiber, metal fiber , Aluminum, tin, bismuth, silicon, antimony, nickel, copper, titanium, vanadium, chromium, manganese, iron, cobalt, zinc, molybdenum, tungsten, silver, gold, lanthanum, ruthenium, platinum, iridium, titanium oxide, polyaniline, Polythiophene, polyacetylene, polypyrrole or a combination thereof may be applied, and in general, a carbon black conductive material may be frequently used.
- Thickener and binder according to an embodiment of the present invention is as described above will be omitted.
- the electrolyte solution included in the lithium secondary battery according to the present invention is propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile , Dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethyl carbonate (EMC), gamma butyrolactone (GBL), fluoroethylene carbonate (FEC), methyl formate And at least one mixed organic solvent selected from the group consisting of ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, pentyl acetate, methyl propionate, ethyl propionate, ethyl propionate and butyl propionate.
- PC propylene carbonate
- the electrolyte according to the present invention may further comprise a lithium salt, the lithium salt of the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P - , F 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5 ) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - and ( CF 3 CF 2 SO 2
- the lithium secondary battery according to the present invention may be a cylindrical, square, or pouch type secondary battery, but is not limited thereto.
- the present invention provides a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
- the battery pack includes a power tool; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Or it can be used as one or more medium-large device power source selected from the group consisting of a power storage system.
- Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Or it can be used as one or more medium-large device power source selected from the group consisting of a power storage system.
- a negative active material-CMC slurry was prepared by mixing the following CMC in a proportion of 1.5 wt% or more with respect to the negative electrode active material (artificial graphite having a tap density of 0.74 g / cc). After diluting the slurry by 5 times in distilled water, the CMC that was not adsorbed to the active material was filtered, and then TGA (thermogravimetric analyzer) was used to determine the weight ratio of the adsorbed CMC to the active material (adsorbed CMC weight / total active material-CMC). It was measured, and the results are as shown in Table 1 below.
- the negative active material artificial graphite having a tap density of 0.74 g / cc
- the conductive material acetylene black
- the thickener CMC
- the binder SBR
- the negative electrode slurry was applied to a thin copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then subjected to roll press to process a negative electrode.
- Cu copper
- the positive electrode active material LiNi 0.6 Mn 0.2 Co 0.2 O 2
- the binder KF1100
- the conductive material Super-C
- NMP N-methyl-2-pyrrolidone
- the positive electrode slurry was applied to one surface of an aluminum (Al) thin film, which is a positive electrode current collector having a thickness of 20 ⁇ m, and dried to prepare a positive electrode, followed by roll pressing to process a positive electrode.
- Al aluminum
- Electrolyte solution is a solvent in which ethylene carbonate (Dithyl carbonate), diethyl carbonate (Diethyl carbonate) and dimethyl carbonate (Dimethyl carbonate) are mixed in a volume ratio of 1: 1: 2 to a solvent in which vinylene carbonate is added. It was prepared by dissolving mol of LiPF 6 .
- the prepared electrolyte solution was injected to complete the production of a lithium secondary battery.
- a lithium secondary battery was manufactured in the same manner as in Example 1, except that 0.8 wt% of the CMC of Preparation Example 2 was mixed to prepare a negative electrode slurry.
- a lithium secondary battery was manufactured in the same manner as in Example 1, except that the negative electrode slurry was prepared by mixing 0.9 wt% of the CMC of Preparation Example 3.
- a lithium secondary battery was manufactured in the same manner as in Example 1, except that 1.8 wt% of the CMC of Preparation Example 4 was mixed to prepare a negative electrode slurry.
- a lithium secondary battery was manufactured in the same manner as in Example 1, except that 1.4 wt% of CMC of Preparation Example 4 was mixed to prepare a negative electrode slurry.
- a lithium secondary battery was manufactured in the same manner as in Example 1, except that 0.8 wt% of the CMC of Preparation Example 5 was mixed to prepare a negative electrode slurry.
- a lithium secondary battery was manufactured in the same manner as in Example 1, except that 1.2 wt% of CMC of Preparation Example 6 was mixed to prepare a negative electrode slurry.
- the slurry is sufficiently contained in a beaker of 6 cm in diameter and over 5 cm in height, using Brookfiled's viscometer (DV2T (LV), using a spindle with a maximum measurable viscosity of about 10000 cp (63 spindles in this experiment)). The viscosity value measured when rotating at 12 rpm was taken.
- the slurry sedimentation rate of the negative electrode slurry for secondary batteries according to Examples 1 to 3 and Comparative Examples 1 to 4 was measured, and the results are as shown in Table 2 below. Slurry sedimentation rate was calculated by dividing the height of the solid portion of the slurry by the initial height 4 days after the slurry production.
- the solid content, viscosity, sedimentation rate, and cell resistance of the slurry vary depending on the degree of substitution, molecular weight, CMC adsorption amount, and slurry blending amount of the CMC.
- the slurry solids concentration is larger than 48 wt% or more, and the cell resistance is small as compared with Comparative Examples 1 to 4.
- the CMC compounding amount should be blended at 1.0 wt% or more, 1.8 wt% and 1.4 wt%, respectively, in order to secure stable sedimentation rate. It can be seen that the excess CMC blend reduces slurry solids to 48 wt% or less, 42.9 wt% and 47.8 wt%, respectively. In order to increase the reduced slurry solids to 48 wt% or more, the amount of CMC must be reduced. In this case, there is another problem in that the dispersibility is reduced and the sedimentation rate is increased.
- Comparative Example 4 when the CMC molecular weight is similar to the Example but the CMC adsorption amount is low as 0.72 wt%, the CMC compounding amount is 1.0 wt% or more, 1.2 wt% It can be seen that it should be increased to, and the excess CMC compounding amount can be seen to reduce the slurry solids to 48 wt% or less, 44.9 wt%.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
본 발명은 CMC의 치환도 또는 분자량 등의 물성을 조절하여 음극 활물질에 대한 CMC의 흡착량을 증가시킴으로써 음극 활물질의 분산성을 향상시키는 동시에, CMC 배합량을 감소시킴으로써 슬러리 고형분을 증가시키고 전지의 저항을 감소시킨 이차전지용 음극 슬러리 및 이를 포함하는 음극을 제공한다.
Description
관련출원과의 상호인용
본 출원은 2015년 11월 11일자 한국 특허 출원 제10-2015-0158423호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 CMC의 치환도 및 분자량 등의 물성을 조절함으로써, 분산성을 향상시키는 동시에, 전지의 저항을 감소시킨 이차전지용 음극 슬러리에 관한 것이다.
최근 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, HEV, PHEV 및 EV 자동차가 미래형 자동차로 각광받으면서 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 연구가 다양하게 행해지고 있다. 특히, 이러한 장치의 전원으로 높은 에너지 밀도를 가지면서 우수한 수명 및 사이클 특성을 가지는 리튬 이차전지에 대한 연구가 활발히 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입/탈리가 가능한 양극 활물질을 포함하고 있는 양극과, 리튬 이온의 삽입/탈리가 가능한 음극 활물질을 포함하고 있는 음극, 상기 양극과 음극 사이에 미세 다공성 분리막이 개재된 전극 조립체에 리튬 이온을 함유한 비수 전해질이 포함되어 있는 전지를 의미한다.
상기 음극의 제조를 위한 음극 슬러리의 제조에 있어서 가장 중요한 과제는 음극 활물질의 분산성을 증가시키는 것이다. 충분한 분산성을 갖기 위하여 분산제 역할을 하는 증점제를 첨가하는데, 상기 증점제를 지나치게 소량으로 첨가하면, 음극 슬러리 내 음극 활물질의 분산이 불충분하게 되고 이로 인해 큰 응집체를 형성하거나 슬러리의 침강이 발생하여 슬러리를 집전체에 도포함에 있어 필터막힘, 전극 표면 불량 등의 문제가 발생할 수 있다. 한편, 증점제를 지나치게 과량으로 첨가하면, 음극 내 리튬 이온의 이동을 막아 음극의 저항이 증가하는 문제점이 생길 수 있다. 따라서, 충분한 분산성을 유지하면서도, 음극의 저항을 감소시킬 수 있도록 증점제의 양을 최소화하는 것이 가장 중요한 과제가 되었다.
이에 본 발명자는 증점제로서 카복시메틸셀룰로오스(carboxy methyl cellulose, CMC)를 연구한 결과, CMC의 치환도 또는 분자량 등에 관한 물성에 따라 음극 활물질에 흡착되는 CMC의 흡착량이 달라진다는 사실을 발견하여, 상기 물성 및 배합량을 변화시키면서 이의 점도 및 침강 변화를 비교하였고, 마침내 CMC의 배합량을 감소시키면서도 분산성이 우수한 음극 슬러리를 제조함과 동시에, 저항이 감소된 이차전지를 제조할 수 있게 되었다.
본 발명의 해결하고자 하는 과제는 CMC의 치환도 및 분자량 등의 물성을 조절하여 음극 활물질에 대한 CMC의 흡착량을 증가시킴으로써 음극 활물질의 분산성을 향상시키는 동시에, CMC의 배합량을 감소시킴으로써 슬러리 고형분을 증가시키고 전지의 저항을 감소시킨 이차전지용 음극 슬러리 및 이를 포함하는 음극을 제공하는 것이다.
본 발명은 상기와 같은 과제를 해결하기 위한 것으로서, 음극 활물질 및 증점제를 포함하는 음극 슬러리로서, 상기 음극 활물질은 탭 밀도(tap density)가 1.0 g/cc이하이고, 슬러리 고형분 함량은 슬러리 전체 중량 대비 48 wt% 이상인 이차전지용 음극 슬러리를 제공한다.
또한, 본 발명은 상기 이차전지용 음극 슬러리를 포함하는 이차전지용 음극, 및 상기 이차전지용 음극을 포함하는 리튬 이차전지, 이를 포함하는 전지모듈 및 전지팩을 제공한다.
본 발명의 이차전지용 음극 슬러리는 음극 활물질에 대한 CMC의 흡착량을 증가시킴으로써 음극 활물질의 분산성을 향상시키는 동시에, CMC의 배합량을 감소시킴으로써 슬러리 고형분을 증가시키고 전지의 저항을 감소시킬 수 있는 효과가 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 음극 활물질 및 증점제를 포함하는 음극 슬러리로서, 상기 음극 활물질은 탭 밀도(tap density)가 1.0 g/cc이하이고, 슬러리 고형분 함량은 슬러리 전체 중량 대비 48 wt% 이상인 이차전지용 음극 슬러리를 제공한다.
본 발명의 일 실시예에 따른 증점제는 셀룰로오스계 고분자로서, 카복시메틸셀룰로오스(carboxy methyl cellulose, CMC), 메틸 셀룰로오스(methyl cellulose, MC), 하이드록시프로필 셀룰로오스(hydroxypropyl cellulose, HPC), 메틸 하이드록시프로필 셀룰로오스(methyl hydroxypropyl cellulose, MHPC), 에틸 하이드록시에틸 셀룰로오스(ethyl hydroxyethyl cellulose, EHEC), 메틸 에틸 하이드록시에틸 셀룰로오스(methyl ethyl hydroxyethyl cellulose, MEHEC) 및 셀룰로오스 검(cellulose gum)으로 이루어진 군으로부터 선택되는 하나 이상일 수 있고, 구체적으로는 카복시메틸셀룰로오스(carboxy methyl cellulose, CMC)일 수 있다.
상기 카복시메틸셀룰로오스는 증점성이 높고 우수한 도포성을 부여하는 동시에 집전체와의 접착력에도 기여를 하여 활물질이 집전체로부터 탈락되는 것을 방지하고 우수한 사이클 특성을 보이는 이점을 추가적으로 나타낼 수 있는 특성이 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 음극 활물질은 탭 밀도(tap density)가 1.0 g/cc 이하일 수 있다.
상기 탭 밀도란 입자들로 이루어진 파우더의 부피당 질량으로, 일정하게 두드리거나 진동을 주어 입자간 공극을 채운 밀도를 말한다. 상기 탭밀도에 영향을 미치는 요소들로는 입자 크기 분포도, 수분 함량, 입자 형상, 응집성(cohesiveness) 등이 있다. 상기 탭밀도를 통해 물질의 유동성 및 압축률(compressibility)을 예측할 수 있다. 상기 탭밀도는 ASTM D4781에 근거하여 측정할 수 있으며, TD=W/V(TD: 탭밀도, W: 시료중량(g), V: 탭핑후 시료 부피)의 식을 이용하여 산출할 수 있다.
음극 활물질의 탭 밀도가 1.0 g/cc 이하인 경우, 음극 활물질의 구형화도가 떨어지고 분산에 어려움이 생겨 많은 양의 CMC 배합량을 필요로 하게 되며, 상기 CMC 배합량이 증가할수록 슬러리 고형분 함량은 감소하는 특성을 나타낸다. 여기서, 슬러리 고형분이란 슬러리 전체 중량 대비 슬러리 내 고체 성분의 중량비로 실제 사용한 각각의 배합량에 따른 (고체 성분의 무게)/(고체 성분의 무게 + 액체 성분의 무게)로 계산하며, 최종 슬러리를 오븐에서 건조시켜 물을 전부 제거한 후 남은 무게를 측정하는 방법으로 측정한다.
상기 식에서 고체 성분은 활물질, 도전재, CMC 증점제 및 SBR 바인더의 실제 투입량을, 액체 성분은 CMC 및 SBR 용액 중에 포함되어 있는 물과 점도 조절을 위해 추가로 투입될 수 있는 물을 의미할 수 있다. 슬러리 고형분 함량이 클수록 전지의 용량 면에서 우수하며 건조 시 열풍 감소, 시간 단축이 가능하므로 생산성 면에서 우수하다.
따라서, 본 발명의 이차전지용 음극 슬러리와 같이 1.0 g/cc 이하의 탭 밀도를 갖는 음극 활물질에 있어서, 슬러리 고형분 함량 48 wt% 를 달성하는 것은 1.0 g/cc 이상의 탭 밀도를 갖는 음극 활물질에 비하여 더욱 어려운 과제가 된다.
본 발명은 상기 과제를 해결한 것으로서, CMC의 치환도 또는 분자량 등의 물성을 조절하여 음극 활물질에 대한 CMC의 흡착량을 조절함으로써, 음극 활물질의 우수한 분산성을 나타내는 동시에 전지의 저항을 감소시킬 수 있는 CMC를 포함함으로써, 1.0 g/cc이하의 탭 밀도를 갖는 음극 활물질을 사용하면서도, 슬러리 고형분 함량 48 wt% 이상을 달성할 수 있도록 하였다.
구체적으로, 본 발명의 일 실시예에 따른 카복시메틸셀룰로오스(CMC)는 음극 활물질에 대한 흡착량(이하, CMC 흡착량)이 0.8 wt% 이상일 수 있으며, 특히 0.8 내지 0.9 wt%인 것이 바람직하다.
상기 CMC 흡착량은 다음의 방법으로 측정할 수 있다. 정해진 활물질에 대하여 CMC를 1.5 wt% 이상의 비율로 혼합하여 활물질-CMC 슬러리를 제조한다. 이 슬러리를 증류수에서 5 배 희석한 뒤, 감압 플라스크를 이용한 여과를 통하여 증류수와 활물질에 흡착되지 않은 CMC를 여과시킨다. 여과 후 남은 잔여 슬러리에 대하여 건조 후 질소 분위기에서 TGA(열중량 분석기)를 이용하여 상온에서 500 ℃℃ 이상으로 온도를 올려가면서 중량 감소량을 확인한다. 활물질은 중량 감소 변화가 없고 일정 온도에서의 CMC 중량 감소량은 공지되어 있으므로 이를 통해 활물질 대비 흡착된 CMC 중량 비율(흡착된 CMC 중량 / 활물질-CMC 총 중량)을 측정할 수 있다. 그 외 방법으로는 상기 여과 후 잔여 슬러리에 대하여 미소함량 원소 분석기를 이용하여 남아있는 CMC 비율을 확인하는 방법도 있다.
상기 흡착량이 0.8 wt% 미만인 경우, 분산이 불충분하게 되어 음극 활물질 입자가 응집체를 형성하여 원활한 코팅이 불가능하고, 전극으로서의 성능이 떨어져 전지 성능 구현이 불가능한 문제가 생길 수 있으며, 분산성 유지를 위해 CMC 배합량을 증가시키는 경우, 고형분 농도 48 wt% 이상의 음극 슬러리를 제조하는 목적 달성이 어려워지며 슬러리 고형분이 감소함에 따라 코팅 후 건조가 어렵고 이로 인해 균일한 전극 형성이 어려워 전지의 성능이 저하되는 또 다른 문제가 생길 수 있다. 흡착량이 0.9 wt% 초과인 경우, 음극 활물질 표면에 과량의 CMC가 흡착되어 리튬 이온의 이동을 방해하여 전지 내부의 저항이 증가하는 문제가 생길 수 있다.
본 발명의 일 실시예에 따른 이차전지용 음극 슬러리는 상기 범위의 음극 활물질에 대한 흡착량을 갖는 CMC를 포함함으로써, 소수성인 음극 활물질 입자 표면에 친수성인 CMC가 충분한 양이 흡착되어, 개개의 음극 활물질 입자는 응집체를 형성하기 어려워지고, 이에 따라 분산 상태는 양호하게 된다. 따라서, 낮은 CMC 배합량을 통해 슬러리 고형분 함량을 48 wt% 이상으로 달성할 수 있는 동시에, 분산성이 우수하고 저항이 낮은 음극을 제조할 수 있게 된다.
한편, 상기 CMC 흡착량은 CMC의 치환도 및 분자량 등의 물성의 조절을 통해 달성될 수 있다.
이를 위해 본 발명의 일 실시예에 따른 카복시메틸셀룰로오스(CMC)는 치환도(Degree of Substitution, DS) 는 0.7 내지 1.3, 보다 바람직하게는 0.7 내지 0.9 인 CMC를 사용할 수 있다.
치환도는 에테르화도라고도 하며, 셀룰로오스를 구성하는 글루코스 환상에 있는 3개의 수산기(OH기) 중, 카복시메틸기로 치환된 수산기의 수(평균치)를 의미하며, 그 값은 이론적으로 0 내지 3의 사이의 값을 가질 수 있고 일반적으로 치환도가 높을수록 친수성이 되어 용해하기 쉬운 특성을 갖는다.
치환도가 0.7 미만인 경우, 수용해도가 낮아, 증류수에 용해 시 전부 용해되지 않고 마이크로겔이라 불리는 미용해물이 많이 남으며 이는 슬러리 제작 시 추가적인 응집 발생은 물론 코팅 후 전극 표면 불량을 일으키는 주요 원인이 된다. 치환도가 0.9 초과인 경우, 친수성이 높아지면서 용해도는 좋아지나 활물질과의 친화성은 떨어져 흡착량은 감소하게 되는 문제가 생길 수 있다.
본 발명의 일 실시예에 따른 카복시메틸셀룰로오스(CMC)는 분자량이 70 만 내지 420 만, 보다 바람직하게는 70 만 내지 350 만인 CMC를 사용할 수 있다.
본 명세서에서의 CMC의 분자량은 중량 평균 분자량(Mw)을 의미하는 것으로서, GPC(Gel Permiation Chromatography) - RI(Refractive Index, 시차 굴절률 검출기)에 의해 측정된 값을 가리킨다.
상기 분자량이 70 만 미만인 경우, 증점제에 의한 네크워크 형성시 네트워크를 형성하는 각 고분자간 인력의 저하로 음극 활물질을 고르게 분산시킬 수 없으며 활물질의 접착력이 저하되어 수명 특명에 악영향을 미칠 수 있다. 반면, 350 만 초과인 경우, 동일 농도에서의 점도가 너무 높아 코팅이 어려울 정도로 슬러리의 점도가 증가할 수 있으며, 이를 방지하기 위해 추가로 증류수를 투입하여 점도를 감소시키면 슬러리의 고형분이 감소하게 되어 전극의 생산성이 저하되는 또 다른 문제가 발생할 수 있다.
이러한 이유로, 본 발명에서는 분자량 100 만 이하의 저분자량 CMC 및 분자량 200 만 이상의 고분자량 CMC를 포함하되, 상기 저분자량 CMC:고분자량 CMC의 배합비는 1:3 내지 3:1의 중량비인 것을 특징으로 하여, 배합비 조절을 통해 본 발명의 중량평균분자량 범위를 만족하는 CMC를 사용할 수 있도록 하였다.
본 발명의 일 실시예에 따른 카복시메틸셀룰로오스(CMC)는 음극 슬러리 전체 중량 대비 1 wt% 이하로 포함될 수 있다.
일반적으로 CMC의 배합량을 너무 줄이면, 음극 활물질의 분산이 불충분하게 되어, 음극 활물질 입자가 큰 응집체를 형성하게 되고, 이 경우 집전체에 도포시 상기 응집체에 의해 필터 막힘이 생기는 문제가 발생할 수 있다. 또한, 큰 응집체의 내부에는 충분한 양의 전해액이 닿지 않아 리튬 이온의 이동이 어려워 전지 용량이 작아지는 문제가 생길 수 있다.
반면, CMC의 배합량을 너무 증가시키면, 음극 활물질 입자의 표면에 흡착된 과량의 CMC로 인해 리튬 이온의 이동이 방해되어 전지의 내부 저항이 커지는 문제점이 생길 수 있다.
본 발명은 음극 활물질에 대한 CMC의 흡착량에 따라 CMC 배합량을 조절함으로써, CMC 배합량을 최소화하여 전지의 내부 저항을 감소시킬 수 있으면서도, 분산성이 우수한 이차전지용 음극 슬러리를 제공한다. 따라서, 본 발명의 이차전지용 음극 슬러리는 음극 슬러리 전체 중량 대비 1 wt% 이하로 CMC를 포함할 수 있는 것이다. 본 발명에서 CMC를 1 wt% 를 초과하여 포함하는 경우, 음극 활물질 감소 및 CMC 용액 내의 증류수 증가로 슬러리 고형분 48 wt% 이상의 목적을 달성하기 어렵고, 이에 따라 전지 용량 및 출력 특성이 저하되며, 음극 내 리튬 이온의 이동을 막아 음극의 저항이 증가하는 문제가 생길 수 있다.
본 발명의 일 실시예에 따른 이차전지용 음극 슬러리는 슬러리 침강률이 7 % 이하인 것을 특징으로 한다. 여기서, 슬러리 침강률이란 슬러리 제조 후 4일 뒤 슬러리 중 가라 앉은 부분의 높이를 처음의 높이로 나누어 계산한다. 본 발명에 따른 흡착량을 갖는 CMC를 사용하는 경우, CMC 배합량을 감소시킬 수 있어 슬러리 고형분을 48 wt%이상으로 증가시킬 수 있는 동시에, 슬러리 침강률이 7 % 이하인 분산 안정성이 우수한 음극 슬러리를 제조할 수 있게 된다. 또한, CMC 배합량의 감소는 전지의 저항이 낮은 음극을 제작할 수 있게 한다.
침강률이 7 % 초과인 경우 슬러리 제작 후 코팅 전 대기 시간 또는 지속적인 코팅 공정 동안의 시간에 따른 슬러리 상태 변화가 커서 침강이 일어나거나 슬러리 내 배합 비율의 불균일이 발생하는 문제가 있을 수 있다. 한편, 슬러리 침강률의 하한값은 특별히 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 바인더는 스티렌-부타디엔 고무(Styrene-Butadiene Rubber, SBR), 폴리비닐리덴플루오라이드 (PVdF), 폴리헥사플루오로프로필렌-폴리비닐리덴플루오라이드의 공중합체 (PVdF/HFP), 폴리(비닐아세테이트), 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 알킬화 폴리에틸렌옥사이드, 폴리비닐에테르, 폴리(메틸메타크릴레이트), 폴리(에틸아크릴레이트), 폴리테트라플루오로에틸렌 (PTFE), 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 아크릴로니트릴-부타디엔 고무 및 에틸렌프로필렌디엔모노머 (EPDM)로 이루어진 군으로부터 선택되는 하나 이상일 수 있고, 보다 바람직하게는 스티렌-부타디엔 고무(Styrene-Butadiene Rubber, SBR)일 수 있다.
상기 스티렌-부타디엔 고무는 접착력이 강하여 소량으로도 바인더의 효과를 낼 수 있으며, 전술한 수용해도가 높으며 증점제로서의 특성이 좋은 카복시메틸셀룰로오스와 바인더로서 스티렌-부타디엔 고무를 혼합하여 수계 전극을 제조하는데 있어서도 적합하다.
본 발명의 일 실시예에 따른 이차전지용 음극 슬러리 제조에 이용되는 용매는 CMC를 적절하게 용해하는 것이면 특별히 제한되지 않고 사용할 수 있으며, 예를 들어, 수계 용매로서 물 또는 물과 균일하게 혼합할 수 있는 유기용매(저급 알코올 또는 저급 케톤 등)를 들 수 있으며, 비수계 용매로서 예를 들어 N-메틸 피롤리돈(NMP) 등을 들 수 있다.
또한, 본 발명은 상기 이차전지용 음극 슬러리를 포함하는 이차전지용 음극 및 양극, 음극, 전해액 및 분리막을 포함하는 리튬 이차전지로서, 상기 음극은 본 발명의 이차전지용 음극 슬러리를 포함하는 것인 리튬 이차전지를 제공한다.
본 발명의 리튬 이차전지는 당 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들면, 양극과 음극 사이에 분리막을 넣고 리튬염이 용해되어 있는 전해액을 투입하여 제조할 수 있다.
이차전지의 전극 역시 당 분야에 알려진 통상적인 방법으로 제조할 수 있는데, 예를 들면, 양극 활물질 또는 음극 활물질에 용매, 필요에 따라 바인더, 도전재, 증점제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 전극을 제조할 수 있다.
본 발명의 일 실시예에 따른 양극 활물질은 리튬 전이금속 산화물이 바람직하게 사용될 수 있으며, 예를 들면 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1-yMnyO2(0.5<x<1.3, 0≤≤y<1), LixNi1-yMnyO2(0.5<x<1.3, O≤≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2-zNizO4(0.5<x<1.3, 0<z<2), LixMn2-zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군에서 선택되는 하나 이상의 혼합물일 수 있다.
본 발명의 일 실시예에 따른 음극 활물질은 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (mesocarbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
금속 재료의 집전체는 전도성이 높고 상기 전극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로서, 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
도전재는 당업계에서 일반적으로 사용될 수 있는 것이라면 특별하게 제한되지 않으나, 예를 들면, 인조 흑연, 천연 흑연, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 덴카 블랙, 써멀 블랙, 채널 블랙, 탄소 섬유, 금속 섬유, 알루미늄, 주석, 비스무트, 실리콘, 안티몬, 니켈, 구리, 티타늄, 바나듐, 크롬, 망간, 철, 코발트, 아연, 몰리브덴, 텅스텐, 은, 금, 란타늄, 루테늄, 백금, 이리듐, 산화티탄, 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 또는 이들의 조합 등이 적용될 수 있으며, 일반적으로는 카본 블랙계 도전재가 자주 사용될 수 있다.
본 발명의 일 실시예에 따른 증점제 및 바인더는 상술한 바와 같으니 생략하기로 한다.
본 발명에 따른 리튬 이차전지에 포함되는 전해액은 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤(GBL), 플루오르에틸렌 카보네이트(FEC), 포름산 메틸, 포름산 에틸, 포름산 프로필, 초산 메틸, 초산 에틸, 초산 프로필, 초산 펜틸, 프로 피온산 메틸, 프로피온산 에틸, 프로피온산 에틸 및 프로피온산 부틸로 이루어진 군으로부터 선택되는 하나 이상의 혼합 유기 용매일 수 있다.
또한, 본 발명에 따른 상기 전해액은 리튬염을 더 포함할 수 있으며, 상기 리튬염의 음이온은 F-, Cl-, Br-, I-, NO3
-, N(CN)2
-, BF4
-, ClO4
-, PF6
-, (CF3)2PF4
-, (CF3)3PF3
-, (CF3)4PF2
-, (CF3)5PF-, (CF3)6P-, F3SO3
-, CF3CF2SO3
-, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3
-, CF3CO2
-, CH3CO2
-, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 하나 이상일 수 있다.
본 발명에 따른 리튬 이차전지는 원통형, 각형, 파우치형 이차전지일 수 있으나, 충방전 디바이스에 해당하는 것이라면 이에 제한되는 것은 아니다.
또한, 본 발명은 상기 리튬 이차전지를 단위 셀로 포함하는 전지모듈 및 이를 포함하는 전지팩을 제공한다.
상기 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템으로 이루어진 군에서 선택되는 1종 이상의 중대형 디바이스 전원으로 사용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1 내지 6 - CMC 흡착량 측정
음극 활물질(탭 밀도 0.74g/cc의 인조 흑연)에 대하여 하기의 CMC를 1.5 wt% 이상의 비율로 혼합하여 음극 활물질-CMC 슬러리를 제조하였다. 상기 슬러리를 증류수에서 5 배 희석한 뒤, 활물질에 흡착되지 않은 CMC를 여과시킨 후 TGA(열중량 분석기)를 이용하여 활물질 대비 흡착된 CMC 중량 비율(흡착된 CMC 중량 / 활물질-CMC 총 중량)을 측정하였으며, 결과는 하기 표 1에서 보는 바와 같다.
치환도 | 분자량 | CMC 흡착량 | |
제조예 1 | 0.7 | 73 만 | 0.85 |
제조예 2 | 0.78 | 320 만(저분자량 CMC: 고분자량 CMC= 1:3) | 0.85 |
제조예 3 | 0.73 | 180 만(저분자량 CMC: 고분자량 CMC= 2:1) | 0.85 |
제조예 4 | 1.27 | 77 만 | 0.5 |
제조예 5 | 0.8 | 420 만 | 0.81 |
제조예 6 | 1.1 | 140 만 | 0.72 |
실시예 - 이차전지용 음극 슬러리 및 이차전지용 음극의 제조
1) 이차전지용 음극 슬러리 제조
물에 음극 활물질(탭 밀도 0.74g/cc의 인조 흑연), 도전재(아세틸렌 블랙), 상기 증점제(CMC) 및 바인더(SBR)를 각각 (96.5-X) 중량%, 1.0 중량%, X %, 2.5 중량%가 되도록 혼합하여 음극 슬러리를 제조하였다.
2) 이차전지용 음극 제조
상기 음극 슬러리를 두께 10 ㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 가공하였다.
3) 리튬 이차전지의 제조
양극 활물질(LiNi0.6Mn0.2Co0.2O2), 바인더(KF1100), 도전재(Super-C)를 각각 93:4:3 의 중량비로 용매(N-methyl-2-pyrrolidone, NMP)에 혼합하여 양극 슬러리를 제조하였다.
상기 양극 슬러리를 두께 20 ㎛ 의 양극 집전체인 알루미늄(Al) 박막 일면에 도포하고 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 가공하였다.
전해액은 에틸렌 카보네이트(Ethylene Carbonate), 디에틸 카보네이트(Diethyl Carbonate) 및 디메틸 카보네이트(Dimethyl Carbonate)를 1:1:2의 부피 비율로 혼합한 용매에 비닐렌 카보네이트(Vinylene Carbonate)를 첨가한 용매에 1몰의 LiPF6 를 용해하여 제조하였다.
이와 같이 제조된 양극 및 음극을 분리막과 함께 통상적인 방법으로 전지를 제작한 후, 상기 제조된 전해액을 주액하여 리튬 이차전지의 제조를 완성하였다.
실시예 1
상기 이차전지용 음극 슬러리의 제조에서, 제조예 1의 CMC를 1.0 중량% 혼합하여 리튬 이차전지를 제조하였다.
실시예 2
제조예 2의 CMC를 0.8 중량% 혼합하여 음극 슬러리를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 3
제조예 3의 CMC를 0.9 중량% 혼합하여 음극 슬러리를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 1
제조예 4의 CMC를 1.8 중량% 혼합하여 음극 슬러리를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2
제조예 4의 CMC를 1.4 중량% 혼합하여 음극 슬러리를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 3
제조예 5의 CMC를 0.8 중량% 혼합하여 음극 슬러리를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 4
제조예 6의 CMC를 1.2 중량% 혼합하여 음극 슬러리를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실험예 1: 슬러리 고형분 측정
상기 실시예 1 내지 3 및 비교예 1 내지 4에 따른 이차전지용 음극 슬러리의 슬러리 고형분을 측정하였으며, 결과는 하기 표 2에서 보는 바와 같다.
실험예 2: 슬러리 점도 측정
상기 실시예 1 내지 3 및 비교예 1 내지 4에 따른 이차전지용 음극 슬러리의 슬러리 점도를 측정하였으며, 결과는 하기 표 2에서 보는 바와 같다.
슬러리는 직경 6 cm이상의 비커에 높이 5 cm 이상이 되도록 충분히 담고, Brookfiled의 점도계 (DV2T(LV) 를 사용, 최대 측정가능 점도가 10000 cp 정도 되는 spindle를 이용 (본 실험에서는 63 spindle 적용)하여, 12 rpm으로 회전 시 측정되는 점도값을 취하였다.
실험예 3: 슬러리 침강률 측정
상기 실시예 1 내지 3 및 비교예 1 내지 4에 따른 이차전지용 음극 슬러리의 슬러리 침강률을 측정하였으며, 결과는 하기 표 2에서 보는 바와 같다. 슬러리 침강률은 슬러리 제조 후 4일 뒤 슬러리 중 고형분이 가라앉은 부분의 높이를 처음의 높이로 나누어 계산하였다.
실험예 4: 셀 저항 측정
상기 실시예 1 내지 3 및 비교예 1 내지 4에 따른 리튬 이차전지의 single layer pouch cell을 만든 뒤, 이에 대해 용량 대비 2.5 C의 전류를 30 초 간 흘려주는 전기화학적 평가를 통하여 저항을 측정하였으며, 결과는 하기 표 2에서 보는 바와 같다.
슬러리 고형분(wt%) | 슬러리 점도(cp) | 슬러리 침강률(%) | 셀 저항(ohm) | |
실시예 1 | 51.1 | 2300 | 5.5 | 3.48 |
실시예 2 | 49.9 | 4270 | 1.7 | 3.32 |
실시예 3 | 51.3 | 3110 | 6.7 | 3.35 |
비교예 1 | 42.9 | 2380 | 5.2 | 3.85 |
비교예 2 | 47.8 | 1950 | 9.5 | 3.65 |
비교예 3 | 43.5 | 4650 | 2.8 | 3.36 |
비교예 4 | 44.9 | 3020 | 3.5 | 3.58 |
상기 표 2에서 보는 바와 같이, CMC의 치환도, 분자량, CMC 흡착량 및 슬러리 배합량에 따라, 슬러리의 고형분, 점도, 침강률 및 셀 저항이 달라지는 것을 알 수 있다. 구체적으로, 실시예 1 내지 3의 경우, 비교예 1 내지 4에 비해 슬러리 고형분 농도가 48 wt% 이상 이상으로서 크고, 셀 저항이 작은 것을 알 수 있다.
비교예 1 및 2을 살펴보면, 분자량 및 흡착량이 본 발명의 실시예보다 낮은 CMC의 경우 안정적인 침강률 확보를 위해서는 CMC 배합량을 1.0 wt% 이상, 각각 1.8 중량% 및 1.4 wt% 로 배합해야 하는 것을 알 수 있고, 상기 과량의 CMC 배합량은 슬러리 고형분을 48 wt% 이하, 각각 42.9 wt% 및 47.8 wt% 로 감소시키는 것을 알 수 있다. 상기 감소한 슬러리 고형분을 48 wt% 이상으로 증가시키기 위해서는 CMC 배합량을 감소시켜야 하고, 이 경우 분산성이 떨어져 침강률이 커지는 또 다른 문제가 생기게 된다.
또한 비교예 3을 살펴보면, CMC 흡착량은 실시예와 같이 0.81 wt%로 높더라도 CMC의 분자량이 420 만으로 지나치게 크면 슬러리 점도가 4650 cp 로 너무 높아 이를 조절하기 위해 추가 증류수를 투입해야 되므로 슬러리 고형분이 낮아지는 문제가 생길 수 밖에 없다.
비교예 4를 살펴보면, CMC 분자량은 실시예와 유사하지만 CMC 흡착량이 0.72 wt%로 낮은 경우 분자량이 작은 비교예 1 및 2와 같이 안정적인 침강률 확보를 위해서는 CMC 배합량을 1.0 wt% 이상, 1.2 wt%까지 증가시켜야 하는 것을 알 수 있고, 상기 과량의 CMC 배합량은 슬러리 고형분을 48 wt% 이하, 44.9 wt% 로 감소시키는 것을 알 수 있다.
상기 실험들을 통해, 음극 활물질의 분산성을 향상시켜 안정적인 침강률을 확보하는 동시에, 슬러리 고형분을 증가시키고 전지의 저항을 감소시킨 이차전지용 음극 슬러리를 제조할 수 있는 CMC의 물성 및 배합량을 선정할 수 있었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
Claims (16)
- 음극 활물질 및 증점제를 포함하는 음극 슬러리로서,상기 음극 활물질은 탭 밀도(tap density)가 1.0 g/cc이하이고,슬러리 고형분 함량은 슬러리 전체 중량 대비 48 wt% 이상인 이차전지용 음극 슬러리.
- 제1항에 있어서,상기 증점제는 카복시메틸셀룰로오스(carboxy methyl cellulose, CMC), 메틸 셀룰로오스(methyl cellulose, MC), 하이드록시프로필 셀룰로오스(hydroxypropyl cellulose, HPC), 메틸 하이드록시프로필 셀룰로오스(methyl hydroxypropyl cellulose, MHPC), 에틸 하이드록시에틸 셀룰로오스(ethyl hydroxyethyl cellulose, EHEC), 메틸 에틸 하이드록시에틸 셀룰로오스(methyl ethyl hydroxyethyl cellulose, MEHEC) 및 셀룰로오스 검(cellulose gum)으로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 이차전지용 음극 슬러리.
- 제1항에 있어서,상기 증점제는 카복시메틸셀룰로오스(carboxy methyl cellulose, CMC)인 것을 특징으로 하는 이차전지용 음극 슬러리.
- 제3항에 있어서,상기 카복시메틸셀룰로오스(CMC)는 음극 활물질에 대한 흡착량이 0.8 내지 0.9 wt%인 것을 특징으로 하는 이차전지용 음극 슬러리.
- 제3항에 있어서,상기 카복시메틸셀룰로오스(CMC)는 치환도가 0.7 내지 1.3인 것을 특징으로 하는 이차전지용 음극 슬러리.
- 제3항에 있어서,상기 카복시메틸셀룰로오스(CMC)는 치환도가 0.7 내지 0.9인 것을 특징으로 하는 이차전지용 음극 슬러리.
- 제3항에 있어서,상기 카복시메틸셀룰로오스(CMC)의 중량평균분자량은 70 만 내지 420 만인 것을 특징으로 하는 이차전지용 음극 슬러리.
- 제3항에 있어서,상기 카복시메틸셀룰로오스(CMC)의 중량평균분자량은 70 만 내지 350 만인 것을 특징으로 하는 이차전지용 음극 슬러리.
- 제3항에 있어서,상기 카복시메틸셀룰로오스(CMC)는 중량평균분자량 100 만 이하의 저분자량 CMC 및 중량평균분자량 200 만 이상의 고분자량 CMC를 포함하고,상기 저분자량 CMC:고분자량 CMC의 배합비는 1:3 내지 3:1의 중량비인 것을 특징으로 하는 이차전지용 음극 슬러리.
- 제3항에 있어서,상기 카복시메틸셀룰로오스(CMC)는 음극 슬러리 전체 중량 대비 1 wt% 이하인 것을 특징으로 하는 이차전지용 음극 슬러리.
- 제10항에 있어서,상기 이차전지용 음극 슬러리의 슬러리 침강률은 7 % 이하인 것을 특징으로 하는 이차전지용 음극 슬러리.
- 제1항 내지 제11항 중 어느 한 항에 따른 이차전지용 음극 슬러리를 포함하는 이차전지용 음극.
- 양극, 음극, 전해액 및 분리막을 포함하는 리튬 이차전지로서,상기 음극은 제12항에 따른 이차전지용 음극 슬러리를 포함하는 것인 리튬 이차전지.
- 제13항에 따른 리튬 이차전지를 단위셀로 포함하는 전지모듈.
- 제14항에 따른 전지모듈을 포함하는 전지팩.
- 제15항에 있어서,상기 전지팩은 파워 툴, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 1종 이상의 중대형 디바이스 전원으로 사용되는 것인 전지팩.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/569,633 US10644316B2 (en) | 2015-11-11 | 2016-10-19 | Anode slurry for secondary battery for improving dispersibility and reducing resistance, and anode comprising same |
CN201680027429.7A CN107534153B (zh) | 2015-11-11 | 2016-10-19 | 用于改善分散性和降低电阻的二次电池用负极浆料、和包含它的负极 |
JP2017559667A JP6659012B2 (ja) | 2015-11-11 | 2016-10-19 | 分散性向上及び抵抗減少のための二次電池用負極スラリー、これを含む負極、リチウム二次電池、電池モジュール及び電池パック |
PL16864472T PL3276714T3 (pl) | 2015-11-11 | 2016-10-19 | Zawiesina anodowa dla akumulatora dla poprawy dyspergowalności i zmniejszenia rezystancji oraz zawierająca ją anoda |
EP16864472.2A EP3276714B1 (en) | 2015-11-11 | 2016-10-19 | Anode slurry for secondary battery for improving dispersibility and reducing resistance, and anode comprising same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0158423 | 2015-11-11 | ||
KR1020150158423A KR101938236B1 (ko) | 2015-11-11 | 2015-11-11 | 분산성 향상 및 저항 감소를 위한 이차전지용 음극 슬러리 및 이를 포함하는 음극 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017082546A1 true WO2017082546A1 (ko) | 2017-05-18 |
Family
ID=58695694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/011767 WO2017082546A1 (ko) | 2015-11-11 | 2016-10-19 | 분산성 향상 및 저항 감소를 위한 이차전지용 음극 슬러리 및 이를 포함하는 음극 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10644316B2 (ko) |
EP (1) | EP3276714B1 (ko) |
JP (1) | JP6659012B2 (ko) |
KR (1) | KR101938236B1 (ko) |
CN (1) | CN107534153B (ko) |
PL (1) | PL3276714T3 (ko) |
WO (1) | WO2017082546A1 (ko) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111316475B (zh) * | 2017-11-06 | 2023-08-11 | 株式会社Lg新能源 | 锂二次电池用负极浆料组合物和其制造方法 |
WO2019235128A1 (ja) * | 2018-06-06 | 2019-12-12 | 株式会社エンビジョンAescエナジーデバイス | リチウムイオン電池用電極、リチウムイオン電池用電極スラリー、リチウムイオン電池用電極の製造方法およびリチウムイオン電池 |
KR102527050B1 (ko) | 2019-06-07 | 2023-04-28 | 에스케이온 주식회사 | 이차전지용 전극의 제조방법 및 상기 전극을 포함하는 이차전지 |
CN112382757B (zh) * | 2020-08-11 | 2022-03-18 | 万向一二三股份公司 | 一种负极复合增稠剂、负极极片及制备方法 |
CN112072111B (zh) * | 2020-09-16 | 2022-09-09 | 远景动力技术(江苏)有限公司 | 电极增稠剂及其制备方法 |
CN112072112A (zh) * | 2020-09-16 | 2020-12-11 | 远景动力技术(江苏)有限公司 | 电极增稠剂及其制备方法 |
CN112072110B (zh) * | 2020-09-16 | 2022-09-20 | 远景动力技术(江苏)有限公司 | 负极、其制备方法及使用了其的锂离子电池 |
CN112086614B (zh) * | 2020-09-18 | 2021-10-15 | 湖南华兴新能源科技有限公司 | 一种锂电池负极配料工艺 |
CN112751034B (zh) * | 2020-12-31 | 2022-11-25 | 远景动力技术(江苏)有限公司 | 锂离子电池用负极浆料、负极以及锂离子电池 |
CN112871332B (zh) * | 2021-02-04 | 2022-11-11 | 台州锐祥机械设备有限公司 | 一种汽车高强度减震避震件生产工艺 |
KR102493400B1 (ko) * | 2022-01-27 | 2023-01-31 | 에스케이온 주식회사 | 프라이머 조성물, 이를 포함하는 음극 및 이차전지, 및 음극의 제조방법 |
KR20240014878A (ko) * | 2022-07-26 | 2024-02-02 | 에스케이온 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
WO2024116629A1 (ja) * | 2022-11-30 | 2024-06-06 | 株式会社Gsユアサ | 蓄電素子用負極及び蓄電素子 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130064943A (ko) * | 2011-12-09 | 2013-06-19 | 주식회사 엘지화학 | 구형화 천연 흑연을 음극 활물질로 포함하는 리튬 이차전지 |
KR20140140980A (ko) * | 2013-05-30 | 2014-12-10 | 주식회사 엘지화학 | 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지 |
KR20150035475A (ko) * | 2009-11-18 | 2015-04-06 | 미쓰이 가가쿠 가부시키가이샤 | 전기 화학 셀용 수성 페이스트, 이 수성 페이스트를 도포하여 이루어지는 전기 화학 셀용 극판, 및 이 극판을 포함하는 전지 |
KR20150071453A (ko) * | 2013-12-18 | 2015-06-26 | 주식회사 엘지화학 | 고용량 특성을 갖는 리튬 이온 이차 전지용 음극 |
KR20150120795A (ko) * | 2014-04-18 | 2015-10-28 | 삼성에스디아이 주식회사 | 음극 조성물 및 이를 포함하는 음극과 리튬 전지 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009099441A (ja) * | 2007-10-18 | 2009-05-07 | Panasonic Corp | 非水電解液二次電池用負極板およびその製造方法ならびに非水電解液二次電池 |
WO2010110441A1 (ja) | 2009-03-27 | 2010-09-30 | 三菱化学株式会社 | 非水電解液二次電池用負極材料及びこれを用いた非水電解液二次電池 |
CN101931074B (zh) * | 2009-12-15 | 2012-09-05 | 辽宁弘光科技集团有限公司 | 一种锂电池电极的涂膜基料组成物及锂电池 |
JP5561567B2 (ja) * | 2010-10-05 | 2014-07-30 | トヨタ自動車株式会社 | 電池の製造方法 |
JP2012199198A (ja) | 2011-03-23 | 2012-10-18 | Sanyo Electric Co Ltd | 非水電解質電池用電極及びこれを用いた非水電解質電池 |
JP5927788B2 (ja) * | 2011-06-23 | 2016-06-01 | 日立化成株式会社 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
JP5713198B2 (ja) * | 2011-10-17 | 2015-05-07 | トヨタ自動車株式会社 | リチウム二次電池の製造方法 |
CN104081568B (zh) * | 2012-02-16 | 2017-03-08 | 株式会社Lg 化学 | 包含含有水性粘合剂的负极的锂二次电池 |
JP5704122B2 (ja) * | 2012-06-11 | 2015-04-22 | トヨタ自動車株式会社 | 負極ペースト及び負極ペーストの製造方法 |
KR101718759B1 (ko) | 2012-09-27 | 2017-03-22 | 쇼와 덴코 가부시키가이샤 | 리튬 이온 2차 전지 부극용 탄소재, 그 제조 방법 및 용도 |
WO2015064465A1 (ja) * | 2013-10-28 | 2015-05-07 | 日本ゼオン株式会社 | リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池、及び製造方法 |
-
2015
- 2015-11-11 KR KR1020150158423A patent/KR101938236B1/ko active IP Right Grant
-
2016
- 2016-10-19 WO PCT/KR2016/011767 patent/WO2017082546A1/ko unknown
- 2016-10-19 US US15/569,633 patent/US10644316B2/en active Active
- 2016-10-19 PL PL16864472T patent/PL3276714T3/pl unknown
- 2016-10-19 JP JP2017559667A patent/JP6659012B2/ja active Active
- 2016-10-19 CN CN201680027429.7A patent/CN107534153B/zh active Active
- 2016-10-19 EP EP16864472.2A patent/EP3276714B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150035475A (ko) * | 2009-11-18 | 2015-04-06 | 미쓰이 가가쿠 가부시키가이샤 | 전기 화학 셀용 수성 페이스트, 이 수성 페이스트를 도포하여 이루어지는 전기 화학 셀용 극판, 및 이 극판을 포함하는 전지 |
KR20130064943A (ko) * | 2011-12-09 | 2013-06-19 | 주식회사 엘지화학 | 구형화 천연 흑연을 음극 활물질로 포함하는 리튬 이차전지 |
KR20140140980A (ko) * | 2013-05-30 | 2014-12-10 | 주식회사 엘지화학 | 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지 |
KR20150071453A (ko) * | 2013-12-18 | 2015-06-26 | 주식회사 엘지화학 | 고용량 특성을 갖는 리튬 이온 이차 전지용 음극 |
KR20150120795A (ko) * | 2014-04-18 | 2015-10-28 | 삼성에스디아이 주식회사 | 음극 조성물 및 이를 포함하는 음극과 리튬 전지 |
Also Published As
Publication number | Publication date |
---|---|
EP3276714B1 (en) | 2021-04-28 |
KR20170055359A (ko) | 2017-05-19 |
US20180358622A1 (en) | 2018-12-13 |
CN107534153B (zh) | 2020-10-16 |
CN107534153A (zh) | 2018-01-02 |
KR101938236B1 (ko) | 2019-01-14 |
EP3276714A1 (en) | 2018-01-31 |
JP6659012B2 (ja) | 2020-03-04 |
PL3276714T3 (pl) | 2021-09-13 |
US10644316B2 (en) | 2020-05-05 |
JP2018517246A (ja) | 2018-06-28 |
EP3276714A4 (en) | 2018-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017082546A1 (ko) | 분산성 향상 및 저항 감소를 위한 이차전지용 음극 슬러리 및 이를 포함하는 음극 | |
WO2019088672A1 (ko) | 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자 | |
WO2019078544A1 (ko) | 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지 | |
WO2017171274A2 (ko) | 리튬 이차전지용 전극 슬러리 제조방법 | |
KR20180107759A (ko) | 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
KR101895116B1 (ko) | 음극 슬러리의 제조방법 | |
WO2018088735A1 (ko) | 음극 및 상기 음극의 제조방법 | |
KR20180075180A (ko) | 이차전지용 전극, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2018174616A1 (ko) | 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
WO2019093830A1 (ko) | 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 | |
WO2016114474A1 (ko) | 전극용 슬러리 조성물, 전극 및 이차전지 | |
WO2019083332A2 (ko) | 실리콘-탄소 복합체 및 이를 포함하는 리튬 이차전지 | |
WO2019235890A1 (ko) | 리튬 이차전지용 음극 슬러리, 및 이의 제조방법 | |
WO2019059619A2 (ko) | 리튬 이차전지용 전극의 설계 방법 및 이를 포함하는 리튬 이차전지용 전극의 제조방법 | |
WO2022139380A1 (ko) | 리튬 이차전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2018174619A1 (ko) | 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
KR20160112748A (ko) | 리튬 이차전지의 음극 형성용 조성물의 제조방법, 이를 이용하여 제조한 리튬 이차전지용 음극 및 리튬 이차전지 | |
WO2020149618A1 (ko) | 음극 활물질의 제조 방법 | |
WO2019103498A1 (ko) | 실리콘계 입자-고분자 복합체, 및 이를 포함하는 음극 활물질 | |
WO2022045852A1 (ko) | 음극 및 상기 음극을 포함하는 이차 전지 | |
WO2019004705A1 (ko) | 리튬이차전지용 양극 슬러리의 제조방법 및 이로부터 제조된 리튬이차전지용 양극 | |
WO2013187707A1 (ko) | 리튬 이차전지용 음극 및 그 제조방법과 이를 이용한 리튬 이차전지 | |
WO2020076139A1 (ko) | 음극 및 이를 포함하는 이차전지 | |
WO2017082680A1 (ko) | 음극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2022086103A1 (ko) | 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16864472 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017559667 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |