WO2015064465A1 - リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池、及び製造方法 - Google Patents
リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池、及び製造方法 Download PDFInfo
- Publication number
- WO2015064465A1 WO2015064465A1 PCT/JP2014/078199 JP2014078199W WO2015064465A1 WO 2015064465 A1 WO2015064465 A1 WO 2015064465A1 JP 2014078199 W JP2014078199 W JP 2014078199W WO 2015064465 A1 WO2015064465 A1 WO 2015064465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- slurry composition
- negative electrode
- parts
- less
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/26—Cellulose ethers
- C08L1/28—Alkyl ethers
- C08L1/286—Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/29—Compounds containing one or more carbon-to-nitrogen double bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/08—Copolymers of styrene
- C08L25/10—Copolymers of styrene with conjugated dienes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0433—Molding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0435—Rolling or calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a slurry composition for a lithium ion secondary battery negative electrode, a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a method for producing a slurry composition for a lithium ion secondary battery negative electrode.
- Lithium ion secondary batteries are small and light, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Lithium ion secondary batteries are required to have performance such as high cycle characteristics and high discharge rate characteristics.
- improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of secondary batteries.
- a crosslinking agent is added to the slurry composition used to form the negative electrode mixture layer of the lithium ion secondary battery. It is being considered. By adding such a crosslinking agent, it is expected that the performance of the battery is enhanced by the action of suppressing the expansion of the electrode mixture layer when the battery is used (for example, Patent Documents 1 and 2).
- the effect may not be exhibited even if a large amount of a crosslinking agent is added.
- the strength (peel strength) of the negative electrode mixture layer adhering to the current collector is lowered, and desired characteristics such as rate characteristics and cycle characteristics are obtained. The effect of may not be obtained.
- an object of the present invention is to provide a negative electrode for a lithium ion secondary battery in which expansion of the composite layer is suppressed, peel strength is high, rate characteristics are high, and cycle characteristics are high, and lithium capable of easily forming such a negative electrode. It is providing the slurry composition for ion secondary battery negative electrodes, and its manufacturing method. A further object of the present invention is to provide a lithium ion secondary battery having high rate characteristics and cycle characteristics.
- the present inventor has studied to achieve the above object. And this inventor discovered that the oligomer which exists in a slurry composition reacts with a crosslinking agent, consumes a crosslinking agent, and has prevented the expression of the effect of a crosslinking agent. That is, when preparing a slurry component such as a particulate binder by a polymerization reaction or the like, an operation such as heating and vacuum distillation is performed in order to remove undesired components such as unreacted monomers remaining in the reaction system. In such an operation, it was found that the oligomer having a higher boiling point than that of the unreacted monomer remained difficult to be removed and this consumed the crosslinking agent.
- the particulate binder (C) has a functional group that reacts with the crosslinking agent (D), and the functional group includes a carboxyl group, a hydroxyl group, a glycidyl ether group, a thiol group, and combinations thereof.
- a method for producing a slurry composition according to any one of [1] to [4], 100 parts by mass of the active material (A), 0.1 to 10 parts by mass of a water-soluble thickener (B) having a carboxyl group; A composition (CX) comprising 0.1 to 5 parts by mass of a particulate binder (C); Cross-linking agent (D) 0.01 parts by weight or more and 5 parts by weight or less; Mixing with water, The manufacturing method whose ratio of the component of molecular weight 3000 or less in the said composition (CX) measured by the gel permeation chromatography with respect to the total solid in the said composition (CX) is 0.01 mass% or less.
- the negative electrode for a lithium ion secondary battery of the present invention can be easily produced by suppressing expansion of the composite layer, high peel strength, high rate characteristics, and high cycle characteristics. Can be manufactured. Moreover, according to the manufacturing method of the slurry composition for lithium ion secondary battery negative electrodes of this invention, the slurry composition which can express such an effect can be manufactured easily. In the negative electrode for a lithium ion secondary battery of the present invention, expansion of the composite layer can be suppressed, peel strength is high, rate characteristics are high, and cycle characteristics are high. The lithium ion secondary battery of the present invention can have high rate characteristics and high cycle characteristics.
- the slurry composition for a lithium ion secondary battery of the present invention comprises an active material (A), a water-soluble thickener (B), a particulate binder (C), a crosslinking agent (D), water, including.
- the active material (A) As the active material (A), a material that can be used as an active material in the negative electrode of the secondary battery, that is, a material that transfers electrons can be appropriately selected and used.
- a material that can occlude and release lithium As the negative electrode active material of the lithium ion secondary battery, a material that can occlude and release lithium is usually used. Examples of the material that can occlude and release lithium include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material obtained by combining these materials.
- the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton capable of inserting lithium (also referred to as “dope”).
- examples of the carbon-based negative electrode active material include carbonaceous materials and graphite materials. Is mentioned.
- the carbonaceous material is a material having a low degree of graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower.
- the minimum of the heat processing temperature at the time of making it carbonize is not specifically limited, For example, it can be 500 degreeC or more.
- the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon.
- the graphitizable carbon for example, a carbon material using tar pitch obtained from petroleum or coal as a raw material can be mentioned.
- examples of the non-graphitizable carbon include a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), and hard carbon.
- the graphite material is a material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher.
- the upper limit of heat processing temperature is not specifically limited, For example, it can be 5000 degrees C or less.
- the graphite material include natural graphite and artificial graphite.
- the artificial graphite for example, artificial graphite obtained by heat-treating carbon containing graphitizable carbon mainly at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, and mesophase pitch-based carbon fiber at 2000 ° C. Examples thereof include graphitized mesophase pitch-based carbon fibers that have been heat-treated.
- the metal-based negative electrode active material is an active material containing a metal, and usually contains an element capable of inserting lithium in the structure.
- the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh /
- the active material which is more than g.
- the upper limit of the theoretical electric capacity in this case is not particularly limited, but may be, for example, 4000 mAh / g.
- the metal active material include lithium metal and a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn). , Sr, Zn, Ti, etc.) and alloys thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof.
- active materials containing silicon are preferable. This is because the capacity of the lithium ion secondary battery can be increased by using the silicon-based negative electrode active material.
- silicon-based negative electrode active material examples include silicon (Si), an alloy containing silicon, SiO, SiOx, a mixture of a Si-containing material and a carbon material, and a Si-containing material obtained by coating or combining a Si-containing material with conductive carbon. Examples include composites of materials and conductive carbon.
- the alloy containing silicon examples include an alloy containing silicon, aluminum, and iron, and further containing a rare earth element such as tin and yttrium. Such an alloy can be prepared, for example, by a melt spinning method. Examples of such an alloy include those described in JP2013-65569A.
- SiOx is a compound containing at least one of SiO and SiO 2 and Si, and x is usually 0.01 or more and less than 2.
- SiOx can be formed using the disproportionation reaction of a silicon monoxide (SiO), for example.
- SiOx can be prepared by heat-treating SiO, optionally in the presence of a polymer such as polyvinyl alcohol, to produce silicon and silicon dioxide. The heat treatment can be performed at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher, in an atmosphere containing organic gas and / or steam after grinding and mixing SiO and optionally a polymer.
- Si-containing material such as silicon and SiOx
- carbon material such as carbonaceous material and graphite material
- a polymer such as polyvinyl alcohol. Things.
- carbonaceous material or the graphite material a material that can be used as a carbon-based negative electrode active material can be used.
- a composite of Si-containing material and conductive carbon for example, a pulverized mixture of SiO, a polymer such as polyvinyl alcohol, and optionally a carbon material is heat-treated in an atmosphere containing, for example, an organic gas and / or steam.
- an organic gas and / or steam can be mentioned.
- the negative electrode active material when a carbon-based negative electrode active material or a metal-based negative electrode active material is used as the negative electrode active material, these negative electrode active materials expand and contract with charge / discharge. Therefore, when these negative electrode active materials are used, normally, the negative electrode gradually expands due to repeated expansion and contraction of the negative electrode active material, the secondary battery is deformed, and electrical characteristics such as cycle characteristics are obtained. May be reduced. However, in the negative electrode formed using the slurry composition of the present invention, swelling of the negative electrode is suppressed, so that characteristics such as cycle characteristics can be improved.
- the capacity of the lithium ion secondary battery can be increased by using the silicon-based negative electrode active material
- the silicon-based negative electrode active material expands and contracts greatly (for example, about 5 times) with charge and discharge. . Therefore, from the viewpoint of increasing the capacity of the lithium ion secondary battery while sufficiently suppressing the occurrence of swelling of the negative electrode, it is preferable to use a mixture of a carbon-based negative electrode active material and a silicon-based negative electrode active material as the negative electrode active material. .
- a mixture of a carbon-based negative electrode active material and a silicon-based negative electrode active material is used as the negative electrode active material, from the viewpoint of sufficiently increasing the capacity of the lithium ion secondary battery while sufficiently suppressing the occurrence of swelling of the negative electrode.
- artificial graphite as a carbon-based negative electrode active material, Si as a silicon-based negative electrode active material, an alloy containing silicon, SiOx, a mixture of a Si-containing material and a carbon material, and a Si-containing material and conductivity.
- an alloy containing silicon and a composite (Si—SiO) in which SiOx is dispersed in a matrix of conductive carbon. It is particularly preferred to use at least one of -C complex). While these negative electrode active materials can occlude and release a relatively large amount of lithium, the volume change when lithium is occluded and released is relatively small. Therefore, if these negative electrode active materials are used, a lithium ion secondary using a negative electrode for a lithium ion secondary battery formed using the slurry composition while suppressing an increase in volume change of the negative electrode active material during charge / discharge. The capacity of the battery can be sufficiently increased. When an alloy containing silicon is used, the capacity of the lithium ion secondary battery can be sufficiently increased, and the initial coulomb efficiency and cycle characteristics can be improved.
- the negative electrode active material when a mixture of a carbon-based negative electrode active material and a silicon-based negative electrode active material is used as the negative electrode active material, from the viewpoint of sufficiently increasing the capacity of the lithium ion secondary battery while sufficiently suppressing the occurrence of swelling of the negative electrode.
- the ratio of the silicon-based negative electrode active material per 100 parts by mass of the carbon-based negative electrode active material in the negative electrode active material is preferably within a specific range. That is, the negative electrode active material preferably contains more than 0 parts by mass and 100 parts by mass or less of silicon-based negative electrode active material per 100 parts by mass of the carbon-based negative electrode active material, more preferably 10 parts by mass or more and 70 parts by mass or less. It is particularly preferred to contain at least 50 parts by weight.
- the lithium ion secondary battery is sufficiently The capacity can be increased. Moreover, the generation
- the active material (A) preferably has a tap density of 0.70 or more, more preferably 0.75 or more, still more preferably 0.80 or more, and 0.85 or more. Even more preferred. When the tap density is such a high value, the peel strength can be increased. Therefore, even higher effects can be obtained in the present invention in which the effect of the crosslinking agent (D) is well expressed.
- the upper limit of the tap density is not particularly limited, but may be 1.50 or less, for example.
- the tap density of the active material (A) is determined depending on the manufacturing method of the active material. Therefore, a desired tap density can be obtained by simply selecting a desired material from various active materials that are commercially available. Moreover, the tap density of an active material (A) can be adjusted by mixing and using several types of active materials from which a tap density differs.
- the active material (A) is preferably sized in the form of particles. When the shape of the particles is spherical, a higher density electrode can be formed during electrode molding. When the active material (A) is a particle, the volume average particle diameter is appropriately selected in consideration of other constituent elements of the secondary battery.
- the volume average particle diameter of specific negative electrode active material particles is usually 0.1 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and usually 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less.
- the volume average particle diameter employs a particle diameter at which the cumulative volume calculated from the small diameter side is 50% in the particle size distribution measured by the laser diffraction method.
- the specific surface area of the active material (A) is usually 0.3 m 2 / g or more, preferably 0.5 m 2 / g or more, more preferably 0.8 m 2 / g or more, from the viewpoint of improving the output density. It is 20 m 2 / g or less, preferably 10 m 2 / g or less, more preferably 5 m 2 / g or less.
- the specific surface area of the negative electrode active material can be measured by, for example, the BET method.
- the water-soluble thickener (B) is a water-soluble thickener having a carboxyl group.
- the water-soluble thickener (B) can function as a viscosity modifier for the slurry composition. Further, in the negative electrode mixture layer obtained by the slurry composition of the present invention, the physical properties of the negative electrode mixture layer can be maintained in an appropriate state, and as a result, characteristics such as cycle characteristics and rate characteristics can be improved.
- the number of carboxyl groups in the water-soluble thickener (B) is preferably 0.01 mmol / g to 20 mmol / g, and more preferably 0.02 mmol / g to 15 mmol / g. By having the number of carboxyl groups within the range, physical properties such as good coating performance can be obtained.
- the thickener is “water-soluble” means that when a specific sample containing a polymer and water is passed through a 250-mesh screen, the residue remaining on the screen without passing through the screen.
- the mass of solid content means that it does not exceed 50 mass% with respect to solid content of the added thickener.
- the specific sample is a mixture obtained by adding 1 part by weight of thickener (corresponding to solid content) per 100 parts by weight of ion-exchanged water and stirring, within a temperature range of 20 ° C. to 70 ° C., and , Adjusted to at least one of the conditions in the range of pH 3 to 12 (using NaOH aqueous solution and / or HCl aqueous solution for pH adjustment). Even if the mixture of the thickener and water is in an emulsion state that separates into two phases when allowed to stand, the thickener is defined as water-soluble if the above definition is satisfied.
- water-soluble thickener (B) examples include carboxymethyl cellulose, carboxymethyl starch, alginic acid, polyaspartic acid, salts thereof, and mixtures thereof in the case of natural products, and polycarboxylic acids and crosslinked polys in the case of synthetic systems.
- the synthetic water-soluble polymer may be a crosslinked structure using a crosslinking agent such as a dimethacrylic compound, divinylbenzene, or diallyl compound.
- various polymers having a carboxyl group and used as a thickener can be used.
- carboxymethyl cellulose, polycarboxylic acid, salts thereof, and the like can be used.
- the polycarboxylic acid include polyacrylic acid, polymethacrylic acid, and alginic acid.
- One of these water-soluble thickeners (B) may be used alone, or two or more thereof may be used in combination at any ratio.
- the water-soluble thickener (B) particularly preferably contains carboxymethyl cellulose or a salt thereof (hereinafter sometimes abbreviated as “carboxymethyl cellulose (salt)”).
- carboxymethyl cellulose (salt) When the water-soluble thickener (B) contains carboxymethyl cellulose (salt), workability when the slurry composition is applied onto a current collector or the like can be improved.
- the degree of etherification of the carboxymethyl cellulose (salt) to be used is preferably 0.4 or more, more preferably 0.7 or more, Preferably it is 1.5 or less, More preferably, it is 1.0 or less.
- carboxymethylcellulose (salt) having an etherification degree of 0.4 or more workability when the slurry composition is applied onto a current collector or the like can be improved.
- the degree of etherification is less than 0.4, the water-soluble thickener (B) can be a gel-like substance because the hydrogen bonds within and between the molecules of carboxymethylcellulose (salt) are strong.
- carboxymethylcellulose (salt) can form a good cross-linked structure via the cross-linking agent (D), the binding property of each component in the negative electrode mixture layer can be increased by forming the cross-linked structure as will be described in detail later. It is possible to improve the cycle characteristics of the secondary battery.
- the degree of etherification of carboxymethylcellulose refers to the average value of the number of hydroxyl groups substituted with a substituent such as a carboxymethyl group per unit of anhydroglucose constituting carboxymethylcellulose (salt).
- the degree of etherification of carboxymethylcellulose (salt) can take a value greater than 0 and less than 3. As the degree of etherification increases, the proportion of hydroxyl groups in one molecule of carboxymethylcellulose (salt) decreases (that is, the proportion of substituents increases), and as the degree of etherification decreases, the proportion of hydroxyl groups in one molecule of carboxymethylcellulose (salt) increases. This indicates that the proportion of hydroxyl groups increases (that is, the proportion of substituents decreases).
- This degree of etherification (degree of substitution) can be determined by the method described in JP2011-34962A.
- the viscosity of a 1% by mass aqueous solution of carboxymethylcellulose (salt) is preferably 500 mPa ⁇ s or more, more preferably 1000 mPa ⁇ s or more, preferably 10000 mPa ⁇ s or less, more preferably 9000 mPa ⁇ s or less.
- carboxymethyl cellulose (salt) having a viscosity of 500 mPa ⁇ s or more when the aqueous solution is 1% by mass the slurry composition can be given moderate viscosity. Therefore, the workability at the time of applying the slurry composition on a current collector or the like can be improved.
- the viscosity of the slurry composition can be kept at a desired low value by using carboxymethylcellulose (salt) having a viscosity of 1 mass% aqueous solution of 10,000 mPa ⁇ s or less.
- carboxymethylcellulose (salt) having a viscosity of 1 mass% aqueous solution of 10,000 mPa ⁇ s or less.
- the viscosity of a 1% by mass aqueous solution of carboxymethyl cellulose (salt) is a value when measured at 25 ° C. and a rotational speed of 60 rpm using a B-type viscometer.
- the water-soluble thickener (B) includes carboxymethyl cellulose (salt) and polycarboxylic acid or a salt thereof (hereinafter sometimes abbreviated as “polycarboxylic acid (salt)”). sell.
- carboxymethylcellulose (salt) and polycarboxylic acid (salt) as a water-soluble thickener (B)
- the negative mix layer obtained by using a slurry composition, and a current collector The mechanical properties such as the strength of the negative electrode mixture layer containing the water-soluble thickener (B) can be improved while improving the adhesiveness. Accordingly, the cycle characteristics and the like of the secondary battery using the negative electrode can be improved.
- alginic acid (salt) alginic acid or a salt thereof
- alginate polyacrylic acid or a salt thereof
- polyacrylic acid (salt) is particularly preferable. That is, the water-soluble thickener (B) particularly preferably contains carboxymethyl cellulose or a salt thereof and polyacrylic acid or a salt thereof.
- Alginic acid and polyacrylic acid are less likely to swell excessively in the electrolyte solution of the secondary battery as compared with polymethacrylic acid, and thus carboxymethylcellulose (salt) and alginic acid (salt) or polyacrylic acid (salt) This is because the cycle characteristics of the secondary battery can be sufficiently improved by using together.
- polyacrylic acid (salt) reacts better with the crosslinking agent (D) than carboxymethylcellulose (salt), so if polyacrylic acid is used, formation of a crosslinked structure via the crosslinking agent (D) This is because the reaction can be promoted.
- the blending amount of carboxymethyl cellulose (salt) and the polycarboxylic acid (salt) It is preferable that the ratio which the compounding quantity of polycarboxylic acid (salt) accounts in the total with a compounding quantity exists in a predetermined range.
- the proportion of the carboxymethyl cellulose (salt) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 1% by mass or more, preferably 50% by mass or less. More preferably, it is 35 mass% or less, Most preferably, it is 25 mass% or less.
- the proportion of the blended amount of polycarboxylic acid (salt) is 0.1% by mass or more, the effect of using carboxymethyl cellulose (salt) and polycarboxylic acid (salt) in combination can be sufficiently exhibited.
- the adhesion between the negative electrode composite material layer obtained using the slurry composition and the current collector can be improved satisfactorily.
- the negative electrode composite material layer obtained using a slurry composition does not become hard too much because the ratio for which the compounding quantity of polycarboxylic acid (salt) occupies is 50 mass% or less, and it is contained in the negative electrode composite material layer.
- the binding property and ionic conductivity between the components can be ensured.
- the adhesiveness of the negative mix layer obtained using this slurry composition and a collector can be improved favorably.
- the ratio of the water-soluble thickener (B) to 100 parts by mass of the active material (A) in the slurry composition of the present invention is 0.1 parts by mass or more and 10 parts by mass or less.
- the ratio of the water-soluble thickener (B) to 100 parts by mass of the active material (A) is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, and preferably 5 parts by mass or less. Preferably it is 3 mass parts or less.
- a favorable cycling characteristic can be acquired by mix
- the resistance of the electrode obtained can be reduced by mix
- the particulate binder (C) is a binder that can be dispersed in an aqueous medium such as water, and is present in the form of particles in the slurry composition.
- the particulate binder has an insoluble content of 90% by mass or more when 0.5 g of the particulate binder is dissolved in 100 g of water at 25 ° C.
- the particulate binder (C) is the negative electrode mixture layer, and other components (for example, the active material (A)) are electrode members. It can be held so as not to be detached from the.
- the particulate binder (C) in the negative electrode mixture layer is immersed in the electrolytic solution, the particulate binder maintains the particulate shape while absorbing and swelling the electrolytic solution and binds the active materials (A) to each other. A function of preventing the active material (A) from falling off the current collector can be developed.
- the particulate binder (C) can also bind particles other than the active material (A) contained in the negative electrode mixture layer, and can also serve to maintain the strength of the negative electrode mixture layer.
- the ratio of the particulate binder (C) to 100 parts by mass of the active material (A) is 0.1 parts by mass or more and 0.5 parts by mass or less.
- the ratio of the particulate binder (C) to 100 parts by mass of the active material (A) is preferably 0.4 parts by mass or more, more preferably 1.0 parts by mass or more, while preferably 3 Less than 2.5 parts by mass, more preferably less than 2.5 parts by mass, and even more preferably less than 2 parts by mass.
- the said effect can be acquired by making the ratio of a particulate binder (C) into the said range.
- the peel characteristic of the negative electrode mixture layer can be enhanced, while when the ratio is equal to or lower than the upper limit, the rate characteristics of the battery can be improved. Can be increased.
- the particulate binder (C) preferably has a functional group that reacts with the crosslinking agent (D). More specifically, it preferably has a functional group that reacts with the functional group (for example, carbodiimide group) of the crosslinking agent (D). Since the particulate polymer (C) has a functional group that reacts with the crosslinking agent (D), the particulate binder (C) and the water-soluble thickener are interposed via the crosslinking agent (D). Crosslinking between (B) and the particulate binder (C) can be formed.
- the functional group that can react with the crosslinking agent (D) that the particulate binder (C) can have can be selected as appropriate from the functional group that can react with the functional group that the crosslinking agent (D) has.
- the functional group that the crosslinking agent (D) has is a carbodiimide group
- specific examples of the functional group that reacts with the crosslinking agent (D) that the particulate binder (C) may have include a carboxyl group
- Examples include hydroxyl groups, glycidyl ether groups, thiol groups, and combinations thereof.
- the functional group possessed by the crosslinking agent (D) is a known functional group type such as an oxazoline group, an epoxy group, or an isocyanate group, it reacts with these functional groups, for example, a carboxyl group, a hydroxyl group, an amide group, etc. And functional groups that are known to react.
- the particulate binder (C) has any one or more of a carboxyl group, a hydroxyl group, and a thiol group. It is preferable to have at least one of a carboxyl group and a hydroxyl group.
- the particulate binder (C) particularly preferably has both a carboxyl group and a hydroxyl group from the viewpoints of both cycle characteristics and suppression of swelling of the negative electrode accompanying charge / discharge.
- the particulate binder (C) has a monomer unit containing a functional group that reacts with the crosslinking agent (D)
- the particulate binder (C) has a functionality that reacts with the crosslinking agent (D). It can have a group.
- the monomer unit containing the functional group is a unit having a structure obtained by polymerization of the monomer containing the functional group.
- Examples of the monomer containing a functional group that reacts with the crosslinking agent (D) that can be a monomer unit containing a functional group that reacts with the crosslinking agent (D) include an ethylenically unsaturated carboxylic acid monomer unit, Examples thereof include an unsaturated monomer unit having a hydroxyl group, an unsaturated monomer unit having a glycidyl ether group, and a monomer unit having a thiol group.
- Examples of the ethylenically unsaturated carboxylic acid monomer include monocarboxylic and dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and itaconic acid, and anhydrides thereof.
- acrylic acid, methacrylic acid and itaconic acid are preferable as the ethylenically unsaturated carboxylic acid monomer from the viewpoint of the stability of the slurry composition of the present invention.
- One of these may be used alone, or two or more of these may be used in combination at any ratio.
- Examples of unsaturated monomers having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate. , Di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, and 2-hydroxyethyl methyl fumarate. Of these, 2-hydroxyethyl acrylate is preferred. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- Examples of the unsaturated monomer having a glycidyl ether group include glycidyl acrylate and glycidyl methacrylate. Of these, glycidyl methacrylate is preferred. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- Examples of monomer units having a thiol group include pentaerythritol tetrakis (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptobutyrate), and trimethylolethane tris (3-mercaptobutyrate). It is done. Among these, pentaerythritol tetrakis (3-mercaptobutyrate) is preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- the monomer unit containing a functional group that reacts with the crosslinking agent (D) is a unit having a structure obtained by polymerization of the monomer containing the functional group, but by polymerization of the monomer containing the functional group. It is not limited to the units obtained.
- a part or all of the functional groups in the particulate binder are reacted with the crosslinking agent (D).
- a functional group that reacts with the crosslinking agent (D) can be introduced into the particulate binder.
- a monomer unit containing a functional group that reacts with the crosslinking agent (D) is formed in the polymer constituting the particulate binder.
- a particulate binder (C) containing a functional group that reacts with the crosslinking agent (D) may be prepared.
- the content ratio of the monomer unit containing a functional group that reacts with the crosslinking agent (D) in the particulate binder (C) is not particularly limited, but the upper limit is preferably 10% by mass or less, and 8% by mass or less. More preferably, 5% by mass or less is particularly preferable, while the lower limit is preferably 0.5% by mass or more, more preferably 1.0% by mass or more, and particularly preferably 1.5% by mass or more. If the content rate of the said monomer is the said range, it will be excellent in the mechanical stability and chemical stability of the particulate-form binder (C) obtained.
- Particulate binder (C) aliphatic conjugated diene monomer unit and aromatic vinyl monomer unit
- the particulate binder (C) preferably has an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit.
- An aliphatic conjugated diene monomer unit is a unit having a structure obtained by polymerization of an aliphatic conjugated diene monomer, and an aromatic vinyl monomer unit is obtained by polymerization of an aromatic vinyl monomer. Is a unit having a structure.
- the aliphatic conjugated diene monomer unit is a flexible repeating unit having low rigidity and can enhance the binding property of the particulate binder (C).
- the aromatic vinyl monomer unit can reduce the solubility of the polymer in the electrolytic solution and increase the stability of the particulate binder (C) in the electrolytic solution.
- the above-described effect of the particulate binder (C) is more favorably expressed.
- aliphatic conjugated diene monomers examples include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, Examples include substituted linear conjugated pentadienes, and substituted and side chain conjugated hexadienes, among which 1,3-butadiene is preferred.
- One type of aliphatic conjugated diene monomer may be used alone, or two or more types may be used in combination at any ratio.
- the content ratio of the aliphatic conjugated diene monomer unit in the particulate binder (C) is preferably 20% by mass or more, more preferably 30% by mass or more, preferably 70% by mass or less, more preferably. It is 60 mass% or less, Most preferably, it is 55 mass% or less.
- the content ratio of the aliphatic conjugated diene monomer unit is 20% by mass or more, the flexibility of the negative electrode can be increased, and when the content is 70% by mass or less, the negative electrode mixture layer and the current collector And the electrolytic solution resistance of the negative electrode obtained using the slurry composition of the present invention can be improved.
- aromatic vinyl monomers examples include styrene, ⁇ -methylstyrene, vinyltoluene, and divinylbenzene, with styrene being preferred.
- An aromatic vinyl monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the content ratio of the aromatic vinyl monomer unit in the particulate binder (C) is preferably 30% by mass or more, more preferably 35% by mass or more, and preferably 79.5% by mass or less. Is 69% by mass or less.
- the content ratio of the aromatic vinyl monomer unit is 30% by mass or more, the electrolytic solution resistance of the negative electrode obtained using the slurry composition of the present invention can be improved, and it is 79.5% by mass or less. Therefore, the adhesion between the negative electrode mixture layer and the current collector can be improved.
- the particulate binder (C) contains 1,3-butadiene units as aliphatic conjugated diene monomer units and styrene units as aromatic vinyl monomer units (ie, styrene-butadiene copolymer). It is preferably a coalesced).
- the particulate binder (C) may contain any repeating unit other than those described above as long as the effects of the present invention are not significantly impaired.
- the monomer corresponding to the arbitrary repeating unit include a vinyl cyanide monomer, an unsaturated carboxylic acid alkyl ester monomer, and an unsaturated carboxylic acid amide monomer. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- vinyl cyanide monomers examples include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile and the like. Of these, acrylonitrile and methacrylonitrile are preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaconate, monomethyl Examples thereof include fumarate, monoethyl fumarate, 2-ethylhexyl acrylate and the like. Of these, methyl methacrylate is preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- unsaturated carboxylic acid amide monomers include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, N, N-dimethylacrylamide and the like. Of these, acrylamide and methacrylamide are preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- the particulate binder (C) may be produced using a monomer used in usual emulsion polymerization such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride. Good. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- the content ratio of the unit is not particularly limited, but the upper limit is preferably 10% by mass or less, more preferably 8% by mass or less, particularly preferably 5% by mass or less, while the lower limit is preferably 0.5% by mass or more. 1.0 mass% or more is more preferable, and 1.5 mass% or more is particularly preferable.
- the particulate binder (C) can be prepared, for example, by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent.
- the content ratio of each monomer in the monomer composition is usually the same as the content ratio of the repeating unit in the desired particulate binder (C).
- the aqueous solvent is not particularly limited as long as the particulate binder (C) is dispersible in a particle state, and usually has a boiling point at normal pressure of usually 80 ° C. or higher, preferably 100 ° C. or higher, It is usually selected from aqueous solvents at 350 ° C. or lower, preferably 300 ° C. or lower.
- examples of the aqueous solvent include water; ketones such as diacetone alcohol and ⁇ -butyrolactone; alcohols such as ethyl alcohol, isopropyl alcohol, and normal propyl alcohol; propylene glycol monomethyl ether, methyl cellosolve, and ethyl cellosolve.
- Glycol ethers such as ethylene glycol tertiary butyl ether, butyl cellosolve, 3-methoxy-3-methyl-1-butanol, ethylene glycol monopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, dipropylene glycol monomethyl ether; And ethers such as 3-dioxolane, 1,4-dioxolane and tetrahydrofuran; Among these, water is particularly preferable from the viewpoint that it is not flammable and a dispersion of particles of the particulate binder (C) is easily obtained. Water may be used as a main solvent, and an aqueous solvent other than the above water may be mixed and used as long as the dispersed state of the particles of the particulate binder (C) can be ensured.
- the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
- the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
- the emulsion polymerization method is particularly preferred. According to the emulsion polymerization method, it is easy to obtain a high molecular weight body, and since the polymer is obtained in a state of being dispersed in water as it is, no redispersion treatment is required, and the production of the slurry composition of the present invention is performed as it is. Advantages in production efficiency such as being able to be provided are obtained.
- Emulsion polymerization can be performed according to a conventional method.
- seed polymerization may be performed using seed particles.
- the polymerization conditions can also be arbitrarily selected depending on the polymerization method and the type of polymerization initiator.
- the polymerization initiator is generally less than 3 parts by mass with respect to 100 parts by mass of the polymerization monomer, but preferably 2 parts by mass or less, more preferably 1.5 parts by mass or less in the present invention.
- the polymerization temperature is generally less than 80 ° C., but is preferably less than 70 ° C., more preferably less than 60 ° C. in the present invention. If it is this range, since it exists in the tendency which can maintain the growth reaction of a polymer, suppressing a polymerization rate, a monomer component and the low molecular weight oligomer component in superposition
- the aqueous dispersion of particles of the particulate binder (C) obtained by the polymerization method described above is subjected to pH adjustment and purification steps as it is or as necessary. It can be used as a composition (CX) containing the particulate binder (C).
- the pH of the composition (CX) can be adjusted to a range of usually 5 or more, usually 10 or less, preferably 9 or less using a basic aqueous solution.
- Examples of substances contained in the basic aqueous solution include hydroxides of alkali metals (eg, Li, Na, K, Rb, Cs), ammonia, inorganic ammonium compounds (eg, NH 4 Cl), and organic amine compounds (eg, Ethanolamine, diethylamine, etc.).
- alkali metals eg, Li, Na, K, Rb, Cs
- ammonia e.g, NH 4 Cl
- organic amine compounds eg, Ethanolamine, diethylamine, etc.
- the particulate binder (C) is water-insoluble. Therefore, the particulate binder A is usually in the form of particles in the slurry composition of the present invention, and can be present, for example, in the negative electrode mixture layer of the negative electrode for a secondary battery while maintaining the particle shape. .
- the particulate binder (C) has a number average particle size of preferably 50 nm or more, more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less. . When the number average particle size is in the above range, the strength and flexibility of the obtained negative electrode can be improved. The number average particle diameter can be easily measured by transmission electron microscopy, Coulter counter, laser diffraction scattering method, or the like.
- the gel content of the particulate binder (C) is preferably 50% by mass or more, more preferably 80% by mass or more, preferably 98% by mass or less, more preferably 95% by mass or less.
- the gel content of the particulate binder (C) is less than 50% by mass, the cohesive force of the particulate binder (C) may be reduced, resulting in insufficient adhesion to the current collector or the like. There is.
- the gel content of the particulate binder (C) is more than 98% by mass, the particulate binder (C) loses toughness and becomes brittle, and as a result, the adhesion may be insufficient. is there.
- the “gel content” of the particulate binder (C) can be measured using the measuring method described in the examples of the present specification.
- the glass transition temperature (Tg) of the particulate binder (C) is preferably ⁇ 30 ° C. or higher, more preferably ⁇ 20 ° C. or higher, preferably 80 ° C. or lower, more preferably 30 ° C. or lower.
- Tg glass transition temperature
- the glass transition temperature of the particulate binder (C) is ⁇ 30 ° C. or higher, the blended components in the slurry composition of the present invention are prevented from aggregating and settling, and the stability of the slurry composition is ensured. can do. Furthermore, swelling of the negative electrode can be suitably suppressed. Moreover, workability
- the glass transition temperature of a particulate-form binder (C) is 80 degrees C or less.
- the “glass transition temperature” of the particulate binder (C) can be measured using the measuring method described in the examples of the present specification.
- the glass transition temperature and gel content of the particulate binder (C) are appropriately adjusted by changing the preparation conditions (for example, monomers used, polymerization conditions, etc.) of the particulate binder (C). be able to.
- the glass transition temperature can be adjusted by changing the type and amount of the monomer used. For example, the use of a monomer such as styrene or acrylonitrile can increase the glass transition temperature. When a monomer such as butadiene is used, the glass transition temperature can be lowered.
- the gel content can be adjusted by changing the polymerization temperature, the type of polymerization initiator, the type and amount of molecular weight regulator, the conversion rate when the reaction is stopped, for example, by reducing the chain transfer agent
- the gel content can be increased, and the gel content can be decreased by increasing the chain transfer agent.
- crosslinking agent (D) When the crosslinking agent (D) coexists with the water-soluble thickener (B) and the particulate binder (C) as components of the slurry composition, and the negative electrode mixture layer is formed using the slurry composition, It is a component capable of forming a crosslinked structure between the water-soluble thickener (B) and the particulate binder (C) by performing a treatment such as heating.
- the crosslinking agent (D) includes molecules of the water-soluble thickener (B), the water-soluble thickener (B) and the particulate binder (C), and the particulate binder (C ) May form a crosslinked structure in one or more of the particles.
- the crosslinking agent (D) at least particles of the particulate binder (C) that can form a crosslinked structure can be used.
- the cross-linking agent (D) forms a cross-link, so that it has excellent mechanical properties such as elastic modulus, tensile rupture strength, fatigue resistance, and adhesion to the current collector, and water.
- a negative electrode mixture layer having a crosslinked structure with low solubility in that is, excellent water resistance
- the slurry composition of the present invention when used for the preparation of the negative electrode, it is possible to suppress the swelling of the negative electrode due to repeated charge / discharge by forming a crosslinked structure, and to form the negative electrode mixture layer and the current collector. And high adhesion can be ensured. As a result, the cycle characteristics and the like of the secondary battery can be improved.
- the ratio of the crosslinking agent (D) to 100 parts by mass of the active material (A) is 0.01 parts by mass or more and 5 parts by mass or less.
- the ratio of the crosslinking agent (D) to 100 parts by mass of the active material (A) is preferably 0.02 parts by mass or more, more preferably 0.025 parts by mass or more, even more preferably 0.03, while preferably The amount is less than 3 parts by mass, more preferably less than 1 part by mass, and even more preferably less than 0.5 part by mass.
- the said effect can be acquired by making the ratio of a crosslinking agent (D) into the said range.
- the peel characteristics of the negative electrode mixture layer can be enhanced, and the thickness change due to water absorption can be reduced.
- crosslinking agent (D) can have various structures capable of forming a crosslinking.
- a structure having two or more reactive functional groups per molecule can be used.
- functional groups include epoxy groups, oxazoline groups, and carbodiimide groups.
- a polyfunctional epoxy compound can be raised as a crosslinking agent having an epoxy group.
- polyfunctional glycidyl ether compounds such as aliphatic polyglycidyl ether, aromatic polyglycidyl ether, and diglycidyl ether.
- the compound having an oxazoline group examples include 2,2′-bis (2-oxazoline), 2,2′-bis (4-methyl-2-oxazoline), and 2,2′-bis (4 , 4-dimethyl-2-oxazoline), 2,2′-bis (4-ethyl-2-oxazoline), 2,2′-bis (4,4′-diethyl-2-oxazoline), 2,2′- Bis (4-propyl-2-oxazoline), 2,2′-bis (4-butyl-2-oxazoline), 2,2′-bis (4-hexyl-2-oxazoline), 2,2′-bis ( 4-phenyl-2-oxazoline), 2,2′-bis (4-cyclohexyl-2-oxazoline), 2,2′-bis (4-benzyl-2-oxazoline) and the like.
- the crosslinking agent (D) may have a structure having two or more carbodiimide groups per molecule.
- Examples of the structure of the crosslinking agent (D) having a carbodiimide group include a structure having a carbodiimide group represented by the general formula (1): —N ⁇ C ⁇ N— (1) in the molecule. . By having such a structure, it can react with a carboxyl group or the like of the water-soluble thickener (B) and / or the particulate binder (C) to form a crosslink.
- a more specific example of the structure of the crosslinking agent (D) having a carbodiimide group includes a compound having two or more carbodiimide groups, and a more specific example includes the general formula (2): —N ⁇ A polycarbodiimide and / or a modified polycarbodiimide having a repeating unit represented by C ⁇ N—R 1 — (2) (wherein R 1 represents a divalent organic group in the general formula (2)) Preferably mentioned.
- the modified polycarbodiimide refers to a resin obtained by reacting a reactive compound described later with polycarbodiimide.
- Crosslinking agent (D): Synthesis of polycarbodiimide The method for synthesizing the polycarbodiimide is not particularly limited.
- the organic polyisocyanate is reacted in the presence of a catalyst for promoting the carbodiimidization reaction of the isocyanate group (hereinafter referred to as “carbodiimidization catalyst”).
- Carbodiimidization catalyst a catalyst for promoting the carbodiimidization reaction of the isocyanate group
- Polycarbodiimide can be synthesized.
- the polycarbodiimide having a repeating unit represented by the general formula (2) is a copolymer of an oligomer obtained by reacting an organic polyisocyanate (carbodiimide oligomer) and a monomer copolymerizable with the oligomer.
- an organic polyisocyanate used for the synthesis of the polycarbodiimide, an organic diisocyanate is preferable.
- organic diisocyanate used for the synthesis of polycarbodiimide examples include those described in JP-A-2005-49370. Of these, 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate are particularly preferred from the viewpoint of the storage stability of the slurry composition containing polycarbodiimide as the crosslinking agent (D).
- An organic diisocyanate may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- organic polyisocyanates having three or more isocyanate groups (trifunctional or higher functional organic polyisocyanates), and stoichiometric excesses of trifunctional or higher organic polyisocyanates and difunctional or higher polyfunctionality.
- Terminal isocyanate prepolymer obtained by reaction with a reactive active hydrogen-containing compound (hereinafter, the trifunctional or higher functional organic polyisocyanate and the terminal isocyanate prepolymer are collectively referred to as “trifunctional or higher functional organic polyisocyanates”). May be used.
- trifunctional or higher functional organic polyisocyanates include those described in JP-A-2005-49370.
- Trifunctional or higher functional organic polyisocyanates may be used alone or in combination of two or more at any ratio.
- the amount of the tri- or higher functional organic polyisocyanate used in the polycarbodiimide synthesis reaction is usually 40 parts by mass or less, preferably 20 parts by mass or less, per 100 parts by mass of the organic diisocyanate.
- an organic monoisocyanate can be added as necessary.
- an organic monoisocyanate when the organic polyisocyanate contains organic polyisocyanates having a functionality of 3 or more, the molecular weight of the resulting polycarbodiimide can be appropriately regulated, and the organic diisocyanate is used in combination with the organic monoisocyanate. By doing so, a polycarbodiimide having a relatively small molecular weight can be obtained.
- organic monoisocyanates include those described in JP-A-2005-49370.
- An organic monoisocyanate may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the amount of the organic monoisocyanate used in the synthesis reaction of the polycarbodiimide depends on the molecular weight required for the polycarbodiimide to be obtained and the presence or absence of the use of trifunctional or higher functional organic polyisocyanates. It is usually 40 parts by mass or less, preferably 20 parts by mass or less per 100 parts by mass of the functional or higher organic polyisocyanate) component.
- examples of the carbodiimidization catalyst include phospholene compounds, metal carbonyl complexes, metal acetylacetone complexes, and phosphate esters. Specific examples of these are disclosed in, for example, JP-A-2005-49370.
- a carbodiimidization catalyst may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the amount of the carbodiimidization catalyst used is usually 0.001 part by mass or more, preferably 0.01 part by mass per 100 parts by mass of the total organic isocyanate (organic monoisocyanate, organic diisocyanate, and trifunctional or higher functional organic polyisocyanate) component. Part or more, usually 30 parts by weight or less, preferably 10 parts by weight or less.
- the carbodiimidization reaction of organic polyisocyanate can be carried out in the absence of a solvent or in a suitable solvent.
- the solvent for carrying out the synthesis reaction in the solvent is not particularly limited, and a solvent capable of dissolving the polycarbodiimide or carbodiimide oligomer generated by heating during the synthesis reaction can be used. Examples thereof include halogenated hydrocarbon solvents, ether solvents, ketone solvents, aromatic hydrocarbon solvents, amide solvents, aprotic polar solvents, and acetate solvents. Specific examples of these are disclosed in, for example, JP-A-2005-49370. These solvents may be used alone or in combination of two or more at any ratio.
- the amount of the solvent used in the synthesis reaction of the polycarbodiimide is such that the concentration of the total organic isocyanate component is usually 0.5% by mass or more, preferably 5% by mass or more, usually 60% by mass or less, preferably 50% by mass or less. It is. If the concentration of the total organic isocyanate component in the solvent is too high, the polycarbodiimide or carbodiimide oligomer produced may gel during the synthesis reaction, and if the concentration of the total organic isocyanate component in the solvent is too low, the reaction will occur. It can slow down and reduce productivity.
- the temperature of the carbodiimidization reaction of the organic polyisocyanate is appropriately selected according to the type of the organic isocyanate component and the carbodiimidization catalyst, but is usually 20 ° C. or higher and 200 ° C. or lower.
- the organic isocyanate component may be added in the whole amount before the reaction, or a part or the whole thereof may be added continuously or stepwise during the reaction.
- a compound capable of reacting with an isocyanate group is added at an appropriate reaction stage from the initial stage to the late stage of the carbodiimidization reaction of the organic polyisocyanate, and the terminal isocyanate group of the polycarbodiimide is sealed.
- the molecular weight of the polycarbodiimide can also be adjusted. Further, the molecular weight of the resulting polycarbodiimide can be regulated to a predetermined value by adding in the latter stage of the carbodiimidization reaction of the organic polyisocyanate.
- a compound capable of reacting with an isocyanate group include alcohols such as methanol, ethanol, i-propanol and cyclohexanol; and amines such as dimethylamine, diethylamine and benzylamine.
- a hydric alcohol, polyalkylene oxide, polyethylene glycol monomethacrylate, polypropylene glycol monomethacrylate, polyethylene glycol monoacrylate, or polypropylene glycol monoacrylate is preferred.
- polycarbodiimide having a polycarbodiimide group and a monomer unit derived from a divalent alcohol is synthesized by copolymerizing a divalent alcohol having a hydroxyl group at both ends of the molecular chain with a carbodiimide oligomer by a known method. can do.
- the polycarbodiimide as the crosslinking agent (D) has a monomer unit derived from a divalent or higher alcohol, preferably a monomer unit derived from a divalent alcohol, a slurry composition containing the polycarbodiimide.
- the wettability with respect to the electrolyte solution of the negative electrode formed from can be improved, and the electrolyte injection property in the production of a secondary battery including the battery member can be improved.
- the water solubility of the polycarbodiimide can be increased, and the polycarbodiimide is self-micelleized in water (the hydrophobic carbodiimide group is covered with a hydrophilic ethylene glycol chain). Therefore, chemical stability can be improved.
- the above-mentioned polycarbodiimide can be used for preparing the slurry composition of the present invention as a solution or as a solid separated from the solution.
- a method for separating the polycarbodiimide from the solution for example, the polycarbodiimide solution is added to a non-solvent inert to the polycarbodiimide, and the resulting precipitate or oil is separated by filtration or decantation and collected.
- a method of separating and collecting by spray drying a method of separating and collecting by using a change in solubility with respect to the temperature of the solvent used for the synthesis of the obtained polycarbodiimide, that is, immediately after the synthesis, it is dissolved in the solvent
- a method of separating and collecting from the turbid liquid by filtration or the like can be mentioned, and further, these separation and collection methods can be appropriately combined.
- the number average molecular weight in terms of polystyrene (hereinafter referred to as “Mn”) determined by gel permeation chromatography (GPC) of polycarbodiimide in the present invention is usually 400 or more, preferably 1,000 or more, particularly preferably 2,000.
- the above is usually 500,000 or less, preferably 200,000 or less, particularly preferably 100,000 or less.
- modified polycarbodiimide is prepared by adding at least one reactive compound to at least one polycarbodiimide having a repeating unit represented by the general formula (2) at an appropriate temperature in the presence or absence of a suitable catalyst. It can be synthesized by reaction (hereinafter referred to as “denaturation reaction”).
- the reactive compound used in the synthesis of the modified polycarbodiimide is a group having reactivity with the polycarbodiimide (hereinafter simply referred to as “reactive group”) in the molecule, and another functional group.
- This reactive compound can be an aromatic compound, an aliphatic compound or an alicyclic compound, and the ring structure in the aromatic compound and the alicyclic compound may be a carbocyclic ring or a heterocyclic ring.
- Examples of the reactive group in the reactive compound include a group having active hydrogen, and specifically include a carboxyl group or a primary or secondary amino group.
- the reactive compound may further have another functional group in the molecule in addition to one reactive group.
- Other functional groups possessed by the reactive compound include groups having an action of promoting the crosslinking reaction of polycarbodiimide and / or modified polycarbodiimide, and the second and subsequent groups in one molecule of the reactive compound (that is, as described above).
- the above-mentioned groups having active hydrogen are also included.
- carboxyl groups and primary groups exemplified as groups having active hydrogen in addition to carboxylic anhydride groups and tertiary amino groups. Or a secondary amino group etc. can be mentioned.
- two or more identical or different groups may exist in one molecule of the reactive compound.
- Examples of the reactive compound include those described in JP-A-2005-49370. Of these, trimellitic anhydride and nicotinic acid are preferable.
- a reactive compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the amount of the reactive compound used in the modification reaction for synthesizing the modified polycarbodiimide is appropriately adjusted according to the type of polycarbodiimide and reactive compound, the physical properties required for the resulting modified polycarbodiimide, and the like.
- the preferred use amount of the reactive compound is such that the ratio of the reactive group in the reactive compound to 1 mol of the repeating unit represented by the general formula (2) of the polycarbodiimide is preferably 0.01 mol or more, more preferably 0.
- the amount is 0.02 mol or more, preferably 1 mol or less, more preferably 0.8 mol or less.
- the reaction between the reactive group in the reactive compound and the repeating unit represented by the general formula (2) of the polycarbodiimide usually proceeds quantitatively, and is commensurate with the amount of the reactive compound used.
- Functional groups are introduced into the modified polycarbodiimide.
- the modification reaction can be carried out in the absence of a solvent, but is preferably carried out in a suitable solvent.
- a solvent is not particularly limited, and a solvent that is inactive with respect to polycarbodiimide and a reactive compound and that can dissolve them can be used.
- Examples thereof include ether solvents, amide solvents, ketone solvents, aromatic hydrocarbon solvents, aprotic polar solvents, and the like that can be used for the synthesis of the above-described polycarbodiimide. These solvents may be used alone or in combination of two or more at any ratio. Moreover, when the solvent used at the time of the synthesis
- the amount of the solvent used in the modification reaction is usually 10 parts by mass or more, preferably 50 parts by mass or more, and usually 10,000 parts by mass or less, preferably 5,000 parts by mass or less, per 100 parts by mass of the reaction raw materials.
- the temperature of the modification reaction is appropriately selected according to the type of polycarbodiimide or reactive compound, but is usually ⁇ 10 ° C. or higher, usually 100 ° C. or lower, preferably 80 ° C. or lower.
- the Mn of the modified polycarbodiimide in the present invention is usually 500 or more, preferably 1,000 or more, more preferably 2,000 or more, and usually 1,000,000 or less, preferably 400,000 or less, more preferably 200. , 000 or less.
- the chemical formula amount (NCN equivalent) per mole of the carbodiimide group (—N ⁇ C ⁇ N—) of the crosslinking agent (D) used in the present invention is preferably 300 or more, more preferably 400 or more, preferably 600. Below, more preferably 500 or less.
- NCN equivalent of the crosslinking agent (D) is 300 or more, the storage stability of the slurry composition of the present invention can be sufficiently ensured, and when it is 600 or less, the crosslinking reaction as a crosslinking agent is excellent. Can be advanced.
- the NCN equivalent of the crosslinking agent (D) is obtained, for example, by obtaining the polystyrene-equivalent number average molecular weight of the carbodiimide compound using gel permeation chromatography (GPC) and per carbodiimide compound molecule using IR (infrared spectroscopy).
- the number of carbodiimide groups can be quantitatively analyzed and calculated using the following formula.
- NCN equivalent (Number average molecular weight in terms of polystyrene of carbodiimide compound) / (Number of carbodiimide groups per molecule of carbodiimide compound)
- the viscosity of a 1% by mass aqueous solution of the crosslinking agent (D) is preferably 5000 mPa ⁇ s or less, more preferably 700 mPa ⁇ s or less, and particularly preferably 150 mPa ⁇ s or less.
- the viscosity of the 1% by mass aqueous solution of the crosslinking agent (D) can be measured by the same method as the viscosity of the above-mentioned 1% by mass aqueous solution of carboxymethyl cellulose (salt).
- the minimum of the viscosity of 1 mass% aqueous solution of a crosslinking agent (D) is not specifically limited, For example, it can be 10 mPa * s or more.
- the crosslinking agent (D) is preferably water-soluble. Since the crosslinking agent (D) is water-soluble, the crosslinking agent (D) can be prevented from being unevenly distributed in the slurry composition, and the obtained negative electrode mixture layer can form a suitable crosslinked structure. Accordingly, it is possible to secure the adhesion strength between the negative electrode mixture layer and the current collector in the obtained secondary battery, improve the cycle characteristics, and suppress the increase in resistance after the cycle. Furthermore, the water resistance of the negative electrode can be improved.
- the cross-linking agent is “water-soluble” means that when a specific sample containing the cross-linking agent and water passes through a 250-mesh screen, it does not pass through the screen. It means that the mass of the solid content of the residue remaining does not exceed 50 mass% with respect to the solid content of the added crosslinking agent.
- the specific sample is obtained by adding 1 part by mass of a cross-linking agent (corresponding to solid content) per 100 parts by mass of ion-exchanged water, and stirring the mixture within a temperature range of 20 ° C to 70 ° C It is adjusted to at least one of the conditions within the range of pH 3 to 12 (using NaOH aqueous solution and / or HCl aqueous solution for pH adjustment).
- the cross-linking agent is water-soluble if the above definition is satisfied. From the viewpoint of promoting the formation reaction of the crosslinked structure and improving the adhesion strength and cycle characteristics between the negative electrode mixture layer and the current collector, the mixture of the crosslinking agent and water does not separate into two phases ( More preferably, the crosslinking agent is water soluble in a single phase.
- the slurry composition of the present invention contains water. Water functions as a solvent or dispersion medium in the slurry composition. Usually, in the slurry composition of the present invention, the water-soluble thickener (B) is dissolved in water, and the particulate binder (C) is dispersed in water.
- a solvent other than water may be used in combination with water as a solvent, but from the viewpoint of avoiding a reaction with the crosslinking agent (D), a solvent other than water is substantially contained. Preferably not.
- the amount of the solvent in the slurry composition of the present invention is preferably set so that the solid content concentration of the slurry composition falls within a desired range.
- the solid content concentration of the specific slurry composition is preferably 10% by mass or more, more preferably 15% by mass or more, particularly preferably 20% by mass or more, preferably 80% by mass or less, more preferably 75% by mass. Hereinafter, it is particularly preferably 70% by mass or less.
- the solid content of the composition means a substance remaining after the composition is dried.
- the slurry composition of this invention can contain a cellulose nanofiber as an arbitrary component other than the said component.
- the cellulose nanofiber is a fiber having an average fiber diameter of less than 1 ⁇ m, which is obtained by defusing cellulose fibers such as plant-derived cellulose fibers by a method such as mechanical defibration.
- the average fiber diameter is preferably 100 nm or less, while preferably 1 nm or more.
- a product such as “Serisch (registered trademark) KY-100G” (manufactured by Daicel Chemical Industries, Ltd.) can be used.
- the ratio of the cellulose nanofibers to 100 parts by mass of the particulate binder (C) in the slurry composition of the present invention is preferably 0.1 parts by mass or more. Preferably it is 0.5 mass part or more, On the other hand, Preferably it is 10.0 mass part or less, More preferably, it is 5.0 mass part or less. By setting the ratio within the range, the cycle characteristics can be improved and the resistance can be reduced more satisfactorily.
- the slurry composition for a secondary battery electrode of the present invention may contain components such as a conductive agent, a reinforcing material, a leveling agent, and an electrolytic solution additive in addition to the above components. These are not particularly limited as long as they do not affect the battery reaction, and known ones such as those described in International Publication No. 2012/115096 can be used. These components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the ratio of the component having a molecular weight of 3000 or less in the slurry composition measured by gel permeation chromatography (GPC) to the total solid content of the slurry composition is 0.10% by mass or less.
- this specific component may be simply referred to as “oligomer component”.
- oligomer components are derived from oligomers having a low degree of polymerization produced during the preparation of the polymer.
- the oligomer component reacts with the crosslinking agent (D) and consumes the crosslinking agent (D). Therefore, when a large amount of such oligomer components are present, the amount of the crosslinking agent (D) used for crosslinking a substance desired to be crosslinked, such as the particulate binder (C), is relatively reduced. In such a case, when a large amount of the crosslinking agent is added to express the effect of the crosslinking agent, the peel strength is lowered, and the characteristics such as the rate characteristic and the cycle characteristic can be lowered.
- the effect of the crosslinking agent (D) can be sufficiently obtained even when the addition amount of the crosslinking agent (D) is small by setting the ratio of the oligomer component to a low value below such a specific ratio, As a result, characteristics such as high peel characteristics and low water absorption can be obtained, and as a result, rate characteristics and cycle characteristics can be improved.
- the upper limit of the oligomer component amount in the slurry composition of the present invention is preferably less than 0.05% by mass, more preferably less than 0.03 parts by mass.
- the lower limit is preferably zero mass%.
- the measurement of the ratio of the oligomer component to the total solid content of the slurry composition by GPC can be performed as follows. About 5 g of the slurry composition is weighed, dried at 60 ° C. for 20 minutes, 110 ° C. for 20 minutes, and further dried at 60 ° C. for 10 hours, and the mass after drying is measured. (W0) is obtained. About 5 g of the slurry composition was centrifuged for 10 minutes at 7000 rpm at normal pressure while cooling to 5 ⁇ 1 ° C. with a centrifuge (trade name cooling high-speed centrifuge (H-2000B) manufactured by Kokusan Co., Ltd.) Collect the supernatant.
- a centrifuge trade name cooling high-speed centrifuge (H-2000B) manufactured by Kokusan Co., Ltd.
- the supernatant is vacuum-dried at 60 ° C. for 10 hours, followed by molecular weight measurement by preparative gel permeation chromatography (GPC) method, and further, separation, fractionation, and mass measurement of each component.
- GPC preparative gel permeation chromatography
- the molecular weight is dissolved in tetrahydrofuran to make a 0.2 wt% solution, filtered through a 0.45 ⁇ m membrane filter, and measured by GPC under the following conditions as a measurement sample to obtain a molecular weight in terms of standard PMMA. .
- Measuring device HLC-8220GPC (manufactured by Tosoh Corporation) Column: TSKgel Multipore HXL-M (manufactured by Tosoh Corporation) Eluent: Tetrahydrofuran (THF) Elution rate: 0.3 ml / min Detector: RI (polarity (+)) Column temperature: 40 ° C From these data, the mass% of the component having a molecular weight of 3000 or less in 100 mass% of the total solid content in the slurry composition is calculated from the area ratio in the chromatograph. The lower limit of the molecular weight of the substance that can be detected by this measurement method is 500.
- the slurry composition of the present invention contains a crosslinking agent (D) having a molecular weight of 3000 or less
- the crosslinking agent (D) in the molecular weight range is not included in the mass of the oligomer component.
- the above centrifugal separation and GPC measurement is performed on a composition having the same composition as the slurry composition except that only the crosslinking agent (D) is not blended.
- the oligomer component is quantified, and the ratio of the oligomer component is obtained based on the value.
- the method for reducing the amount of oligomer component in the slurry composition is not particularly limited, and any method can be adopted.
- Specific examples of the method include using a material having a low oligomer component amount as a material used in the production of the slurry composition.
- Examples of methods for reducing the amount of oligomer component in each material include a method for preparing this by a preparation method with a small amount of oligomer generation, a method for removing low molecular weight components after preparation of each material, and a commercial product. And a method using a sufficiently low oligomer content.
- the slurry composition of the present invention can be produced by the method for producing the slurry composition of the present invention described below.
- the method for producing the slurry composition of the present invention is not particularly limited, but it can be preferably produced by the method described below. Below, this method is demonstrated as a manufacturing method of this invention.
- the production method of the present invention comprises an active material (A), a water-soluble thickener (B) having a carboxyl group, a composition (CX) containing a particulate binder (C), and a crosslinking agent (D). And a step of mixing water.
- the order of adding each component is arbitrary, and the order of addition suitable for mixing can be selected as appropriate.
- it may be prepared by optionally premixing each of the above components and then dispersing in an aqueous medium as a dispersion medium, a water-soluble thickener (B), a crosslinking agent (D),
- the binder composition and the active material (A) may be dispersed in an aqueous medium as a dispersion medium.
- the above components and the aqueous medium are mixed using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, or a fill mix.
- a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, or a fill mix.
- a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, or a fill mix.
- the water-soluble thickener (B) is added in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the active material (A). Moreover, 0.01 mass part or more and 5 mass parts or less of a crosslinking agent (D) are added with respect to 100 mass parts of active materials (A).
- the addition of these components is a commercially available material that contains these components and has a sufficiently small amount of the oligomer component (that is, the amount of the oligomer component in the slurry composition that is the product is reduced to 0.0% in the total solid content.
- a material having a small amount of oligomer component can be appropriately selected and used to an extent sufficient to achieve 10% by mass or less.
- the active material (A), the water-soluble thickener (B), and the cross-linking agent (D), such materials can be easily obtained as commercial products. Therefore, by selecting such materials, In addition, a slurry composition having a small amount of oligomer component can be obtained.
- Composition (CX) is added in an amount containing 0.1 to 5 parts by mass of particulate binder (C) with respect to 100 parts by mass of active material (A).
- the ratio of the component having a molecular weight of 3000 or less in the composition (CX) measured by gel permeation chromatography with respect to the total solid content in the composition (CX) is 0.01% by mass or less. It is a composition.
- the proportion of oligomer components by-produced tends to be higher than other components.
- a composition (CX) having a small amount of mixed oligomer components is particularly prepared, and this is used for the production of the slurry composition, whereby the oligomer in the slurry composition is prepared.
- the amount of the component can be suppressed to a desired small amount.
- the amount of oligomer components in the aqueous dispersion obtained can be reduced by reducing the amount of water-soluble monomer used.
- the blending of an unsaturated carboxylic acid such as itaconic acid that has low reactivity and is likely to remain unreacted in water By reducing the amount, the amount of oligomer components mixed in the aqueous dispersion can be reduced. At that time, the amount of the oligomer component in the aqueous dispersion pair can be reduced by using a small amount of a hydroxyl group-containing methacrylic acid monomer such as 2-hydroxyethyl acrylate.
- the amount of oligomer components in the aqueous dispersion obtained can be reduced by carrying out the polymerization in a process that increases the conversion rate of the monomer.
- the mixing amount of oligomer components can be reduced by making adjustments such as reducing the amount of catalyst used and lowering the polymerization temperature.
- the aqueous dispersion obtained by the production of the aqueous dispersion of the particulate binder (C) is further subjected to a purification step, whereby an oligomer is obtained.
- the amount of mixed components can be reduced. For example, operations such as heating and vacuum distillation can be performed. As explained above, in such an operation, unreacted monomers are easily removed while oligomers are difficult to remove, but by using such a purification step in combination with the above method (i) and / or (ii), In addition, the amount of oligomer components including monomers and oligomers can be reduced.
- the negative electrode for lithium ion secondary batteries of this invention is equipped with the negative mix layer obtained from the slurry composition of this invention.
- the negative electrode for a lithium ion secondary battery of the present invention usually further includes a current collector.
- the negative electrode for a lithium ion secondary battery of the present invention includes a negative electrode mixture layer obtained from the slurry composition of the present invention, thereby achieving effects such as improved cycle characteristics and reduced resistance.
- the negative electrode for a secondary battery of the present invention includes, for example, a step of applying the slurry composition of the present invention on a current collector (application step), and drying the slurry composition applied on the current collector to collect current. It can be manufactured through a step of forming a negative electrode mixture layer on the body (drying step) and optionally a step of further heating the negative electrode mixture layer (heating step).
- the crosslinking reaction via the crosslinking agent (D) proceeds by the heat applied in the drying process or the heat applied in the heating process. That is, the water-soluble thickener (B), the water-soluble thickener (B) and the particulate binder (C), and / or the particulate binder (C) are in the negative electrode mixture layer.
- a cross-linked structure is formed through the cross-linking agent (D), and this cross-linked structure can suppress swelling due to charging / discharging, improve the adhesion between the current collector and the negative electrode mixture layer, and further provide rate characteristics.
- the electrical characteristics of the secondary battery can be improved, such as improving the cycle characteristics.
- the method for applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition may be applied to only one side of the current collector or may be applied to both sides. The thickness of the slurry film on the current collector after coating and before drying can be appropriately set according to the thickness of the negative electrode mixture layer obtained by drying.
- an electrically conductive and electrochemically durable material is used as the current collector to which the slurry composition is applied.
- a current collector for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used.
- a copper foil is particularly preferable as the current collector used for the negative electrode.
- One kind of the above materials may be used alone, or two or more kinds thereof may be used in combination at any ratio.
- a method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used. For example, drying with warm air, hot air, low-humidity air, vacuum drying, irradiation with infrared rays, electron beams, or the like. A drying method is mentioned.
- a negative electrode mixture layer can be formed on the current collector to obtain a negative electrode for a secondary battery comprising the current collector and the negative electrode mixture layer. it can.
- a crosslinking reaction via the crosslinking agent (D) can proceed due to the applied heat.
- the negative electrode mixture layer may be subjected to pressure treatment using a mold press or a roll press.
- pressure treatment the adhesion between the negative electrode mixture layer and the current collector can be improved.
- a heating process is performed to advance the crosslinking reaction so that the crosslinked structure is further sufficient.
- the heating step is preferably performed at 80 ° C. to 160 ° C. for about 1 hour to 20 hours.
- the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and includes the negative electrode for a secondary battery of the present invention as the negative electrode. Since the secondary battery of the present invention uses the negative electrode for a secondary battery of the present invention, the electrical characteristics such as rate characteristics and cycle characteristics can be improved, and the negative electrode mixture layer and the current collector can be improved. Adhesion can be ensured.
- the secondary battery of the present invention can be suitably used for, for example, mobile phones such as smartphones, tablets, personal computers, electric vehicles, stationary emergency storage batteries, and the like.
- a known positive electrode used as a positive electrode for a lithium ion secondary battery can be used.
- the positive electrode for example, a positive electrode formed by forming a positive electrode mixture layer on a current collector can be used.
- the current collector one made of a metal material such as aluminum can be used.
- a positive electrode compound material layer the layer containing a known positive electrode active material, a electrically conductive material, and a binder can be used.
- the component of the binder the water-soluble thickener (B), the particulate binder (C), the cross-linking agent (D) and the like described above can be used.
- an electrolytic solution in which an electrolyte is dissolved in a solvent can be used.
- the solvent an organic solvent capable of dissolving the electrolyte can be used.
- the solvent include alkyl carbonate solvents such as ethylene carbonate, propylene carbonate, and ⁇ -butyrolactone, 2,5-dimethyltetrahydrofuran, tetrahydrofuran, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, methyl acetate, dimethoxyethane. , Dioxolane, methyl propionate, methyl formate and the like can be used.
- a lithium salt can be used as the electrolyte.
- the lithium salt for example, those described in JP 2012-204303 A can be used.
- these lithium salts LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable as the electrolyte from the viewpoint of being easily dissolved in an organic solvent and exhibiting a high degree of dissociation.
- the electrolytic solution may be a polymer and a gel electrolyte containing the electrolytic solution, or may be an intrinsic polymer electrolyte.
- separator for example, those described in JP 2012-204303 A can be used. Among them, the thickness of the entire separator can be reduced, and thereby the ratio of the electrode active material in the secondary battery can be increased to increase the capacity per volume.
- a microporous film made of polyethylene, polypropylene, polybutene, or polyvinyl chloride is preferred.
- a separator provided may be used.
- the secondary battery of the present invention includes, for example, a positive electrode and a negative electrode that are stacked with a separator interposed between them, wound as necessary according to the shape of the battery, folded into a battery container, and electrolyzed in the battery container. It can be manufactured by injecting and sealing the liquid.
- an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary.
- the shape of the secondary battery may be any of, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
- ⁇ Glass transition temperature of particulate binder (C)> The aqueous dispersion containing the particulate binder (C) was dried for 3 days in an environment of 50% humidity and 23 to 26 ° C. to obtain a film having a thickness of 1 ⁇ 0.3 mm. This film was dried with a 60 ° C. vacuum dryer for 10 hours. Then, using the dried film as a sample, DSC6220SII (differential scanning calorimeter, manufactured by Nanotechnology Co., Ltd.) under a measurement temperature of ⁇ 100 ° C. to 180 ° C. and a heating rate of 5 ° C./min according to JIS K 7121. was used to measure the glass transition temperature (° C.).
- ⁇ Gel content of particulate binder (C)> An aqueous dispersion containing the particulate binder (C) was prepared. This aqueous dispersion was dried in an environment of 50% humidity and 23 to 25 ° C. to form a film having a thickness of 1 ⁇ 0.3 mm. This film was dried with a 60 ° C. vacuum dryer for 10 hours. This film was cut into a rectangle having a side length of 3 to 5 mm, and about 1 g was precisely weighed. The mass of the film piece obtained by cutting is defined as w0. This film piece was immersed in 50 g of tetrahydrofuran (THF) for 24 hours in an environment of 25 ° C. ⁇ 1 ° C.
- THF tetrahydrofuran
- ⁇ Measurement of oligomer content in slurry composition > About 5 g of the slurry composition is weighed, dried at 60 ° C. for 20 minutes, 110 ° C. for 20 minutes, and further dried at 60 ° C. for 10 hours, and the mass after drying is measured. (W0) was determined. About 5 g of the slurry composition was centrifuged for 10 minutes at 7000 rpm at normal pressure while cooling to 5 ⁇ 1 ° C. with a centrifuge (trade name cooling high-speed centrifuge (H-2000B) manufactured by Kokusan Co., Ltd.) The supernatant was collected. Then, after the supernatant was vacuum-dried at 60 ° C.
- Measuring device HLC-8220GPC (manufactured by Tosoh Corporation) Column: TSKgel Multipore HXL-M (manufactured by Tosoh Corporation) Eluent: Tetrahydrofuran (THF) Elution rate: 0.3 ml / min Detector: RI (polarity (+)) Column temperature: 40 ° C From these data, the mass% of the component having a molecular weight of 3000 or less in 100 mass% of the total solid content in the slurry composition was calculated from the area ratio in the chromatograph.
- Peel strength is 20 N / m or more
- B Peel strength is 15 N / m or more and less than 20 N / m
- C Peel strength is 10 N / m or more and less than 15 N / m
- D Peel strength is less than 10 N / m
- the produced negative electrode for a secondary battery was dried with a 120 ° C. vacuum dryer for 10 hours, then cut into a circle with a diameter of 16 mm, the thickness was measured, and the thickness of the current collector was subtracted from the thickness before being immersed in water.
- the thickness (T1) of the electrode mixture layer was calculated.
- the circular test piece was placed in a sample bottle, poured with 50 mL of ion exchange water, and left at 60 ° C. for 12 hours. Thereafter, the circular test piece is taken out, washed with 50 mL of ion-exchanged water, dried at 120 ° C.
- the thickness (T2) of the composite material layer was calculated.
- the rate of change in thickness due to immersion in the ion-exchanged water and heat treatment was defined as ⁇ (T2-T1) / T1 ⁇ ⁇ 100%, and was evaluated according to the following criteria. The smaller the rate of change in thickness, the lower the water absorption, indicating that the swelling of the electrode is suppressed.
- C Change rate of thickness is 10% or more and less than 12%
- D Change rate of thickness is 12% or more
- the laminated cell type lithium ion secondary battery thus prepared was injected with an electrolytic solution, vacuum sealed, allowed to stand at 25 ° C. for 5 hours, and then at a cell voltage of 3 at a constant current method of 0.2 C at 25 ° C.
- the battery was charged to .65 V, then subjected to aging treatment at 60 ° C. for 12 hours, and discharged at 25 ° C. to a cell voltage of 3.00 V by a 0.2 C constant current method. Thereafter, the battery was charged at a rate of 4.2 V and 0.2 C at 25 ° C., discharged at 0.2 C, further charged at 0.2 C, and discharged at 2.0 C.
- the discharge capacity when discharged at a discharge rate of 0.2 C is defined as C 0.2
- the discharge capacity when discharged at a discharge rate of 2.0 C is defined as C 2.0
- ⁇ C C 2.0 /
- the capacity change rate shown by discharge capacity x 100 (%) at C 0.2 was obtained and evaluated according to the following criteria. It shows that it is excellent in the discharge rate characteristic (rate characteristic), so that the value of this capacity
- ⁇ Cycle characteristics> The battery used for the measurement of the rate characteristic was discharged to a cell voltage of 2.75 V by a constant current method of 0.1 C in an environment at 25 ° C. after the measurement of the rate characteristic. Then, 100 cycles charge / discharge operation was performed at a charge / discharge rate of 4.2 V and 0.5 C in a 45 ° C. environment. At that time, the capacity of the first cycle, that is, the initial discharge capacity X1 and the discharge capacity X2 of the 100th cycle are measured, and the capacity change rate represented by ⁇ C ′ (X2 / X1) ⁇ 100 (%) is obtained. It was evaluated by.
- the reaction was stopped by cooling.
- a 5% aqueous sodium hydroxide solution was added to the aqueous dispersion containing the polymer thus obtained to adjust the pH to 8.
- the unreacted monomer was removed by heating under reduced pressure. Furthermore, it cooled to 30 degrees C or less after that, and obtained the aqueous dispersion (CX1) of the particulate-form binder (C1).
- the gel content and the glass transition temperature were measured by the methods described above. As a result of the measurement, the gel content was 92% and the glass transition temperature (Tg) was 10 ° C.
- Tg glass transition temperature
- the ratio of the component of molecular weight 3000 or less in 100 mass% of total solid content in an aqueous dispersion (CX1) was 0.01 mass%.
- a 1% aqueous solution of a water-soluble thickener (same as that used above) was further added in an amount of 0.40 parts (that is, the first addition amount and the second addition amount). The total amount was 1.00 parts), and the mixture was further mixed at 40 rpm for 30 minutes.
- the slurry composition for the secondary battery obtained in the step (1-1) is applied on a copper foil (current collector) having a thickness of 20 ⁇ m with a comma coater so that the amount applied is 8.9 to 9.2 mg / cm 2. It applied so that it might become.
- the copper foil coated with the slurry composition for a secondary battery is conveyed at a rate of 0.3 m / min in an oven at 60 ° C. for 2 minutes and further in an oven at 110 ° C. over 2 minutes.
- the slurry composition on the foil was dried to obtain a negative electrode raw material.
- the obtained negative electrode raw material is pressed with a roll press machine so that the density of the composite layer becomes 1.45 g / cm 3 to 1.55 g / cm 3, and further for the purpose of removing moisture and further promoting crosslinking. And placed in an environment of 120 ° C. under vacuum for 10 hours. This obtained the negative electrode containing a collector and the negative mix layer formed on it. About the obtained negative electrode, peel strength and water absorption were evaluated. The results are shown in Table 1.
- the aluminum foil coated with the slurry composition was heat-treated at a rate of 0.5 m / min in an oven at 60 ° C. for 2 minutes and then at 120 ° C. for 2 minutes to obtain a positive electrode raw material.
- the obtained positive electrode raw material was pressed with a roll press machine so that the density after pressing was 3.40 to 3.50 g / cm 3 , and further in a 120 ° C. environment under vacuum for the purpose of removing moisture. After 3 hours, a positive electrode including a current collector and a positive electrode mixture layer formed thereon was obtained.
- a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m; manufactured by dry method; porosity 55%) was prepared and cut into a 5 ⁇ 5 cm 2 rectangle to obtain a rectangular separator.
- the negative electrode produced in the step (1-2) was cut into a 4.0 ⁇ 3.0 cm rectangle to obtain a rectangular negative electrode.
- the positive electrode produced in the step (1-3) was cut into a rectangle of 3.8 ⁇ 2.8 cm to obtain a rectangular positive electrode.
- the aluminum packaging material exterior was prepared as a battery exterior.
- the rectangular positive electrode was placed in the aluminum packaging exterior so that the current collector-side surface was in contact with the aluminum packaging exterior.
- a rectangular separator was disposed on the surface of the positive electrode mixture layer side of the rectangular positive electrode.
- the rectangular negative electrode was arrange
- Example 2 In the preparation of the slurry composition for the secondary battery in the step (1-1), the addition amount of the carbodiimide-based crosslinking agent is 0.03 part (Example 2) or 0.15 part (Example 3) corresponding to the solid content.
- the slurry composition for the secondary battery negative electrode, the negative electrode, the positive electrode, and the lithium ion secondary battery were manufactured and evaluated in the same manner as in Example 1 except that the change was made. The results are shown in Table 1.
- Example 4 In the preparation of the slurry composition for the secondary battery in the step (1-1), the amount of the particulate binder (C1) is 1 part (Example 4) and 0.5 part (Example 5) corresponding to the solid content. ) Or 2 parts (Example 6), and the addition amount of the carbodiimide-based crosslinking agent is 0.05 parts (Example 4), 0.025 parts (Example 5) or 0.1 parts in terms of solid content. Except having changed into (Example 6), it carried out similarly to Example 1, and manufactured and evaluated the slurry composition for negative electrodes of a secondary battery, a negative electrode, a positive electrode, and a lithium ion secondary battery. The results are shown in Table 1.
- Example 7 In the preparation of the slurry composition for the secondary battery in the step (1-1), natural graphite as a carbon-based active material is converted into artificial graphite (capacity 360 mAh / g, tap density 0.67, BET specific surface area 3.6 m 2 / A slurry composition for a secondary battery negative electrode, a negative electrode, a positive electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1 except that the procedure was changed to g). The results are shown in Table 1.
- Example 8 In the preparation of the slurry composition for the secondary battery in the step (1-1), the natural graphite used in Example 1 and the artificial graphite used in Example 7 as the carbon-based active material were 80/20 (mass ratio) (capacity). 360 mAh / g, tap density 0.73), and the addition amount was changed to 100 parts by mass, in the same manner as in Example 1, the slurry composition for secondary battery negative electrode, negative electrode, positive electrode, and lithium ion secondary A secondary battery was manufactured and evaluated. The results are shown in Table 1.
- Example 9 In the preparation of the slurry composition for the secondary battery in the step (1-1), the natural graphite used in Example 1 and the artificial graphite used in Example 7 as the carbon-based active material were 60/40 (mass ratio) (capacity). 360 mAh / g, tap density 0.82), and the addition amount was changed to 100 parts by mass, in the same manner as in Example 1, the slurry composition for the negative electrode of the secondary battery, the negative electrode, the positive electrode, and the lithium ion A secondary battery was manufactured and evaluated. The results are shown in Table 1.
- Example 10 to 12 In the preparation of the secondary battery slurry composition in the step (1-1), instead of the particulate binder (C1), the particulate binder (C2) obtained in Production Example 2 (Example 10), Similar to Example 1 except that the particulate binder (C3) obtained in Production Example 3 (Example 11) or the particulate binder (C4) obtained in Production Example 4 (Example 12) was used. Then, a slurry composition for a secondary battery negative electrode, a negative electrode, a positive electrode, and a lithium ion secondary battery were produced and evaluated. The results are shown in Table 1.
- the mass% of the component having a molecular weight of 3000 or less in the total solid content of 100 mass% in the slurry composition is 0.02 mass% (Example 10), 0.05 mass% (Example 11), and 0.08. It was the mass% (Example 12).
- PAA-Na sodium salt of polycarboxylic acid
- the obtained aqueous solution contained carboxymethyl cellulose and PAA-Na in a ratio of 80:20, and the solid content ratio (the total ratio of carboxymethyl cellulose and PAA-Na in the total amount of the aqueous solution) was 1.0%. It was.
- PAA-Li lithium salt of polycarboxylic acid
- the obtained aqueous solution contained carboxymethyl cellulose and PAA-Li in a ratio of 80:20, and the solid content ratio (total ratio of carboxymethyl cellulose and PAA-Li in the total amount of the aqueous solution) was 1.0%. It was.
- Example 15-1 Preparation of slurry composition for secondary battery
- a planetary mixer 100 parts of natural graphite (capacity 360 mAh / g, tap density 0.94) as a carbon-based active material, carboxymethyl cellulose (product name “MAC350HC”, manufactured by Nippon Paper Industries Co., Ltd.) as a water-soluble thickener 1% aqueous solution with a degree of etherification of 0.7, 1% aqueous solution viscosity of 3500 mPa ⁇ s) was blended with 0.60 parts corresponding to the solid content and kneaded with a planetary mixer at 40 rpm for 60 minutes to obtain a paste-like product. .
- a 1% aqueous solution of a water-soluble thickener (same as that used above) was further added in an amount of 0.40 parts (that is, the first addition amount and the second addition amount).
- the total amount is 1.00 parts
- cellulose nanofiber product name “Serish (registered trademark) KY-100G” fiber diameter 0.07 ⁇ m, manufactured by Daicel Chemical Industries, Ltd.
- the polymer (C) is equivalent to 0.5 part in the case of 100 parts) and mixed at 40 rpm for 30 minutes.
- Example 16 A slurry composition for a negative electrode of a secondary battery, a negative electrode, in the same manner as in Example 15, except that the amount of cellulose nanofiber added was 0.8 part in solid content with respect to 100 parts of the particulate polymer (C).
- a positive electrode and a lithium ion secondary battery were manufactured and evaluated. The results are shown in Table 1.
- Example 17 In the preparation of the slurry composition for the secondary battery in the step (1-1), an oxazoline-based crosslinking agent (trade name “Epocross WS-700”, manufactured by Nippon Shokubai Co., Ltd.) was used instead of the carbodiimide-based crosslinking agent. Others manufactured and evaluated the slurry composition for secondary battery negative electrodes, the negative electrode, the positive electrode, and the lithium ion secondary battery in the same manner as in Example 1. The results are shown in Table 1.
- Example 2 A secondary battery negative electrode was prepared in the same manner as in Example 1 except that in the preparation of the slurry composition for the secondary battery in the step (1-1), the amount of the carbodiimide-based crosslinking agent was changed to 6 parts corresponding to the solid content. Slurry compositions, negative electrodes, positive electrodes, and lithium ion secondary batteries were manufactured and evaluated. The results are shown in Table 1.
- a predetermined active material (A), a water-soluble thickener (B), a particulate binder (C), and a crosslinking agent are used in a specific ratio, and the ratio of the oligomer component is
- the negative electrodes manufactured in Examples 1 to 17 having a specific amount or less have a good balance of good characteristics such as high peel strength, low water absorption, high rate characteristics, and high cycle characteristics to the secondary battery. It was.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明のさらなる目的は、レート特性及びサイクル特性の高いリチウムイオン二次電池を提供することにある。
カルボキシル基を有する水溶性増粘剤(B)0.1質量部以上10質量部以下と、
粒子状結着剤(C)0.1質量部以上5質量部以下と、
架橋剤(D)0.01質量部以上5質量部以下と、
水と
を含むスラリー組成物であって、
前記スラリー組成物の全固形分に対する、ゲルパーミエーションクロマトグラフィーで測定した前記スラリー組成物中の分子量3000以下の成分の割合が0.10質量%以下
である、リチウムイオン二次電池負極用スラリー組成物。
〔2〕 前記活物質(A)がタップ密度0.70以上である、〔1〕に記載のスラリー組成物。
〔3〕 前記架橋剤(D)がカルボジイミド構造を有する、〔1〕又は〔2〕に記載のスラリー組成物。
〔4〕 前記粒子状結着剤(C)が、前記架橋剤(D)と反応する官能基を有し、前記官能基がカルボキシル基、水酸基、グリシジルエーテル基、チオール基、及びこれらの組み合わせからなる群から選択される基である、〔1〕~〔3〕のいずれか1項に記載のスラリー組成物。
〔5〕 〔1〕~〔4〕のいずれか1項に記載のスラリー組成物より得られる負極合材層を有する、リチウムイオン二次電池用負極。
〔6〕 〔5〕に記載のリチウムイオン二次電池用負極と、正極と、電解液と、セパレータを備える、リチウムイオン二次電池。
〔7〕 〔1〕~〔4〕のいずれか1項に記載のスラリー組成物の製造方法であって、
活物質(A)100質量部と、
カルボキシル基を有する水溶性増粘剤(B)0.1質量部以上10質量部以下と、
粒子状結着剤(C)0.1質量部以上5質量部以下を含む組成物(CX)と、
架橋剤(D)0.01質量部以上5質量部以下と、
水とを混合する工程を含み、
前記組成物(CX)における全固形分に対する、ゲルパーミエーションクロマトグラフィーで測定した前記組成物(CX)中の分子量3000以下の成分の割合が0.01質量%以下である
製造方法。
本発明のリチウムイオン二次電池用負極は、合材層の膨張が抑制され、ピール強度が高く、レート特性が高く、且つサイクル特性が高いものとすることができる。
本発明のリチウムイオン二次電池は、レート特性が高く、且つサイクル特性が高いものとすることができる。
本発明のリチウムイオン二次電池用スラリー組成物は、活物質(A)と、水溶性増粘剤(B)と、粒子状結着剤(C)と、架橋剤(D)と、水とを含む。
活物質(A)としては、二次電池の負極において活物質即ち電子の受け渡しをする物質として用いうる物質を適宜選択して用いうる。リチウムイオン二次電池の負極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。リチウムを吸蔵および放出し得る物質としては、例えば、炭素系負極活物質、金属系負極活物質、およびこれらを組み合わせた負極活物質などが挙げられる。
そして、炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
ここで、易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
そして、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
活物質(A)は、そのタップ密度が0.70以上であることが好ましく、0.75以上であることがより好ましく、0.80以上であることがさらにより好ましく、0.85以上であることがさらにより好ましい。タップ密度がこのような高い値であることにより、ピール強度を高めることができ、したがって架橋剤(D)の効果が良好に発現する本願発明において、さらにより高い効果を得ることができる。タップ密度の上限は、特に限定されないが、例えば1.50以下としうる。
活物質(A)は、粒子状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時に、より高密度な電極が形成できる。
活物質(A)が粒子である場合、その体積平均粒子径は、二次電池の他の構成要件との兼ね合いで適宜選択される。具体的な負極活物質の粒子の体積平均粒子径は、通常0.1μm以上、好ましくは1μm以上、より好ましくは3μm以上であり、通常100μm以下、好ましくは50μm以下、より好ましくは30μm以下である。ここで、体積平均粒子径は、レーザー回折法で測定された粒度分布において小径側から計算した累積体積が50%となる粒子径を採用する。
水溶性増粘剤(B)は、カルボキシル基を有する水溶性の増粘剤である。水溶性増粘剤(B)は、スラリー組成物の粘度調整剤として機能しうる。また本発明のスラリー組成物により得られる負極合材層において、負極合材層の物性を適切な状態に保ち、その結果サイクル特性、レート特性等の特性を良好なものとしうる。
ここで、特定の試料は、イオン交換水100質量部当たり増粘剤1質量部(固形分相当)を添加し攪拌して得られる混合物を、温度20℃以上70℃以下の範囲内で、かつ、pH3以上12以下(pH調整にはNaOH水溶液及び/又はHCl水溶液を使用)の範囲内である条件のうち少なくとも一条件に調整したものである。
上記増粘剤と水との混合物が、静置した場合に二相に分離するエマルジョン状態であっても、上記定義を満たせば、その増粘剤は水溶性であると規定する。
水溶性増粘剤(B)は、カルボキシメチルセルロースまたはその塩(以下「カルボキシメチルセルロース(塩)」と略記することがある)を含むことが特に好ましい。水溶性増粘剤(B)がカルボキシメチルセルロース(塩)を含むことで、スラリー組成物を集電体上などに塗布する際の作業性をより良好とすることができる。
粒子状結着剤(C)は、水などの水系媒体に分散可能な結着剤であり、スラリー組成物中において粒子の形態で存在する。通常、粒子状結着剤は、25℃において、粒子状結着剤0.5gを100gの水に溶解した際に、不溶分が90質量%以上となる。
粒子状結着剤(C)は、架橋剤(D)と反応する官能基を有することが好ましい。より具体的には、架橋剤(D)が有する官能基(例えばカルボジイミド基)と反応する官能基を有することが好ましい。粒状状重合体(C)が、架橋剤(D)と反応する官能基を有することで、架橋剤(D)を介して、粒子状結着剤(C)同士、および、水溶性増粘剤(B)と粒子状結着剤(C)との架橋を形成することができる。
架橋剤(D)と反応する官能基を含む単量体単位となりうる、架橋剤(D)と反応する官能基を含む単量体の例としては、エチレン性不飽和カルボン酸単量体単位、水酸基を有する不飽和単量体単位、グリシジルエーテル基を有する不飽和単量体単位、及びチオール基を有する単量体単位が挙げられる。
例えば、架橋剤(D)と反応する官能基を有しない粒子状結着剤を重合した後、該粒子状結着剤中の官能基の一部又は全部を、架橋剤(D)と反応する官能基に置換することにより、架橋剤(D)と反応する官能基を粒子状結着剤に導入することができる。当該置換の操作により、粒子状結着剤を構成する重合体内に、架橋剤(D)と反応する官能基を含む単量体単位が形成される。このようにして、架橋剤(D)と反応する官能基を含む粒子状結着剤(C)を調製してもよい。
粒子状結着剤(C)は、脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有することが好ましい。脂肪族共役ジエン単量体単位とは、脂肪族共役ジエン単量体の重合により得られる構造を有する単位であり、芳香族ビニル単量体単位とは、芳香族ビニル単量体の重合により得られる構造を有する単位である。
脂肪族共役ジエン単量体単位は、剛性が低くて柔軟な繰り返し単位であり、粒子状結着剤(C)の結着性を高めることが可能である。芳香族ビニル単量体単位は、重合体の電解液への溶解性を低下させて電解液中での粒子状結着剤(C)の安定性を高めることが可能である。脂肪族共役ジエン単量体単位と、芳香族ビニル単量体単位とを有することにより、粒子状結着剤(C)の上記効果がさらに良好に発現される。
また、粒子状結着剤(C)は、本発明の効果を著しく損なわない限り、上述した以外にも任意の繰り返し単位を含んでいてもよい。前記の任意の繰り返し単位に対応する単量体としては、例えば、シアン化ビニル系単量体、不飽和カルボン酸アルキルエステル単量体、不飽和カルボン酸アミド単量体などが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
粒子状結着剤(C)は、例えば、上述した単量体を含む単量体組成物を水系溶媒中で重合することにより調製しうる。
ここで、単量体組成物中の各単量体の含有割合は、通常、所望の粒子状結着剤(C)における繰り返し単位の含有割合と同様にする。
具体的には、水系溶媒としては、例えば、水;ダイアセトンアルコール、γ-ブチロラクトンなどのケトン類;エチルアルコール、イソプロピルアルコール、ノルマルプロピルアルコールなどのアルコール類;プロピレングリコールモノメチルエーテル、メチルセロソルブ、エチルセロソルブ、エチレングリコールターシャリーブチルエーテル、ブチルセロソルブ、3-メトキシ-3-メチル-1-ブタノール、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテルなどのグリコールエーテル類;1,3-ジオキソラン、1,4-ジオキソラン、テトラヒドロフランなどのエーテル類;などが挙げられる。中でも水は可燃性がなく、粒子状結着剤(C)の粒子の分散体が容易に得られやすいという観点から特に好ましい。主溶媒として水を使用して、粒子状結着剤(C)の粒子の分散状態が確保可能な範囲において上記の水以外の水系溶媒を混合して用いてもよい。
乳化重合は、常法に従い行うことができる。
通常、粒子状結着剤(C)は、非水溶性である。したがって、通常、粒子状結着剤Aは、本発明のスラリー組成物において粒子状となっており、その粒子形状を維持したまま、例えば二次電池用負極の負極合材層内に存在しうる。
本発明のスラリー組成物において、粒子状結着剤(C)は、その個数平均粒径が、好ましくは50nm以上、より好ましくは70nm以上であり、好ましくは500nm以下、より好ましくは400nm以下である。個数平均粒径が上記範囲にあることで、得られる負極の強度および柔軟性を良好にできる。個数平均粒径は、透過型電子顕微鏡法やコールターカウンター、レーザー回折散乱法などによって容易に測定することができる。
本発明において、粒子状結着剤(C)の「ゲル含有量」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
本発明において、粒子状結着剤(C)の「ガラス転移温度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
ガラス転移温度は、使用する単量体の種類および量を変更することにより調整することができ、例えば、スチレン、アクリロニトリルなどの単量体を使用するとガラス転移温度を高めることができ、ブチルアクリレート、ブタジエンなどの単量体を使用するとガラス転移温度を低下させることができる。
また、ゲル含有量は、重合温度、重合開始剤の種類、分子量調整剤の種類、量、反応停止時の転化率などを変更することにより調整することができ、例えば、連鎖移動剤を少なくするとゲル含有量を高めることができ、連鎖移動剤を多くするとゲル含有量を低下させることができる。
架橋剤(D)は、スラリー組成物の成分として水溶性増粘剤(B)及び粒子状結着剤(C)と共存し、スラリー組成物を用いて負極合材層を形成する際に、加熱等の処理を行うことにより、水溶性増粘剤(B)及び粒子状結着剤(C)の間に架橋構造を形成しうる成分である。架橋剤(D)は、具体的には、水溶性増粘剤(B)の分子同士、水溶性増粘剤(B)と粒子状結着剤(C)、及び粒子状結着剤(C)の粒子同士、のいずれか一以上において、架橋構造を形成しうる。好ましくは、架橋剤(D)としては、少なくとも粒子状結着剤(C)の粒子同士において架橋構造を形成しうるものを用いうる。
架橋剤(D)は、架橋を形成しうる種々の構造を有しうる。その例としては、一分子当り2以上の反応性の官能基を有する構造としうる。かかる官能基の例としては、エポキシ基、オキサゾリン基、およびカルボジイミド基が挙げられる。たとえば、エポキシ基を有する架橋剤としては、多官能エポキシ化合物を上げることができる。このような具体例としては、脂肪族ポリグリシジルエーテル、芳香族ポリグリシジルエーテル、ジグリシジルエーテルなどの多官能グリシジルエーテル化合物を上げることができる。オキサゾリン基を有する化合物としては、具体的には例えば、2,2'-ビス(2-オキサゾリン)、2,2'-ビス(4-メチル-2-オキサゾリン)、2,2'-ビス(4,4-ジメチル-2-オキサゾリン)、2,2'-ビス(4-エチル-2-オキサゾリン)、2,2'-ビス(4,4'-ジエチル-2-オキサゾリン)、2,2'-ビス(4-プロピル-2-オキサゾリン)、2,2'-ビス(4-ブチル-2-オキサゾリン)、2,2'-ビス(4-ヘキシル-2-オキサゾリン)、2,2'-ビス(4-フェニル-2-オキサゾリン)、2,2'-ビス(4-シクロヘキシル-2-オキサゾリン)、2,2'-ビス(4-ベンジル-2-オキサゾリン)などが挙げられる。また、日本触媒(株)製エポクロス(商標名)などの高分子タイプもあげることができる。また、さらに好ましい例として、架橋剤(D)は、1分子当り2以上のカルボジイミド基を有する構造を有しうる。
カルボジイミド基を有する架橋剤(D)の構造のより具体的な例としては、カルボジイミド基を2つ以上有する化合物が挙げられ、さらにより具体的な例としては、一般式(2):-N=C=N-R1-・・・(2)(一般式(2)中、R1は2価の有機基を示す。)で表される繰返し単位を有するポリカルボジイミドおよび/または変性ポリカルボジイミドが好適に挙げられる。本明細書において変性ポリカルボジイミドとは、ポリカルボジイミドに対して、後述する反応性化合物を反応させることによって得られる樹脂をいう。
ポリカルボジイミドの合成法は特に限定されるものではないが、例えば、有機ポリイソシアネートを、イソシアネート基のカルボジイミド化反応を促進する触媒(以下「カルボジイミド化触媒」という。)の存在下で反応させることにより、ポリカルボジイミドを合成することができる。また、一般式(2)で表される繰り返し単位を有するポリカルボジイミドは、有機ポリイソシアネートを反応させて得たオリゴマー(カルボジイミドオリゴマー)と、当該オリゴマーと共重合可能な単量体とを共重合させることによっても合成することができる。
このポリカルボジイミドの合成に用いられる有機ポリイソシアネートとしては、有機ジイソシアネートが好ましい。
例えば分子鎖の両末端に水酸基を有する2価のアルコールをカルボジイミドオリゴマーと既知の方法で共重合させることにより、ポリカルボジイミド基と、2価のアルコール由来の単量体単位とを有するポリカルボジイミドを合成することができる。このように、架橋剤(D)としてのポリカルボジイミドが2価以上のアルコール由来の単量体単位、好ましくは2価のアルコール由来の単量体単位を有する場合、該ポリカルボジイミドを含むスラリー組成物から形成される負極の電解液に対する濡れ性が向上し、該電池部材を備える二次電池の製造における、電解液の注液性を向上させることができる。また、上述したアルコールを共重合させると、ポリカルボジイミドの水溶性を増加させることができるとともに、水中でポリカルボジイミドが自己ミセル化する(疎水性のカルボジイミド基の周りが親水性のエチレングリコール鎖で覆われる構造をとる)ため、化学的安定性を向上させることができる。
次に、変性ポリカルボジイミドの合成法の例について説明する。変性ポリカルボジイミドは、一般式(2)で表される繰返し単位を有するポリカルボジイミドの少なくとも1種に、反応性化合物の少なくとも1種を、適当な触媒の存在下あるいは不存在下で、適宜温度で反応(以下、「変性反応」という。)させることによって合成しうる。
本発明に用いる架橋剤(D)の、カルボジイミド基(-N=C=N-)1モル当たりの化学式量(NCN当量)は、好ましくは300以上、より好ましくは400以上であり、好ましくは600以下、より好ましくは500以下である。架橋剤(D)のNCN当量が300以上であることで、本発明のスラリー組成物の保存安定性を十分に確保することができ、600以下であることで、架橋剤として架橋反応を良好に進行させることができる。
架橋剤(D)のNCN当量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)を用いてカルボジイミド化合物のポリスチレン換算数平均分子量を求めると共に、IR(赤外分光法)を用いてカルボジイミド化合物1分子当たりのカルボジイミド基の数を定量分析し、下記式を用いて算出することができる。
NCN当量=(カルボジイミド化合物のポリスチレン換算数平均分子量)/(カルボジイミド化合物1分子当たりのカルボジイミド基の数)
ここで、特定の試料は、イオン交換水100質量部当たり架橋剤1質量部(固形分相当)を添加し、攪拌して得られる混合物を、温度20℃以上70℃以下の範囲内で、かつpH3以上12以下(pH調整にはNaOH水溶液及び/又はHCl水溶液を使用)の範囲内である条件のうち少なくとも一条件に調整したものである。
上記架橋剤と水との混合物が、静置した場合に二相に分離するエマルジョン状態であっても、上記定義を満たせば、その架橋剤は水溶性であるとする。架橋構造の形成反応を良好に進行させ、上記負極合材層と集電体との密着強度、サイクル特性を向上させる観点からは、上記架橋剤と水との混合物は、二相に分離しない(一相水溶状態である)こと、即ち架橋剤は一相水溶性であることがより好ましい。
本発明のスラリー組成物は、水を含む。水は、スラリー組成物において溶媒又は分散媒として機能する。通常、本発明のスラリー組成物では、水溶性増粘剤(B)は水に溶解しており、粒子状結着剤(C)は水に分散している。
本発明のスラリー組成物は、上記成分の他に、任意成分として、セルロースナノファイバーを含有しうる。セルロースナノファイバーは、植物由来のセルロース繊維等のセルロース繊維を、機械的解繊等の方法により解繊した、平均繊維径1μm未満の繊維である。平均繊維径は、好ましくは100nm以下であり、一方好ましくは1nm以上である。セルロースナノファイバーとしては、具体的には例えば「セリッシュ(登録商標)KY-100G」(ダイセル化学工業社製)等の製品を用いることができる。スラリー組成物がセルロースナノファイバーを含むことにより、サイクル特性の向上及び抵抗の低減を、さらに良好に達成しうる。
本発明の二次電池電極用スラリー組成物は、上記成分の他に、導電剤、補強材、レベリング剤、電解液添加剤などの成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
本発明のスラリー組成物においては、スラリー組成物の全固形分に対する、ゲルパーミエーションクロマトグラフィー(GPC)で測定したスラリー組成物中の分子量3000以下の成分の割合が0.10質量%以下である。この特定の成分を、以下において、単に「オリゴマー成分」と略称することがある。
詳しくは分子量はテトラヒドロフランに溶解して、0.2重量%溶液とした後、0.45μmのメンブランフィルターで濾過し、測定試料として、下記条件のGPCにて測定し、標準PMMA換算の分子量を求める。
測定装置:HLC-8220GPC(東ソー社製)
カラム:TSKgel Multipore HXL-M(東ソー社製)
溶離液:テトラヒドロフラン(THF)
溶離速度:0.3ml/分
検知器:RI(極性(+))
カラム温度:40℃
これらのデータから、スラリー組成物中の全固形分100質量%中の、分子量3000以下の成分の質量%を、クロマトグラフにおける面積比から算出する。当該測定法で検出しうる物質の分子量の下限は、500である。
本発明のスラリー組成物を製造する方法は、特に限定されないが、好ましくは、以下に述べる方法により製造しうる。以下においては、この方法を、本発明の製造方法として説明する。
例えば、上で説明した粒子状結着剤(C)の粒子の水系分散体を製造する製造方法において、反応性が低く、水中に未反応で残留しやすいイタコン酸等の不飽和カルボン酸の配合量を減らすことにより得られる水系分散体中のオリゴマー成分の混在量を低減できる。また、そのとき、2-ヒドロキシエチルアクリレートなどの水酸基含有メタクリル酸モノマーを少量併用するなどによって水系分散対中のオリゴマー成分の混在量を低減できる。
例えば、触媒の使用量を減らす、重合温度をより低温にするといった調整を行うことにより、オリゴマー成分の混在量を低減できる。
本発明のリチウムイオン二次電池用負極は、本発明のスラリー組成物より得られる負極合材層を備える。本発明のリチウムイオン二次電池用負極は、通常、集電体をさらに含む。本発明のリチウムイオン二次電池用負極は、本発明のスラリー組成物より得られる負極合材層を備えることにより、電池において使用した場合、サイクル特性の向上及び抵抗の低減等の効果を達成することができ、加えて、電池の外装内に収納しうる形状に加工する際の粉落ちの低減を達成しうる。
スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる負極合材層の厚みに応じて適宜に設定しうる。
集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に負極合材層を形成し、集電体と負極合材層とを備える二次電池用負極を得ることができる。スラリー組成物を乾燥する際には、加えられた熱により、架橋剤(D)を介した架橋反応が進行しうる。
また、負極合材層の形成後に、加熱工程を実施して架橋反応を進行させ、架橋構造をさらに十分なものとすることが好ましい。該加熱工程は、80℃以上160℃以下で、1時間以上20時間以下程度行うことが好ましい。
本発明のリチウムイオン二次電池は、正極と、負極と、電解液と、セパレータとを備え、負極として、本発明の二次電池用負極を備える。本発明の二次電池は、本発明の二次電池用負極を用いているので、レート特性及びサイクル特性等の電気的特性を向上させることができると共に、負極合材層と集電体との密着性を確保することができる。本発明の二次電池は、例えば、スマートフォン等の携帯電話、タブレット、パソコン、電気自動車、定置型非常用蓄電池などに好適に用いることができる。
二次電池の正極としては、リチウムイオン二次電池用正極として用いられる既知の正極を用いることができる。具体的には、正極としては、例えば、正極合材層を集電体上に形成してなる正極を用いることができる。
集電体としては、アルミニウムなどの金属材料からなるものを用いることができる。また、正極合材層としては、既知の正極活物質と、導電材と、バインダーとを含む層を用いることができる。バインダーの成分として、上で説明した水溶性増粘剤(B)、粒子状結着剤(C)、及び架橋剤(D)等を用いることもできる。
電解液としては、溶媒に電解質を溶解した電解液を用いることができる。
ここで、溶媒としては、電解質を溶解可能な有機溶媒を用いることができる。具体的には、溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトンなどのアルキルカーボネート系溶媒に、2,5-ジメチルテトラヒドロフラン、テトラヒドロフラン、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート、酢酸メチル、ジメトキシエタン、ジオキソラン、プロピオン酸メチル、ギ酸メチルなどの粘度調整溶媒を添加したものを用いることができる。
電解質としては、リチウム塩を用いることができる。リチウム塩としては、例えば、特開2012-204303号公報に記載のものを用いることができる。これらのリチウム塩の中でも、有機溶媒に溶解しやすく、高い解離度を示すという点より、電解質としてはLiPF6、LiClO4、CF3SO3Liが好ましい。
また、電解液は、ポリマーおよび上記電解液を含有するゲル電解質であってもよく、さらには真性ポリマー電解質であってもよい。
セパレータとしては、例えば、特開2012-204303号公報に記載のものを用いることができる。中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系の樹脂(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)からなる微多孔膜が好ましい。また、セパレータとして、非導電性粒子を上で説明した水溶性増粘剤(B)、粒子状結着剤(C)、及び架橋剤(D)等を用いて結着してなる多孔膜を備えるセパレータを使用してもよい。
本発明の二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。リチウムイオン二次電池の内部の圧力上昇、過充放電などの発生を防止するために、必要に応じて、ヒューズ、PTC素子などの過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
実施例および比較例において、粒子状結着剤(C)のガラス転移温度およびゲル含有量の測定、スラリー組成物中のオリゴマー成分量測定、組成物(CX)中のオリゴマー成分量測定、活物質(A)のタップ密度の測定、負極のピール強度及び吸水性の測定、並びにリチウムイオン二次電池のレート特性及びサイクル特性の測定は、それぞれ以下の方法に従って行なった。
<粒子状結着剤(C)のガラス転移温度>
粒子状結着剤(C)を含む水分散液を50%湿度、23~26℃の環境下で3日間乾燥させて、厚み1±0.3mmのフィルムを得た。このフィルムを、60℃真空乾燥機で10時間乾燥させた。その後、乾燥させたフィルムをサンプルとして、JIS K 7121に準じて、測定温度-100℃~180℃、昇温速度5℃/分の条件下、DSC6220SII(示差走査熱量分析計、ナノテクノロジー社製)を用いてガラス転移温度(℃)を測定した。
粒子状結着剤(C)を含む水分散液を用意した。この水分散液を50%湿度、23~25℃の環境下で乾燥させて、厚み1±0.3mmに成膜した。このフィルムを、60℃真空乾燥機で10h乾燥させた。このフィルムを、一辺の長さが3~5mmの矩形に裁断し、約1gを精秤した。
裁断により得られたフィルム片の質量をw0とする。このフィルム片を、50gのテトラヒドロフラン(THF)に25℃±1℃の環境の下24時間浸漬した。その後、THFから引き揚げたフィルム片を105℃で3時間真空乾燥して、不溶分の質量w1を計測した。
そして、下記式にしたがってゲル含有量(質量%)を算出した。
ゲル含有量(質量%)=(w1/w0)×100
スラリー組成物約5gを秤量し、60℃で20分、110℃で20分、さらに60℃真空乾燥機で10時間乾燥させて、乾燥後の質量を測定して、その差分から、固形分濃度(W0)を求めた。
スラリー組成物約5gを遠心分離機(コクサン社製、商品名冷却高速遠心機(H-2000B))にて5±1℃に冷却しながら常圧にて7000rpmで10分遠心分離操作を行い、その上澄みを採取した。その後、上澄みを60℃で10時間で真空乾燥させたのち、分取型ゲルパーミエーションクロマトグラフィ(GPC)法による分子量測定、さらに、各成分の分離、分取、および質量測定を実施した。
詳しくは分子量はテトラヒドロフランに溶解して、0.2重量%溶液とした後、0.45μmのメンブランフィルターで濾過し、測定試料として、下記条件のGPCにて測定し、標準PMMA換算の分子量を求めた。
測定装置:HLC-8220GPC(東ソー社製)
カラム:TSKgel Multipore HXL-M(東ソー社製)
溶離液:テトラヒドロフラン(THF)
溶離速度:0.3ml/分
検知器:RI(極性(+))
カラム温度:40℃
これらのデータから、スラリー組成物中の全固形分100質量%中の、分子量3000以下の成分の質量%を、クロマトグラフにおける面積比から算出した。
スラリー組成物に代えて、組成物(CX)を用いた他は、上記<スラリー組成物中のオリゴマー成分量測定>と同様に測定し、組成物(CX)中の全固形分100質量%中の、分子量3000以下の成分の質量%を算出した。
JIS Z2512:2006に準じてホソカワミクロン製、商品名「パウダーテスター PT-S」で測定した。
作製した二次電池用負極を120℃真空乾燥機で10時間乾燥させ、その後、長さ100mm、幅10mmの長方形に切り出して試験片とし、負極合材層を有する面を下にして負極合材層表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付け、集電体の一端を垂直方向に引張り速度50mm/分で引っ張って剥がし、その時の応力を測定した(セロハンテープは試験台に固定されている)。測定を3回行い、その平均値を求めてこれをピール強度とし、以下の基準により評価した。ピール強度の値が大きいほど、負極合材層と集電体との密着性に優れることを示す。
A:ピール強度が20N/m以上
B:ピール強度が15N/m以上20N/m未満
C:ピール強度が10N/m以上15N/m未満
D:ピール強度が10N/m未満
作製した二次電池用負極を120℃真空乾燥機で10時間乾燥させ、その後、直径16mmの円形に切り出し、厚みを測定して、該厚みから、集電体の厚みを差し引き、水浸漬前の電極合材層の厚み(T1)を算出した。該円形の試験片を、サンプル瓶に入れ、イオン交換水50mLを注ぎ、60℃で12時間、放置した。その後、該円形の試験片を取り出し、50mLのイオン交換水で洗浄した後に、120℃で1時間乾燥させ、厚みを測定し、該厚みから、集電体の厚みを差し引き、水浸漬後の電極合材層の厚み(T2)を算出した。上記イオン交換水への浸漬および加熱処理による厚み変化率を{(T2-T1)/T1}×100%で定義し、以下の基準により評価した。この厚み変化率が小さいほど、吸水性が低いため、電極のふくらみが抑制されていることを示す。
A:厚み変化率が8%未満
B:厚み変化率が8%以上10%未満
C:厚み変化率が10%以上12%未満
D:厚み変化率が12%以上
作製したラミネートセル型のリチウムイオン二次電池を、電解液を注液して、真空密封後、25℃で5時間静置させ、その後25℃において0.2Cの定電流法によって、セル電圧3.65Vまで充電し、その後60℃で12時間エージング処理を行い、25℃において0.2Cの定電流法によってセル電圧3.00Vまで放電を行った。
その後、25℃において4.2V、0.2Cレートで充電を行い、0.2Cで放電、さらに0.2Cで充電を行い、2.0Cで放電を行った。そのとき、放電レート0.2Cで放電した場合の放電容量をC0.2、放電レート2.0Cで放電した場合の放電容量をC2.0とそれぞれ定義し、ΔC=C2.0/C0.2時の放電容量×100(%)で示す容量変化率を求め、以下の基準により評価した。この容量変化率ΔCの値が高いほど、放電レート特性(レート特性)に優れることを示す。
A:ΔCが83%以上
B:ΔCが82%以上83%未満
C:ΔCが80%以上82%未満
D:ΔCが80%未満
レート特性の測定に用いた電池を、レート特性の測定後、25℃の環境下で0.1Cの定電流法にて、セル電圧2.75Vまで放電した。その後、45℃環境下で4.2V、0.5Cの充放電レートにて100サイクル充放電の操作を行った。そのとき1サイクル目の容量、すなわち初期放電容量X1、および100サイクル目の放電容量X2を測定し、ΔC´=(X2/X1)×100(%)で示す容量変化率を求め、以下の基準により評価した。この容量変化率ΔCの値が高いほど、サイクル特性に優れることを示す。
A:ΔC´が85%以上
B:ΔC´が83%以上85%未満
C:ΔC´が80%以上83%未満
D:ΔC´が80%未満
攪拌機付き5MPa耐圧容器に、芳香族ビニル単量体としてスチレン65部、脂肪族共役ジエン単量体として1,3-ブタジエン35部、エチレン性不飽和カルボン酸単量体としてイタコン酸1部、水酸基含有単量体として2-ヒドロキシエチルアクリレート0.7部、分子量調整剤としてt-ドデシルメルカプタン0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム5部、溶媒としてイオン交換水150部、及び重合開始剤として過硫酸カリウム1部を入れ、十分に攪拌した後、55℃に加温して重合を開始した。
モノマー消費量が95.0%になった時点で冷却し、反応を停止した。こうして得られた重合体を含んだ水分散体に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後、30℃以下まで冷却し、粒子状結着剤(C1)の水分散液(CX1)を得た。得られた粒子状結着剤(C1)の水分散液(CX1)を用いて、上述した方法により、ゲル含有量、及びガラス転移温度を測定した。測定の結果、ゲル含有量は92%、ガラス転移温度(Tg)は10℃であった。また、水分散液(CX1)中の全固形分100質量%中の、分子量3000以下の成分の割合は、0.01質量%であった。
エチレン性不飽和カルボン酸単量体としてのイタコン酸の割合を2部とした以外は製造例1と同様にして、粒子状結着剤(C2)の水分散液(CX2)を得た。ゲル含有量は92%、ガラス転移温度(Tg)は10℃であった。また、水分散液(CX2)中の全固形分100質量%中の、分子量3000以下の成分の割合は、0.02質量%であった。
エチレン性不飽和カルボン酸単量体としてのイタコン酸の割合を2.5部、水酸基含有単量体としての2-ヒドロキシエチルアクリレートの割合を1.5部とした以外は製造例1と同様にして、粒子状結着剤(C3)の水分散液(CX3)を得た。ゲル含有量は92%、ガラス転移温度(Tg)は10℃であった。また、水分散液(CX3)中の全固形分100質量%中の、分子量3000以下の成分の割合は、0.05質量%であった。
エチレン性不飽和カルボン酸単量体としてのイタコン酸の割合を3.0部、水酸基含有単量体としての2-ヒドロキシエチルアクリレートの割合を2.0部とした以外は製造例1と同様にして、粒子状結着剤(C4)の水分散液(CX4)を得た。ゲル含有量は92%、ガラス転移温度(Tg)は10℃であった。また、水分散液(CX4)中の全固形分100質量%中の、分子量3000以下の成分の割合は、0.08質量%であった。
エチレン性不飽和カルボン酸単量体としてのイタコン酸の割合を4.0部、水酸基含有単量体としての2-ヒドロキシエチルアクリレートの割合を2.5部とした以外は製造例1と同様にして、粒子状結着剤(C5)の水分散液(CX5)を得た。ゲル含有量は92%、ガラス転移温度(Tg)は10℃であった。また、水分散液(CX5)中の全固形分100質量%中の、分子量3000以下の成分の割合は、0.12質量%であった。
(1-1.二次電池用スラリー組成物の調製)
プラネタリーミキサーに、炭素系活物質として天然黒鉛(容量360mAh/g、タップ密度0.94、BET比表面積3.0m2/g)を100部、水溶性増粘剤としてのカルボキシメチルセルロース(製品名「MAC350HC」、日本製紙(株)製、エーテル化度0.7、1%水溶液の粘度3500mPa・s)の1%水溶液を固形分相当で0.60部入れ、プラネタリーミキサーで40rpmで60分混練してペースト状物を得た。得られたペースト状物に、さらに水溶性増粘剤の1%水溶液(上で用いたものと同じもの)を固形分相当で0.40部(即ち、1回目の添加量と2回目の添加量との合計は1.00部)となるように追加混合して、40rpmで30分混合した。その後、製造例1で得た粒子状結着剤(C1)の水分散液(CX1)を固形分相当で1.50部、カルボジイミド系架橋剤(商品名「SV-02」、日清紡ケミカル(株)製)を固形分相当で0.075部投入し、さらに固形分濃度が50%となるようにイオン交換水を加えて混合した。これにより、活物質(A)、水溶性増粘剤(B)、粒子状結着剤(C)、架橋剤(D)及び水を含む二次電池(負極)用スラリー組成物を調製した。
得られたスラリー組成物について、スラリー組成物中の全固形分100質量%中の、分子量3000以下の成分の質量%を測定したところ、0.01質量%であった。
工程(1-1)で得た二次電池用スラリー組成物を、コンマコーターで、厚さ20μmの銅箔(集電体)の上に塗付量が8.9~9.2mg/cm2となるように塗布した。この二次電池用スラリー組成物が塗布された銅箔を、0.3m/分の速度で60℃のオーブン内を2分間、さらに110℃のオーブン内を2分間かけて搬送することにより、銅箔上のスラリー組成物を乾燥させ、負極原反を得た。
得られた負極原反を、ロールプレス機にて合材層密度が1.45g/cm3~1.55g/cm3となるようプレスし、さらに、水分の除去および架橋のさらなる促進を目的として、真空条件下120℃の環境に10時間置いた。これにより、集電体及びその上に形成された負極合材層を含む負極を得た。
得られた負極について、ピール強度及び吸水性を評価した。結果を表1に示す。
プラネタリーミキサーに、正極活物質としてLiCoO2100部、導電助剤としてアセチレンブラック2部(電気化学工業(株)製「HS-100」)、PVDF(ポリフッ化ビニリデン、(株)クレハ化学製「KF-1100」)2部、さらに全固形分濃度を67%とする量の2-メチルピリロドンを加えて混合し、正極用スラリー組成物を調製した。
得られた正極スラリー組成物をコンマコーターで、厚さ20μmのアルミ箔の上に19.5~20.5mg/cm2となるように塗布した。このスラリー組成物が塗布されたアルミ箔を、0.5m/分の速度で60℃のオーブン内を2分間、その後、120℃にて2分間加熱処理して正極原反を得た。
得られた正極原反をロールプレス機にてプレス後の密度が3.40~3.50g/cm3になるようにプレスし、さらに水分の除去を目的として、真空条件下120℃の環境に3時間置き、集電体及びその上に形成された正極合材層を含む正極を得た。
単層のポリプロピレン製セパレータ(幅65mm、長さ500mm、厚さ25μm;乾式法により製造;気孔率55%)を用意し、5×5cm2の矩形に切り出し、矩形のセパレーターを得た。
工程(1-2)で作製した負極を、4.0×3.0cmの矩形に切り出し、矩形の負極を得た。
工程(1-3)で作製した正極を、3.8×2.8cmの矩形に切り出し、矩形の正極を得た。
エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(体積比)の混合溶媒100体積部に、添加剤としてビニレンカーボネートを2体積部添加し、さらにLiPF6を濃度1.0Mとなるよう添加して混合し、電解液を得た。
また、電池の外装として、アルミ包材外装を用意した。
矩形の正極を、その集電体側の表面がアルミ包材外装に接するように、アルミ包材外装内に配置した。次に、矩形の正極の正極合材層側の表面上に、矩形のセパレータを配置した。さらに、矩形の負極を、セパレータ上に、負極合材層側の表面がセパレータに接するよう配置した。その後、アルミ包材外装内に電解液を充填した。さらに、150℃のヒートシールをしてアルミ包材外装を閉口し、ラミネートセル型のリチウムイオン二次電池を製造した。
作製したリチウムイオン二次電池について、レート特性及びサイクル特性を測定し評価した。結果を表1に示す。
工程(1-1)の二次電池用スラリー組成物の調製において、カルボジイミド系架橋剤の添加量を、固形分相当で0.03部(実施例2)、又は0.15部(実施例3)に変更した他は、実施例1と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。
工程(1-1)の二次電池用スラリー組成物の調製において、粒子状結着剤(C1)の量を、固形分相当で1部(実施例4)、0.5部(実施例5)又は2部(実施例6)に変更し、カルボジイミド系架橋剤の添加量を、固形分相当で0.05部(実施例4)、0.025部(実施例5)又は0.1部(実施例6)に変更した他は、実施例1と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。
工程(1-1)の二次電池用スラリー組成物の調製において、炭素系活物質としての天然黒鉛を、人造黒鉛(容量360mAh/g、タップ密度0.67、BET比表面積3.6m2/g)に変更した他は、実施例1と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。
工程(1-1)の二次電池用スラリー組成物の調製において、炭素系活物質として実施例1で使用した天然黒鉛と実施例7で使用した人造黒鉛を80/20(質量比)(容量360mAh/g、タップ密度0.73)に変更し、添加量を100質量部に変更した他は、実施例1と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。
工程(1-1)の二次電池用スラリー組成物の調製において、炭素系活物質として実施例1で使用した天然黒鉛と実施例7で使用した人造黒鉛を60/40(質量比)(容量360mAh/g、タップ密度0.82)に変更し、添加量を100質量部に変更した他は、実施例1と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。
工程(1-1)の二次電池用スラリー組成物の調製において、粒子状結着剤(C1)に代えて、製造例2で得た粒子状結着剤(C2)(実施例10)、製造例3で得た粒子状結着剤(C3)(実施例11)又は製造例4で得た粒子状結着剤(C4)(実施例12)を用いた他は、実施例1と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。スラリー組成物中の全固形分100質量%中の、分子量3000以下の成分の質量%は、0.02質量%(実施例10)、0.05質量%(実施例11)、及び0.08質量%(実施例12)であった。
(13-1.水溶性増粘剤の調製)
ポリカルボン酸(アルドリッチ社製、分子量=125万)の1%水溶液をNaOH(和光純薬、特級試薬)でpH=8に調整し、ポリカルボン酸のナトリウム塩(PAA-Na)の水溶液を得た。
得られたPAA-Naの水溶液と、カルボキシメチルセルロース(製品名「MAC350HC」、日本製紙(株)製)と、水とを混合し、水溶性増粘剤の水溶液を得た。得られた水溶液は、カルボキシメチルセルロースとPAA-Naとを80:20の割合で含有し、また固形分割合(水溶液全量における、カルボキシメチルセルロース及びPAA-Naの合計の割合)は1.0%であった。
工程(1-1)の二次電池用スラリー組成物の調製において、カルボキシメチルセルロースの1%水溶液に代えて、工程(13-1)で得た水溶性増粘剤の水溶液を用いた(添加量は固形分相当1.0部;1回目の添加において固形分相当0.6部、2回目の添加において固形分相当0.4部)他は、実施例1と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。
(14-1.水溶性増粘剤の調製)
ポリカルボン酸(アルドリッチ社製、分子量=125万)の1%水溶液をLiOH(和光純薬、特級試薬)でpH=8に調整し、ポリカルボン酸のリチウム塩(PAA-Li)の水溶液を得た。
得られたPAA-Liの水溶液と、カルボキシメチルセルロース(製品名「MAC350HC」、日本製紙(株)製)と、水とを混合し、水溶性増粘剤の水溶液を得た。得られた水溶液は、カルボキシメチルセルロースとPAA-Liとを80:20の割合で含有し、また固形分割合(水溶液全量における、カルボキシメチルセルロース及びPAA-Liの合計の割合)は1.0%であった。
工程(1-1)の二次電池用スラリー組成物の調製において、カルボキシメチルセルロースの1%水溶液に代えて、工程(14-1)で得た水溶性増粘剤の水溶液を用いた(添加量は固形分相当1.0部;1回目の添加において固形分相当0.6部、2回目の添加において固形分相当0.4部)他は、実施例1と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。
(15-1.二次電池用スラリー組成物の調製)
プラネタリーミキサーに、炭素系活物質として天然黒鉛(容量360mAh/g、タップ密度0.94)を100部、水溶性増粘剤としてのカルボキシメチルセルロース(製品名「MAC350HC」、日本製紙(株)製、エーテル化度0.7、1%水溶液の粘度3500mPa・s)の1%水溶液を固形分相当で0.60部を配合しプラネタリーミキサーで40rpmで60分混練してペースト状物を得た。得られたペースト状物に、さらに水溶性増粘剤の1%水溶液(上で用いたものと同じもの)を固形分相当で0.40部(即ち、1回目の添加量と2回目の添加量との合計は1.00部)およびセルロースナノファイバー(製品名「セリッシュ(登録商標)KY-100G」繊維径0.07μm、ダイセル化学工業社製)を固形分換算で0.0075部(粒子状重合体(C)を100部とした場合における0.5部に相当)を入れ、40rpmで30分混合した。その後、製造例1で得た粒子状結着剤(C1)の水分散液(CX1)を固形分相当で1.50部、カルボジイミド系架橋剤(商品名「SV-02」、日清紡ケミカル(株)製)を固形分相当で0.075部投入し、さらに固形分濃度が50%となるようにイオン交換水を加えて混合した。これにより、活物質(A)、水溶性増粘剤(B)、粒子状結着剤(C)、架橋剤(D)及び水を含む二次電池(負極)用スラリー組成物を調製した。
得られたスラリー組成物について、スラリー組成物中の全固形分100質量%中の、分子量3000以下の成分の質量%を測定したところ、0.01質量%であった。
工程(1-2)の負極の製造において、工程(1-1)で得た二次電池用スラリー組成物に代えて、工程(15-1)で得た二次電池用スラリー組成物を用いた他は、実施例1の工程(1-2)~(1-4)と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。
セルロースナノファイバーの添加量を、粒子状重合体(C)100部に対して固形分で0.8部とした他は、実施例15と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。
工程(1-1)の二次電池用スラリー組成物の調製において、カルボジイミド系架橋剤に代えて、オキサゾリン系架橋剤(商品名「エポクロスWS-700」、日本触媒(株)製)を用いた他は、実施例1と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。
工程(1-1)の二次電池用スラリー組成物の調製において、架橋剤を添加しなかった他は、実施例1と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。
工程(1-1)の二次電池用スラリー組成物の調製において、カルボジイミド系架橋剤の添加量を、固形分相当で6部に変更した他は、実施例1と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。
工程(1-1)の二次電池用スラリー組成物の調製において、粒子状結着剤(C1)に代えて、製造例5で得た粒子状結着剤(C5)を用いた他は、実施例1と同様にして二次電池負極用スラリー組成物、負極、正極、及びリチウムイオン二次電池を製造し評価した。結果を表1に示す。スラリー組成物中の全固形分100質量%中の、分子量3000以下の成分の質量%は、0.12質量%であった。
Claims (7)
- 活物質(A)100質量部と、
カルボキシル基を有する水溶性増粘剤(B)0.1質量部以上10質量部以下と、
粒子状結着剤(C)0.1質量部以上5質量部以下と、
架橋剤(D)0.01質量部以上5質量部以下と、
水と
を含むスラリー組成物であって、
前記スラリー組成物の全固形分に対する、ゲルパーミエーションクロマトグラフィーで測定した前記スラリー組成物中の分子量3000以下の成分の割合が0.10質量%以下
である、リチウムイオン二次電池負極用スラリー組成物。 - 前記活物質(A)がタップ密度0.70以上である、請求項1に記載のスラリー組成物。
- 前記架橋剤(D)がカルボジイミド構造を有する、請求項1又は2に記載のスラリー組成物。
- 前記粒子状結着剤(C)が、前記架橋剤(D)と反応する官能基を有し、前記官能基がカルボキシル基、水酸基、グリシジルエーテル基、チオール基、及びこれらの組み合わせからなる群から選択される基である、請求項1~3のいずれか1項に記載のスラリー組成物。
- 請求項1~4のいずれか1項に記載のスラリー組成物より得られる負極合材層を有する、リチウムイオン二次電池用負極。
- 請求項5に記載のリチウムイオン二次電池用負極と、正極と、電解液と、セパレータを備える、リチウムイオン二次電池。
- 請求項1~4のいずれか1項に記載のスラリー組成物の製造方法であって、
活物質(A)100質量部と、
カルボキシル基を有する水溶性増粘剤(B)0.1質量部以上10質量部以下と、
粒子状結着剤(C)0.1質量部以上5質量部以下を含む組成物(CX)と、
架橋剤(D)0.01質量部以上5質量部以下と、
水とを混合する工程を含み、
前記組成物(CX)における全固形分に対する、ゲルパーミエーションクロマトグラフィーで測定した前記組成物(CX)中の分子量3000以下の成分の割合が0.01質量%以下である
製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480056525.5A CN105637682A (zh) | 2013-10-28 | 2014-10-23 | 锂离子二次电池负极用浆料组合物、锂离子二次电池用负极、锂离子二次电池、以及制造方法 |
JP2015544951A JP6645187B2 (ja) | 2013-10-28 | 2014-10-23 | リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池、及び製造方法 |
KR1020167010234A KR102301032B1 (ko) | 2013-10-28 | 2014-10-23 | 리튬 이온 2 차 전지 부극용 슬러리 조성물, 리튬 이온 2 차 전지용 부극, 리튬 이온 2 차 전지, 및 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-223599 | 2013-10-28 | ||
JP2013223599 | 2013-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015064465A1 true WO2015064465A1 (ja) | 2015-05-07 |
Family
ID=53004071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/078199 WO2015064465A1 (ja) | 2013-10-28 | 2014-10-23 | リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池、及び製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6645187B2 (ja) |
KR (1) | KR102301032B1 (ja) |
CN (1) | CN105637682A (ja) |
WO (1) | WO2015064465A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017029902A1 (ja) * | 2015-08-14 | 2017-02-23 | 旭化成株式会社 | 電気化学素子用電極 |
JP2017050112A (ja) * | 2015-08-31 | 2017-03-09 | 日本ゼオン株式会社 | 非水系二次電池の製造方法 |
CN107429030A (zh) * | 2015-10-27 | 2017-12-01 | 积水化学工业株式会社 | 固化性树脂组合物和显示元件 |
CN107534153A (zh) * | 2015-11-11 | 2018-01-02 | 株式会社Lg化学 | 用于改善分散性和降低电阻的二次电池用负极浆料、和包含它的负极 |
WO2020040148A1 (ja) * | 2018-08-22 | 2020-02-27 | 東亞合成株式会社 | 二次電池電極合剤層用バインダー、二次電池電極合剤層用組成物及び二次電池電極 |
CN111033815A (zh) * | 2017-08-31 | 2020-04-17 | 日本瑞翁株式会社 | 电化学元件功能层用组合物、电化学元件用功能层以及电化学元件 |
WO2020175153A1 (ja) * | 2019-02-28 | 2020-09-03 | 花王株式会社 | 吸水性組成物及びその製造方法 |
CN112236884A (zh) * | 2018-06-06 | 2021-01-15 | 远景Aesc能源元器件有限公司 | 锂离子电池用电极、锂离子电池用电极浆料、锂离子电池用电极的制造方法和锂离子电池 |
US20220020993A1 (en) * | 2018-12-19 | 2022-01-20 | Nippon Paper Industries Co., Ltd. | Carboxymethylcellulose or salt thereof for nonaqueous electrolyte secondary battery |
WO2024057643A1 (ja) * | 2022-09-13 | 2024-03-21 | Tdk株式会社 | リチウムイオン二次電池用硬化物、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105914376A (zh) * | 2016-06-24 | 2016-08-31 | 辽宁九夷锂能股份有限公司 | 一种锂离子电池负极增强型复合粘结剂及其应用 |
CN109792040B (zh) * | 2016-10-13 | 2024-03-08 | 宁德新能源科技有限公司 | 负极添加剂及含有该添加剂的极片和电化学储能装置 |
CN108933260A (zh) * | 2017-05-23 | 2018-12-04 | 宁德时代新能源科技股份有限公司 | 水溶性电极粘结剂、电极片及其制备方法以及电化学储能装置 |
KR102227810B1 (ko) * | 2018-06-08 | 2021-03-15 | 주식회사 엘지화학 | 리튬 이차전지용 음극 슬러리, 및 이의 제조방법 |
CN109921098B (zh) * | 2018-11-20 | 2020-12-15 | 万向一二三股份公司 | 一种水系超级纳米磷酸铁锂电池的制备方法 |
EP4024533B1 (en) * | 2019-12-03 | 2023-12-27 | Contemporary Amperex Technology Co., Limited | Binder composition and preparation method for secondary battery |
CN114284493A (zh) * | 2020-09-27 | 2022-04-05 | 株式会社村田制作所 | 锂离子二次电池负极添加剂及包含其的负极浆料及电池 |
CN114883563B (zh) * | 2022-05-11 | 2023-09-08 | 厦门海辰储能科技股份有限公司 | 电池浆料、正极极片、负极极片和锂电池 |
CN118511294A (zh) * | 2022-08-03 | 2024-08-16 | 宁德时代新能源科技股份有限公司 | 负极极片及其制备方法、二次电池、电池模块、电池包及用电装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008087966A1 (ja) * | 2007-01-16 | 2008-07-24 | Zeon Corporation | 結着剤組成物、電極用スラリー、電極および非水電解質二次電池 |
WO2013154165A1 (ja) * | 2012-04-12 | 2013-10-17 | 三菱レイヨン株式会社 | 二次電池電極バインダ樹脂、二次電池電極組成物、二次電池電極および二次電池 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000106189A (ja) | 1998-07-31 | 2000-04-11 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池および非水電解質二次電池用負極の製造法 |
KR100537613B1 (ko) * | 2003-06-20 | 2005-12-19 | 삼성에스디아이 주식회사 | 리튬 전지용 음극 조성물과 이를 채용한 음극 및 리튬 전지 |
JP4420123B2 (ja) | 2007-06-18 | 2010-02-24 | 東洋インキ製造株式会社 | 電池用組成物 |
KR20120112712A (ko) * | 2010-02-03 | 2012-10-11 | 제온 코포레이션 | 리튬 이온 이차 전지 부극용 슬러리 조성물, 리튬 이온 이차 전지 부극 및 리튬 이차 전지 |
JP2012069457A (ja) | 2010-09-27 | 2012-04-05 | Konica Minolta Holdings Inc | 多孔質層及びリチウムイオン二次電池 |
CN103782426B (zh) | 2011-08-30 | 2016-03-30 | 日本瑞翁株式会社 | 二次电池负极用粘合剂组合物、二次电池用负极、负极用浆料组合物、制造方法及二次电池 |
JP6144626B2 (ja) * | 2011-10-07 | 2017-06-07 | トヨタ自動車株式会社 | リチウムイオン二次電池 |
-
2014
- 2014-10-23 WO PCT/JP2014/078199 patent/WO2015064465A1/ja active Application Filing
- 2014-10-23 CN CN201480056525.5A patent/CN105637682A/zh active Pending
- 2014-10-23 JP JP2015544951A patent/JP6645187B2/ja active Active
- 2014-10-23 KR KR1020167010234A patent/KR102301032B1/ko active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008087966A1 (ja) * | 2007-01-16 | 2008-07-24 | Zeon Corporation | 結着剤組成物、電極用スラリー、電極および非水電解質二次電池 |
WO2013154165A1 (ja) * | 2012-04-12 | 2013-10-17 | 三菱レイヨン株式会社 | 二次電池電極バインダ樹脂、二次電池電極組成物、二次電池電極および二次電池 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017029902A1 (ja) * | 2015-08-14 | 2017-02-23 | 旭化成株式会社 | 電気化学素子用電極 |
JP2017050112A (ja) * | 2015-08-31 | 2017-03-09 | 日本ゼオン株式会社 | 非水系二次電池の製造方法 |
CN107429030A (zh) * | 2015-10-27 | 2017-12-01 | 积水化学工业株式会社 | 固化性树脂组合物和显示元件 |
CN107534153A (zh) * | 2015-11-11 | 2018-01-02 | 株式会社Lg化学 | 用于改善分散性和降低电阻的二次电池用负极浆料、和包含它的负极 |
JP2018517246A (ja) * | 2015-11-11 | 2018-06-28 | エルジー・ケム・リミテッド | 分散性向上及び抵抗減少のための二次電池用負極スラリー及びこれを含む負極 |
EP3276714A4 (en) * | 2015-11-11 | 2018-07-11 | LG Chem, Ltd. | Anode slurry for secondary battery for improving dispersibility and reducing resistance, and anode comprising same |
US10644316B2 (en) | 2015-11-11 | 2020-05-05 | Lg Chem, Ltd. | Anode slurry for secondary battery for improving dispersibility and reducing resistance, and anode comprising same |
CN111033815A (zh) * | 2017-08-31 | 2020-04-17 | 日本瑞翁株式会社 | 电化学元件功能层用组合物、电化学元件用功能层以及电化学元件 |
CN112236884A (zh) * | 2018-06-06 | 2021-01-15 | 远景Aesc能源元器件有限公司 | 锂离子电池用电极、锂离子电池用电极浆料、锂离子电池用电极的制造方法和锂离子电池 |
WO2020040148A1 (ja) * | 2018-08-22 | 2020-02-27 | 東亞合成株式会社 | 二次電池電極合剤層用バインダー、二次電池電極合剤層用組成物及び二次電池電極 |
JPWO2020040148A1 (ja) * | 2018-08-22 | 2021-08-26 | 東亞合成株式会社 | 二次電池電極合剤層用バインダー、二次電池電極合剤層用組成物及び二次電池電極 |
JP7327404B2 (ja) | 2018-08-22 | 2023-08-16 | 東亞合成株式会社 | 二次電池電極合剤層用バインダー、二次電池電極合剤層用組成物及び二次電池電極 |
US20220020993A1 (en) * | 2018-12-19 | 2022-01-20 | Nippon Paper Industries Co., Ltd. | Carboxymethylcellulose or salt thereof for nonaqueous electrolyte secondary battery |
WO2020175153A1 (ja) * | 2019-02-28 | 2020-09-03 | 花王株式会社 | 吸水性組成物及びその製造方法 |
WO2024057643A1 (ja) * | 2022-09-13 | 2024-03-21 | Tdk株式会社 | リチウムイオン二次電池用硬化物、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JP6645187B2 (ja) | 2020-02-14 |
KR20160077058A (ko) | 2016-07-01 |
CN105637682A (zh) | 2016-06-01 |
JPWO2015064465A1 (ja) | 2017-03-09 |
KR102301032B1 (ko) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6645187B2 (ja) | リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池、及び製造方法 | |
JP6481609B2 (ja) | 二次電池用バインダー組成物、二次電池負極用スラリー組成物、二次電池用負極、および、二次電池 | |
JP6414080B2 (ja) | リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、二次電池用電極の製造方法、および、リチウムイオン二次電池 | |
JP6477463B2 (ja) | 二次電池負極用スラリー組成物、二次電池用負極、および、二次電池 | |
JP6197863B2 (ja) | 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用負極、および、二次電池 | |
JP6642000B2 (ja) | リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、および、リチウムイオン二次電池 | |
JP5761197B2 (ja) | 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池負極、二次電池及び二次電池負極用バインダー組成物の製造方法 | |
JP6229290B2 (ja) | 二次電池用電極積層体及び二次電池 | |
JP6398995B2 (ja) | 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池 | |
JP7298592B2 (ja) | リチウムイオン二次電池用スラリー組成物およびリチウムイオン二次電池用電極 | |
JP6455015B2 (ja) | 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池 | |
JP6579250B2 (ja) | 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14858825 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015544951 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167010234 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14858825 Country of ref document: EP Kind code of ref document: A1 |