WO2017082265A1 - 金属担持物、担持金属触媒及び該触媒を用いるアンモニア合成法 - Google Patents

金属担持物、担持金属触媒及び該触媒を用いるアンモニア合成法 Download PDF

Info

Publication number
WO2017082265A1
WO2017082265A1 PCT/JP2016/083156 JP2016083156W WO2017082265A1 WO 2017082265 A1 WO2017082265 A1 WO 2017082265A1 JP 2016083156 W JP2016083156 W JP 2016083156W WO 2017082265 A1 WO2017082265 A1 WO 2017082265A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
catalyst
supported
ammonia
reaction
Prior art date
Application number
PCT/JP2016/083156
Other languages
English (en)
French (fr)
Inventor
細野 秀雄
亨和 原
政明 北野
拓 溝口
壽治 横山
亨介 山縣
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to CN201680065123.0A priority Critical patent/CN108348902B/zh
Priority to JP2017550340A priority patent/JP6802544B2/ja
Priority to US15/774,195 priority patent/US10759668B2/en
Priority to EP16864226.2A priority patent/EP3375521A4/en
Publication of WO2017082265A1 publication Critical patent/WO2017082265A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/007Compounds containing at least one carbonyl group
    • C01G55/008Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a metal support, a supported metal catalyst based on the metal support, and an ammonia synthesis method using the catalyst.
  • the Haber Bosch method which is a typical ammonia synthesis method, uses a double promoted iron catalyst containing Fe 3 O 4 containing several mass% of Al 2 O 3 and K 2 O.
  • ammonia is produced by directly reacting a mixed gas of nitrogen and hydrogen under high-temperature and high-pressure conditions. This technology is still used industrially in the manufacturing process almost as it was when it was completed.
  • a catalyst using a transition metal such as Ru is known to be able to synthesize ammonia under milder conditions than the reaction conditions used in the Harbor Bosch method because of its very high activity. .
  • the reaction proceeds at a low temperature and a low pressure of 200 to 400 ° C. and a reaction pressure of about 1.1 to 1.1 MPa.
  • the representative composition of the mayenite type compound is represented by 12CaO ⁇ 7Al 2 O 3 , and two oxygen atoms are included as “free oxygen” in the space in the cage formed by the crystal skeleton. It has a structure.
  • the present inventor has found that a catalyst having a transition metal as a catalytic active component on a mayenite compound (hereinafter referred to as C12A7 electride) obtained by substituting free oxygen in the mayenite type compound with an electron has high activity as a catalyst for ammonia synthesis. Found to have.
  • Patent Document 2 Non-Patent Document 1
  • a supported metal catalyst using a compound such as a metal amide compound has high activity as an ammonia synthesis catalyst.
  • Patent Documents 3 and 4 These catalysts have sufficient reaction activity even under low temperature and low pressure reaction conditions as compared to the reaction conditions of the Harbor Bosch method.
  • Non-Patent Document 2 various metal hydrides are known and used for various applications.
  • the metal hydride is usually obtained by heating a metal in a hydrogen atmosphere.
  • alkaline earth metal hydrides such as CaH 2 react with water to generate hydrogen and are used as a solvent desiccant or reducing agent.
  • a rare earth metal hydride such as LaH 2 is used as a hydrogen storage / release material because it further absorbs hydrogen atoms in the molecule to form an ultra-high concentration hydride. It is also used as a raw material for producing a nitride phosphor, an electron-emitting electrode, and the like.
  • JP 2006-231229 A International Publication No. WO2012 / 077658 International Publication WO2014 / 034473 International Publication WO2016 / 088886
  • the supported metal catalyst as described in Patent Document 1 usually uses a carbonaceous support such as activated carbon or an inorganic oxide support.
  • these supported metal catalysts have low reaction activity and have insufficient performance for practical use. That is, there is a need for an ammonia synthesis catalyst that has sufficient reaction activity even under lower temperature and lower pressure conditions than the reaction conditions of the Harbor Bosch method.
  • Patent Documents 2 to 4 have sufficient reaction activity even under low temperature and low pressure reaction conditions, they can be produced by a simpler method than those catalysts, and have a high reaction activity for ammonia synthesis. There is a need for a catalyst. On the other hand, utilization of metal hydride as a catalyst has not been studied.
  • the present inventor has developed a high-performance catalyst for ammonia synthesis, in which a metal support in which a transition metal is supported on a metal hydride can be produced by a simple method and has high catalytic activity when used as a catalyst. As a result, the present invention has been achieved.
  • the gist of the present invention is as follows.
  • a metal carrier comprising a transition metal and a carrier supporting the transition metal, wherein the carrier is a metal hydride represented by the following general formula (1).
  • a method for producing ammonia which comprises synthesizing ammonia by bringing a source gas containing hydrogen and nitrogen into contact with the catalyst according to [5].
  • a reaction temperature at the time of contacting with the supported metal catalyst is 100 ° C. or more and 600 ° C. or less.
  • the ratio of hydrogen to nitrogen (H 2 / N 2 (volume / volume)) in contact with the supported metal catalyst is 0.4 or more, and any one of [6] to [9] A method for producing ammonia as described.
  • the metal carrier of the present invention can be used as a supported metal catalyst, and exhibits high catalytic activity when the supported metal catalyst of the present invention is used.
  • the supported metal catalyst of the present invention is particularly suitable as an ammonia synthesis catalyst because it has a high ammonia synthesis activity even at a low reaction temperature and a low reaction pressure.
  • ammonia By producing ammonia using the supported metal catalyst of the present invention, it is possible to synthesize ammonia with less energy, and even if the synthesis reaction is repeated, no decrease in catalytic activity is observed, so that chemical and long-term use can be achieved with high efficiency. Ammonia can be produced with stability.
  • the metal support and supported metal catalyst of the present invention can be obtained by supporting a transition metal on a metal hydride.
  • Metal hydride is an active compound having properties such as reacting with moisture, but it is a compound that can be handled relatively easily. Therefore, metal hydride can be produced in a simple and safe manner. It is possible and further cost reduction can be expected.
  • Example 14 is a graph showing changes with time in the ammonia synthesis rate in Example 12. It is a graph which shows the result of Example 13 and Comparative Example 5. It is a figure which shows the X-ray-diffraction pattern of the catalyst after ammonia synthesis reaction in Example 14.
  • the metal carrier of the present invention includes a transition metal and a carrier that carries the transition metal, and the carrier is a metal hydride represented by the following general formula (1).
  • the carrier used in the present invention is a hydride of metal element X.
  • X represents at least one selected from Group 2 atoms, Group 3 atoms, or lanthanoid atoms in the periodic table.
  • the atoms used for X are not particularly limited, but may be one kind or two or more kinds of elements. When two or more kinds of elements are included, it is not particularly limited, but it is preferable that atoms of the same group or lanthanoid atoms are included.
  • the group 2 atom of the periodic table (hereinafter simply referred to as group 2 atom, sometimes abbreviated as AE) is not particularly limited, but is preferably Mg, Ca, Sr, Ba, more preferably Ca and Sr because of the high activity when the metal support is used as a supported metal catalyst to be described later, and more preferably Ca because of the high activity when the metal support is used as a supported metal catalyst to be described later. is there.
  • Y since it is an element with much abundance, it is Y.
  • a lanthanoid atom Preferably it is La, Ce, Pr, Nd, Sm, Eu, Pr, Yb from a more versatile material, More preferably, abundance is compared. La, Ce, Nd, and Sm are particularly abundant, and La and Ce are more preferable because of their high activity when a metal support is used as a supported metal catalyst described later.
  • X is a lanthanoid atom, it may contain a plurality of lanthanoid atoms, and specifically may be a Misch Metal.
  • Misch metal is a common name for an alloy containing a plurality of rare earth elements (rare earth), and is generally known as an alloy containing a large amount of Ce as a component.
  • the Group 3 atom and the lanthanoid atom may be collectively referred to as RE hereinafter.
  • X is preferably a Group 2 atom or a lanthanoid atom having a high activity when a metal supported material is used as a supported metal catalyst to be described later, and more preferably an element existing amount. It is a group 2 atom in many respects.
  • X is preferably Ca, Mg, Sr, Ba, Y, or a lanthanoid atom, and more preferably Ca, Mg, Sr, Ba, Y, La, Ce, Pr, Nd, Sm, Eu, Pr. , Yb, and more preferably Ca.
  • n represents a numerical value of 2 ⁇ n ⁇ 3.
  • N is not particularly limited when X is a Group 2 atom, but is preferably 2.
  • N represents an arbitrary numerical value of 2 to 3, preferably 2 or 3, when X is a Group 3 atom or a lanthanoid atom.
  • the AE and the RE usually form an ion-bonded hydride.
  • hydrogen exists as hydride ions (H ⁇ ions), and generates hydrogen (H 2 ) and hydroxide ions (OH ⁇ ) upon contact with water or acid.
  • REH n hydride of RE
  • a dihydride that is a general hydride and a trihydride that is a high-density hydride are known.
  • a high density metal hydride having a value between 2 hydrides and 3 hydrides can be formed, and the value between 2 hydrides and 3 hydrides can be continuously changed. .
  • a part of X may further contain an atom other than X, and specifically, it may contain at least one kind of alkali metal atom.
  • the metal hydride used in the present invention is not particularly limited, and a commercially available reagent or industrial raw material may be used, or a corresponding metal may be synthesized by a known method such as heating in a hydrogen atmosphere. Good.
  • the transition metal used in the present invention is not particularly limited, but is usually a transition metal of Group 6, Group 7, Group 8, Group 9, Group 10 of the periodic table, preferably Group 6, It is a group 8 or group 9 transition metal, more preferably a group 8 or group 9 metal.
  • the specific metal element is not particularly limited, but is usually Cr, Mo, Mn, Re, Fe, Ru, Os, Co, Rh, Ni, Pd, or Pt, and preferably a bond with nitrogen.
  • Mo, Re, Fe, Ru, Os, Co in terms of high energy, more preferably Ru, Co, or Fe in terms of having ammonia synthesis activity when a metal support is used as a supported metal catalyst. Ru is more preferable because it has the highest catalytic activity.
  • each of the above elements may be used alone or in combination of two or more.
  • intermetallic compounds of these elements for example, Co3Mo3N, Fe3Mo3N, Ni2Mo3N, Mo2N, and the like can be used.
  • each element is used alone or in combination of two or more. More preferably, the use of each element alone is advantageous in terms of cost.
  • composition of metal support The amount of the transition metal supported on the metal hydride in the metal carrier of the present invention is not particularly limited, but is usually 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.8%. The amount is 1% by mass or more, usually 30% by mass or less, preferably 20% by mass or less, and more preferably 15% by mass or less. If it is at least the lower limit, the effect of the present invention can be obtained, and if it is not more than the upper limit, the effect of the present invention can be obtained in accordance with the carrying amount and cost.
  • the specific surface area of the metal carrier of the present invention is not particularly limited, but is usually 0.1 m 2 / g or more, preferably 1 m 2 / g or more, preferably 3 m 2 / g or more.
  • the shape of the metal carrier of the present invention is not particularly limited, and specifically may be any shape such as a lump shape, a powder shape, a film shape, etc., but is usually a powder shape.
  • the particle diameter of the powdery metal carrier is not particularly limited, but is usually 10 nm or more and 50 ⁇ m or less.
  • the particle diameter of the transition metal in the metal carrier of the present invention is not particularly limited, but is usually 1 nm or more and 100 nm or less. Preferably, it is 10 nm or less, more preferably 5 nm or less, which is advantageous in that the number of step sites, which are active sites for nitrogen dissociation, increases when used as an ammonia synthesis catalyst.
  • the metal support of the present invention is produced by supporting the transition metal on the metal hydride.
  • the production method is not particularly limited, it is usually produced by supporting a metal hydride with a transition metal or a compound serving as a transition metal precursor (hereinafter referred to as a transition metal compound).
  • metal hydride used as the raw material for the metal-supported material of the present invention commercially available reagents and industrial raw materials may be used, or those obtained from the corresponding metals by known methods may be used.
  • metal hydrides are obtained by heating the corresponding metal under a hydrogen atmosphere.
  • calcium hydride (CaH 2 ) is obtained by heating metallic calcium to about 400 ° C. in a hydrogen atmosphere.
  • the cerium hydride (CeH 2 ) content can be obtained by heating metal cerium to about 700 to 800 ° C. in a hydrogen atmosphere.
  • the method for supporting the transition metal on the metal hydride used in the present invention is not particularly limited, and a known method can be used. Usually, a transition metal compound that is supported, which can be converted to a transition metal by reduction, thermal decomposition, etc., is supported on the metal hydride and then converted to a transition metal. It is done.
  • the transition metal compound is not particularly limited, and an inorganic compound or organic transition metal complex of a transition metal that is easily thermally decomposed can be used.
  • transition metal salts such as transition metal complexes, transition metal oxides, nitrates, and hydrochlorides can be used.
  • Ru compound triruthenium dodecacarbonyl [Ru 3 (CO) 12 ], dichlorotetrakis (triphenylphosphine) ruthenium (II) [RuCl 2 (PPh 3 ) 4 ], dichlorotris (triphenylphosphine) ruthenium (II) ) [RuCl 2 (PPh 3 ) 3 ], tris (acetylacetonato) ruthenium (III) [Ru (acac) 3 ], ruthenocene [Ru (C 5 H 5 )], ruthenium nitrosyl nitrate [Ru (NO) (NO 3 ) 3 ], potassium ruthenate, ruthenium oxide, ruthenium nitrate, ruthenium chloride and the like.
  • Fe compounds include pentacarbonyl iron [Fe (CO) 5 ], dodecacarbonyl triiron [Fe 3 (CO) 12 ], nonacarbonyl iron [Fe 2 (CO) 9 ], tetracarbonyl iron iodide [Fe (CO ) 4 I 2 ], tris (acetylacetonato) iron (III) [Fe (acac) 3 ], ferrocene [Fe (C 5 H 5 ) 2 ], iron oxide, iron nitrate, iron chloride (FeCl 3 ), etc. Can be mentioned.
  • Co compound examples include cobalt octacarbonyl [Co 2 (CO) 8 ], tris (acetylacetonato) cobalt (III) [Co (acac) 3 ], cobalt (II) acetylacetonate [Co (acac) 2 ], Examples include cobaltocene [Co (C 5 H 5 ) 2 ], cobalt oxide, cobalt nitrate, and cobalt chloride.
  • transition metal compounds [Ru 3 (CO) 12 ], [Fe (CO) 5 ], [Fe 3 (CO) 12 ], [Fe 2 (CO) 9 ], [Co 2 (CO) 8
  • the transition metal carbonyl complex such as is supported by heating after being supported, which is preferable in that the reduction treatment described later can be omitted in the production of the metal support of the present invention.
  • the amount of the transition metal compound used is not particularly limited, and an amount for realizing a desired loading amount can be appropriately used.
  • the amount of the transition metal compound is usually based on the mass of the metal hydride to be used. 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and usually 30% by mass or less, preferably 20% by mass or less, more preferably 15% by mass or less. .
  • Specific examples of the method for supporting the transition metal compound on the metal hydride include an impregnation method, a physical mixing method, a CVD method (chemical vaporization method), and a sputtering method.
  • the metal hydride is added to the solution of the transition metal compound and stirred.
  • the solvent at this time is not particularly limited, and water or various organic solvents can be used, but an organic solvent is preferable in order to suppress decomposition of the metal hydride.
  • the transition metal compound may be dissolved or dispersed in a solvent.
  • it is heated to dryness in an inert gas stream such as nitrogen, argon, helium or under vacuum.
  • the heating temperature at this time is not particularly limited, but is usually 50 ° C. or higher and 300 ° C. or lower.
  • the heating time is not particularly limited, but is usually 30 minutes or longer and 20 hours or shorter.
  • the transition metal compound is converted into a transition metal by pyrolysis
  • the transition metal is usually supported at this stage, and becomes the metal support of the present invention.
  • the metal carrier of the present invention is obtained by usually reducing the dried transition metal compound.
  • the method for reducing the transition metal compound (hereinafter referred to as reduction treatment) is not particularly limited as long as it does not impair the object of the present invention.
  • a method performed in an atmosphere containing a reducing gas A method of adding a reducing agent such as NaBH 4 , NH 2 NH 2 or formalin to the solution containing the solution and precipitating it on the surface of the metal hydride can be mentioned, but it is preferably performed in an atmosphere containing a reducing gas.
  • the reducing gas include hydrogen, ammonia, methanol (steam), ethanol (steam), methane, and ethane.
  • components other than the reducing gas that do not inhibit the object of the present invention, particularly the ammonia synthesis reaction may coexist in the reaction system.
  • a gas such as argon or nitrogen that does not inhibit the reaction may coexist, and it is preferable to coexist nitrogen.
  • the reduction treatment in addition to a reducing gas such as hydrogen, a gas such as argon or nitrogen that does not inhibit the reaction may coexist, and it is preferable to coexist nitrogen.
  • the reduction treatment is performed in a gas containing hydrogen, it can be performed in parallel with the production of ammonia, which will be described later, by coexisting nitrogen with hydrogen. That is, when the metal carrier of the present invention is used as a catalyst for ammonia synthesis, which will be described later, the transition metal compound supported on the metal hydride is placed in the reaction conditions of the ammonia synthesis reaction. The transition metal compound may be reduced and converted to a transition metal.
  • the temperature during the reduction treatment is not particularly limited, but is usually 200 ° C. or higher, preferably 300 ° C. or higher, usually 1000 ° C. or lower, preferably 600 ° C. or lower. This is because the transition metal grows sufficiently and in a preferable range by performing the reduction treatment within the temperature range.
  • the pressure during the reduction treatment is not particularly limited, but is usually 0.01 MPa or more and 10 MPa. If the pressure during the reduction treatment is the same as the ammonia synthesis conditions described later, a complicated operation is unnecessary, which is advantageous in terms of production efficiency.
  • the time for the reduction treatment is not particularly limited, but when it is carried out at normal pressure, it is usually 1 hour or longer and preferably 2 hours or longer. When the reaction is performed under a high reaction pressure, for example, 1 MPa or more, 1 hour or more is preferable.
  • the physical mixing method is a method in which the metal hydride and the transition metal compound are solid-phase mixed and then heated in an inert gas stream such as nitrogen, argon, helium, or under vacuum.
  • the heating temperature and heating time are the same as in the above impregnation method.
  • the metal carrier of the present invention can be used as a supported metal catalyst. That is, the supported metal catalyst of the present invention includes a transition metal and a carrier supporting the transition metal, and the supported metal catalyst is a metal hydride represented by the following general formula (1).
  • the supported metal catalyst of the present invention may be used as it is for the reaction of the metal support of the present invention, or may be molded as necessary, as long as the effects of the present invention are not impaired, and the metal hydride and Although components other than the transition metal may be contained, it is usually preferable to use the metal carrier of the present invention as it is.
  • SiO 2 , Al 2 O 3 , ZrO 2 , MgO, activated carbon, graphite, SiC, and the like may further be included as the metal hydride carrier.
  • the amount of the transition metal supported on the carrier is not particularly limited, but is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass. %, Usually 30% by mass or less, preferably 20% by mass or less, more preferably 15% by mass or less. If it is at least the lower limit, the effect of the present invention can be obtained, and if it is not more than the upper limit, the effect of the present invention can be obtained in accordance with the carrying amount and cost.
  • the specific surface area of the supported metal catalyst of the present invention is not particularly limited, but is usually 0.1 m 2 / g or more, preferably 1 m 2 / g or more, more preferably 3 m 2 / g or more.
  • the shape of the supported metal catalyst of the present invention is not particularly limited, and specifically may be any shape such as a lump shape, a powder shape, and a film shape, but is usually a powder shape.
  • the particle diameter of the powdery metal carrier is not particularly limited, but is usually 10 nm or more and 50 ⁇ m or less.
  • the particle diameter of the transition metal in the supported metal catalyst of the present invention is not particularly limited, but is usually 1 nm or more and 100 nm or less. Preferably, it is 10 nm or less, more preferably 5 nm or less, where the number of step sites, which are active sites for nitrogen dissociation, increases.
  • the supported metal catalyst of the present invention can be used as a molded body using a normal molding technique. Specific examples include granular, spherical, tablet, ring, macaroni, four-leaf, dice, and honeycomb shapes. It can also be used after coating on a suitable support.
  • the supported metal catalyst of the present invention can be used as a catalyst for various reactions, but is suitable as a catalyst for ammonia synthesis reaction. Since the catalyst has high ammonia synthesis activity, it can be produced with high reaction efficiency.
  • the reaction activity is not particularly limited, but it is 0.5 mmol / g / h or more in the case where the production rate of ammonia at a reaction temperature of 340 ° C. and a reaction pressure of 0.1 MPa is taken as an example. It is preferable that it is 1.0 mmol / g ⁇ h or more because it is suitable for practical production conditions, and that it is 2.0 mmol / g ⁇ h or more is suitable for more efficient production conditions. In view of the above, it is more preferable that the amount is 3.0 mmol / g ⁇ h or more because it is more suitable for highly efficient production conditions.
  • the supported metal catalyst of the present invention can also be applied to ammonia decomposition, which is a reverse reaction of ammonia synthesis. Furthermore, the supported metal catalyst of the present invention is used for hydrogenation reactions of illegal carbon compounds, for example, hydrogenation reactions of olefins, acetylene compounds and carbonyl compounds, and nuclear hydrogenation reactions of aromatic compounds and heterocyclic compounds. Can do.
  • a method for producing ammonia using the supported metal catalyst of the present invention will be described.
  • the method for producing ammonia of the present invention (hereinafter sometimes referred to as the production method of the present invention) is a method of synthesizing ammonia by using the supported metal catalyst of the present invention as a catalyst and reacting hydrogen and nitrogen on the catalyst. It is.
  • a specific production method is not particularly limited as long as it is a method of synthesizing ammonia by bringing hydrogen and nitrogen into contact with each other on the catalyst, and can be produced according to known production methods as appropriate.
  • the catalyst is heated to produce ammonia.
  • the reaction temperature in the production method of the present invention is not particularly limited, but is usually 200 ° C. or higher, preferably 250 ° C. or higher, more preferably 300 ° C. or higher, usually 600 ° C. or lower, preferably 500 ° C. or lower. Yes, more preferably 450 ° C or lower. Since ammonia synthesis is an exothermic reaction, the low temperature region is more advantageous for ammonia production in terms of chemical equilibrium. However, in order to obtain a sufficient ammonia production rate, the reaction is preferably performed in the above temperature range.
  • the molar ratio of nitrogen and hydrogen to be brought into contact with the catalyst is not particularly limited, but is usually the ratio of hydrogen to nitrogen (H 2 / N 2 (volume / volume)), usually 0.00. It is 4 or more, preferably 0.5 or more, more preferably 1 or more, usually 10 or less, preferably 5 or less.
  • the reaction pressure in the production method of the present invention is not particularly limited, but is usually 0.01 MPa or more, preferably 0.1 MPa or more, usually 20 MPa or less, preferably 15 MPa or less, more preferably the pressure of a mixed gas containing nitrogen and hydrogen. Is 10 MPa or less. In consideration of practical use, it is preferable to carry out the reaction under a pressurized condition of atmospheric pressure or higher.
  • the water content in nitrogen and hydrogen used in the production method of the present invention is small, and although not particularly limited, The total water content in the mixed gas of hydrogen and hydrogen is 100 ppm or less, preferably 50 ppm or less.
  • the type of the reaction vessel is not particularly limited, and a reaction vessel that can be usually used for the ammonia synthesis reaction can be used.
  • a specific reaction format for example, a batch type reaction format, a closed circulation system reaction format, a circulation system reaction format, or the like can be used.
  • the flow reaction system is preferable.
  • any one method of a reactor filled with a catalyst, a method of connecting a plurality of reactors, or a reactor having a plurality of reaction layers in the same reactor can be used.
  • reaction for synthesizing ammonia from hydrogen and nitrogen is an exothermic reaction with volume shrinkage
  • a known reaction apparatus may be used. For example, specifically, a method of removing a heat by connecting a plurality of reactors filled with a catalyst in series and installing an intercooler at the outlet of each reactor may be used.
  • the ammonia synthesis catalyst obtained by the production method of the present invention can be used alone or in combination with other known catalysts that can be usually used for ammonia synthesis. .
  • ammonia synthesis activity was evaluated by determining the amount of NH 3 produced by gas chromatography or by dissolving the produced NH 3 in an aqueous sulfuric acid solution and quantifying the solution by ion chromatography to determine the ammonia production rate.
  • BET specific surface area measurement method The BET specific surface area was measured from an adsorption / desorption isotherm based on adsorption / desorption of nitrogen gas at ⁇ 196 ° C. by adsorbing nitrogen gas on the surface of the object at liquid nitrogen temperature.
  • the analysis conditions are as follows. [Measurement condition] Measuring device: High-speed / specific surface / pore distribution measuring device BELSORP-mini 2 (manufactured by Microtrac BEL) Adsorption gas: Nitrogen 99.99995% by volume Adsorption temperature: Liquid nitrogen temperature -196 ° C
  • Equipment Prominence manufactured by Shimadzu Corporation Detector: Electrical conductivity detector CDD-10Avp (manufactured by Shimadzu Corporation) Column: Column for ion chromatogram IC-C4 (manufactured by Shimadzu Corporation) Eluent: 3.0 mM oxalic acid + 2.0 mM 18-crown-6-ether aqueous solution Flow rate: 1.0 mL / min Column temperature: 40 ° C
  • Example 1 Preparation of CaH 2 ) 2 g of metal Ca (manufactured by Aldrich, 99.99%) was placed in a tubular electric furnace made of Ar-substituted stainless steel. After the inside of the electric furnace was evacuated, hydrogen was introduced until the pressure in the electric furnace reached 2 MPa. Next, the temperature in the electric furnace was raised from room temperature to 400 ° C. over 4 hours, and subsequently heated at 400 ° C. for 10 hours. After cooling to room temperature, to obtain a CaH 2 powder.
  • Ammonia synthesis reaction Nitrogen gas (N 2 ) and hydrogen gas (H 2 ) were reacted on the catalyst to generate ammonia (NH 3 ) (hereinafter, ammonia synthesis reaction).
  • 0.1 g of the Ru / CaH 2 was packed in a glass tube, and the ammonia synthesis reaction was performed in a fixed bed flow reactor.
  • the raw material N 2 gas and H 2 gas both had a water concentration of 0.5 ppm or less.
  • the flow rate of the raw material gas was set to N 2 : 15 mL / min, H2: 45 mL / min, total 60 mL / min, the pressure was atmospheric pressure, and the reaction temperature was 340 ° C.
  • Example 2 SrH 2 was obtained by the same method as in Example 1 except that 1 g of metal Sr (Aldrich, 99.99%) was used instead of metal Ca in Example 1. Except for using the SrH 2 in place of CaH 2 of Example 1 in the same manner as in Example 1, SrH 2 in the metal Ru is 2 wt% supported metal supported material (hereinafter, Ru / SrH 2) was prepared. The BET specific surface area of the Ru / SrH 2 was 3.3 m 2 / g. The ammonia synthesis reaction was carried out under the same conditions as in Example 1 except that the Ru / SrH 2 was used as a catalyst. The ammonia production rate at a reaction temperature of 340 ° C. was 2.4 mmol / g ⁇ h. The results are shown in Table 1.
  • Example 3 BaH 2 was obtained in the same manner as in Example 1 except that 1 g of metal Ba (Aldrich, 99.99%) was used instead of metal Ca in Example 1. Except that BaH 2 was used instead of CaH 2 in Example 1, a supported material (hereinafter referred to as Ru / BaH 2 ) in which 2 % by mass of metal Ru was supported on BaH 2 was obtained in the same manner as in Example 1. Prepared. The BET specific surface area of the Ru / BaH 2 was 4.2 m 2 / g. An ammonia synthesis reaction was carried out under the same conditions as in Example 1 except that the Ru / BaH 2 was used as a catalyst. The ammonia production rate at a reaction temperature of 340 ° C. was 0.8 mmol / g ⁇ h. The results are shown in Table 1.
  • An electroconductive mayenite type compound (C12A7: e-) was synthesized according to the method described in Example 1 of WO2012 / 077658.
  • As the mayenite type compound a mayenite type compound in which the molar ratio of Ca atom to Al atom was 11:14 was synthesized, and the corresponding C12A7: e- was obtained.
  • the conduction electron concentration of the C12A7: e ⁇ was 2 ⁇ 10 21 cm ⁇ 3 .
  • Ru was supported under the same conditions as in Example 1 to prepare a supported material supporting 2 mass% Ru (hereinafter Ru / C12A7: e-).
  • the Ru / C12A7: e- had a BET specific surface area of 1.0 m 2 / g.
  • an ammonia synthesis reaction was performed under the same conditions as in Example 1.
  • the ammonia production rate at a reaction temperature of 340 ° C. was 1.6 mmol / g ⁇ h. The results are shown in Table 1.
  • the Cs—Ru / MgO had a BET specific surface area of 12 m 2 / g.
  • An ammonia synthesis reaction was carried out under the same conditions as in Example 1 except that Cs—Ru / MgO was used as a catalyst.
  • the production rate of ammonia at 340 ° C. was 2.4 mmol / g ⁇ h. The results are shown in Table 1.
  • Example 4 A metal carrier (hereinafter, Ru / CaO) in which 2% by mass of metal Ru was supported on CaO was prepared in the same manner as in Example 1 except that CaO was used instead of CaH 2 in Example 1.
  • the BET specific surface area of the Ru / CaO was 3 m 2 / g.
  • An ammonia synthesis reaction was carried out under the same conditions as in Example 1 except that Ru / CaO was used as a catalyst.
  • the production rate of ammonia at 340 ° C. was 0.3 mmol / g ⁇ h. The results are shown in Table 1.
  • Example 5 A support (hereinafter referred to as Ru / MgO) in which 2% by mass of metal Ru was supported on MgO was prepared by the same method as in Example 1 except that MgO was used instead of CaH 2 in Example 1.
  • the BET specific surface area of the Ru / MgO was 40 m 2 / g.
  • the ammonia synthesis reaction was carried out under the same conditions as in Example 1 except that Ru / MgO was used as a catalyst.
  • the production rate of ammonia at 340 ° C. was 0.3 mmol / g ⁇ h. The results are shown in Table 1.
  • Table 1 shows the catalytic activity of the ammonia synthesis reaction by the catalyst supporting metal Ru on the support material of the present invention. From the viewpoint of the ammonia production rate shown in Table 1, when compared with the catalyst having metal Ru or Cs-Ru supported on the existing catalyst carrier shown in Comparative Examples 3 to 5, the Ru / CaH 2 , Ru / SrH 2 , Although Ba / H 2 has a small specific surface area, it has been found that the catalyst activity per unit mass is high and it is a very excellent catalyst. This catalytic activity was found to be higher than that of the Ru / C12A7: e- having a high catalytic activity shown in Comparative Example 1.
  • Example 4 Except that the Ru loading amount of Ru / CaH 2 in Example 1 was changed to 5% by mass, the Ru / CaH 2 was prepared in the same manner as in Example 1, and this was used as a catalyst in the same manner as in Example 1. The ammonia synthesis reaction was carried out under the conditions. The production rate of ammonia at 340 ° C. was 6.0 mmol / g ⁇ h. The results are shown in FIG.
  • Example 5 Ru / CaH 2 was prepared in the same manner as in Example 1 except that the Ru loading amount of Ru / CaH 2 in Example 1 was changed to 10% by mass, and this was used as a catalyst under the same conditions as in Example 1.
  • the ammonia synthesis reaction was carried out. As shown in FIG. 1, the production rate of ammonia at 340 ° C. was 7.0 mmol / g ⁇ h. The results are shown in FIG.
  • Example 6 Except that the Ru supported amount of Ru / CaH 2 in Example 1 to 15 mass%, the Ru / CaH2 was prepared in the same manner as in Example 1, under the same conditions as in Example 1 and used as a catalyst An ammonia synthesis reaction was performed. The production rate of ammonia at 340 ° C. was 5.3 mmol / g ⁇ h. The results are shown in FIG.
  • Example 7 Instead of Ru 3 (CO) 12 in Example 1, Co 2 (CO) 8 (manufactured by Kanto Chemical Co., Inc., 95%) was used in the same manner as in Example 1 except that Co was supported using 0.058 g. Then, a metal support (hereinafter referred to as Co / CaH2) in which metal Co was supported on 2 mass% CaH 2 was prepared. An ammonia synthesis reaction was performed under the same conditions as in Example 1 except that the Co / CaH 2 was used as a catalyst. The production rate of ammonia at 340 ° C. was 0.4 mmol / g ⁇ h. The results are shown in Table 2.
  • Example 8 Instead of Ru 3 (CO) 12 in Example 1, Fe 2 (CO) 9 (manufactured by STREM CHEMICALS, 99%) was used in the same manner as in Example 1 except that Fe was supported using 0.126 g.
  • a supported material hereinafter referred to as Fe / CaH 2 ) in which Fe was supported on 2 mass% CaH 2 was prepared.
  • An ammonia synthesis reaction was performed under the same conditions as in Example 1 except that the Fe / CaH 2 was used as a catalyst.
  • the production rate of ammonia at 340 ° C. was 0.2 mmol / g ⁇ h. The results are shown in Table 2.
  • Table 2 shows the results of the ammonia synthesis activity at 340 ° C. of the catalysts in which Ru, Co, and Fe are respectively supported on the CaH 2 carrier.
  • Example 9 Except that CeH 2 was used instead of CaH 2 in Example 1, a metal support (hereinafter referred to as Ru / CeH 2 ) in which 2 % by mass of metal Ru was supported on CeH 2 was obtained in the same manner as in Example 1. Prepared. The BET specific surface area of the Ru / CeH 2 was 1.7 m 2 / g. An ammonia synthesis reaction was carried out under the same conditions as in Example 1 except that Ru / CeH 2 was used as a catalyst. The production rate of ammonia at 340 ° C. was 2.8 mmol / g ⁇ h. The results are shown in Table 3.
  • Example 10 Except for using the LaH n instead of CaH 2 of Example 1 in the same manner as in Example 1, the metal Ru is 2 wt% supported supported material in LaH n (hereinafter, Ru / LaHx) was prepared .
  • the BET specific surface area of the Ru / LaH n was 1.3 m 2 / g. Except for using the Ru / LaH n as a catalyst, it was carried out ammonia synthesis reaction under the same conditions as in Example 1.
  • the production rate of ammonia at 340 ° C. was 2.7 mmol / g ⁇ h.
  • Table 3 The results are shown in Table 3.
  • Example 11 Except for using the YH 2 instead of CaH 2 of Example 1, prepared by the same method as in Example 1, metal Ru in YH 2 2 wt% supported supported material (hereinafter, Ru / YH 2) did.
  • the BET specific surface area of the Ru / YH 2 was 0.8 m 2 / g.
  • An ammonia synthesis reaction was performed under the same conditions as in Example 1 except that Ru / YH2 was used as a catalyst.
  • the production rate of ammonia at 340 ° C. was 0.9 mmol / g ⁇ h.
  • Table 3 The results are shown in Table 3.
  • Table 3 shows a summary of the ammonia synthesis activity at a reaction temperature of 340 ° C. using Ru / CaH 2 and a catalyst in which Ru is supported on a rare earth metal hydride. It was found that both Ru / CeH 2 and Ru / LaHn show catalytic performance comparable to Ru / CaH 2 .
  • Example 12 Using the 2 mass% Ru / CaH 2 of Example 1 as a catalyst, an ammonia synthesis reaction was carried out continuously for 10 hours at 10 atm (1.0 MPa) at a reaction temperature of 340 ° C., and the long-term stability of the catalyst was evaluated. did. The results are shown in FIG. It has been found that the catalyst of the present invention stably generates ammonia even in the reaction for 120 hours, and the reaction activity hardly decreases.
  • Example 13 Using 2% by mass Ru / CaH 2 of Example 1 as a catalyst, an ammonia synthesis reaction was performed at a reaction temperature of 340 ° C. in a gas atmosphere having different hydrogen partial pressures.
  • the nitrogen partial pressure is fixed to 0.017 MPa
  • the hydrogen partial pressures are set to 0.03 MPa, 0.04 MPa, 0.05 MPa, and 0.07 MPa
  • Ar is adjusted so that the total gas flow rate is 60 mL / min. Gas was flushed. The results are shown in FIG.
  • Example 14 Using 2% by mass Ru / CaH 2 described in Example 1 as a catalyst, an ammonia synthesis reaction was performed at a reaction temperature of 340 ° C. for 70 hours, and then an X-ray diffraction pattern of the catalyst was measured. The results are shown in FIG. Rietveld analysis showed that the Ru / CaH 2 catalyst after the reaction contained 84.92% CaH 2 , 14.30% CaO and 0.78% Ca 2 NH. The production of CaO is considered to have been oxidized at the time of catalyst preparation or by a trace amount of impurities (water or oxygen) contained in the reaction gas. On the other hand, a peak derived from Ca 2 NH was observed. This suggests that nitrogen is incorporated into the skeleton of the CaH2 crystal structure during the reaction.
  • hydride ion contained in the metal hydride - considered which effects the dynamic role of (H ions). That is, when a metal support having a transition metal such as Ru supported on a metal hydride is heated, H ⁇ ions in the metal support are desorbed as neutral hydrogen, and F centers in which electrons are occupied by the deficient sites. Produces. This situation is particularly likely under conditions that produce ammonia. Since the valence of metal ions generated from the metal hydride used in the present invention is usually +2 or +3, these crystals have a larger lattice energy than ion crystals such as alkali metals. .
  • hydride ions are characterized in that their ionic radii can vary considerably depending on the environment. Therefore, the energy level of the electrons at the F center in these hydride crystals is greatly reduced by the relaxation of the structure around the F center as found in alkali metal oxides and halides when hydride ions are replaced with electrons. It is presumed that it is kept high without decreasing. As a result, the work function of the metal support itself is lowered, so that electron donation to the supported metal species occurs efficiently and the catalytic activity of the metal species is promoted. Further, as described above, since the local structure when the F center and the original hydride are present at the defect site is not greatly different, it is considered that reversible exchange of hydride ions and electrons occurs promptly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本発明は、遷移金属を担体に担持した金属担持物であって、前記担体が、下記一般式(1)で表わされる金属水素化物であることを特徴とする金属担持物、担持金属触媒及び該触媒を用いるアンモニア合成法を提供する。 [数1] XH ・・・(1) (前記一般式(1)において、Xは周期表第2族原子、第3族原子、又はランタノイド原子から選ばれる少なくとも1種を表わし、nは、2≦n≦3で表わされる数を表す。)

Description

金属担持物、担持金属触媒及び該触媒を用いるアンモニア合成法
 本発明は、金属担持物、当該金属担持物による担持金属触媒及び該触媒を用いるアンモニア合成法に関する。
 本願は、2015年11月10日に、日本に出願された特願2015-220486号に基づき優先権を主張し、その内容をここに援用する。
 代表的なアンモニア合成法であるハーバー・ボッシュ法は、Feに数質量%のAlとKOを含んだ二重促進鉄(doubly promoted iron)触媒を用い、この触媒に窒素と水素の混合気体を高温高圧条件で直接反応させ、アンモニアを製造する方法である。この技術は現在でも、ほぼ完成当時のままの製造工程で工業的に用いられている。
 一方、ハーバー・ボッシュ法の反応温度よりも低い温度でアンモニアを合成する方法が検討されている。窒素及び水素と接触させることでアンモニアを合成することができる触媒が検討され、遷移金属がその触媒活性成分として検討されている。このうち、触媒活性成分としてルテニウム(Ru)を各種担体に担持させてアンモニア合成用触媒として用いる方法が、効率のよい方法として提案されている(例えば特許文献1)。
 Ru等の遷移金属を用いた触媒は、その活性が非常に高いため、ハーバー・ボッシュ法で用いられている反応条件に比べ、より温和な条件でアンモニアを合成することができることが知られている。例えば反応温度200~400℃、反応圧力は大気圧から1.1MPa程度の低温・低圧下で反応が進行することが知られている。
 CaO、Al、SiOを構成成分とするアルミノケイ酸カルシウムであって、マイエナイトと同型の結晶構造を有する「マイエナイト型化合物」と呼ばれる化合物がある。前記マイエナイト型化合物は、その代表組成が、12CaO・7Alで表わされ、またその結晶骨格で形成されるケージ内の空間に「フリー酸素」として2個の酸素原子が包摂されている構造を有する。
 本発明者は、前記マイエナイト型化合物中のフリー酸素を電子で置換したマイエナイト化合物(以下、C12A7エレクトライドという)に、触媒活性成分として遷移金属を担持した触媒が、アンモニア合成用触媒として高い活性を有することを見出した。(特許文献2、非特許文献1)。
 さらに、本発明者は、金属アミド化合物等の化合物を用いた担持金属触媒が、アンモニア合成用触媒として高い活性を有することを見出した。(特許文献3及び4)。
 これらの触媒は、ハーバー・ボッシュ法の反応条件に比べて低温、低圧の反応条件下であっても、十分な反応活性を有する。
 一方、種々の金属水素化物が知られており、各種の用途に使用されている(非特許文献2)。金属水素化物は、通常、金属を水素雰囲気下で加熱することにより得られる。
 例えばCaH等のアルカリ土類金属水素化物は、水と反応して水素を発生するため溶媒の乾燥剤や還元剤として利用されている。LaH等の希土類金属水素化物は、その分子内にさらに水素原子を吸収して超高濃度水素化物となるため、水素貯蔵・放出材料として用いられる。また、窒化物蛍光体製造用の原料や電子放出性電極等としても用いられる。
特開2006-231229号公報 国際公開WO2012/077658号 国際公開WO2014/034473号 国際公開WO2016/088896号
Kitano, M., Inoue, Y., Yamazaki, Y., Hayashi, F., Kanbara, S., Matsuishi, S., Yokoyama, T., Kim, S. W., Hara, M., Hosono, H., "Nature Chemistry" 4, 934-940 (2012) W. G. Bos, K. H. Gayer, "Journal of Nuclear Materials", Vol. 18, Issue 1, p. 1-30 (1966)
 主として二重促進鉄触媒を用いるハーバー・ボッシュ法によるアンモニア合成は、実用化されているが、高温高圧条件を必要とするため、装置面、コスト面での負担が大きいという問題がある。
 特許文献1に記載されるような担持金属触媒は、通常、活性炭等の炭素質担体や、無機酸化物担体を用いている。しかし、これらの担持金属触媒は、反応活性が低く、実用に用いるには不十分な性能しか有していない。
 すなわちハーバー・ボッシュ法の反応条件に比べ、より低温、低圧の条件下でも十分な反応活性を有するアンモニア合成用触媒が求められている。
 特許文献2~4に記載の触媒は、低温、低圧の反応条件下でも十分な反応活性を有するが、これらの触媒に比べて、より簡便な方法で製造可能な、反応活性の高いアンモニア合成用触媒が求められている。
一方、金属水素化物を触媒として利用することは検討されていなかった。
 本発明者は、金属水素化物に、遷移金属を担持させた金属担持物が、簡便な方法で製造でき、かつ触媒として用いた際に高い触媒活性を有し、高性能なアンモニア合成用触媒となることを見出し、本発明に至った。
 すなわち本発明の要旨は、
[1]遷移金属と前記遷移金属を担持する担体とを含む金属担持物であって、前記担体が、下記一般式(1)で表わされる金属水素化物であることを特徴とする金属担持物。
 [数1]
  XH    ・・・(1)
(前記一般式(1)において、Xは周期表第2族原子、第3族原子、又はランタノイド原子から選ばれる少なくとも1種を表わし、nは、2≦n≦3で表わされる数を表す。)
[2]前記一般式(1)におけるXが、Mg、Ca、Sr、Ba、Sc、Y、又はランタノイド原子から選ばれる少なくとも1種、である、[1]に記載の金属担持物。
[3]前記遷移金属が、Ru、Co、又はFeから選ばれる少なくとも1種である、[1]又は[2]に記載の金属担持物。
[4]前記遷移金属の前記担体に対する担持量が、0.01質量%以上、30質量%以下である、[1]~[3]のいずれかに記載の金属担持物。
[5][1]~[4]のいずれかに記載の金属担持物である。
[6]アンモニアの製造方法であって、水素と窒素を含有する原料ガスを、[5]に記載の触媒に接触させ、アンモニアを合成することを特徴とする、アンモニアの製造方法。
[7]前記担持金属触媒と接触させる際の反応温度が、100℃以上、600℃以下である、[6]に記載のアンモニアの製造方法。
[8]前記担持金属触媒と接触させる際の反応圧力が、10kPa以上、20MPa以下である、[6]又は[7]に記載のアンモニアの製造方法。
[9]前記原料ガスの水分含有量が100ppm以下である、[6]~[8]のいずれかに記載のアンモニアの製造方法。
[10]前記担持金属触媒と接触させる際の、窒素に対する水素の比率(H/N(体積/体積))が、0.4以上である、[6]~[9]のいずれかに記載のアンモニアの製造方法、に存する。
 本発明の金属担持物は、担持金属触媒として用いることができ、本発明の担持金属触媒を用いた際に、高い触媒活性を示す。
 本発明の担持金属触媒は、低い反応温度かつ低い反応圧力でも高いアンモニア合成活性を有するため、特にアンモニア合成用触媒として好適である。本発明の担持金属触媒を用いてアンモニアを製造することにより、より少ないエネルギーでアンモニアを合成でき、かつ合成反応を繰り返しても触媒活性の低下が見られないので、高効率に化学的、長期の安定性をもってアンモニアを製造することができる。
 本発明の金属担持物及び担持金属触媒は、金属水素化物に、遷移金属を担持することで得られる。金属水素化物は、水分と反応する等の性質を有する活性な化合物ではあるが、比較的容易に取り扱うことができる化合物であることから、簡便に、かつ安全性の高い方法で、製造することが可能であり、更にはコスト低減が期待できる。
実施例1及び、実施例4から実施例6におけるアンモニア合成反応の反応速度を示すグラフである。 実施例12におけるアンモニア合成速度の経時変化を示すグラフである。 実施例13と比較例5の結果を示すグラフである。 実施例14における、アンモニア合成反応後の触媒のX線回折パターンを示す図である。
 本発明について以下に詳細に説明する。
<金属担持物>
 本発明の金属担持物は、遷移金属と該遷移金属を担持する担体とを含み、前記担体が、下記一般式(1)で表わされる金属水素化物である。
[数2]
  XH    ・・・(1)
(前記一般式(1)において、Xは周期表第2族原子、第3族原子、又はランタノイド原子から選ばれる少なくとも1種を表わし、nは、2≦n≦3で表わされる数を表す。)
(金属水素化物)
 本発明で用いられる前記担体は、金属元素Xの水素化物(ハイドライド)である。
 前記一般式(1)において、Xは、周期表第2族原子、第3族原子、又はランタノイド原子から選ばれる少なくとも1種を表わす。
 前記Xに用いられる原子は、特に限定されないが、1種類であっても2種類以上の元素が含まれていてもよい。2種類以上の元素が含まれるときは、特に限定されないが、同じ族の原子同士、又はランタノイド原子同士が含まれるほうが好ましい。
 周期表第2族原子(以下、単に第2族原子といい、AEと略すことがある。)としては、特に限定はされないが、好ましくはMg、Ca、Sr、Baであり、より好ましくは、金属担持物を後述する担持金属触媒として用いた際の活性が高いことからCa,Srであり、さらに好ましくは、金属担持物を後述する担持金属触媒として用いた際の活性が高いことからCaである。
 周期表第3族原子(以下、第3族原子という。)としては、特に限定はされないが、好ましくは、より存在量が多い元素であることからYである。
 ランタノイド原子としては、特に限定はされないが、好ましくは、より汎用的な材料であることから、La、Ce、Pr、Nd、Sm、Eu、Pr、Ybであり、より好ましくは、存在量が比較的多いLa、Ce、Nd、Smであり、さらに好ましくは、金属担持物を後述する担持金属触媒として用いた際の活性が高いことからLa、Ceである。
 Xがランタノイド原子の場合、複数のランタノイド原子を含んでいてもよく、具体的には、ミッシュメタル(Misch Metal)であってもよい。ミッシュメタルとは、複数の希土類元素(レアアース)が含まれた合金の通称であり、一般的にはCeをその含有成分として多く含む合金として知られている。
 なお前記第3族原子とランタノイド原子を総称して、以下REと略すことがある。
 前記Xとして好ましくは、元素の存在量が多く、金属担持物を後述する担持金属触媒として用いた際の活性が高い第2族原子、又はランタノイド原子であり、より好ましくは、元素の存在量が多い点で第2族原子である。
 また前記Xとして好ましくは、Ca、Mg、Sr、Ba、Y、又はランタノイド原子であり、より好ましくは、Ca、Mg、Sr、Ba、Y、La、Ce、Pr、Nd、Sm、Eu、Pr、Ybであり、であり、さらに好ましくは、Caである。
 前記一般式(1)におけるnは、2≦n≦3の数値を表わす。
 前記nは、Xが第2族原子であるときは、特に限定はされないが、好ましくは2である。
 前記nは、Xが第3族原子、又はランタノイド原子のときは、通常2から3の任意の数値を表わし、好ましくは2又は3である。
前記AE及び前記REは、通常イオン結合型水素化物を形成する。イオン結合型水素化物は、水素はヒドリドイオン(Hイオン)として存在し、水や酸との接触で水素(H)と水酸化物イオン(OH)を生成する。
 前記REの水素化物(以下、REHという)は、一般的な水素化物である2水素化物と、高密度水素化物である3水素化物が知られている。そして、2水素化物と3水素化物の間の値を有する、高密度金属水素化物を形成することができ、2水素化物と3水素化物の間の値を連続的に変化することが可能である。
 前記Xは、本発明の効果を損ねない限り、その一部が、さらにX以外の原子を含んでいてもよく、具体的には、少なくとも1種類のアルカリ金属原子含んでいてもよい。
 本発明で用いられる金属水素化物は、特に限定はされず、市販の試薬や工業原料を使用しても、対応する金属を水素雰囲気下で加熱する等の既知の方法で合成して用いてもよい。
(遷移金属)
 本発明において用いられる遷移金属は、特に限定されるものではないが、通常、周期表第6族、7族、8族、9族、10族の遷移金属であり、好ましくは、第6族、8族、又は9族の遷移金属であり、より好ましくは第8族又は9族金属である。
 また具体的な金属元素としては、特に限定はされないが、通常、Cr、Mo、Mn、Re、Fe、Ru、Os、Co、Rh、Ni、Pd、Ptであり、好ましくは、窒素との結合エネルギーが高い点でMo、Re、Fe、Ru、Os、Co、であり、より好ましくは、金属担持物を担持金属触媒として用いた際に、アンモニア合成活性を有する点で、Ru、Co又はFeであり、更に好ましくは、最も高い触媒活性を有する点でRuである。
 前記の各元素は単独で用いても、2種類以上を組み合わせて用いてもよい。またこれらの元素の金属間化合物、例えば、Co3Mo3N、Fe3Mo3N、Ni2Mo3N、Mo2N等を用いることもできる。好ましくは各元素を単独又は2種類以上の組み合わせであり、より好ましくは、単独で用いることがコストの面で有利である。
(金属担持物の組成)
 本発明の金属担持物における、前記金属水素化物に対する前記遷移金属の担持量は、特に限定はされないが、通常、0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、通常30質量%以下、好ましくは20質量%以下、より好ましくは15質量%以下である。前記下限値以上であれば、本発明の効果が得られ、前記上限値以下であれば、担持量とコストの見合った本発明の効果が得られる。
 本発明の金属担持物の比表面積は、特に限定はされないが、通常0.1m/g以上であり、好ましくは1m/g以上であり、好ましくは3m/g以上である。
(金属担持物の形状)
 本発明の金属担持体の形状は、特に限定はされず、具体的には塊状、粉末状、被膜状等のいずれの形状でもよいが、通常は粉末状である。粉末状の金属担持体の粒子径は特に限定はされないが、通常、10nm以上、50μm以下である。
 本発明の金属担持体における遷移金属の粒子径は、特に限定はされないが、通常、1nm以上、100nm以下である。好ましくは、アンモニア合成用触媒として使用した際に、窒素解離の活性点であるステップサイト数が多くなる点で有利な10nm以下、より好ましくは5nm以下である。
(金属担持物の製造方法)
 本発明の金属担持物は、前記金属水素化物に、前記遷移金属を担持させて製造する。製造方法は特に限定されないが、通常は、金属水素化物に対し、遷移金属、又は遷移金属の前駆体となる化合物(以下、遷移金属化合物)を担持させて製造する。
 本発明の金属担持物の原料となる、前記金属水素化物は、市販の試薬や工業原料を用いても、対応する金属から既知の方法により得られたものを使用してもよい。通常、金属水素化物は、対応する金属を水素雰囲気下で加熱することにより得られる。
 例えば水素化カルシウム(CaH)は、金属カルシウムを水素雰囲気中で、400℃程度に加熱することで得られる。
 また例えば水素化セリウム(CeH)分は、金属セリウムを水素雰囲気中700~800 ℃程度に加熱することにより得られる。
 本発明で用いられる前記金属水素化物に、前記遷移金属を担持させる方法は、特に限定されず、既知の方法を用いることができる。通常は、担持する遷移金属の化合物であって、還元や熱分解等により遷移金属に変換することができる遷移金属化合物を、前記金属水素化物に担持させた後、遷移金属に変換する方法が用いられる。
 前記遷移金属化合物は特に限定されないが、熱分解し易い遷移金属の無機化合物又は有機遷移金属錯体等を用いることができる。具体的には遷移金属の錯体、遷移金属の酸化物、硝酸塩、塩酸塩等の遷移金属塩等を用いることができる。
例えばRu化合物としては、トリルテニウムドデカカルボニル[Ru(CO)12]、ジクロロテトラキス(トリフェニルホスフィン)ルテニウム(II)[RuCl(PPh]、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)[RuCl(PPh]、トリス(アセチルアセトナト)ルテニウム(III)[Ru(acac)]、ルテノセン[Ru(C)]、ニトロシル硝酸ルテニウム[Ru(NO)(NO]、ルテニウム酸カリウム、酸化ルテニウム、硝酸ルテニウム、塩化ルテニウム等が挙げられる。
 Fe化合物としては、ペンタカルボニル鉄[Fe(CO)]、ドデカカルボニル三鉄[Fe(CO)12]、ノナカルボニル鉄[Fe(CO)]、テトラカルボニル鉄ヨウ化物[Fe(CO)]、トリス(アセチルアセトナト)鉄(III) [Fe(acac)]、フェロセン[Fe(C]、酸化鉄、硝酸鉄、塩化鉄(FeCl)等が挙げられる。
 Co化合物としては、コバルトオクタカルボニル[Co(CO)]、トリス(アセチルアセトナト)コバルト(III)[Co(acac)]、コバルト(II) アセチルアセトナト[Co(acac)]、コバルトセン[Co(C]、酸化コバルト、硝酸コバルト、塩化コバルト等が挙げられる。
これらの遷移金属化合物のうち、[Ru(CO)12]、[Fe(CO)]、[Fe(CO)12]、[Fe(CO)]、[Co(CO)]等の遷移金属のカルボニル錯体は、担持した後、加熱することにより、遷移金属が担持されることから、本発明の金属担持物を製造する上で、後述する還元処理を省略できる点で好ましい。
 前記遷移金属化合物の使用量は、特に限定はされず、所望の担持量を実現するための量を適宜使用することができるが、通常は、用いる前記金属水素化物の質量に対して、通常、0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、通常30質量%以下、好ましくは20質量%以下、より好ましくは15質量%以下である。
 前記遷移金属化合物を金属水素化物に担持させる方法としては、具体的には例えば、含浸法、物理的混合法、CVD法(化学蒸藩法)、スパッタ法等の方法を使用できる。
 含浸法としては、次の工程を採用できる。例えば、前記金属水素化物を、前記遷移金属化合物の溶液、に加えて撹拌する。このときの溶媒は特に限定はされず、水や各種有機溶媒を用いることができるが、好ましくは前記金属水素化物の分解を抑えるため有機溶媒がよい。また前記遷移金属化合物は、溶媒に溶解させても、分散させてもよい。
 次に窒素、アルゴン、ヘリウム等の不活性ガス気流中、又は真空下で加熱し、乾固する。このときの加熱温度は特に限定はされないが、通常50℃以上、300℃以下である。加熱時間は特に限定はされないが、通常30分以上、20時間以下である。
 ここで熱分解により遷移金属に変換される遷移金属化合物であれば、この段階で通常、遷移金属が、担持され、本発明の金属担持体となる。
 熱分解により遷移金属に変換される遷移金属化合物以外のものを用いた場合は、乾固した遷移金属化合物を、通常還元することにより、本発明の金属担持体となる。
 前記遷移金属化合物を還元する方法(以下、還元処理という)は、本発明の目的を阻害しない限りにおいて特に限定されないが、例えば、還元性ガスを含む雰囲気下で行なう方法や、前記遷移金属化合物を含む溶液に、NaBH、NHNH又は、ホルマリン等の還元剤を加えて前記金属水素化物の表面に析出させる方法が挙げられるが、好ましくは還元性ガスを含む雰囲気下で行なう。前記還元性ガスとしては水素、アンモニア、メタノール(蒸気)、エタノール(蒸気)、メタン、エタン等が挙げられる。
 また前記還元処理の際に、本発明の目的、特にアンモニア合成反応を阻害しない、還元性ガス以外の成分が反応系を共存していてもよい。具体的には、還元処理の際に、水素等の還元性ガスの他に反応を阻害しないアルゴンや窒素といったガスを共存させてもよく、窒素を共存させることが好ましい。
 前記還元処理を、水素を含むガス中で行なう場合、水素と共に窒素を共存させることで、後述するアンモニアの製造と並行して行なうことができる。すなわち、本発明の金属担持体を後述するアンモニア合成用触媒として用いる場合は、前記遷移金属化合物を、前記金属水素化物に担持させたものを、アンモニア合成反応の反応条件中に置くことにより、前記遷移金属化合物を還元し、遷移金属に変換してもよい。
 前記還元処理の際の温度は、特に限定はされないが、通常200℃以上であり、好ましくは300℃以上、通常1000℃以下であり、好ましくは600℃以下で行なう。前記の還元処理温度範囲内で行なうことで、前記遷移金属の成長が十分に、また好ましい範囲で起こるためである。
 前記還元処理の際の圧力は、特に限定はされないが、通常、0.01MPa以上、10MPaである。還元処理時の圧力は、後述するアンモニア合成条件と同じ条件にすると、煩雑な操作は不要になり製造効率の面で有利である。
 前記還元処理の時間は、特に限定されないが、常圧で実施する場合は、通常1時間以上であり、2時間以上が好ましい。
 また反応圧力の高い条件、例えば1MPa以上で行う場合は、1時間以上が好ましい。
 物理的混合法は、前記金属水素化物と、前記遷移金属化合物とを固相混合した後に窒素、アルゴン、ヘリウム等の不活性ガス気流中、又は真空下で加熱する方法である。加熱温度、加熱時間は、上記含浸法と同様である。前記還元処理をすることによって金属担持体とする。
 <担持金属触媒>
 本発明の金属担持体は、担持金属触媒として用いることができる。
 すなわち本発明の担持金属触媒は、遷移金属と該遷移金属を担持する担体とを含み担持金属触媒、前記担体が、下記一般式(1)で表わされる金属水素化物である。
[数3]
  XH    ・・・(1)
(前記一般式(1)において、Xは周期表第2族原子、第3族原子、又はランタノイド原子から選ばれる少なくとも1種を表わし、nは、2≦n≦3で表わされる数を表す。)
 前記X及びnは、前記本発明の金属担持体におけるX及びnと同じである。
 本発明の担持金属触媒は、本発明の金属担持物をそのまま反応に用いても、必要に応じた成型等を行なってもよく、また本発明の効果を損なわない限りにおいて、前記金属水素化物及び前記遷移金属以外の成分を含んでいてもよいが、通常は、本発明の金属担持物をそのまま用いることが好ましい。
 前記金属水素化物及び前記遷移金属以外の成分としては、SiO、Al、ZrO、MgO、活性炭、グラファイト、SiCなどを前記金属水素化物の担体としてさらに含んでいてもよい。
 本発明の担持金属触媒における、前記担体に対する前記遷移金属の担持量は、特に限定はされないが、通常、0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、通常30質量%以下、好ましくは20質量%以下、より好ましくは15質量%以下である。前記下限値以上であれば、本発明の効果が得られ、前記上限値以下であれば、担持量とコストの見合った本発明の効果が得られる。
 本発明の担持金属触媒の比表面積は、特に限定はされないが、通常0.1m/g以上であり、好ましくは1m/g以上であり、より好ましくは3m/g以上である。
 本発明の担持金属触媒の形状は、特に限定はされず、具体的には塊状、粉末状、被膜状等のいずれの形状でもよいが、通常は粉末状である。粉末状の金属担持体の粒子径は特に限定はされないが、通常、10nm以上、50μm以下である。
 本発明の担持金属触媒における遷移金属の粒子径は、特に限定はされないが、通常、1nm以上、100nm以下である。好ましくは、窒素解離の活性点であるステップサイト数が多くなる10nm以下、より好ましくは5nm以下である。
 本発明の担持金属触媒は、通常の成型技術を用い成型体として使用することができる。具体的には、粒状、球状、タブレット、リング、マカロニ、四葉、サイコロ、ハニカム状などの形状が挙げられる。また、適当な支持体にコーティングしてから使用することもできる。
 本発明の担持金属触媒は、各種反応の触媒として用いることができるが、アンモニア合成反応用触媒として好適である。前記触媒は、アンモニア合成の活性が高いため、反応効率の高い製造が可能である。
 アンモニア合成用触媒として用いる際、その反応活性は特に限定はされないが、反応温度340℃、反応圧力0.1MPaにおけるアンモニアの生成速度を例に取った場合で、0.5mmol/g/h以上であることが好ましく、1.0mmol/g・h以上であることが実用の製造条件に適していることからより好ましく、2.0mmol/g・h以上であるものがより高効率の製造条件に適していることから更に好ましく、3.0mmol/g・h以上であるものが更に高効率の製造条件に適している点で更に好ましい。
 また、本発明の担持金属触媒は、アンモニア合成の逆反応であるアンモニア分解にも適用可能である。更に、本発明の担持金属触媒は、不法和炭素化合物の水素化反応、例えば、オレフィン、アセチレン化合物、カルボニル化合物の水素化反応、芳香族化合物、複素環式化合物の核水素化反応に使用することができる。
 以下に本発明の担持金属触媒を用いたアンモニアの製造方法について記す。
<アンモニアの製造方法> 
 本発明のアンモニアの製造方法(以下、本発明の製造方法ということがある)は、本発明の担持金属触媒を触媒として用い、水素と窒素とを前記触媒上で反応させてアンモニアを合成する方法である。
 具体的な製造方法としては、水素と窒素とを前記触媒上で接触させてアンモニアを合成する方法であれば、特に限定されず、適宜既知の製造方法に準じて製造をすることができる。
 本発明のアンモニアの製造方法では、通常、水素と窒素とを前記触媒上で接触させる際に、触媒を加熱して、アンモニアを製造する。
 本発明の製造方法における反応温度は特に限定はされないが、通常200℃以上、好ましくは250℃以上であり、より好ましくは300℃以上であり、通常600℃以下であり、好ましくは500℃以下であり、より好ましくは450℃以下である。アンモニア合成は発熱反応であることから、低温領域のほうが化学平衡論的にアンモニア生成に有利であるが、十分なアンモニア生成速度を得るためには上記の温度範囲で反応を行うことが好ましい。
 本発明の製造方法において、前記触媒に接触させる窒素と水素のモル比率は、特に限定はされないが、通常、窒素に対する水素の比率(H/N(体積/体積))で、通常0.4以上、好ましくは0.5以上、より好ましくは1以上、通常10以下、好ましくは5以下で行う。
 本発明の製造方法における反応圧力は、特に限定はされないが、窒素と水素含む混合ガスの圧力で、通常0.01MPa以上、好ましくは0.1MPa以上、通常20MPa以下、好ましくは15MPa以下、より好ましくは10MPa以下である。また実用的な利用を考慮すると、大気圧以上の加圧条件で反応を行うことが好ましい。
 本発明の製造方法において、窒素と水素とを前記触媒に接触させる前に、前記触媒に付着する水分や酸化物を、脱水材を用いる方法、深冷分離する方法や水素ガス等を用いて除去することが好ましい。除去の方法としては還元処理が挙げられる。
 本発明の製造方法においては、より良好なアンモニア収率を得るためには、本発明の製造方法に用いる窒素及び水素中の水分含有量が少ないことが好ましく、特に限定はされないが、通常、窒素と水素の混合ガス中の総水分含有量が100ppm以下、好ましくは、50ppm以下であることが好ましい。
 本発明の製造方法において、反応容器の形式は特に限定されず、アンモニア合成反応に通常用いることができる反応容器を用いることができる。具体的な反応形式としては、例えばバッチ式反応形式、閉鎖循環系反応形式、流通系反応形式等を用いることができる。このうち実用的な観点からは流通系反応形式が好ましい。また触媒を充填した一種類の反応器、又は複数の反応器を連結させる方法や、同一反応器内に複数の反応層を有する反応器の何れの方法も使用することができる。
 水素と窒素からアンモニアを合成する反応は、体積収縮を伴う発熱反応であることから、アンモニア収率を上げるために工業的には反応熱を除去することが好ましく、通常用いられる除熱手段を伴う既知の反応装置を用いてもよい。例えば具体的には触媒が充填された反応器を直列に複数個連結し、各反応器の出口にインタークーラーを設置して除熱する方法等を用いてもよい。
 本発明のアンモニアの製造方法においては、本発明の製造方法で得られるアンモニア合成用触媒を単独で用いても、アンモニア合成に通常用いることができる他の公知の触媒と組み合わせて使用することができる。
 以下に、実施例に基づいて、本発明をより詳細に説明する。NHの生成量をガスクロマトグラフにより、又は生成したNHを硫酸水溶液中に溶解させ、その溶液をイオンクロマトグラフにより定量してアンモニア生成速度を求めることによりアンモニア合成活性の評価を行った。
(BET比表面積測定方法)
 BET比表面積の測定は、対象物の表面に液体窒素温度で窒素ガスを吸着させ、-196℃における窒素ガスの吸脱着に基づく吸脱着等温線から求めた。分析条件は以下の通り。
[測定条件]
  測定装置:高速・比表面/細孔分布測定装置 BELSORP-mini 2(MicrotracBEL社製)
  吸着ガス:窒素 99.99995体積%
  吸着温度:液体窒素温度 -196℃
(イオンクロマトグラム分析)
 反応容器から排出されたアンモニアガスを、5mM硫酸水溶液に溶解させ、捕捉したアンモニウムイオン(NH4+)をイオンクロマトグラフにより分析した。分析条件は以下の通り。
[測定条件]
  装置 :島津製作所社製 Prominence
  検出器:電気伝導度検出器CDD―10Avp (島津製作所社製)
  カラム:イオンクロマトグラム用カラムIC-C4(島津製作所社製)
  溶離液:3.0mM シュウ酸+2.0mM 18-クラウン-6-エーテル水溶液
  流速 :1.0 mL/分 
  カラム温度:40℃
(実施例1)
(CaHの調製) 
 金属Ca(Aldrich社製,99.99%)2gを、Ar置換したステンレス鋼製の管状電気炉内に入れた。該電気炉内を真空排気した後に、前記電気炉内の圧力が2MPaになるまで水素を導入した。次に前記電気炉内の温度を常温から400℃まで4時間かけて昇温し、引き続き400℃で10時間加熱した。その後、常温まで冷却し、CaH粉末を得た。
(Ru担持物の調製) 
 得られた前記CaH粉末1gを、Ar雰囲気のグローブボックス中でRu(CO)12粉末(Ardrich社製、99%)0.042gと物理混合し、真空の石英ガラス管に封入した。次に前記石英ガラス管を250℃で15時間加熱した。これによりCaHに金属Ruが2質量%担持された金属担持物(以下、Ru/CaH)が得られた。この金属担持物のBET表面積は、3.8m/gであった。以下で、前記金属担持物を担持金属触媒として用いて、アンモニア合成を行なった。
(アンモニア合成反応) 
 窒素ガス(N)と水素ガス(H)を触媒上で反応させてアンモニア(NH)を生成させる反応(以下、アンモニア合成反応)を行った。前記Ru/CaH0.1gをガラス管に詰め、固定床流通式反応装置で前記アンモニア合成反応を行った。原料のNガス、Hガスはいずれも水分濃度は0.5ppm以下であった。原料ガスの流量は、N:15mL/min、H2:45mL/min、合計60mL/minに設定し、圧力は大気圧、反応温度は340℃で反応を行った。
(アンモニアの生成速度) 
 前記固定床流通式反応装置から出てきたガスを0.005M硫酸水溶液中にバブリングさせ、前記ガス中のアンモニアを溶解させ、生じたアンモニウムイオンをイオンクロマトグラフにより前記の方法により定量した。340℃におけるアンモニアの生成速度は、4.0mmol/g・hであった。結果を表1に示した。
(実施例2)
 実施例1における金属Caに代えて、金属Sr(Aldrich社製,99.99%)1gを用いた以外は、実施例1と同様の方法によりSrHを得た。実施例1のCaHに代えて前記SrHを用いた以外は、実施例1と同様の方法により、SrHに金属Ruが2質量%担持された金属担持物(以下、Ru/SrH)を調製した。前記Ru/SrHのBET比表面積は3.3m/gであった。前記Ru/SrHを触媒として用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。反応温度340℃におけるアンモニアの生成速度は、2.4mmol/g・hであった。結果を表1に示した。
(実施例3)
 実施例1における金属Caに代えて、金属Ba(Aldrich社製,99.99%)1gを用いた以外は、実施例1と同様の方法によりBaHを得た。実施例1のCaHに代えて前記BaHを用いた以外は、実施例1と同様の方法により、BaHに金属Ruが2質量%担持された担持物(以下、Ru/BaH)を調製した。前記Ru/BaHのBET比表面積は4.2m/gであった。前記Ru/BaHを触媒として用いた以外は、実施例1と同じ同様の条件でアンモニア合成反応を実施した。反応温度340℃におけるアンモニアの生成速度は0.8mmol/g・hであった。結果を表1に示した。
(比較例1)
 WO2012/077658の実施例1に記載の方法に準拠し、導電性マイエナイト型化合物(C12A7:e-)を合成した。マイエナイト型化合物として、Ca原子とAl原子のモル比が11:14となるマイエナイト型化合物を合成し、これに対応する前記C12A7:e-を得た。前記C12A7:e-の伝導電子濃度は2×1021cm-3であった。 
 前記C12A7:e-を用いた以外は実施例1と同じ条件でRuを担持し、2質量%Ruを担持した担持物(以下、Ru/C12A7:e-)を調製した。前記Ru/C12A7:e-のBET比表面積は1.0m/gであった。前記Ru/C12A7:e-を触媒として用い、実施例1と同様の条件でアンモニア合成反応を実施した。反応温度340℃におけるアンモニアの生成速度は1.6mmol/g・hであった。結果を表1に示した。 
(比較例2)
 WO2015/129471の実施例1に記載の方法に準拠し、2質量%Ruを担持したCaN(以下、Ru/CaN)を調製した。前記Ru/CaNのBET比表面積は1.0m/gであった。前記Ru/CaNを触媒として用い、実施例1と同様の条件でアンモニア合成反応を実施した。反応温度340℃におけるアンモニアの生成速度は、3.4mmol/g・hであった。結果を表1に示した。
(比較例3)  
 Ru(CO)12 を溶解させたTHF溶媒中(60 mL)に、MgO 2gを分散させた後、蒸発乾固し、真空中450℃で加熱することにより、MgOに2質量%Ruを担持した金属担持物(以下、Ru/MgO)を得た。さらに、前記Ru/MgOとCsCOとを、Cs原子/Ru原子のモル比=1となるように混ぜ、エタノール中に分散させる。4時間攪拌後、溶媒を蒸発乾固させることで、Csを添加したRu触媒(以下、Cs-Ru/MgO)を調製した。 
 前記Cs-Ru/MgOのBET比表面積は12m/gであった。前記Cs-Ru/MgOを触媒として用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は、2.4mmol/g・hであった。結果を表1に示した。
(比較例4)
 実施例1のCaHに代えてCaOを用いた以外は、実施例1と同様の方法により、CaOに金属Ruが2質量%担持された金属担持物(以下、Ru/CaO)を調製した。前記Ru/CaOのBET比表面積は3m/gであった。前記Ru/CaOを触媒として用いた以外は実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は、0.3mmol/g・hであった。結果を表1に示した。 
(比較例5)
 実施例1のCaHに代えてMgOを用いた以外は、実施例1と同様の方法により、MgOに金属Ruが2質量%担持された担持物(以下、Ru/MgO)を調製した。前記Ru/MgOのBET比表面積は40m/gであった。前記Ru/MgOを触媒として用いた以外は実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は、0.3mmol/g・hであった。結果を表1に示した。
(アンモニア生成速度の比較) 
 表1に、本発明の担体材料上に金属Ruを担持した触媒によるアンモニア合成反応の触媒活性を示した。表1に示すアンモニア生成速度からみて、比較例3~5に示した既存の触媒担体に金属Ru又はCs-Ruを担持した触媒と比較すると、前記Ru/CaH、前記Ru/SrH、前記Ba/Hは、比表面積が小さいにもかかわらず、同じ質量あたりの触媒活性が高く、非常に優れた触媒であることが分かった。この触媒活性は、比較例1に示した高い触媒活性を有する前記Ru/C12A7:e-よりも高い値を示すことが分かった。 
Figure JPOXMLDOC01-appb-T000001
(実施例4)
 実施例1におけるRu/CaHのRu担持量を5質量%にした以外は、実施例1と同様の方法で前記Ru/CaHを調製し、これを触媒として用いて実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は6.0mmol/g・hであった。結果を図1に示した。
(実施例5)
 実施例1におけるRu/CaHのRu担持量を10質量%にした以外は、実施例1と同様の方法でRu/CaHを調製し、これを触媒として用いて実施例1と同様の条件でアンモニア合成反応を実施した。図1に示すとおり、340℃におけるアンモニアの生成速度は7.0mmol/g・hであった。結果を図1に示した。
(実施例6)
 実施例1におけるRu/CaHのRu担持量を15質量%にした以外は、実施例1と同様の方法でRu/CaH2を調製し、これを触媒として用いて実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は5.3mmol/g・hであった。結果を図1に示した。
(実施例7)
 実施例1におけるRu(CO)12に代えて、Co(CO)(関東化学社製、95%)0.058gを用いてCoを担持した以外は、実施例1と同様の方法により、金属Coを2質量%CaHに担持させた金属担持物(以下、Co/CaH2)を調製した。前記Co/CaHを触媒として用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は0.4mmol/g・hであった。結果を表2に示した。
(実施例8)
 実施例1におけるRu(CO)12に代えて、Fe(CO)(STREM CHEMICALS社製、99%)0.126gを用いてFeを担持した以外は、実施例1と同様の方法により、Feを2質量%CaHに担持させた担持物(以下、Fe/CaH)を調製した。前記Fe/CaHを触媒として用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は0.2mmol/g・hであった。結果を表2に示した。
 表2に、CaH担体にRu,Co,Feをそれぞれ担持した触媒の340℃でのアンモニア合成活性の結果を示した。 
Figure JPOXMLDOC01-appb-T000002
(実施例9)
 実施例1のCaHに代えてCeHを用いた以外は、実施例1と同様の方法により、CeHに金属Ruが2質量%担持された金属担持物(以下、Ru/CeH)を調製した。前記Ru/CeHのBET比表面積は1.7m/gであった。前記Ru/CeHを触媒に用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は2.8mmol/g・hであった。結果を表3に示した。
(実施例10)
 実施例1のCaHに代えてLaHを用いた以外は、実施例1と同様の方法により、LaHに金属Ruが2質量%担持された担持物(以下、Ru/LaHx)を調製した。前記Ru/LaHのBET比表面積は1.3m/gであった。前記Ru/LaHを触媒として用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は2.7mmol/g・hであった。結果を表3に示した。
(実施例11)
 実施例1のCaHに代えてYHを用いた以外は、実施例1と同様の方法により、YHに金属Ruが2質量%担持された担持物(以下、Ru/YH)を調製した。前記Ru/YHのBET比表面積は0.8m/gであった。前記Ru/YH2を触媒として用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は0.9mmol/g・hであった。結果を表3に示した。 
 表3に、Ru/CaHと、希土類金属水素化物にRuを担持した触媒による反応温度340℃でのアンモニア合成活性をまとめた結果を示す。Ru/CeHやRu/LaHnともにRu/CaHに匹敵する触媒性能を示すことが分かった。 
Figure JPOXMLDOC01-appb-T000003
 実施例1、4、5、6に示すように、反応温度340℃でRu担持量の異なるCaH触媒によるアンモニア合成活性を調べたところ、Ru担持量を増加させるにつれて、触媒活性は大きく向上し、Ru担持量10質量%で最大の活性となった。さらに担持量を15質量%まで増加させると触媒活性は低下する傾向があることが分かった。
(実施例12)
 実施例1の2質量%Ru/CaHを触媒として用いて、反応温度340℃で、10気圧(1.0MPa)、120時間継続してアンモニア合成反応を行い、触媒の長期の安定性を評価した。図2に結果を示す。本発明の触媒は、120時間の反応においても安定してアンモニアを生成し、ほとんど反応活性が低下しないことが分かった。
(実施例13)
 実施例1の2質量%Ru/CaHを触媒として用いて、反応温度340℃で、水素分圧の異なるガス雰囲気下においてアンモニア合成反応を行った。前記アンモニア合成反応において窒素分圧を0.017MPaに固定し、水素分圧を0.03MPa、0.04MPa、0.05MPa、0.07MPaとし、ガスの全流量が60mL/minとなるようにArガスを流した。図3に結果を示した。
一般的な触媒である比較例5の触媒(Ru/MgO)では、水素分圧の増加と共に触媒活性は低下したが、実施例1の触媒(Ru/CaH)では、水素分圧の増加と共に触媒活性は大きく向上した。このことから、Ru/CaH2は水素被毒を受けにくい触媒であることが分かった。 
(実施例14)
 実施例1に記載の2質量%Ru/CaHを触媒として用いて、反応温度340℃で70時間アンモニア合成反応を行った後、当該触媒のX線回折パターンを測定した。図4に結果を示した。リートベルト解析により反応後のRu/CaH触媒には、CaHが84.92%、CaOが14.30%、CaNHが0.78%含まれていることが分かった。
 CaOの生成は、触媒調製時、あるいは反応ガス中に含まれる微量の不純物(水分又は酸素)により酸化したと考えられる。一方、CaNHに由来するピークが観察された。これは、反応中に窒素がCaH2の結晶構造の骨格中に取り込まれていることを示唆している。
 本発明の金属担持物及び担持金属触媒の効果は、金属水素化物に含まれるヒドリドイオン(Hイオン)の動的役割がもたらす作用と考えられる。すなわち、金属水素化物にRuなどの遷移金属を担持した金属担持物が加熱されると、金属担持物中のHイオンが中性水素として脱離して、その欠損サイトを電子が占有するF中心が生成する。この状況はアンモニアを製造する条件下において特に起こりやすい。本発明で用いられる金属水素化物から発生する金属イオンの原子価は、通常、+2価又は+3価であるため、これらの結晶は、アルカリ金属等のイオン結晶に比べ大きな格子エネルギーを有している。また、酸素イオンやハロゲンイオンと比べて、ヒドリドイオンは、そのイオン半径を環境によってかなり変化できるという特徴がある。よって、これらの水素化物結晶中のF中心の電子のエネルギー準位は、ヒドリドイオンを電子で置き換えた際にアルカリ金属酸化物やハロゲン化物にみられるようなF中心の周りの構造の緩和によって大幅に低下せずに、高く保たれるものと推測される。これによって、金属担持物そのものの仕事関数が低くなることにより、担持した金属種への電子供与が効率よく起こり、金属種の触媒活性を促進していると考えられる。また、上述のようにF中心と元のヒドリドが欠損サイトに存在した際の局所構造が大きく違わないので、ヒドリドイオンと電子の可逆的交換が速やかに生じるものと考察される。

Claims (10)

  1.  遷移金属と、
     前記遷移金属を担持する担体と
    を含む金属担持物であって、
     前記担体が、下記一般式(1)で表わされる金属水素化物であることを特徴とする金属担持物。
     [数1]
      XH    ・・・(1)
    (前記一般式(1)において、Xは周期表第2族原子、第3族原子、又はランタノイド原子から選ばれる少なくとも1種を表わし、nは、2≦n≦3で表わされる数を表す。)
  2.  前記一般式(1)におけるXが、Mg、Ca、Sr、Ba、Sc、Y、又はランタノイド原子から選ばれる少なくとも1種、である、請求項1に記載の金属担持物。
  3.  前記遷移金属が、Ru、Co、又はFeから選ばれる少なくとも1種である、請求項1又は2に記載の金属担持物。
  4.  前記遷移金属の前記担体に対する担持量が、0.01質量%以上、30質量%以下である、請求項1~3のいずれか1項に記載の金属担持物。
  5.  請求項1~4のいずれか1項に記載の金属担持物である担持金属触媒。
  6.  アンモニアの製造方法であって、水素と窒素を含有する原料ガスを、請求項5に記載の担持金属触媒に接触させ、アンモニアを合成することを特徴とする、アンモニアの製造方法。
  7.  前記担持金属触媒と接触させる際の反応温度が、100℃以上、600℃以下である、請求項6に記載のアンモニアの製造方法。
  8.  前記担持金属触媒と接触させる際の反応圧力が、10kPa以上、20MPa以下である、請求項6又は7に記載のアンモニアの製造方法。
  9.  前記原料ガスの水分含有量が100ppm以下である、請求項6~8のいずれか1項に記載のアンモニアの製造方法。
  10.  前記触媒と接触させる際の、窒素に対する水素の比率(H/N(体積/体積))が、0.4以上である、請求項6~9のいずれか1項に記載のアンモニアの製造方法。
PCT/JP2016/083156 2015-11-10 2016-11-09 金属担持物、担持金属触媒及び該触媒を用いるアンモニア合成法 WO2017082265A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680065123.0A CN108348902B (zh) 2015-11-10 2016-11-09 金属负载物、负载金属催化剂以及使用该催化剂的氨合成法
JP2017550340A JP6802544B2 (ja) 2015-11-10 2016-11-09 金属担持物、担持金属触媒及び該触媒を用いるアンモニア合成法
US15/774,195 US10759668B2 (en) 2015-11-10 2016-11-09 Supported metal material, supported metal catalyst, and ammonia synthesis method using the same
EP16864226.2A EP3375521A4 (en) 2015-11-10 2016-11-09 SUPPORTED METALLIC ARTICLE, SUPPORTED METAL CATALYST, AND METHOD OF SYNTHESIZING AMMONIA IN WHICH SUCH CATALYST IS USED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-220486 2015-11-10
JP2015220486 2015-11-10

Publications (1)

Publication Number Publication Date
WO2017082265A1 true WO2017082265A1 (ja) 2017-05-18

Family

ID=58696085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083156 WO2017082265A1 (ja) 2015-11-10 2016-11-09 金属担持物、担持金属触媒及び該触媒を用いるアンモニア合成法

Country Status (5)

Country Link
US (1) US10759668B2 (ja)
EP (1) EP3375521A4 (ja)
JP (1) JP6802544B2 (ja)
CN (1) CN108348902B (ja)
WO (1) WO2017082265A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109833910A (zh) * 2017-11-28 2019-06-04 中国科学院大连化学物理研究所 一种用于合成氨反应的催化剂
JP2019126776A (ja) * 2018-01-24 2019-08-01 国立研究開発法人科学技術振興機構 アンモニア合成用触媒及び該触媒を用いるアンモニア合成法
CN110961154A (zh) * 2019-12-10 2020-04-07 万华化学集团股份有限公司 一种加氢催化剂及其制备方法,及柠檬醛加氢制备香茅醛的方法
WO2021010167A1 (ja) * 2019-07-12 2021-01-21 学校法人 東洋大学 燃料電池触媒用組成物およびそれを含む燃料電池
JPWO2019176987A1 (ja) * 2018-03-14 2021-02-25 国立研究開発法人科学技術振興機構 電子又はヒドリドイオン吸放出材料、電子又はヒドリドイオン吸放出性組成物、遷移金属担持物および触媒、ならびに、それらに関連する使用
JP2023517265A (ja) * 2019-12-30 2023-04-25 株式会社 圓▲益▼マテリアルズ ルテニウム前駆体、それを用いたアンモニア反応触媒及びその製造方法
WO2023085185A1 (ja) 2021-11-09 2023-05-19 国立研究開発法人科学技術振興機構 触媒組成物、触媒活性促進方法、触媒組成物の製造方法、及び触媒組成物を用いるアンモニア合成方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891681B (zh) * 2017-07-12 2022-11-29 国立研究开发法人科学技术振兴机构 金属间化合物、吸放氢材料、催化剂和氨的制造方法
AU2021213609A1 (en) * 2020-01-31 2022-08-25 Japan Science And Technology Agency Ammonia synthesis catalyst
US11591226B1 (en) 2020-08-25 2023-02-28 Advanced Energy Materials, Llc Plasma assisted distributed chemical production
JP2022070143A (ja) * 2020-10-26 2022-05-12 国立大学法人東京工業大学 アンモニア合成用触媒及び該触媒を用いるアンモニアの合成方法
KR102664209B1 (ko) * 2021-11-09 2024-05-10 한국에너지기술연구원 저압, 저온 조건에서 높은 활성을 보이는 암모니아 합성용 촉매 및 이를 이용한 암모니아의 합성 방법
US12055131B2 (en) 2022-02-28 2024-08-06 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US11852383B2 (en) 2022-02-28 2023-12-26 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
CN114570399B (zh) * 2022-03-04 2023-05-23 福州大学 一种MXene基热催化合成氨催化剂及其制备和应用
US11905797B2 (en) 2022-05-01 2024-02-20 EnhancedGEO Holdings, LLC Wellbore for extracting heat from magma bodies
AR129272A1 (es) 2022-05-10 2024-08-07 Casale Sa Catalizador para la síntesis de amoníaco y proceso para su preparación
US11918967B1 (en) 2022-09-09 2024-03-05 EnhancedGEO Holdings, LLC System and method for magma-driven thermochemical processes
CN117995456A (zh) * 2022-11-07 2024-05-07 中国科学院大连化学物理研究所 一种氢负离子导体及其制备方法和应用
US11913679B1 (en) 2023-03-02 2024-02-27 EnhancedGEO Holdings, LLC Geothermal systems and methods with an underground magma chamber
US11912573B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Molten-salt mediated thermochemical reactions using geothermal energy
US11912572B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Thermochemical reactions using geothermal energy
US11897828B1 (en) 2023-03-03 2024-02-13 EnhancedGEO, Holdings, LLC Thermochemical reactions using geothermal energy
US12060765B1 (en) 2023-07-27 2024-08-13 EnhancedGEO Holdings, LLC Float shoe for a magma wellbore
US11905814B1 (en) 2023-09-27 2024-02-20 EnhancedGEO Holdings, LLC Detecting entry into and drilling through a magma/rock transition zone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149315A (en) * 1980-01-17 1981-11-19 Enu Ojiyagushiraa Meemetsuto Ammonia manufacture
JP2012038697A (ja) * 2010-07-15 2012-02-23 Toyota Motor Corp 負極材料、金属二次電池、および負極材料の製造方法
JP2012114027A (ja) * 2010-11-26 2012-06-14 Toyota Motor Corp 金属二次電池用負極材料、金属二次電池用負極、及び金属二次電池
JP2013037951A (ja) * 2011-08-09 2013-02-21 Toyota Motor Corp 金属二次電池
JP2013110007A (ja) * 2011-11-22 2013-06-06 Toyota Motor Corp 負極材料の製造方法、および負極材料

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532145B2 (ja) 1988-12-16 1996-09-11 株式会社新燃焼システム研究所 アンモニア製造用触媒
JPH0679177A (ja) 1992-09-02 1994-03-22 Mitsui Toatsu Chem Inc アンモニア合成触媒および合成方法
JP3485622B2 (ja) 1994-03-25 2004-01-13 三井化学株式会社 アンモニア合成触媒およびアンモニア合成方法
JP3773293B2 (ja) 1996-03-05 2006-05-10 三井化学株式会社 アンモニア合成触媒の製造法
JP4117417B2 (ja) 2002-03-15 2008-07-16 日立造船株式会社 アンモニアの製造方法、及びその装置
DE60304257T2 (de) 2002-07-11 2006-08-31 Haldor Topsoe A/S Verfahren zur Herstellung von Ammoniak sowie Katalysator hierzu
JP2004091264A (ja) 2002-08-30 2004-03-25 Casio Comput Co Ltd 希土類水素化物、希土類水素化物の製造方法並びに希土類水素化物を用いた電子放出性電極、反射型表示素子、輻射抑制膜及び改質装置
CN1170771C (zh) * 2002-12-18 2004-10-13 北京大学 一种合成氨的方法
JP4777670B2 (ja) 2005-02-25 2011-09-21 本田技研工業株式会社 アンモニア合成触媒及びその製造方法
DK2650047T3 (en) 2010-12-07 2018-02-26 Tokyo Inst Tech AMMONIA SYNTHESIS CATALYST AND AMMONIA SYNTHESIS PROCEDURE
JP6152381B2 (ja) 2012-08-30 2017-06-21 国立大学法人東京工業大学 導電性マイエナイト型化合物粉末の製造方法
JP6285101B2 (ja) 2013-03-06 2018-02-28 株式会社日本触媒 アンモニア合成用触媒
CN103977828B (zh) * 2013-12-10 2016-02-10 中国科学院大连化学物理研究所 用于氨合成及氨分解的催化剂
EP3156126A4 (en) 2014-02-27 2017-11-22 Japan Science and Technology Agency Support metal catalyst and method for synthesizing ammonia using same catalyst
WO2015136954A1 (ja) * 2014-03-13 2015-09-17 国立研究開発法人科学技術振興機構 アンモニア合成触媒及びアンモニア合成方法
CN103977282A (zh) * 2014-05-23 2014-08-13 施维华 一种促进骨折愈合的冬虫夏草中药制剂
JP6670754B2 (ja) 2014-12-05 2020-03-25 国立研究開発法人科学技術振興機構 複合体、複合体の製造方法、アンモニア合成触媒及びアンモニア合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149315A (en) * 1980-01-17 1981-11-19 Enu Ojiyagushiraa Meemetsuto Ammonia manufacture
JP2012038697A (ja) * 2010-07-15 2012-02-23 Toyota Motor Corp 負極材料、金属二次電池、および負極材料の製造方法
JP2012114027A (ja) * 2010-11-26 2012-06-14 Toyota Motor Corp 金属二次電池用負極材料、金属二次電池用負極、及び金属二次電池
JP2013037951A (ja) * 2011-08-09 2013-02-21 Toyota Motor Corp 金属二次電池
JP2013110007A (ja) * 2011-11-22 2013-06-06 Toyota Motor Corp 負極材料の製造方法、および負極材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3375521A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109833910A (zh) * 2017-11-28 2019-06-04 中国科学院大连化学物理研究所 一种用于合成氨反应的催化剂
CN109833910B (zh) * 2017-11-28 2022-05-31 中国科学院大连化学物理研究所 一种用于合成氨反应的催化剂
JP2019126776A (ja) * 2018-01-24 2019-08-01 国立研究開発法人科学技術振興機構 アンモニア合成用触媒及び該触媒を用いるアンモニア合成法
JP7023457B2 (ja) 2018-01-24 2022-02-22 国立研究開発法人科学技術振興機構 アンモニア合成用触媒及び該触媒を用いるアンモニア合成法
JP7246101B2 (ja) 2018-03-14 2023-03-27 国立研究開発法人科学技術振興機構 電子又はヒドリドイオン吸放出材料、電子又はヒドリドイオン吸放出性組成物、遷移金属担持物および触媒、ならびに、それらに関連する使用
JP7246101B6 (ja) 2018-03-14 2024-02-13 国立研究開発法人科学技術振興機構 電子又はヒドリドイオン吸放出材料、電子又はヒドリドイオン吸放出性組成物、遷移金属担持物および触媒、ならびに、それらに関連する使用
JPWO2019176987A1 (ja) * 2018-03-14 2021-02-25 国立研究開発法人科学技術振興機構 電子又はヒドリドイオン吸放出材料、電子又はヒドリドイオン吸放出性組成物、遷移金属担持物および触媒、ならびに、それらに関連する使用
WO2021010167A1 (ja) * 2019-07-12 2021-01-21 学校法人 東洋大学 燃料電池触媒用組成物およびそれを含む燃料電池
CN110961154B (zh) * 2019-12-10 2022-07-12 万华化学集团股份有限公司 一种加氢催化剂及其制备方法,及柠檬醛加氢制备香茅醛的方法
CN110961154A (zh) * 2019-12-10 2020-04-07 万华化学集团股份有限公司 一种加氢催化剂及其制备方法,及柠檬醛加氢制备香茅醛的方法
JP2023517265A (ja) * 2019-12-30 2023-04-25 株式会社 圓▲益▼マテリアルズ ルテニウム前駆体、それを用いたアンモニア反応触媒及びその製造方法
JP7400111B2 (ja) 2019-12-30 2023-12-18 株式会社 圓▲益▼マテリアルズ ルテニウム前駆体、それを用いたアンモニア反応触媒及びその製造方法
WO2023085185A1 (ja) 2021-11-09 2023-05-19 国立研究開発法人科学技術振興機構 触媒組成物、触媒活性促進方法、触媒組成物の製造方法、及び触媒組成物を用いるアンモニア合成方法
KR20240101798A (ko) 2021-11-09 2024-07-02 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 촉매 조성물, 촉매 활성 촉진 방법, 촉매 조성물의 제조 방법, 및 촉매 조성물을 사용하는 암모니아 합성 방법

Also Published As

Publication number Publication date
CN108348902A (zh) 2018-07-31
EP3375521A4 (en) 2019-06-12
US10759668B2 (en) 2020-09-01
JP6802544B2 (ja) 2020-12-16
JPWO2017082265A1 (ja) 2018-10-04
CN108348902B (zh) 2021-02-09
EP3375521A1 (en) 2018-09-19
US20180327272A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP6802544B2 (ja) 金属担持物、担持金属触媒及び該触媒を用いるアンモニア合成法
JP6680919B2 (ja) 担持金属触媒
JP6670754B2 (ja) 複合体、複合体の製造方法、アンモニア合成触媒及びアンモニア合成方法
JP6675619B2 (ja) アンモニア合成用触媒の製造方法及びアンモニアの製造方法
JP6890788B2 (ja) 遷移金属担持金属間化合物、担持金属触媒、及びアンモニアの製造方法
JP7023457B2 (ja) アンモニア合成用触媒及び該触媒を用いるアンモニア合成法
JP2016155123A (ja) アンモニア合成触媒とその製造方法
WO2016133213A1 (ja) アンモニア合成触媒とその製造方法
JP7285024B2 (ja) 金属酸水素化物の製造方法、金属酸水素化物、及びそれを用いたアンモニア合成方法
JP7418849B2 (ja) 酸窒素水素化物、酸窒素水素化物を含む金属担持物、及びアンモニア合成用触媒
JP6737455B2 (ja) ラーベス相金属間化合物、金属間化合物を用いた触媒、及びアンモニア製造方法
WO2021172107A1 (ja) 典型元素酸化物を含む金属担持物、アンモニア合成用触媒、及びアンモニアの合成方法
JP7090253B2 (ja) 金属間化合物、水素吸放出材料、触媒及びアンモニアの製造方法
WO2021172109A1 (ja) 酸窒素水素化物、酸窒素水素化物を含む金属担持物、及びアンモニア合成用触媒
US20220126276A1 (en) Catalyst for ammonia synthesis and method for synthesizing ammonia using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017550340

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15774195

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016864226

Country of ref document: EP