WO2021010167A1 - 燃料電池触媒用組成物およびそれを含む燃料電池 - Google Patents

燃料電池触媒用組成物およびそれを含む燃料電池 Download PDF

Info

Publication number
WO2021010167A1
WO2021010167A1 PCT/JP2020/025882 JP2020025882W WO2021010167A1 WO 2021010167 A1 WO2021010167 A1 WO 2021010167A1 JP 2020025882 W JP2020025882 W JP 2020025882W WO 2021010167 A1 WO2021010167 A1 WO 2021010167A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
anion
composition
catalyst
halogen
Prior art date
Application number
PCT/JP2020/025882
Other languages
English (en)
French (fr)
Inventor
昇 和田
Original Assignee
学校法人 東洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 東洋大学 filed Critical 学校法人 東洋大学
Priority to CN202080050657.2A priority Critical patent/CN114097120A/zh
Priority to US17/618,185 priority patent/US20220271297A1/en
Priority to EP20840517.5A priority patent/EP3951961B1/en
Priority to JP2021532772A priority patent/JP7229585B2/ja
Publication of WO2021010167A1 publication Critical patent/WO2021010167A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • C04B7/326Calcium aluminohalide cements, e.g. based on 11CaO.7Al2O3.CaX2, where X is Cl or F
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a composition for a fuel cell catalyst and a fuel cell containing the same. More specifically, the present disclosure relates to a composition of a fuel cell catalyst that does not require platinum, and a fuel cell containing the same and a method for producing the same.
  • PEFC Polymer electrolyte Fuel Cell
  • PAFC phosphoric acid fuel cells
  • platinum is generally used as a catalyst on both the anode side and the cathode side. used.
  • platinum which is a precious metal, is expensive and has limited reserves, it is desired to eliminate or reduce the use of platinum in fuel cell catalysts. Therefore, the development of a catalyst that can replace platinum is required.
  • Iron phthalocyanine, nitrogen-containing carbon (carbon alloy), nitrogen-doped carbon, etc. are attracting attention as platinum alternative catalysts, but at present, there are some that are comparable to platinum in terms of high catalyticity and chemical stability. I haven't come.
  • C12A7 (12CaO ⁇ 7Al 2 O 3 ) is an inorganic substance that exists as a natural mineral called mayenite and is also a component of alumina cement.
  • the C12A7 crystal has a structure in which cage-shaped skeletons with an inner diameter of about 0.4 nm are connected by sharing a surface with each other, and oxygen ions O 2- are attached to two of the 12 cages in the unit cell. Is included.
  • Patent Documents 1 and 2 C12A7 high-temperature treatment to electrons O 2- anions in the crystal cage e - substituted with crystals obtained by electride of [Ca 24 Al 28 O 64] 4+ - a (4e) It is described.
  • Patent Document 3 refers to the possibility of using a specific C12A7 compound as an electrode material for a solid electrolyte fuel cell, but as far as the present inventor knows, it is actually used as a catalyst for a fuel cell to generate electricity. There is no literature to show.
  • the present disclosure provides a catalyst for a fuel cell that does not require platinum, and a fuel cell containing the catalyst.
  • C12A7 ideal chemical formula [Ca 24 Al 28 O 64] 4+ (O 2-) 2) the O 2- anions of those substituted with a fluorine anion (C12A7: F - denoted as Desired chemical formula [Ca 24 Al 28 O 64] 4+ (4F -)) or those substituted with chloride anions (C12A7: Cl - to be denoted) etc.
  • halogen substituted C12A7 is, the fuel cell of the fuel electrode (anode)
  • they have found that they have catalytic ability at the air electrode (cathode) and therefore can be used as an alternative catalyst for platinum.
  • the catalytic action can be further enhanced by heat-treating these halogen-substituted C12A7s under specific conditions.
  • the present invention is based on these discoveries.
  • Oxygen anion of C12A7 has a substituent structure with a halogen (X) anion C12A7: X - the containing fuel cell catalyst composition.
  • X halogen
  • C12A7: X - the containing fuel cell catalyst composition.
  • the halogen anion contains C12A7: Cl ⁇ which is a chlorine anion.
  • the anode, the anode side catalyst layer, the electrolyte, the cathode side catalyst layer, and the cathode are laminated in this order, and at least one of the anode side catalyst layer and the cathode side catalyst layer is [1] to [ A fuel cell comprising the composition for a fuel cell catalyst according to any one of 5].
  • the electrolyte is a proton exchange solid polymer membrane or an aqueous phosphoric acid solution.
  • a composition for a fuel cell catalyst comprising a C12A7: X - inorganic material having a structure in which the oxygen anion of C12A7 is replaced with a halogen (X) anion.
  • X halogen
  • the anode, the anode side catalyst layer, the electrolyte, the cathode side catalyst layer, and the cathode are laminated in this order, and at least one of the anode side catalyst layer and the cathode side catalyst layer is [1] to [ A fuel cell comprising the composition for a fuel cell catalyst according to any one of 3] or [5] to [7].
  • the steps include placing C12A7: X - and a metal selected from calcium or titanium in the same reactor and vacuum-sealing, and heating the reactor to a temperature at which the metal vaporizes.
  • composition for a fuel cell catalyst of the present embodiment does not need to use a rare element, can be produced from an inexpensive raw material, acts as a catalyst at both the anode and the cathode of the fuel cell, and is chemically stable. Therefore, it is suitable for practical use in fuel cells.
  • the halogen-substituted C12A7 and its derivatives of the present disclosure can be manufactured relatively easily.
  • the fuel cell catalyst composition according to the embodiment of the present disclosure can exhibit catalytic activity higher than that of electrified C12A7.
  • C12A7 was heat-treated in a nitrogen atmosphere: F - the improvement of the performance of the fuel cell when used as hydrogen-side catalyst, as-is C12A7: F - shown in comparison with the case of using a voltage -Current curve.
  • FIG. 4 shows the results of analysis of C12A7 and C12A7: F - by X-ray diffraction.
  • FIG. 5 shows the results of analysis of C12A7 and C12A7: F - by Raman spectroscopy.
  • FIG. 6A shows an embodiment of a reactor for electrifying a C12A7: X - sample.
  • (B) shows the blackening of the sample by the electrification treatment.
  • FIG. 7A is data showing that the performance as a fuel cell catalyst was further improved by performing an electride treatment of C12A7: F ⁇ .
  • the top panel shows the current-voltage (IV) and current-power (IP) curves, and the bottom panel shows the maximum energy graph.
  • FIG. 8 shows the results of analysis of C12A7: F ⁇ , which has been subjected to the electrification treatment, and C12A7, which has undergone the same electride treatment, by X-ray diffraction.
  • A) of FIG. 9 is a halogen (X) C12A7 was dissolved fluorine (F) ions or chlorine (Cl) ions as an ion: X - are shown the power generation of the fuel cell including a fuel electrode side catalyst.
  • (C) is a graph comparing the maximum power generation amount measured in the experiments of (a) and (b).
  • (D) are, F - and / or Cl - the containing different ratios C12A7: X - shows the measured lattice constant for the inorganic material.
  • "-" indicating a numerical range means that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value, respectively.
  • a numerical range in which one lower limit or upper limit is combined with the other upper limit or lower limit for example, “A to D”
  • “CB” is also possible.
  • the description "including” the element E may include both an aspect including not only the element E but also other elements and an aspect not including other elements of the element E (that is, consisting of the element E). To be solved.
  • C12A7 has a structure in which oxygen anion of C12A7 is substituted by halogen anion: X - including, to provide a fuel cell catalyst composition.
  • X is a halogen atom
  • X - represents a halogen anion.
  • C12A7 is prepared by firing a mixture of CaCO 3 and Al 2 O 3
  • C12A7: X - is prepared by adding CaX 2 in consideration of the molar ratio to this mixture and firing. Can be done (J. Phys. Chem. C 2008, 112, 19061-19068).
  • the C12A7 that are pre-generated, even if the baking mix CaX 2 in consideration of the molar ratio C12A7: X - can be prepared (Journal of the Chemical Society of Japan, 1990, (3), p.305-311 ). It is preferable to include CaX 2 to firing in the theoretical molar ratio corresponding to - four X per unit cell of the C12A7.
  • C12A7 in this embodiment is usually in the form of a powder, usually a white color.
  • X is preferably fluorine or chlorine, and more preferably fluorine. That is, in the composition of the present embodiment, C12A7: X - is, C12A7: F -, C12A7: Cl - preferably, or a combination thereof, C12A7: F - is more preferable.
  • the halogen anion may preferably be a fluorine anion, a chlorine anion, or a combination of a fluorine anion and a chlorine anion.
  • Halogen anion is fluorine anion (F -) and chloride anions (Cl -) in the case of a combination of A, F -: Cl - molar ratio of 1: 1 to 3: still more preferably from 1, 1: It is particularly preferably 1 to 2.5: 1.
  • F - and Cl - in these ratios can result in improved catalytic performance compared to the inclusion of either alone.
  • C12A7: X - causes, including the time of firing, and by adjusting the different CaX 2 (CaF 2 and CaCl 2) the ratio between, it is possible to adjust the ratio of the halogen anion solute.
  • C12A7 has an oxygen anion
  • C12A7 is substituted with halogen (X) anion structure: X - partially inorganic material obtained by electride, ie, C12A7: X - is part
  • a C12A7: X - based inorganic material that is specifically electrified.
  • the halogen anion can be a fluorine anion, a chlorine anion, or a combination of a fluorine anion and a chlorine anion, as described above.
  • C12A7 is partially electride of inorganic materials, the anion is e - but is substituted into X - in that is what remains of the formula [Ca 24 Al 28 O 64] 4+ (4e -) canonical C12A7 electride represented by to be distinguished.
  • C12A7: X - inorganic materials are those partially electride of is in a vacuum, in the presence of metallic calcium or metallic titanium, the metal at temperatures which vaporize C12A7: X - by calcining Can be manufactured. More specifically, first, C12A7: X - and the metallic calcium, placed in the same reactor, the reactor (it is also possible to use metal titanium in place of metal calcium) evacuating and sealing a. At this time, it is preferable to arrange the C12A7: X - and the metal in the reactor so that they do not come into contact with each other, that is, they do not mix with each other, in order to separate the target product. For example, as shown in FIG.
  • the entire reactor may be evacuated and sealed.
  • the C12A7: X - sample is placed in the reactor, preferably in increased surface area, particularly preferably in powder form.
  • the reactor is heated to a temperature at which the metal is vaporized.
  • the temperature at which the metal is vaporized under reduced pressure is known to those skilled in the art or can be determined by those skilled in the art as appropriate.
  • a heating temperature of 600 to 800 ° C. may be suitable. 680 to 720 ° C is particularly preferable, and 700 ° C is most preferable.
  • halogen ions are relatively stable in the C12A7 crystal and tend to remain, which is preferable.
  • the former is 680-720 ° C (or 700 ° C) and the latter is 780. Heating at a higher temperature, such as ⁇ 820 ° C (or 800 ° C), is preferable because it can prevent vaporized calcium from unnecessarily solidifying in the vicinity of the sample.
  • heating C12A7: X - oxygen anions released from the used proceeds to oxidation of vaporized metal
  • C12A7: X - an anion e is on the side of - substitution of is promoted To.
  • white C12A7: X - may turn black.
  • the reaction efficiency can be further improved by exposing the sample to the vapor while shuffling the sample by shaking the reactor during the reaction with the metal vapor.
  • time for heating the reactor is typically no more than 24 hours, resulting for example from 40 to 240 hours, 72 to 100 hours preferable.
  • the material and shape of the reactor can be appropriately selected by those skilled in the art based on ordinary knowledge, and for example, a quartz tube having both ends closed and a central portion narrowed as shown in FIG. 6A is preferable. .. While the quartz tube can be processed into any shape by burning it with the flame of a gas burner, it has heat resistance that can withstand damage at the above-mentioned typical reaction temperature.
  • Inorganic materials in which C12A7: X - is partially electrified can provide excellent fuel cell catalysts. That is, in one embodiment, a composition for a fuel cell catalyst containing this inorganic material is provided. In yet another embodiment, a method of making an inorganic material or a fuel cell catalyst composition containing it, in a vacuum as described above, in the presence of a metal, C12A7: X - Inorganic by firing the Methods are provided that include obtaining the material.
  • compositions of the different embodiments described above preferably further comprise a conductive carbon material mixed with any of the above C12A7: X - based inorganic materials.
  • this carbon material include, but are not limited to, carbon black, mesocarbon microbeads, graphite, glassy carbon powder, carbon nanotubes, carbon nanohorns, and carbon nanofibers. These carbon materials are usually in powder form. Carbon black is a particularly suitable carbon material.
  • the mixed weight ratio of the C12A7: X - based inorganic material and the carbon material can be, for example, 10: 1 to 1:10, preferably 5: 1 to 1: 3, and more preferably 3: 1 to 1: 1.
  • the method of making a composition for a fuel cell catalyst may include mixing a C12A7: X - based inorganic material with a carbon material as described in this paragraph.
  • the present disclosure provides a fuel cell in which an anode, an anode-side catalyst layer, an electrolyte, a cathode-side catalyst layer, and a cathode are laminated in this order.
  • This basic configuration of a fuel cell (a laminated structure also called MEA (Membrane Electrode Assembly)) is well known in the present technology field, but the fuel cell of the present embodiment has an anode side catalyst layer and an anode side catalyst layer.
  • One or both of the cathode side catalyst layers are characterized by containing any of the above-mentioned fuel cell catalyst compositions.
  • the other catalyst layer that is, the one that does not contain the fuel cell catalyst composition of the above embodiment, may contain a conventional catalyst such as platinum-supported carbon. Further, the same catalyst layer may contain a combination of the fuel cell catalyst composition of the above embodiment and a conventional catalyst.
  • the fuel of the fuel cell can be, for example, hydrogen, natural gas, or methanol, with hydrogen being particularly preferred.
  • the electrolyte in this embodiment may be a proton exchange solid polymer membrane or an aqueous phosphoric acid solution.
  • it is a polymer electrolyte fuel cell
  • it is a phosphoric acid fuel cell.
  • the fuel cell of the present embodiment is more preferably a polymer electrolyte fuel cell.
  • a particularly preferred example of a proton exchange solid polymer membrane is a naphthion membrane.
  • naphthion is a substance having a tetrafluoroethylene skeleton and a perfluoro side chain having a sulfonic acid group, and is tetrafluoroethylene and perfluoro [2- (fluorosulfonylethoxy) propyl vinyl ether. ] Copolymer.
  • the aqueous phosphoric acid electrolyte in a phosphoric acid fuel cell is usually incorporated into the laminated structure in a state of being impregnated in a solid matrix containing silicon carbide or the like.
  • Materials suitable for the anode and cathode of the fuel cell are known to those skilled in the art, and for example, carbon paper or carbon fiber cloth is particularly suitable from the viewpoint of breathability, conductivity, chemical stability and the like.
  • the fuel cell according to the present embodiment uses a powdery fuel cell catalyst composition as a solvent (for example, butyl acetate), which is a mixture of a C12A7: X - based inorganic material and a carbon material (for example, carbon black).
  • a powdery fuel cell catalyst composition as a solvent (for example, butyl acetate), which is a mixture of a C12A7: X - based inorganic material and a carbon material (for example, carbon black).
  • the one dispersed in may be added with Nafion solution
  • the same composition for fuel cell catalyst or platinum-supported carbon
  • the present disclosure provides a method of producing a composition for a fuel cell catalyst.
  • One embodiment of this method comprises the step of heat treating C12A7: X - at a temperature of 1000-1300 ° C. for 20 hours or more in a nitrogen atmosphere.
  • the heat treatment temperature is preferably 1150 to 1250 ° C, or 1150 to 1200 ° C, more preferably 1200 ⁇ 5 ° C.
  • the heat treatment time can be, for example, 20 to 96 hours, preferably 24 to 72 hours, more preferably 36 to 60 hours. It is preferable that the alkali metal or alkaline earth metal is substantially absent in the heat treatment environment. Substantially nonexistent means that it is not intentionally added to the environment.
  • C12A7: X - be prepared may be accomplished by calcining CaCO 3, Al 2 O 3, and mixtures CaX 2.
  • Final C12A7 X - in Ca, Al, and X - in view of the theoretical molar ratio of, CaCO 3, Al 2 O 3 in this step, and CaX 2 is 11: 7: 1 molar ratio
  • the firing temperature is preferably in the range of 1200 ° C. or higher and lower than 1415 ° C., more preferably 1300 to 1400 ° C.
  • the firing time can be, for example, 2 to 96 hours, preferably 24 to 72 hours, more preferably 36 to 60 hours.
  • a mixture of C12A7, which is pre-generated and CaX 2 C12A7: X - can be prepared.
  • the method of the present embodiment may further include a step of manufacturing a fuel cell catalyst composition as described above and then manufacturing an MEA or a fuel cell using the fuel cell catalyst composition.
  • Example 1 a structure in which oxygen ions of C12A7 is substituted by a fluorine anion C12A7: F - in order to examine the possibility as a platinum substitute catalyst, C12A7: F - the solid polymer having the catalyst layer A fuel cell was manufactured and the power generation capacity was measured.
  • C12A7: F - and C12A7 generation Powdered Ca CO 3 and Al 2 O 3 and Ca F 2 were mixed at a molar ratio of 11: 7: 1 (7.051 g: 4.571 g: 0.500 g) and stirred with a stirrer for 30 minutes. The mixture and baked for 48 hours at 1350 ° C. in air using a high-temperature muffle furnace, a white powder C12A7: F - was prepared. Separately, a mixture of CaCO 3 and Al 2 O 3 in a molar ratio of 12: 7 (5.048 g: 3.000 g) was also calcined in the same manner to prepare C12A7. Separately, C12A7: Cl - was also prepared by using CaCl 2 instead of CaF 2 above.
  • the temperature inside the furnace reached 1350 ° C. 4 hours after the start of temperature rise, and this temperature was maintained for 48 hours, after which it was cooled to room temperature by natural cooling.
  • the C12A7: F - sample thus obtained is referred to as "as-is" in the sense that it is in a prepared state.
  • a sample obtained by further heat-treating the above as-is sample at 1200 ° C. for either 24 hours or 48 hours under a nitrogen atmosphere was also prepared.
  • the appearance of the sample after the heat treatment under the nitrogen atmosphere remained as a white powder.
  • a platinum-supported carbon catalyst (obtained from Tanaka Kikinzoku Kogyo) is placed on the cathode (oxygen electrode) side, and a mixture of the above C12A7: F - and carbon black (weight ratio 1: 1) is placed on the anode (fuel electrode) side.
  • a Nafion membrane which is a solid polymer electrolyte, is sandwiched between both catalyst layers, and carbon paper is used as an electrode laminated on the outside of both catalyst layers, and the whole is heat-pressed with a small thermal press machine.
  • the membrane / electrode assembly (MEA) which is the central structure of the fuel cell, was produced.
  • the area of MEA was 23 x 23 mm 2 .
  • the MEA was sandwiched between two silicone gaskets, further sandwiched between two carbon separators, and further sandwiched between two acrylic resin cell stack members to prepare a fuel cell.
  • a fuel cell in which platinum-supported carbon on the oxygen electrode side and the fuel electrode side and C12A7: F ⁇ / carbon black were reversed was also produced.
  • the as-is C12A7: F - also it has been shown that may contribute to the power generation as a catalyst
  • the as-is C12A7: by heat treating F to a nitrogen atmosphere the catalytic activity is further It was observed to improve. 2 and 3 were heat treated under these nitrogen atmosphere
  • C12A7: F - the improvement of the performance of the fuel cell when used as hydrogen-side catalyst
  • FIGS. 2 and 3 show that the generated power increased as the hydrogen supply time became longer. This result may be related to an increase in cell temperature, an increase in water content, and the like. The most generated cells produced about 1/4 times more electricity than the reference cells that used platinum catalysts for both the castor and anodes.
  • C12A7 F - Structural analysis of
  • the oxygen ions of C12A7 is substituted by a fluorine ion C12A7: F - for, was subjected to analysis by X-ray diffractometry and Raman spectroscopy.
  • FIG. 4 5
  • (a) is as-is C12A7
  • (c) was heat treated for 24 hours at N 2 atmosphere
  • ( d) were heat treated for 48 hours at N 2 atmosphere
  • C12A7: F - indicates the sample
  • C12A7: F - shows a theoretical simulation.
  • FIG. 4 shows the X-ray diffraction pattern of each sample.
  • Fluorine substituted C12A7: F - by heat treatment in a nitrogen atmosphere to cause a change in the arrangement of anions in the crystal cages As a result, it is considered that the change in the Bragg peak relative intensity was observed.
  • FIG. 5 represents a Raman spectrum. No significant difference was found in the spectra in the energy region below 1000 cm -1 .
  • the peak observed near 1130 cm -1 corresponds to the expansion and contraction vibration of O 2 . Peak observed in the vicinity of 3570cm -1 is OH - considered related stretching vibration, C12A7: F - in relatively Raman intensity according heat treatment time under nitrogen atmosphere to increase was confirmed.
  • Example 2 In this embodiment, C12A7: F - was electride of C12A7: F - based inorganic materials were prepared and examined its ability as a catalyst of the polymer electrolyte fuel cell.
  • the four per C12A7 unit cell F - to calculate the amount of calcium fluoride as is dissolved, it by firing 4 hours and mixed with C12A7 to 800 ° C.
  • C12A7: F - to produce the .. C12A7: F - generation was confirmed by X-ray diffraction and changes in lattice constant. Based on the X-ray diffraction pattern, the lattice constant of the C12A7 sample was measured to be 11.980 ⁇ 0.0007 ⁇ , and the lattice constant of the C12A7: F - sample was measured to be 11.964 ⁇ 0.0010 ⁇ .
  • a reactor having a shape in which two tubular spaces are connected by a narrow passage is prepared as shown in FIG. 6 (a), and C12A7: F is prepared in one space.
  • C12A7: F is prepared in one space.
  • the inside of the reactor was evacuated with a vacuum device, and the end of the reactor was cut with a gas burner and sealed in a vacuum. Then, the reactor was heated using a three-zone electric furnace so that the portion containing the sample powder was 800 ° C. and the portion containing metallic calcium was 700 ° C., and calcined for 72 hours.
  • the white C12A7 F - powder and the C12A7 powder turned black. This result is consistent with previous reports that the C12A7 sample darkens as the free oxygen ions of C12A7 are replaced by electrons, that is, as they become electrified.
  • the mass ratio of one of the above catalyst materials to acetylene carbon black is 4: 1 and the area of MEA is 20 x 20 mm 2 , which is essentially the same as in Example 1.
  • the hydrogen gas flow rate in the measurement of fuel cell activity was 7 ml / min.
  • C12A7: F - the fuel cell using the the catalyst C12A7: F - was obtained as electride of C12A7: F - system towards the fuel cell using an inorganic material as a catalyst
  • the amount of power generation was remarkably large.
  • the materials obtained by electride the itself C12A7 showed no such excellent catalytic activity (FIG. 7 (b)), its catalytic activity rather C12A7: F - was low (Fig than that of 7 (a) and (b) are compared).
  • the inorganic material obtained by electrifying C12A7: F - as described above has almost the same X-ray diffraction peak position as the inorganic material obtained by similarly electrifying C12A7. Show different relative peak intensity ratios (Fig. 8), suggesting that fluorine ions remain rather than complete diffraction. Unlike oxygen ions, fluorine ions are difficult to desorb at the electrification treatment temperature used above, so the non-halogen anion that was present in a small amount is prioritized during the electrification treatment of C12A7: F - sample. the e - replaced by fluorine ions is believed to remain.
  • Example 3 In this embodiment, F - and Cl - are different ratios complex halide substitution solid solution in C12A7: X - were prepared and examined for their relative abilities difference as a catalyst of the polymer electrolyte fuel cell.
  • Example 1 CaCO 3 and Al 2 O 3 and CaX 2 of 11: 7: 1 mixture was fired C12A7: X - is to give the proviso mixture of CaF 2 and CaCl 2 as CaX 2 a
  • the firing conditions were 1200 ° C. and 12 hours.
  • the molar ratio of CaF 2 to CaCl 2 varied between 1: 1, 2: 1, 1: 2, and 3: 1.
  • An experiment of re-baking in a nitrogen atmosphere similar to that of Example 1 (re-firing time is 48 hours) and an experiment of electrification treatment similar to Example 2 (treatment time of 72 hours or 96 hours) were also performed. ..
  • a fuel cell containing these samples as a catalyst was produced on the fuel electrode side essentially in the same manner as in Example 1 except that the area of MEA was 20 x 20 mm 2 .
  • the hydrogen gas flow rate in the measurement of fuel cell activity was 7 ml / min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

C12A7の酸素アニオンがハロゲン(X)アニオンで置換された構造を有するC12A7:X-無機材料、またはC12A7:X-が部分的にエレクトライド化されたものであるC12A7:X-系無機材料を含む、燃料電池触媒用組成物が提供される。その燃料電池触媒用組成物を触媒層に含む燃料電池も提供される。さらに、C12A7:X-を、窒素雰囲気下1000~1300℃の温度で20時間以上熱処理する工程を含む、燃料電池触媒用組成物の製造方法が提供される。

Description

燃料電池触媒用組成物およびそれを含む燃料電池
 本開示は、燃料電池触媒用組成物およびそれを含む燃料電池に関する。より具体的には、本開示は、白金を必要としない燃料電池触媒の組成物、ならびにそれを含む燃料電池およびその製造方法に関する。
 固体高分子形燃料電池(PEFC: Polymer Electrolyte Fuel Cell)、リン酸型燃料電池(PAFC: Phosphoric Acid Fuel Cell)等の燃料電池においては、一般的にアノード側とカソード側の両方で白金が触媒として使用される。しかしながら、貴金属である白金は高価であり埋蔵量にも限りがあるため、燃料電池の触媒における白金の使用を排除する、あるいは低減することが望まれている。従って、白金に代替できる触媒の開発が求められている。
 白金代替触媒として、鉄フタロシアニン、含窒素カーボン(カーボンアロイ)、窒素ドープカーボン等が注目されているが、現在のところ、触媒性の高さと化学的安定性という点で白金には及ぶものは出てきていない。
 C12A7(12CaO・7Al2O3)は、マイエナイトという天然鉱物としても存在しアルミナセメントの成分でもある無機物質である。C12A7の結晶は、内径0.4 nm程度のケージ(籠)状の骨格が、互いに面を共有して繋がった構造をとり、単位格子内の12個のケージのうち2つに、酸素イオンO2-を内包している。特許文献1、2は、C12A7を高温処理して結晶ケージ内のO2-アニオンを電子e-に置換しエレクトライド化して得られる結晶[Ca24Al28O64]4+(4e-)を記載している。特許文献3は、特定のC12A7化合物を固体電解質燃料電池の電極材料として用いる可能性について言及しているが、本発明者の知る限り、実際にこれを燃料電池の触媒として使用し発電したことを示す文献は存在していない。
国際公開第2005/000741号 国際公開第2007/060890号 特開2003-128415号公報
 本開示は、白金を必要としない燃料電池用触媒、およびその触媒を含む燃料電池を提供する。
 本発明者は、C12A7(理想化学式は[Ca24Al28O64]4+(O2-)2)のO2-アニオンをフッ素アニオンで置換したもの(C12A7:F-と表記される;理想化学式は[Ca24Al28O64]4+(4F-))や、塩素アニオンで置換したもの(C12A7:Cl-と表記される)等、ハロゲン置換C12A7が、燃料電池の燃料極(アノード)または空気極(カソード)において触媒能力を有し、従って白金の代替触媒として活用できることを見出した。さらに、これらハロゲン置換C12A7に特定条件の熱処理を行うことにより、触媒作用をさらに高めることができることを見出した。本発明はこれらの発見に基づくものである。
 本開示は以下の実施形態を含む。
[1]
 C12A7の酸素アニオンがハロゲン(X)アニオンで置換された構造を有するC12A7:X-を含む、燃料電池触媒用組成物。
[2]
 前記ハロゲンアニオンがフッ素アニオンであるC12A7:F-を含む、[1]に記載の燃料電池触媒用組成物。
[3]
 前記ハロゲンアニオンが塩素アニオンであるC12A7:Cl-を含む、[1]または[2]に記載の燃料電池触媒用組成物。
[4]
 前記C12A7:X-と混合された炭素材料をさらに含む、[1]~[3]のいずれかに記載の燃料電池触媒用組成物。
[5]
 前記炭素材料がカーボンブラックである、[4]に記載の燃料電池触媒用組成物。
[6]
 アノード、アノード側触媒層、電解質、カソード側触媒層、およびカソードをこの順で積層して含み、前記アノード側触媒層および前記カソード側触媒層のうちの少なくともいずれか一方が、[1]~[5]のいずれかに記載の燃料電池触媒用組成物を含む、燃料電池。
[7]
 前記電解質は、プロトン交換固体高分子膜、またはリン酸水溶液である、[6]に記載の燃料電池。
[8]
 C12A7:X-を、窒素雰囲気下1000~1300℃の温度で20時間以上熱処理する工程を含む、[1]~[5]のいずれかに記載の燃料電池触媒用組成物の製造方法。
[9]
 CaCO3、Al2O3、およびCaX2の混合物を焼成することにより前記C12A7:X-を調製する工程をさらに含む、[8]に記載の製造方法。
 さらに本開示は以下の実施形態を包含する。
[1]
 C12A7の酸素アニオンがハロゲン(X)アニオンで置換された構造を有するC12A7:X-無機材料を含む、燃料電池触媒用組成物。
[2]
 前記ハロゲンアニオンが、フッ素アニオン、塩素アニオン、またはフッ素アニオンと塩素アニオンとの組合せである、[1]に記載の燃料電池触媒用組成物。
[3]
 前記ハロゲンアニオンがフッ素アニオン(F-)と塩素アニオン(Cl-)との組合せであり、F- : Cl-のモル比が1:1~3:1である、[2]に記載の燃料電池触媒用組成物。
[4]
 C12A7の酸素アニオンがハロゲン(X)アニオンで置換された構造を有するC12A7:X-が部分的にエレクトライド化されたものである無機材料。
[5]
 [4]に記載の無機材料を含む、燃料電池触媒用組成物。
[6]
 前記無機材料と混合された炭素材料をさらに含む、[1]~[3]または[5]のいずれかに記載の燃料電池触媒用組成物。
[7]
 前記炭素材料がカーボンブラックである、[6]に記載の燃料電池触媒用組成物。
[8]
 アノード、アノード側触媒層、電解質、カソード側触媒層、およびカソードをこの順で積層して含み、前記アノード側触媒層および前記カソード側触媒層のうちの少なくともいずれか一方が、[1]~[3]または[5]~[7]のいずれかに記載の燃料電池触媒用組成物を含む、燃料電池。
[9]
 C12A7:X-を、窒素雰囲気下1000~1300℃の温度で20時間以上熱処理する工程を含む、[1]~[3]のいずれかに記載の燃料電池触媒用組成物の製造方法。
[10]
 C12A7:X-と、カルシウムまたはチタンから選択される金属とを、同じ反応器内に配置して真空封入する工程、および、前記金属が蒸気化する温度に前記反応器を加熱する工程を含む、[4]に記載の無機材料または[5]に記載の燃料電池触媒用組成物の製造方法。
 本実施形態の燃料電池触媒用組成物は、希少元素を使用する必要がなく、安価な原料から製造でき、燃料電池のアノード、カソードのいずれにおいても触媒として働き、化学的にも安定である。従って燃料電池への実用化に適している。
 C12A7のエレクトライド化は長時間の焼成過程が必要で技術的に難しいのに対し、本開示のハロゲン置換C12A7およびその派生材料は比較的容易に製造できる。また、本開示の実施形態による燃料電池触媒用組成物は、エレクトライド化C12A7を上回る触媒活性を示すことができる。
図1は、「as-is」のC12A7:F-を水素極側(左)または酸素極側(右)の触媒として含む燃料電池に水素を供給した場合の発電を示す。 図2は、窒素雰囲気下で熱処理をしたC12A7:F-を水素極側触媒として使用した場合の燃料電池性能の向上を、as-is C12A7:F-を使用した場合と比較しながら示す、電圧-電流曲線である。 図3は、窒素雰囲気下で熱処理をしたC12A7:F-を水素極側触媒として使用した場合の燃料電池性能の向上を、as-is C12A7:F-を使用した場合と比較しながら示す、電力曲線である。 図4は、C12A7およびC12A7:F-をX線回折法により分析した結果を示す。 図5は、C12A7およびC12A7:F-をラマン分光法により分析した結果を示す。 図6の(a)は、C12A7:X-試料をエレクトライド化処理するための反応器の一実施形態を示す。(b)は、エレクトライド化処理による試料の黒色化を示す。 図7の(a)は、C12A7:F-をエレクトライド化処理することによって燃料電池触媒としての性能がさらに向上したことを示すデータである。上パネルは電流-電圧(I-V)曲線および電流-電力(I-P)曲線を示し、下パネルは最大電力量のグラフを示す。(b)は、そのような優れた触媒性能はC12A7:X-をエレクトライド化処理する場合に特有であって、C12A7に同じエレクトライド化処理をしても効果が限定的であったことを示すデータである。 図8は、エレクトライド化処理したC12A7:F-と、同じエレクトライド化処理を施したC12A7とを、X線回折法により分析した結果を示す。 図9の(a)は、ハロゲン(X)イオンとしてフッ素(F)イオンまたは塩素(Cl)イオンを固溶させたC12A7:X-を燃料極側触媒として含む燃料電池の発電を示す。(b)は、複合アニオン置換C12A7において、F- : Cl-の比(焼成に用いたCaF2とCaCl2の比)を1:2~3:1のあいだで変動させたときの発電を比較している。(c)は、(a)および(b)の実験において測定された最大発電量を比較したグラフである。(d)は、F-および/またはCl-を異なる比率で含むC12A7:X-無機材料について測定された格子定数を示す。
 本開示において、数値範囲を示す「~」は、その前後に記載された数値をそれぞれ下限値および上限値として含むことを意味する。「A~B」「C~D」というように可能な複数の数値範囲が別々に記載されている場合、一方の下限または上限を他方の上限または下限と組み合わせた数値範囲(例えば「A~D」「C~B」)も可能であることが理解される。例えば要素Eを「含む」という記載は、要素Eだけでなく他の要素も含む態様と、要素Eの他の要素は含まない(すなわち要素Eからなる)態様との両方を包含し得るものと解される。
 一側面において、本開示は、C12A7の酸素アニオンがハロゲンアニオンで置換された構造を有するC12A7:X-を含む、燃料電池触媒用組成物を提供する。Xはハロゲン原子を、X-はハロゲンアニオンを表す。本開示では、便宜上、C12A7:X-をC12A7:X-無機材料とも呼び、これと後述するエレクトライド化C12A7:X-とを合わせてC12A7:X-系無機材料とも呼ぶ。通常C12A7は、CaCO3とAl2O3の混合物を焼成することにより調製されるが、この混合物にモル比を考慮したCaX2を加えて焼成を行うことにより、C12A7:X-を調製することができる(J. Phys. Chem. C 2008, 112, 19061-19068)。あるいは、あらかじめ生成されたC12A7に、モル比を考慮したCaX2を混ぜて焼成を行ってもC12A7:X-を調製することができる(日本化学会誌, 1990, (3), p.305-311)。C12A7の単位格子あたり4つのX-に相当する理論的モル比においてCaX2を焼成に含めることが好ましい。これらの調製方法により、C12A7の酸素アニオンの少なくとも80%以上(かつ100%以下または100%未満)がハロゲンアニオンに置き換わり得る。本実施形態におけるC12A7:X-は通常粉末の形態であり、通常は白色を呈する。
 Xは、フッ素または塩素であることが好ましく、フッ素であることがより好ましい。すなわち本実施形態の組成物において、C12A7:X-は、C12A7:F-、C12A7:Cl-、またはそれらの組合せであることが好ましく、C12A7:F-であることがより好ましい。
 別の言い方をすると、上記ハロゲンアニオンは、好ましくは、フッ素アニオン、塩素アニオン、またはフッ素アニオンと塩素アニオンとの組合せであり得る。ハロゲンアニオンがフッ素アニオン(F-)と塩素アニオン(Cl-)との組合せである場合には、F- : Cl-のモル比が1:1~3:1であることがさらに好ましく、1:1~2.5:1であることが特に好ましい。F-とCl-がこれらの比率で含まれていると、いずれかが単独で含まれている場合と比べて触媒性能の向上をもたらし得る。C12A7:X-を焼成する際に含めさせる、異なるCaX2(CaF2およびCaCl2)同士の比率を調節することにより、固溶されるハロゲンアニオンの比率を調節することができる。
 さらなる側面において、本開示は、C12A7の酸素アニオンがハロゲン(X)アニオンで置換された構造を有するC12A7:X-を部分的にエレクトライド化して得られる無機材料、すなわち、C12A7:X-が部分的にエレクトライド化されたものであるC12A7:X-系無機材料を提供する。ハロゲンアニオンは、上記のように、フッ素アニオン、塩素アニオン、またはフッ素アニオンと塩素アニオンとの組合せであり得る。この、C12A7:X-が部分的にエレクトライド化された無機材料は、アニオンがe-に置換されてはいるがX-が残存しているものであるという点で、式[Ca24Al28O64]4+(4e-)で表される基準的なC12A7エレクトライドと区別される。C12A7:X-のエレクトライド化処理の際に、C12A7:X-に含まれた少量のO2-およびその他の非ハロゲンアニオンが、X-より優先的にe-に置換されることにより、X-の少なくとも一部分、あるいはおそらくは大部分が残存すると推測される。
 C12A7:X-が部分的にエレクトライド化されたものである無機材料は、真空中、金属カルシウムまたは金属チタンの共存下で、この金属を蒸気化させる温度においてC12A7:X-を焼成することにより製造することができる。より具体的には、まず、C12A7:X-と金属カルシウムとを、同じ反応器内に配置して、反応器を真空封入する(金属カルシウムの代わりに金属チタンを用いることもできる)。この際、C12A7:X-と金属とが互いに接触しないように、すなわち互いに混ざらないように、反応器内に配置することが、目的産物を分離する上で好ましい。例えば、図6(a)に示すように、2つの太い管状空間が細い通路でつながれた形状を有する反応器の、一方の管状空間にC12A7:X-を配置し、他方の管状空間に金属カルシウムを配置したうえで、反応器内全体を真空にして封鎖すればよい。反応効率を上げるためには、C12A7:X-試料は好ましくは表面積を増加させて、特に好ましくは粉末状態で、反応器内に配置される。
 続いて、上記金属を蒸気化させる温度に反応器を熱する。減圧環境下で金属を蒸気化させる温度は当業者に知られているかまたは当業者が適宜決定することができる。例えば金属カルシウムの場合は600~800℃の加熱温度が好適でありうる。680~720℃が特に好ましく、700℃が最も好ましい。1200℃以下の温度、特に約800℃以下の温度では、C12A7結晶内でハロゲンイオンが比較的安定であり残存しやすいため好ましい。反応器のうち金属カルシウムを含む部分とC12A7:X-試料を含む部分とが十分に離れていて別温度で加熱可能な場合は、前者を680~720℃(あるいは700℃)で、後者を780~820℃(あるいは800℃)のようなより高い温度で加熱すると、蒸気化されたカルシウムが試料近傍で不必要に固体化することを抑制し得るので好ましい。
 同じ1つの反応器内において、加熱によりC12A7:X-から離脱する酸素アニオンが蒸気化された金属の酸化に進んで用いられ、C12A7:X-の側ではアニオンからe-への置換が促進される。エレクトライド化が十分に進むと、通常は白色のC12A7:X-が黒色に転じ得る。金属蒸気と反応させるあいだ、反応器を揺り動かす等して試料をシャッフルしながら蒸気に曝すことで反応効率をさらに向上させ得る。
 反応器を加熱する時間(真空中、金属の共存下で、C12A7:X-を焼成する時間)は典型的には24時間以上であり、例えば40~240時間であり得、72~100時間が好ましい。反応器の材質および形状は、当業者が通常の知識に基づいて適宜選択することができ、例えば図6(a)に示すような両端が閉じられ中央部分が細くなった石英管が好適である。石英管は、ガスバーナーの炎であぶることにより任意の形状に加工できる一方、上述した典型的な反応温度では破損に耐え得る耐熱性を有する。
 C12A7:X-が部分的にエレクトライド化されたものである無機材料は、優れた燃料電池触媒を提供し得る。すなわち一実施形態では、この無機材料を含む燃料電池触媒用組成物が提供される。また別の実施形態では、その無機材料またはそれを含む燃料電池触媒用組成物の製造方法であって、上述したように真空中、金属の共存下で、C12A7:X-を焼成する工程により無機材料を得ることを含む方法が提供される。
 上述した異なる実施形態の組成物は、好ましくは、上記いずれかのC12A7:X-系無機材料と混合された導電性の炭素材料をさらに含む。この炭素材料の例としては、カーボンブラック、メソカーボンマイクロビーズ、黒鉛、ガラス状炭素粉末、カーボンナノチューブ、カーボンナノホーン、およびカーボンナノファイバーが挙げられるがこれらに限定されない。これらの炭素材料は通常は粉末状態である。カーボンブラックは特に好適な炭素材料である。C12A7:X-系無機材料と炭素材料の混合重量比は、例えば10:1~1:10であり得、5:1~1:3が好ましく、3:1~1:1がより好ましい。従って、一側面において、燃料電池触媒用組成物の製造方法は、C12A7:X-系無機材料をこの段落に記載されたように炭素材料と混合することを含み得る。
 別の側面において、本開示は、アノード、アノード側触媒層、電解質、カソード側触媒層、およびカソードをこの順で積層して含む燃料電池を提供する。燃料電池のこの基本的構成(MEA(Membrane Electrode Assembly:膜・電極接合体)とも呼ばれる積層構造)は本技術分野でよく知られているが、本実施形態の燃料電池は、アノード側触媒層およびカソード側触媒層のうちの一方または両方が、上述したいずれかの燃料電池触媒用組成物を含むことを特徴とする。他方の、すなわち上記実施形態の燃料電池触媒用組成物を含まない方の触媒層は、例えば白金担持カーボンのような従来型の触媒を含んでいてもよい。また、同じ触媒層に上記実施形態の燃料電池触媒用組成物と従来型の触媒との組合せが含まれていてもよい。
 燃料電池の燃料は、例えば水素、天然ガス、またはメタノールであり得、水素が特に好ましい。
 本実施形態における電解質は、プロトン交換固体高分子膜、またはリン酸水溶液であり得る。前者の場合は固体高分子形燃料電池となり、後者の場合はリン酸型燃料電池となる。本実施形態の燃料電池はより好ましくは固体高分子形燃料電池である。プロトン交換固体高分子膜の特に好ましい例はナフィオン膜である。当業者には周知であるように、ナフィオンは、テトラフルオロエチレン骨格とスルホン酸基を持つパーフルオロ側鎖とを有する物質であり、テトラフルオロエチレンとパーフルオロ[2-(フルオロスルホニルエトキシ)プロピルビニルエーテル]の共重合体である。リン酸型燃料電池におけるリン酸水溶液電解質は、通常は、炭化ケイ素等を含む固体マトリックス中に含侵された状態で上記積層構造に組み入れられる。
 燃料電池のアノードおよびカソードにそれぞれ適した材料は当業者に知られており、例えば通気性、導電性、化学的安定性等の観点からカーボンペーパーまたはカーボン繊維布が特に適している。
 具体的な一例において、本実施形態に係る燃料電池は、C12A7:X-系無機材料と炭素材料(例えばカーボンブラック)との混合物である粉末状の燃料電池触媒用組成物を溶媒(例えば酢酸ブチル;ナフィオン溶液を加えてもよい)に分散させたものを一枚のカーボンペーパー表面に塗布し、同じ燃料電池触媒用組成物(または白金担持カーボン)を同様に溶媒に分散させたものをもう一枚のカーボンペーパー表面に塗布し、これら2枚の触媒塗布カーボンペーパーでナフィオン膜を挟んで積層体を形成し(その際、それぞれの塗布側をナフィオン膜に向ける)、これを熱圧着するというプロセスを含む方法で作製され得る。
 別の側面において、本開示は、燃料電池触媒用組成物を製造する方法を提供する。この方法の一実施形態は、C12A7:X-を、窒素雰囲気下1000~1300℃の温度で20時間以上熱処理する工程を含む。熱処理の温度は好ましくは1150~1250℃であり、または1150~1200℃であり、より好ましくは1200±5℃である。熱処理の時間は、例えば20~96時間であり得、好ましくは24~72時間であり、より好ましくは36~60時間である。熱処理の環境中には、アルカリ金属またはアルカリ土類金属が実質的に存在しないことが好ましい。実質的に存在しないとは、その環境に意図的には加えないことを意味する。
 本実施形態の方法は、上記のようにC12A7:X-を窒素雰囲気下で熱処理する工程を行う前に、またはC12A7:X-をエレクトライド化する前に、そのC12A7:X-を調製する工程をさらに含み得る。C12A7:X-を調製することは、CaCO3、Al2O3、およびCaX2の混合物を焼成することにより達成され得る。最終的なC12A7:X-におけるCa、Al、およびX-の理論的モル比を考慮して、この工程におけるCaCO3、Al2O3、およびCaX2は、11 : 7 : 1のモル比で混合されることが好ましく、これは例えばXがFである場合には7.051g : 4.571g : 0.500gの重量比でこれらの材料を混合することを意味する。焼成温度は1200℃以上~1415℃未満の範囲内であることが好ましく、1300~1400℃がより好ましい。焼成時間は、例えば2~96時間であり得、好ましくは24~72時間であり、より好ましくは36~60時間である。あるいは、あらかじめ生成されたC12A7をCaX2と混合して焼成することによってもC12A7:X-を調製することができる。
 本実施形態の方法は、上記のようにして燃料電池触媒用組成物を製造した後に、その燃料電池触媒用組成物を用いてMEAあるいは燃料電池を製造する工程をさらに含んでいてもよい。
実施例1
 本実施例では、C12A7の酸素イオンがフッ素アニオンで置換された構造であるC12A7:F-の、白金代替触媒としての可能性を調べるために、C12A7:F-を触媒層に有する固体高分子形燃料電池を作製し、発電能力を測定した。
[C12A7:F-およびC12A7の生成]
 粉末状のCaCO3とAl2O3とCaF2を、モル比11 : 7 : 1(7.051g : 4.571g : 0.500g)の割合で混合し、撹拌機で30分間撹拌した。この混合物を、高温マッフル炉を用いて空気中1350℃で48時間焼成することにより、白色粉末であるC12A7:F-を調製した。別途、CaCO3とAl2O3のモル比12 : 7(5.048g : 3.000g)の混合物も同様に焼成し、C12A7を調製した。さらに別途、上記CaF2の代わりにCaCl2を使用することによって、C12A7:Cl-も調製した。
 上記焼成の際には、炉内温度は昇温開始から4時間で1350℃に達し、この温度が48時間保持され、その後自然冷却により室温まで冷却された。以下、このようにして得られたC12A7:F-試料を、調製されたままの状態という意味で「as-is」と呼ぶ。
 上記as-is試料を、更に窒素雰囲気下で1200℃で24時間または48時間のいずれかの時間にわたり熱処理した試料も調製した。このように窒素雰囲気下熱処理した後の試料も外観は白色粉末のままであった。
[MEAおよび燃料電池の作製]
 カソード(酸素極)側には白金担持カーボン触媒(田中貴金属工業から入手)を、アノード(燃料極)側には上記C12A7:F-とカーボンブラックとの混合物(重量比1:1)を、それぞれ触媒層として用い、両触媒層の間に、固体高分子電解質であるナフィオン膜を挟み、両触媒層の外側に積層される電極としてそれぞれカーボンペーパーを用いて、全体を小型熱プレス機で熱圧着させることにより、燃料電池の中心的構造である膜/電極接合体(MEA)を作製した。MEAの面積は23 x 23 mm2であった。
 MEAを2枚のシリコーンガスケットで挟み、それをさらに2枚のカーボン製セパレータで挟み、それをさらに2つのアクリル樹脂製セルスタック部材で挟んで、燃料電池を作製した。また、触媒層に関し、酸素極側と燃料極側の白金担持カーボンとC12A7:F-/カーボンブラックとを逆に入れ替えた燃料電池も作製した。
[燃料電池活性の測定]
 3 cc/minの水素ガス流量下、ソースメータを用いて燃料電池に加わる電圧を変化させながら電流の測定を行い、測定結果から電力を算出した。図1は、「as-is」C12A7:F-を水素極触媒として用いた場合(左)および酸素極触媒として用いた場合(右)の、電流(Current)-電圧(Voltage)曲線および電力(Power)曲線を示す。このように、本実験系では数mWの電力が検出され、C12A7:F-は、燃料電池のアノード側あるいはカソード側のいずれにおいても触媒として機能することが実証された。
 一方、本実験系において、フッ素置換を行っていない通常のC12A7を触媒とした燃料電池は、電力を生じることができなかった。本実験系において、両電極側とも白金触媒を用いた参照燃料電池は約25 mWの最大電力を生じた。また、予備的実験において、C12A7:F-を触媒とする燃料電池は、エレクトライド化C12A7を触媒とする同条件下の燃料電池を上回る電池性能を示すことができた。(データはいずれも図示していない。エレクトライド化C12A7との比較については、独立に行われた別実験での結果を実施例2に記述する。)
 上記のように、as-isのC12A7:F-も触媒として発電に寄与し得ることが示されたが、as-isのC12A7:Fを窒素雰囲気下で熱処理することにより、その触媒活性がさらに向上することが観測された。図2、3は、これら窒素雰囲気下での熱処理をしたC12A7:F-を水素極側触媒として使用した場合の燃料電池性能の向上を、as-is C12A7:F-を使用した場合と比較しながら示している。この向上効果の機序は明らかではないが、熱処理の際の、付着水分子に由来するOH-の増加(1/2 O2- + H2O →2OH-)(下記参照)が触媒作用向上に寄与した可能性、および/または、熱処理を通じてO2-もしくはOH-がe-と置き換わりその電子が触媒作用に貢献した可能性等が考えられる。図2、3はまた、水素の供給時間がより長くなると発生電力が上昇したことを示している。この結果は、セルの温度上昇、水分量の増加等が関連している可能性がある。最も発電したセルでは、白金触媒をカソート・アノードの両方に使用した参照セルの約1/4倍に達する発電量が得られた。
 同様に、F-の代わりにCl-を有するC12A7:Cl-も、その発電量はF-の場合より低いが、触媒活性を有することが確かめられた。独立に行われた別実験での結果を実施例3に記述する。
[C12A7:F-の構造分析]
 C12A7の酸素イオンがフッ素イオンで置換された上記C12A7:F-について、X線回折法およびラマン分光法により分析をおこなった。図4、5において、(a)はas-is C12A7、(b)はas-is C12A7:F-、(c)は(b)をN2雰囲気下で24時間熱処理したC12A7:F-、(d)は(b)をN2雰囲気下で48時間熱処理したC12A7:F-の試料を示し、(e)はC12A7:F-の理論的シミュレーションを示す。
 図4は、各サンプルのX線回折パターンを示す。フッ素置換したC12A7:F-は、窒素雰囲気下で熱処理することにより結晶ケージ内でのアニオンの配置等に変化を起こし、その結果、ブラッグピーク相対強度に変化が観測されたと考えられる。
 図5はラマンスペクトルを表す。1000 cm-1より低いエネルギー領域のスペクトルには顕著な違いは見られなかった。(a)のC12A7試料について1130cm-1付近に見られるピークはO2の伸縮振動に対応する。3570cm-1付近にみられるピークはOH-の伸縮振動に関するものと考えられ、C12A7:F-においては、窒素雰囲気下での熱処理時間に従って相対的にそのラマン強度が大きくなることが確認できた。
実施例2
 本実施例では、C12A7:F-をエレクトライド化したC12A7:F-系無機材料を調製し、固体高分子形燃料電池の触媒としてのその能力を調べた。
 まず、C12A7単位胞当たり4個のF-が固溶されるようにフッ化カルシウムの量を計算し、それをC12A7と混合して800℃で4時間焼成することでC12A7:F-を生成した。X線回折および格子定数の変化からC12A7:F-生成が確認された。X線回折パターンに基づいてC12A7試料の格子定数は11.980±0.0007Å、C12A7:F-試料の格子定数は11.964±0.0010Åと測定された。
 続いて、ガスバーナーの炎で石英管を加工することにより図6(a)に示すように2つの管状空間が細い通路でつながれた形状とした反応器を用意し、一方の空間にC12A7:F-試料粉末またはC12A7試料粉末を、他方の空間に同重量の金属カルシウムを、両者が混ざらないように配置した。真空装置で反応器内を真空状態にし、そのまま反応器の末端をガスバーナーで切断して真空封入した。その後、反応器のうち上記試料粉末を含む部分が800℃、金属カルシウムを含む部分が700℃になるようにスリーゾーン電気炉を用いて加熱し、72時間焼成を行った。その結果、図6(b)に示すように、白色のC12A7:F-粉末およびC12A7粉末が黒色化した。この結果は、C12A7のフリー酸素イオンが電子に置き換わっていくにつれ、すなわちエレクトライド化するにつれC12A7試料が黒くなっていくという過去の報告と合致している。
 燃料極側の触媒層において、上記いずれかの触媒材料とアセチレンカーボンブラックとの質量比を4:1とし、MEAの面積を20 x 20 mm2としたほかは、本質的に実施例1と同様にして燃料電池を作製した。燃料電池活性の測定における水素ガス流量は7 ml/minとした。
 図7(a)に示すように、C12A7:F-を触媒に用いた燃料電池より、C12A7:F-をエレクトライド化して得たC12A7:F-系無機材料を触媒として用いた燃料電池の方が、顕著に発電量が大きかった。しかしながら、C12A7そのものをエレクトライド化して得た材料では、そのような優れた触媒活性が見られず(図7(b))、むしろその触媒活性はC12A7:F-のものよりも低かった(図7(a)と(b)を比較)。実際、C12A7:F-を上記のようにエレクトライド化処理して得た無機材料は、C12A7を同様にエレクトライド化処理して得た無機材料と比べて、X線回折ピーク位置はほとんど同じあるが異なる相対ピーク強度比を示し(図8)、完全なエレクトライドではなくフッ素イオンが残存していることが示唆される。酸素イオンとは異なりフッ素イオンは上記で用いたエレクトライド化処理温度では脱離しにくいことから、C12A7:F-試料のエレクトライド化処理の際には、少量存在していた非ハロゲンアニオンが優先的にe-に置き換えられフッ素イオンは残存していると考えられる。
実施例3
 本実施例では、F-とCl-とが異なる比率で固溶した複合ハロゲン置換C12A7:X-を調製して、固体高分子形燃料電池の触媒としてのそれらの相対的能力差について調べた。
 実施例1と同様に、CaCO3とAl2O3とCaX2の11:7:1混合物を焼成してC12A7:X-を得たが、ただしCaX2としてCaF2とCaCl2との混合物を用い、焼成条件は1200℃、12時間とした。CaF2とCaCl2とのモル比は、1:1、2:1、1:2、および3:1のあいだで変動させた。実施例1と同様な窒素雰囲気下での再焼成の実験(再焼成時間は48時間)、および実施例2と同様なエレクトライド化処理の実験(処理時間は72時間または96時間)も行った。MEAの面積を20 x 20 mm2としたほかは、本質的に実施例1と同様にして、燃料極側にこれらの試料を触媒として含む燃料電池を作製した。燃料電池活性の測定における水素ガス流量は7 ml/minとした。
 異なるF-:Cl-比を有するC12A7:X-は、互いに類似したX線回折パターンを示したが(図示していない)、F-の比率を大きくするほど格子定数が小さくなる傾向が確認された(図9(d))。このことは、Cl-よりもF-の方がイオン半径が小さいという事実と整合する。また、図9(a)~(c)に示す結果は、C12A7:X-中のF-とCl-の比率を調節することにより触媒性能を調節し得ることを示している。最も高い発電量を示した、F-とCl-の比率が2:1であるC12A7:X-を選んで、さらに窒素雰囲気下再焼成またはエレクトライド化処理を施したところ、先の実施例と同様に、発電量のさらなる向上が観察された。窒素雰囲気下再焼成では最大発電量が約210%に向上し、96時間のエレクトライド化処理では最大発電量が約222%に向上した(図示していない)。

Claims (10)

  1.  C12A7の酸素アニオンがハロゲン(X)アニオンで置換された構造を有するC12A7:X-無機材料を含む、燃料電池触媒用組成物。
  2.  前記ハロゲンアニオンが、フッ素アニオン、塩素アニオン、またはフッ素アニオンと塩素アニオンとの組合せである、請求項1に記載の燃料電池触媒用組成物。
  3.  前記ハロゲンアニオンがフッ素アニオン(F-)と塩素アニオン(Cl-)との組合せであり、F- : Cl-のモル比が1:1~3:1である、請求項2に記載の燃料電池触媒用組成物。
  4.  C12A7の酸素アニオンがハロゲン(X)アニオンで置換された構造を有するC12A7:X-が部分的にエレクトライド化されたものである無機材料。
  5.  請求項4に記載の無機材料を含む、燃料電池触媒用組成物。
  6.  前記無機材料と混合された炭素材料をさらに含む、請求項1~3または5のいずれかに記載の燃料電池触媒用組成物。
  7.  前記炭素材料がカーボンブラックである、請求項6に記載の燃料電池触媒用組成物。
  8.  アノード、アノード側触媒層、電解質、カソード側触媒層、およびカソードをこの順で積層して含み、前記アノード側触媒層および前記カソード側触媒層のうちの少なくともいずれか一方が、請求項1~3または5~7のいずれかに記載の燃料電池触媒用組成物を含む、燃料電池。
  9.  C12A7:X-を、窒素雰囲気下1000~1300℃の温度で20時間以上熱処理する工程を含む、請求項1~3のいずれかに記載の燃料電池触媒用組成物の製造方法。
  10.  C12A7:X-と、カルシウムまたはチタンから選択される金属とを、同じ反応器内に配置して真空封入する工程、および、前記金属が蒸気化する温度に前記反応器を加熱する工程を含む、請求項4に記載の無機材料または請求項5に記載の燃料電池触媒用組成物の製造方法。
PCT/JP2020/025882 2019-07-12 2020-07-01 燃料電池触媒用組成物およびそれを含む燃料電池 WO2021010167A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080050657.2A CN114097120A (zh) 2019-07-12 2020-07-01 燃料电池催化剂用组合物及包含其的燃料电池
US17/618,185 US20220271297A1 (en) 2019-07-12 2020-07-01 Fuel cell catalyst composition and fuel cell containing same
EP20840517.5A EP3951961B1 (en) 2019-07-12 2020-07-01 Fuel cell catalyst composition and fuel cell containing same
JP2021532772A JP7229585B2 (ja) 2019-07-12 2020-07-01 燃料電池触媒用組成物およびそれを含む燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019130040 2019-07-12
JP2019-130040 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021010167A1 true WO2021010167A1 (ja) 2021-01-21

Family

ID=74210595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025882 WO2021010167A1 (ja) 2019-07-12 2020-07-01 燃料電池触媒用組成物およびそれを含む燃料電池

Country Status (5)

Country Link
US (1) US20220271297A1 (ja)
EP (1) EP3951961B1 (ja)
JP (1) JP7229585B2 (ja)
CN (1) CN114097120A (ja)
WO (1) WO2021010167A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017199A1 (es) 2021-08-10 2023-02-16 Advanced Thermal Devices S.L. Cátodo basado en el material c12a7:e "electride" para la emisión termiónica de electrones y procedimiento para el empleo del mismo

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128415A (ja) 2001-10-18 2003-05-08 Japan Science & Technology Corp 12CaO・7Al2O3化合物とその作成方法
JP2003238149A (ja) * 2002-02-21 2003-08-27 Japan Science & Technology Corp 12SrO・7Al2O3化合物とその合成方法
WO2005000741A1 (ja) 2003-06-26 2005-01-06 Japan Science And Technology Agency 電気伝導性12CaO・7Al 2O3 及び同型化合物とその製造方法
JP2006083009A (ja) * 2004-09-15 2006-03-30 National Institute Of Advanced Industrial & Technology 活性酸素を包含あるいは吸蔵した無機化合物材料及びその製造方法
WO2007060890A1 (ja) 2005-11-24 2007-05-31 Japan Science And Technology Agency 金属的電気伝導性12CaO・7Al2O3化合物とその製法
JP2010059852A (ja) * 2008-09-03 2010-03-18 Toyota Motor Corp 内燃機関の燃料性状判定装置
JP2010197498A (ja) * 2009-02-23 2010-09-09 Canon Inc 現像装置及び画像形成装置
JP2011138024A (ja) * 2009-12-28 2011-07-14 Kyoiku Dojinsha:Kk 評価支援システム
JP2012183474A (ja) * 2011-03-04 2012-09-27 Masahiro Koura 排ガス浄化用触媒
JP2015122280A (ja) * 2013-12-25 2015-07-02 株式会社島津製作所 帯電除去機構およびその機構を用いた飛行時間型質量分析装置
WO2017082265A1 (ja) * 2015-11-10 2017-05-18 国立大学法人東京工業大学 金属担持物、担持金属触媒及び該触媒を用いるアンモニア合成法
WO2018030394A1 (ja) * 2016-08-08 2018-02-15 国立大学法人東京工業大学 アンモニア合成用触媒の製造方法及びアンモニアの製造方法
WO2018169076A1 (ja) * 2017-03-17 2018-09-20 国立大学法人東京工業大学 金属担持物、担持金属触媒、アンモニアの製造方法、水素の製造方法及びシアナミド化合物の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101245943B1 (ko) * 2005-05-30 2013-03-21 도오쿄 인스티튜드 오브 테크놀로지 도전성 마이에나이트형 화합물의 제조 방법
CN101184697B (zh) * 2005-05-30 2012-07-04 旭硝子株式会社 导电性钙铝石型化合物的制造方法
WO2010041558A1 (ja) * 2008-10-06 2010-04-15 旭硝子株式会社 酸化物の製造方法
CN101532176B (zh) * 2009-03-11 2011-06-15 中国科学技术大学 一种制备多晶纳米钙铝氧化物的方法
JP5566681B2 (ja) * 2009-12-25 2014-08-06 三星エスディアイ株式会社 光電変換素子用電解質組成物及び光電変換素子
US20110155227A1 (en) * 2009-12-25 2011-06-30 Tadao Yagi Electrolyte composition for photoelectric transformation device and photoelectric transformation device manufactured by using the same
TWI600618B (zh) * 2012-06-20 2017-10-01 Tokyo Inst Tech C12A7 thin film of electronic salt and C12A7 electronic salt film
KR102159678B1 (ko) * 2012-09-20 2020-09-24 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 수소생성촉매 및 수소의 제조법
JP6042320B2 (ja) * 2013-12-25 2016-12-14 株式会社ノリタケカンパニーリミテド 電極材料とその利用
EP3115339B1 (en) * 2014-03-07 2018-10-17 Japan Science And Technology Agency Mayenite-type compound containing imide anion, and method for producing same
JP6458417B2 (ja) * 2014-09-17 2019-01-30 株式会社Ihi 触媒、アンモニア合成方法
JP6576844B2 (ja) * 2015-02-26 2019-09-18 日本特殊陶業株式会社 容器、多孔体、被膜、フィルタ、反応器、油用多機能剤、多機能剤の使用方法、油入変圧器、油入コンデンサ、ガス相改質剤、タバコ煙用フィルタ、タバコ煙用アタッチメント、マスク、及びマイエナイト型化合物含有製品の製造方法
EP3315464A4 (en) * 2015-06-25 2019-02-20 Kyoto University PROCESS FOR PRODUCING CONDUCTIVE MAYENITE COMPOUND
CN109208079B (zh) * 2018-08-22 2020-09-22 武汉大学 一种钙铝石型半导体材料的制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128415A (ja) 2001-10-18 2003-05-08 Japan Science & Technology Corp 12CaO・7Al2O3化合物とその作成方法
JP2003238149A (ja) * 2002-02-21 2003-08-27 Japan Science & Technology Corp 12SrO・7Al2O3化合物とその合成方法
WO2005000741A1 (ja) 2003-06-26 2005-01-06 Japan Science And Technology Agency 電気伝導性12CaO・7Al 2O3 及び同型化合物とその製造方法
JP2006083009A (ja) * 2004-09-15 2006-03-30 National Institute Of Advanced Industrial & Technology 活性酸素を包含あるいは吸蔵した無機化合物材料及びその製造方法
WO2007060890A1 (ja) 2005-11-24 2007-05-31 Japan Science And Technology Agency 金属的電気伝導性12CaO・7Al2O3化合物とその製法
JP2010059852A (ja) * 2008-09-03 2010-03-18 Toyota Motor Corp 内燃機関の燃料性状判定装置
JP2010197498A (ja) * 2009-02-23 2010-09-09 Canon Inc 現像装置及び画像形成装置
JP2011138024A (ja) * 2009-12-28 2011-07-14 Kyoiku Dojinsha:Kk 評価支援システム
JP2012183474A (ja) * 2011-03-04 2012-09-27 Masahiro Koura 排ガス浄化用触媒
JP2015122280A (ja) * 2013-12-25 2015-07-02 株式会社島津製作所 帯電除去機構およびその機構を用いた飛行時間型質量分析装置
WO2017082265A1 (ja) * 2015-11-10 2017-05-18 国立大学法人東京工業大学 金属担持物、担持金属触媒及び該触媒を用いるアンモニア合成法
WO2018030394A1 (ja) * 2016-08-08 2018-02-15 国立大学法人東京工業大学 アンモニア合成用触媒の製造方法及びアンモニアの製造方法
WO2018169076A1 (ja) * 2017-03-17 2018-09-20 国立大学法人東京工業大学 金属担持物、担持金属触媒、アンモニアの製造方法、水素の製造方法及びシアナミド化合物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. PHYS. CHEM. C, vol. 112, 2008, pages 19061 - 19068
JOURNAL OF THE CHEMICAL SOCIETY OF JAPAN, no. 3, 1990, pages 305 - 311
See also references of EP3951961A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017199A1 (es) 2021-08-10 2023-02-16 Advanced Thermal Devices S.L. Cátodo basado en el material c12a7:e "electride" para la emisión termiónica de electrones y procedimiento para el empleo del mismo

Also Published As

Publication number Publication date
EP3951961A4 (en) 2022-06-22
JP7229585B2 (ja) 2023-02-28
US20220271297A1 (en) 2022-08-25
EP3951961A1 (en) 2022-02-09
EP3951961B1 (en) 2023-11-29
JPWO2021010167A1 (ja) 2021-01-21
CN114097120A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
Li et al. Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances
Song et al. High‐temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects
Yun et al. Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures
Ishihara et al. Ni–Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film
Shi et al. Building Ruddlesden–Popper and Single Perovskite Nanocomposites: A New Strategy to Develop High‐Performance Cathode for Protonic Ceramic Fuel Cells
JP4776369B2 (ja) プロトン伝導体とその製造方法,高分子電解質膜とその製造方法,燃料電池用電極とその製造方法,及び燃料電池
CA2758432C (en) Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for polymer electrolyte fuel cell
WO2010007949A1 (ja) 燃料電池及びこれを用いた発電方法
Li et al. Electrochemical performance of La2Cu1− xCoxO4 cathode materials for intermediate-temperature SOFCs
Hu et al. Visiting the roles of Sr‐or Ca‐doping on the oxygen reduction reaction activity and stability of a perovskite cathode for proton conducting solid oxide fuel cells
EP2637243B1 (en) Inorganic ion conductor, method of forming the same, and fuel cell including the inorganic ion conductor
WO2021010167A1 (ja) 燃料電池触媒用組成物およびそれを含む燃料電池
Zhu et al. Solution combustion synthesis of Ce0. 6Mn0. 3Fe0. 1O2 for anode of SOFC using LaGaO3-based oxide electrolyte
Yang et al. Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ
JP5373363B2 (ja) 固体高分子形燃料電池用電解質膜、固体高分子形燃料電池用電解質膜の製造方法、固体高分子形燃料電池および燃料電池システム
Hibino et al. An intermediate-temperature alkaline fuel cell using an Sn 0.92 Sb 0.08 P 2 O 7-based hydroxide-ion-conducting electrolyte and electrodes
Wang et al. Microwave-induced oxygen vacancy-rich surface boosts the cathode performance for proton-conducting solid oxide fuel cells
US8057962B2 (en) Tungsten-based electrocatalyst and fuel cell containing same
Toriumi et al. High-valence-state manganate (v) Ba 3 Mn 2 O 8 as an efficient anode of a proton-conducting solid oxide steam electrolyzer
GB2281916A (en) Producing fuel cell anodes by pack cementation
JP4996823B2 (ja) 燃料電池用電極、及びそれを用いた燃料電池
Ishihara et al. Bi doped Pr6O11 as fluorite oxide cathode for all-fluorite solid oxide fuel cells
JP2008084788A (ja) 電解質膜、その製造方法および燃料電池
JP6367636B2 (ja) 水蒸気電解用セル
Yang et al. Au@ BICUVOX10 composite cathode for novel structure low-temperature solid-oxide fuel cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532772

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020840517

Country of ref document: EP

Effective date: 20211027

NENP Non-entry into the national phase

Ref country code: DE