WO2017081854A1 - 負極活物質 - Google Patents

負極活物質 Download PDF

Info

Publication number
WO2017081854A1
WO2017081854A1 PCT/JP2016/004788 JP2016004788W WO2017081854A1 WO 2017081854 A1 WO2017081854 A1 WO 2017081854A1 JP 2016004788 W JP2016004788 W JP 2016004788W WO 2017081854 A1 WO2017081854 A1 WO 2017081854A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
silicon
carbon
Prior art date
Application number
PCT/JP2016/004788
Other languages
English (en)
French (fr)
Inventor
佑介 杉山
宏隆 曽根
合田 信弘
敬史 毛利
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to US15/773,672 priority Critical patent/US10833325B2/en
Priority to JP2017549980A priority patent/JP6838556B2/ja
Priority to CN201680065431.3A priority patent/CN108352516B/zh
Publication of WO2017081854A1 publication Critical patent/WO2017081854A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a negative electrode active material.
  • a silicon material containing silicon as a negative electrode active material of a secondary battery such as a lithium ion secondary battery.
  • Patent Document 1 and Patent Document 2 describe a lithium ion secondary battery in which the negative electrode active material is silicon.
  • Patent Document 3 and Patent Document 4 describe lithium ion secondary batteries in which the negative electrode active material is SiO.
  • Patent Document 5 a layered silicon compound mainly composed of a layered polysilane in which CaSi 2 is reacted with an acid to remove Ca is synthesized, and the layered silicon compound is heated at 300 ° C. or higher to release hydrogen. It is described that the material was manufactured and a lithium ion secondary battery having the silicon material as a negative electrode active material shows a suitable capacity retention rate.
  • Patent Document 6 heats SiO and a carbon source to decompose a carbon source and coats SiO with a carbon layer, and lithium comprising SiO coated with a carbon layer as a negative electrode active material An ion secondary battery is described.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a new negative electrode active material and a method for producing the same.
  • the carbon layer in the silicon material coated with a carbon layer is required to have a strength that can withstand the expansion accompanying the alloying of silicon and lithium which occurs during charging and discharging of the secondary battery.
  • the carbon layer manufactured at a heating condition of 1100 ° C. or more for example, 2000 ° C. has suitable strength.
  • SiC when carbon is heated at a temperature of 1100 ° C. or more in the presence of silicon, SiC is formed, and it is considered that the performance as a negative electrode active material is reduced due to the presence of SiC. That is, the carbon layer covering the silicon material had a trade-off relationship between strength and performance as a negative electrode active material.
  • the heating conditions in Patent Document 6 are 1000 ° C. in Example 1, 1020 ° C. in Example 2, and 800 ° C. in Example 3.
  • the present inventors In order to break through the above-mentioned trade-off relationship, the present inventors repeatedly conducted trial and error repeatedly and intensively studied, and as a result, a secondary battery comprising a silicon material coated with a carbon layer containing a specific metal as a negative electrode active material It was found that the capacity retention rate after charge and discharge was excellent. It is suggested that the active material excellent in the capacity retention rate after charge and discharge is excellent in strength. And the present inventors completed the present invention based on such a discovery.
  • the negative electrode active material of the present invention is characterized by being made of a silicon material coated with a carbon layer containing a metal of groups 4 to 6.
  • the negative electrode active material of the present invention functions as an excellent negative electrode active material.
  • 5 is an X-ray diffraction chart of the negative electrode active material of Example 1.
  • 7 is an X-ray diffraction chart of a negative electrode active material of Example 4.
  • 5 is an X-ray diffraction chart of a negative electrode active material of Comparative Example 1;
  • the numerical range “x to y” described in the present specification includes the lower limit x and the upper limit y within the range. Then, the upper limit value and the lower limit value, and the numerical values listed in the examples can be combined arbitrarily to constitute a numerical range. Further, numerical values arbitrarily selected from within the numerical value range can be used as upper limit and lower limit numerical values.
  • the negative electrode active material of the present invention is characterized by comprising a silicon material coated with a carbon layer containing a metal of groups 4 to 6.
  • the negative electrode active material of the present invention is composed of the silicon material of the core portion and the carbon layer containing the metal of Groups 4 to 6 of the surface portion.
  • the silicon material may be a material containing silicon and may function as an active material of the secondary battery.
  • the silicon material may contain an impurity such as oxygen, an alkali metal, an alkaline earth metal or the like.
  • the silicon material described in Patent Document 5 will be described in detail.
  • the silicon material is produced by a method of reacting CaSi 2 with an acid to synthesize a layered silicon compound having polysilane as a main component, and further heating the layered silicon compound at 300 ° C. or higher to release hydrogen. Ru.
  • the silicon material has a structure in which a plurality of plate-like silicon bodies are stacked in the thickness direction. This structure can be confirmed by observation with a scanning electron microscope or the like.
  • the plate-like silicon body preferably has a thickness in the range of 10 nm to 100 nm, and more preferably in the range of 20 nm to 50 nm, for efficient insertion and desorption reaction of lithium ions.
  • the length of the plate-like silicon body in the longitudinal direction is preferably in the range of 0.1 ⁇ m to 50 ⁇ m.
  • the plate-like silicon body preferably has a (longitudinal length) / (thickness) in the range of 2 to 1,000.
  • the method for producing a silicon material described in Patent Document 5 can be represented by the following ideal reaction formula. Hydrogen chloride was used as the acid. 3CaSi 2 +6 HCl ⁇ Si 6 H 6 +3 CaCl 2 Si 6 H 6 ⁇ 6Si + 3H 2 ⁇
  • the silicon material preferably includes amorphous silicon and / or silicon crystallites.
  • the size of the silicon crystallite is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, and particularly preferably in the range of 1 nm to 10 nm.
  • the size of the silicon crystallite is calculated from the Scheller equation using the half width of the diffraction peak of the Si (111) plane of the obtained X-ray diffraction chart by performing X-ray diffraction measurement on the silicon material. .
  • silicon is preferably present at 50 to 99% by mass, more preferably 60 to 97% by mass, and still more preferably 70 to 95% by mass.
  • the carbon layer preferably covers the entire surface of the silicon material.
  • carbon is preferably present at 0.5 to 10% by mass, more preferably 1 to 8% by mass, and still more preferably 2 to 6% by mass.
  • the thickness of the carbon layer is preferably 1 to 100 nm, more preferably 5 to 50 nm.
  • a carbon-derived peak called G-band is observed near 1590 cm -1, and a carbon-derived peak called D-band is observed near 1350 cm -1 .
  • G-band is considered to be derived from graphite, and D-band is considered to be derived from carbon such as dangling bonds.
  • D / G ratio a value of (peak intensity of D-band) / (peak intensity of G-band) (hereinafter referred to as D / G ratio) is observed within the range of 0.80 to 1. May be
  • the metal of groups 4 to 6 is considered to be bonded to carbon, and the bond is considered to be a covalent bond and / or a coordinate bond. It can be inferred that the strength of the carbon layer in the negative electrode active material of the present invention is increased by such bonding.
  • the metal of groups 4 to 6 is preferably present in an amount of 0.01 to 10 mol%, more preferably 0.1 to 7 mol%, with respect to the number of moles of carbon element present in the carbon layer. More preferably, it is present at 1 to 5 mol%.
  • Group 4 to 6 metals are known to combine with carbon to form carbides.
  • WO 2012/018082 describes that Mo 2 C was produced when heated at 280 ° C. in the coexistence of n-hexadecylamine, n-octyl ether and hexacarbonylmolybdenum .
  • carbides in which a metal of Groups 4 to 6 is bonded to carbon may be formed in the negative electrode active material of the present invention.
  • Carbides in which Group 4 to 6 metals are bonded to carbon are relatively stable to heat, oxidation, etc. or to contact with a solvent, and exhibit a certain degree of conductivity. Therefore, in the negative electrode active material of the present invention, the presence of a carbide in which a metal of Groups 4 to 6 is bonded to carbon is also considered to be a factor of the preferable function of the negative electrode active material of the present invention.
  • Table 1 shows carbides in which Group 4 to 6 metals are bonded to carbon and the electrical resistivity thereof.
  • the reciprocal of the electrical resistivity is the conductivity.
  • the metals of Groups 4 to 6 may be of one type or plural types.
  • the metals of Groups 4 to 6 Ti, Zr, V, Nb, Ta, Cr, Mo, and W are preferable.
  • the metal of Groups 4 to 6 is preferably present in an amount of 0.001 to 1% by mass, more preferably 0.005 to 0.5% by mass, and preferably 0.01 to 100%. More preferably, it is present at 0.3% by weight.
  • the amount of Group 4 to 6 metal is too large, the conductivity of the negative electrode active material of the present invention increases, but the metal of Groups 4 to 6 is a lithium ion in a lithium ion secondary battery having the negative electrode active material of the present invention. There is a concern that will resist diffusion.
  • the electric resistivity of the negative electrode active material of the present invention is preferably in the range of 0.1 to 3.0 ⁇ ⁇ cm, more preferably in the range of 0.2 to 2.5 ⁇ ⁇ cm, and preferably 0.3 to 1.0 ⁇ . More preferably in the range of cm.
  • the particle size distribution of the negative electrode active material of the present invention is preferably such that the average particle diameter is in the range of 0.5 to 30 ⁇ m, and more preferably in the range of 1 to 10 ⁇ m.
  • an average particle diameter means D50 in the case of measuring with a general laser diffraction type particle size distribution measuring apparatus.
  • the method for producing a negative electrode active material of the present invention comprises the step of decomposing the compound and the carbon source by heating in the coexistence of a silicon material, a compound containing a metal of Groups 4 to 6 and a carbon source (hereinafter referred to as “the present invention
  • the present invention The process of the invention is characterized in that
  • the carbon source decomposes to form a tar-like substance.
  • a metal formed by decomposition of a compound containing a metal of groups 4 to 6 is incorporated.
  • a tar-like substance containing metal adheres to the surface of the silicon material.
  • the tar-like substance of 4.3 is carbonized to form a carbon layer, and a silicon material coated with a carbon layer containing a Group 4 to 6 metal is obtained.
  • the metals of Groups 4 to 6 contained in the negative electrode active material of the present invention are considered to be dispersed and present in the carbon layer.
  • the heating temperature in the process of the present invention is preferably 600 to 1000 ° C., more preferably 700 to 1000 ° C., and still more preferably 800 to 1000 ° C.
  • the heating time may be appropriately determined according to the production scale and the like.
  • the compound containing a metal of groups 4 to 6 is preferably one which decomposes by heating at 600 to 1000.degree.
  • Examples of compounds containing metals of groups 4 to 6 include complexes of ligands such as carbonyl and cyclopentadienyl with metals of groups 4 to 6, salts containing metals of groups 4 to 6, and their waters And the like.
  • Specific compounds containing metals of Groups 4 to 6 include titanium potassium oxalate, tetrakis (ethylmethylamino) titanium, tetrakis (dimethylamino) titanium, tetramethyoxy titanium, tetraethyoxy titanium, tetra-n-propoxy Titanium, tetraisopropoxytitanium, tetrabutoxytitanium, titanium tetrakis (2-ethyl-1-hexanolate), bis (cyclopentadienyl) dichlorotitanium, cyclopentadienyltribenzyltitanium, zirconium acetylacetonate, tetramethoxyzirconium , Tetraethoxy zirconium, tetra-n-propoxy zirconium, tetraisopropoxy zirconium, tetrabutoxy zirconium, tetrakis (ethyl
  • the carbon source may be any source that can be decomposed by the heating of the process of the present invention to supply carbon.
  • Specific examples of carbon sources include saturated hydrocarbons such as methane, ethane, propane, butane, pentane and hexane, unsaturated hydrocarbons such as ethylene, propylene and acetylene, alcohols such as methanol, ethanol, propanol and butanol, and acetic acid Ethyl, butyl acetate, esters such as amyl acetate, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, benzoic acid, salicylic acid, nitrobenzene, chlorobenzene, indene, furan, benzofuran, pyrrole, pyridine, Examples thereof include aromatic compounds such as indole, anthracene and phenant
  • the compound containing a metal of Groups 4 to 6 may also serve as a carbon source.
  • a pulverizing process of pulverizing a silicon material coated with a carbon layer containing a Group 4 to 6 metal, a cleaning process of washing with a polar solvent such as water, a drying process and / or a classification process are performed May be
  • the negative electrode active material of the present invention can be used as a negative electrode active material of a secondary battery such as a lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention comprises the negative electrode active material of the present invention.
  • the lithium ion secondary battery of the present invention comprises a positive electrode, a negative electrode comprising the negative electrode active material of the present invention, an electrolytic solution and a separator.
  • the positive electrode has a current collector and a positive electrode active material layer bonded to the surface of the current collector.
  • the current collector refers to a chemically inert electron conductor for keeping current flowing to the electrode during discharge or charge of the lithium ion secondary battery.
  • As the current collector at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, stainless steel, etc. A metal material can be illustrated.
  • the current collector may be coated with a known protective layer. What processed the surface of a collector by a well-known method may be used as a collector.
  • the current collector can take the form of a foil, a sheet, a film, a line, a rod, a mesh or the like. Therefore, as the current collector, for example, metal foils such as copper foil, nickel foil, aluminum foil, and stainless steel foil can be suitably used.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material and, if necessary, a conductive aid and / or a binder.
  • a positive electrode active material spinel such as LiMn 2 O 4 and a solid solution composed of a mixture of spinel and layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (M in the formula is Co, Ni, Mn, Polyanionic compounds represented by (at least one of Fe) and the like can be mentioned.
  • tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal) include borate-based compound represented by be able to.
  • any metal oxide used as a positive electrode active material may have the above composition formula as a basic composition, and one obtained by substituting a metal element contained in the basic composition with another metal element can also be used as a positive electrode active material .
  • a positive electrode active material a positive electrode active material containing no lithium ion contributing to charge and discharge, for example, a simple substance of sulfur, a compound of sulfur and carbon, a metal sulfide such as TiS 2 , V 2 O 5 , MnO Oxides such as 2 , polyaniline and anthraquinone, and compounds containing these aromatics in the chemical structure, conjugated materials such as conjugated diacetic acid organic substances, and other known materials can also be used.
  • a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl or the like may be adopted as the positive electrode active material.
  • a positive electrode active material containing no lithium it is necessary to add ions to the positive electrode and / or the negative electrode by a known method.
  • a metal or a compound containing the ions may be used.
  • a conductive aid is added to enhance the conductivity of the electrode. Therefore, the conductive additive may be optionally added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent.
  • the conductive support agent may be any chemically active high electron conductor, and carbon black fine particles such as carbon black, graphite, vapor grown carbon fiber, and various metal particles are exemplified. Ru. Examples of the carbon black include acetylene black, ketjen black (registered trademark), furnace black, channel black and the like. These conductive assistants can be added to the active material layer singly or in combination of two or more.
  • the binder plays the role of anchoring the active material and the conductive aid to the surface of the current collector and maintaining the conductive network in the electrode.
  • the binder may, for example, be a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene or fluororubber, a thermoplastic resin such as polypropylene or polyethylene, an imide resin such as polyimide or polyamideimide, an alkoxysilyl group-containing resin, Examples of acrylic resins such as acrylic acid, styrene-butadiene rubber (SBR), alginates such as carboxymethylcellulose, sodium alginate and ammonium alginate, water-soluble cellulose ester cross-linked product, starch-acrylic acid graft polymer it can. These binders may be used alone or in combination.
  • the blending ratio of the binder in the active material layer is, in mass ratio, preferably active material: binder 1: 0.001 to 1: 0.3, 1: 0.005 to 1: 0 It is more preferably 0.2, and more preferably 1: 0.01 to 1: 0.15.
  • the negative electrode includes a current collector and a negative electrode active material layer bonded to the surface of the current collector.
  • As the current collector one described for the positive electrode may be appropriately adopted appropriately.
  • the negative electrode active material layer contains a negative electrode active material and, if necessary, a conductive aid and / or a binder.
  • the negative electrode active material of the present invention may be used, and only the negative electrode active material of the present invention may be employed, or the negative electrode active material of the present invention and the known negative electrode active material may be used in combination. .
  • those described for the positive electrode may be appropriately adopted at the same mixing ratio.
  • an active material layer on the surface of a current collector current collection can be performed using conventionally known methods such as roll coating, die coating, dip coating, doctor blade method, spray coating, and curtain coating.
  • the active material may be applied to the surface of the body.
  • the active material, the solvent, and, if necessary, the binder and / or the conductive auxiliary agent are mixed to prepare a slurry.
  • the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone and water.
  • the slurry is applied to the surface of a current collector and then dried. The dried one may be compressed to increase the electrode density.
  • the electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
  • cyclic esters examples include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone and gamma valerolactone.
  • chain ester examples include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, ethyl methyl carbonate, alkyl propionic acid ester, malonic acid dialkyl ester, acetic acid alkyl ester and the like.
  • ethers tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane can be exemplified.
  • non-aqueous solvent a compound in which part or all of hydrogens in the chemical structure of the above specific solvent is substituted with fluorine may be adopted.
  • Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 F) 2 , and LiN (CF 3 SO 2 ) 2 .
  • lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 F) 2 , and LiN (CF 3 SO 2 ) 2 .
  • lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3, LiN (SO 2 F) 2 and the like in nonaqueous solvents such as ethylene carbonate, dimethyl carbonate, propylene carbonate, diethyl carbonate and the like are used.
  • nonaqueous solvents such as ethylene carbonate, dimethyl carbonate, propylene carbonate, diethyl carbonate and the like are used.
  • a solution dissolved at a concentration of about 0.5 mol / L to about 3.0 mol / L can be exemplified.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing a short circuit due to the contact of the both electrodes.
  • synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polyamide), polyester, polyacrylonitrile, etc., polysaccharides such as cellulose and amylose, natural substances such as fibroin, keratin, lignin and suberin Examples thereof include porous bodies, non-woven fabrics, and woven fabrics using one or more kinds of electrically insulating materials such as polymers and ceramics.
  • the separator may have a multilayer structure.
  • a separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode body.
  • the electrode body may be any of a laminated type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are wound.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as cylindrical, square, coin, and laminate types can be adopted.
  • the lithium ion secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be a vehicle using electric energy from a lithium ion secondary battery for all or part of its power source, and may be, for example, an electric vehicle, a hybrid vehicle, or the like.
  • a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form a battery pack.
  • various household appliances driven by a battery such as a personal computer and a mobile communication apparatus, as well as a vehicle, an office apparatus, an industrial apparatus and the like can be mentioned.
  • the lithium ion secondary battery of the present invention can be used in wind power generation, solar power generation, hydroelectric power generation, storage devices and power smoothing devices for electric power systems, power sources for power and / or accessories of ships, etc., aircraft, Power supply source for power of spacecraft and / or accessories, auxiliary power supply for vehicles not using electricity as power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in the charge station etc. for electric vehicles.
  • Example 1 The negative electrode active material and the lithium ion secondary battery of Example 1 were produced as follows.
  • a baffle is disposed on the inner peripheral wall of the core tube, and the reactor is configured such that the contents deposited on the baffle drop from the baffle at a predetermined height as the core tube is rotated. , The contents are stirred by the composition. Under the above conditions, carbon is coated at about 750 mg per 15 g of silicon.
  • the silicon material coated with the carbon layer containing molybdenum was washed with water and dried to obtain the negative electrode active material of Example 1.
  • a slurry was prepared by mixing 85 parts by mass of the negative electrode active material of Example 1, 10 parts by mass of polyamideimide as a binder, 5 parts by mass of acetylene black as a conductive additive, and an appropriate amount of N-methyl-2-pyrrolidone.
  • a 30 ⁇ m thick electrolytic copper foil was prepared as a current collector.
  • the slurry was applied onto the surface of the copper foil in the form of a film using a doctor blade.
  • the copper foil coated with the slurry was dried at 80 ° C. for 20 minutes to remove N-methyl-2-pyrrolidone by volatilization.
  • a copper foil having a negative electrode active material layer formed on the surface was obtained.
  • the copper foil was compressed with a roll press so that the thickness of the negative electrode active material layer was 20 ⁇ m, to obtain a bonded product.
  • the bonded product was dried by heating under reduced pressure at 180 ° C. for 2 hours to obtain a negative electrode.
  • the above negative electrode was cut into a diameter of 11 mm to obtain an evaluation electrode.
  • a metal lithium foil having a thickness of 500 ⁇ m was cut to a diameter of 13 mm and used as a counter electrode.
  • a glass filter (Hoechst Celanese) and celgard 2400 (Polypore Co., Ltd.) which is a single-layer polypropylene were prepared as a separator. It was also prepared an electrolyte solution obtained by dissolving LiPF 6 at 1 mol / L in a solvent obtained by mixing 50 parts by volume of ethylene carbonate and diethyl carbonate 50 parts by volume.
  • the two types of separators were sandwiched between the counter electrode and the evaluation electrode in the order of the counter electrode, the glass filter, celgard 2400, and the evaluation electrode to form an electrode body.
  • the electrode body was housed in a coin-type battery case CR2032 (Housen Co., Ltd.), and an electrolyte was further injected to obtain a coin-type battery.
  • the resultant was used as a lithium ion secondary battery of Example 1.
  • Example 2 A negative electrode active material and a lithium ion secondary battery of Example 2 made of a silicon material coated with a carbon layer containing molybdenum were produced in the same manner as in Example 1 except that 76 mg of hexacarbonylmolybdenum was used.
  • Example 3 Example consisting of a silicon material coated with a carbon layer containing molybdenum in the same manner as in Example 1 except that 38 mg of molybdenum nitride (High Purity Chemical Laboratory Co., Ltd.) was used instead of 38 mg of hexacarbonyl molybdenum
  • the negative electrode active material and lithium ion secondary battery of Example 3 were manufactured.
  • Example 4 A carbon layer containing titanium was coated in the same manner as in Example 1 except that 38 mg of titanium potassium oxalate (High Purity Chemical Laboratory Co., Ltd.) was used instead of 38 mg of hexacarbonylmolybdenum. A negative electrode active material and a lithium ion secondary battery of Example 4 made of a silicon material were manufactured.
  • Example 5 comprising a silicon material coated with a tantalum-containing carbon layer in the same manner as in Example 1 except that 1.05 g of pentamethoxytantalum (V) was used instead of 38 mg of hexacarbonylmolybdenum A negative electrode active material and a lithium ion secondary battery were manufactured.
  • Negative electrode active material of Example 6 comprising a silicon material coated with a carbon layer containing tungsten in the same manner as in Example 1 except that 1.10 g of hexacarbonyl tungsten was used instead of 38 mg of hexacarbonyl molybdenum And a lithium ion secondary battery.
  • Example 7 consisting of a silicon material coated with a chromium-containing carbon layer in the same manner as in Example 1 except that 0.77 g of chromium (III) triacetate was used in place of 38 mg of hexacarbonylmolybdenum A negative electrode active material and a lithium ion secondary battery were manufactured.
  • Example 8 In the same manner as in Example 1 except that 0.85 g of tetraethoxyzirconium was used instead of 38 mg of hexacarbonyl molybdenum, the negative electrode active of Example 8 comprising a silicon material coated with a carbon layer containing zirconium in the same manner as in Example 1. Materials and lithium ion secondary batteries were manufactured.
  • Example 9 consisting of a silicon material coated with a niobium-containing carbon layer in the same manner as Example 1, except that 0.99 g of niobium (V) pentaethoxide was used instead of 38 mg of hexacarbonyl molybdenum. Negative electrode active materials and lithium ion secondary batteries were manufactured.
  • Example 10 Example consisting of a silicon material coated with a vanadium-containing carbon layer in the same manner as in Example 1 except that 0.79 g of bis (cyclopentadienyl) dichlorovanadium was used instead of 38 mg of hexacarbonyl molybdenum A negative electrode active material and a lithium ion secondary battery of Example 10 were produced.
  • Comparative example 1 A negative electrode active material and a lithium ion secondary battery of Comparative Example 1 made of a silicon material coated with a carbon layer were manufactured in the same manner as in Example 1 except that hexacarbonyl molybdenum was not used.
  • Example 11 Under argon gas atmosphere, 5 g of CaSi 2 was added to 100 mL of 35% by mass aqueous HCl solution in an ice bath, and stirred for 90 minutes. It was confirmed that the dark green powder was dispersed in the reaction solution. The reaction solution was filtered, the residue was washed with distilled water and acetone, and further dried under reduced pressure at room temperature for 12 hours to obtain a layered silicon compound containing polysilane.
  • the layered silicon compound was heated at 900 ° C. for 1 hour under an argon gas atmosphere to produce a silicon material.
  • the silicon material was crushed and passed through a 25 ⁇ m sieve and used for the following production.
  • Example 11 From a silicon material coated with a molybdenum-containing carbon layer in the same manner as in Example 3, except that the above silicon material was used instead of silicon having an average particle diameter of 3 ⁇ m (High Purity Chemical Laboratory Co., Ltd.) A negative electrode active material and a lithium ion secondary battery of Example 11 were produced.
  • Example 12 A tantalum is contained in the same manner as in Example 5 except that a silicon material manufactured by the same method as in Example 11 is used instead of silicon having an average particle diameter of 3 ⁇ m (High Purity Chemical Laboratory Co., Ltd.) A negative electrode active material and lithium ion secondary battery of Example 12 consisting of a silicon material coated with a carbon layer were manufactured.
  • Example 13 Tungsten is contained in the same manner as in Example 6 except that a silicon material manufactured by the same method as in Example 11 is used instead of silicon having an average particle diameter of 3 ⁇ m (High Purity Chemical Laboratory Co., Ltd.) A negative electrode active material and a lithium ion secondary battery of Example 13 consisting of a silicon material coated with a carbon layer were manufactured.
  • Example 14 Chromium is contained in the same manner as in Example 7 except that a silicon material manufactured by the same method as in Example 11 is used instead of silicon having an average particle size of 3 ⁇ m (High Purity Chemical Laboratory Co., Ltd.) A negative electrode active material and lithium ion secondary battery of Example 14 consisting of a silicon material coated with a carbon layer were manufactured.
  • Example 15 A zirconium is contained in the same manner as in Example 8 except that a silicon material manufactured by the same method as in Example 11 is used instead of silicon having an average particle diameter of 3 ⁇ m (High Purity Chemical Laboratory Co., Ltd.) A negative electrode active material and a lithium ion secondary battery of Example 15 consisting of a silicon material coated with a carbon layer were manufactured.
  • Example 16 It contains niobium in the same manner as in Example 9 except that a silicon material manufactured by the same method as in Example 11 is used instead of silicon having an average particle diameter of 3 ⁇ m (High Purity Chemical Laboratory Co., Ltd.) A negative electrode active material and a lithium ion secondary battery of Example 16 consisting of a silicon material coated with a carbon layer were manufactured.
  • Example 17 Vanadium is contained in the same manner as in Example 10 except that a silicon material manufactured by the same method as in Example 11 is used instead of silicon having an average particle diameter of 3 ⁇ m (High Purity Chemical Laboratory Co., Ltd.) A negative electrode active material and a lithium ion secondary battery of Example 17 consisting of a silicon material coated with a carbon layer were manufactured.
  • Comparative example 2 A negative electrode active material and a lithium ion secondary battery of Comparative Example 2 made of a silicon material coated with a carbon layer were manufactured in the same manner as in Example 11 except that molybdenum nitride was not used.
  • the negative electrode active materials of Example 3 and Comparative Example 1 are the same as those described above for the negative electrode active materials of Example 11 and Comparative Example 2 in which the silicon material to be carbon-coated was changed. It is shown in Table 3.
  • the negative electrode active material of the present invention contains Group 4 to 6 metals.
  • the amount of potassium in the negative electrode active material of Example 4 is described, potassium is easily removed by washing with water in addition to being easily scattered by heating, so the amount of potassium in the negative electrode active material of Example 4 was lowered.
  • the lithium ion secondary battery equipped with the negative electrode active material of the present invention can maintain its capacity suitably. It can be said that the negative electrode active material of the present invention can maintain its structure relatively stably even through charge and discharge involving expansion and contraction. It was confirmed that the negative electrode active material of the present invention is excellent in the strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

4~6族の金属を含有する炭素層で被覆されたシリコン材料からなる負極活物質。 シリコン材料と4~6族の金属を含有する化合物と炭素源との共存下、加熱により、当該化合物と炭素源を分解させる工程を有することを特徴とする負極活物質の製造方法。

Description

負極活物質
 本発明は、負極活物質に関する。
 リチウムイオン二次電池などの二次電池の負極活物質として、ケイ素を含むシリコン材料を用いることが知られている。
 例えば、特許文献1及び特許文献2には、負極活物質がシリコンであるリチウムイオン二次電池が記載されている。
 特許文献3及び特許文献4には、負極活物質がSiOであるリチウムイオン二次電池が記載されている。
 特許文献5には、CaSiを酸と反応させてCaを除去した層状ポリシランを主成分とする層状シリコン化合物を合成し、当該層状シリコン化合物を300℃以上で加熱して水素を離脱させたシリコン材料を製造したこと、及び、当該シリコン材料を負極活物質として具備するリチウムイオン二次電池が好適な容量維持率を示すことが記載されている。
 そして、ケイ素を含むシリコン材料と電解液との直接接触を避けるため、又は、ケイ素を含むシリコン材料の導電性を向上させるため、炭素層で被覆されたシリコン材料を負極活物質として採用することも知られている。
 実際に、特許文献6には、SiOと炭素源を加熱して炭素源を分解させて、SiOを炭素層で被覆すること、及び、炭素層で被覆されたSiOを負極活物質として具備するリチウムイオン二次電池が記載されている。
特開2014-203595号公報 特開2015-57767号公報 特開2015-185509号公報 特開2015-179625号公報 国際公開第2014/080608号 特開2013-258032号公報
 リチウムイオン二次電池などの二次電池の性能に対する要求は増大しており、特に、より優れた負極活物質及びその製造方法の提供が熱望されている。
 本発明は、かかる事情に鑑みて為されたものであり、新たな負極活物質及びその製造方法を提供することを目的とする。
 さて、炭素層で被覆されたシリコン材料における炭素層は、二次電池の充放電中に起こるシリコンとリチウムの合金化に伴う膨張に耐え得る強度が求められる。ここで、炭素層のみに着目すると、1100℃以上の加熱条件、例えば2000℃で製造された炭素層は、好適な強度を備えると考えられる。しかしながら、シリコン存在下で炭素を1100℃以上の温度で加熱するとSiCが生成し、そして、SiCの存在に因り、負極活物質としての性能が低下すると考えられる。すなわち、シリコン材料を被覆する炭素層は、強度と、負極活物質としての性能との間でのトレードオフの関係を有していた。
 そのため、炭素層で被覆されたシリコン材料を製造する場合には、600~1000℃程度の加熱条件下で行われるのが普通である。実際に、特許文献6における加熱条件は、実施例1が1000℃、実施例2が1020℃、実施例3が800℃である。
 上述のトレードオフの関係を打破すべく、本発明者が試行錯誤を繰り返して鋭意検討したところ、特定の金属を含有する炭素層で被覆されたシリコン材料を負極活物質として具備する二次電池が、充放電後の容量維持率に優れていることを発見した。充放電後の容量維持率に優れる活物質は、その強度が優れていることが示唆される。そして、本発明者はかかる発見に基づき本発明を完成させた。
 すなわち、本発明の負極活物質は、4~6族の金属を含有する炭素層で被覆されたシリコン材料からなることを特徴とする。
 本発明の負極活物質は、優れた負極活物質として機能する。
実施例1の負極活物質のX線回折チャートである。 実施例4の負極活物質のX線回折チャートである。 比較例1の負極活物質のX線回折チャートである。
 以下に、本発明を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x~y」は、下限xおよび上限yをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。
 本発明の負極活物質は、4~6族の金属を含有する炭素層で被覆されたシリコン材料からなることを特徴とする。換言すれば、本発明の負極活物質は、コア部分のシリコン材料と、表面部分の4~6族の金属を含有する炭素層からなる。
 シリコン材料は、ケイ素を含む材料であって、二次電池の活物質として機能するものであればよい。具体的なシリコン材料として、ケイ素単体、SiOx(0.3≦x≦1.6)、特許文献5に記載のシリコン材料を例示できる。なお、シリコン材料には、酸素、アルカリ金属、アルカリ土類金属などの不純物が含まれていてもよい。
 特許文献5に記載のシリコン材料について詳細に説明する。当該シリコン材料は、CaSiと酸とを反応させて、ポリシランを主成分とする層状シリコン化合物を合成し、さらに、当該層状シリコン化合物を300℃以上で加熱して水素を離脱させる方法で製造される。当該シリコン材料は、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有する。この構造は、走査型電子顕微鏡などによる観察で確認できる。リチウムイオンの効率的な挿入及び脱離反応のためには、板状シリコン体は厚さが10nm~100nmの範囲内のものが好ましく、20nm~50nmの範囲内のものがより好ましい。また、板状シリコン体の長手方向の長さは、0.1μm~50μmの範囲内のものが好ましい。また、板状シリコン体は、(長手方向の長さ)/(厚さ)が2~1000の範囲内であるのが好ましい。
 特許文献5に記載のシリコン材料の製造方法を、理想的な反応式で示すと以下のとおりとなる。なお、酸としては塩化水素を用いることとした。
 3CaSi+6HCl → Si+3CaCl
 Si → 6Si+3H
 シリコン材料には、アモルファスシリコン及び/又はシリコン結晶子が含まれるのが好ましい。シリコン結晶子のサイズは、0.5nm~300nmの範囲内が好ましく、1nm~100nmの範囲内がより好ましく、1nm~50nmの範囲内がさらに好ましく、1nm~10nmの範囲内が特に好ましい。なお、シリコン結晶子のサイズは、シリコン材料に対してX線回折測定を行い、得られたX線回折チャートのSi(111)面の回折ピークの半値幅を用いたシェラーの式から算出される。
 本発明の負極活物質において、ケイ素は50~99質量%で存在するのが好ましく、60~97質量%で存在するのがより好ましく、70~95質量%で存在するのがさらに好ましい。
 本発明の負極活物質において、炭素層はシリコン材料の表面全体を被覆しているのが好ましい。本発明の負極活物質において、炭素は0.5~10質量%で存在するのが好ましく、1~8質量%で存在するのがより好ましく、2~6質量%で存在するのがさらに好ましい。
 炭素層の厚みとしては、1~100nmが好ましく、5~50nmがより好ましい。
 炭素層をラマン分光法で分析すると、1590cm-1付近にG-bandと称される炭素由来ピークが観察され、さらに、1350cm-1付近にD-bandと称される炭素由来ピークが観察される。G-bandはグラファイトに由来し、D-bandはダングリングボンドなどの炭素に由来すると考えられている。本発明の負極活物質において、(D-bandのピーク強度)/(G-bandのピーク強度)の値(以下、D/G比という。)が、0.80~1の範囲内で観察される場合がある。
 本発明の負極活物質において、4~6族の金属は炭素と結合していると考えられ、そして、当該結合は共有結合及び/又は配位結合と考えられる。かかる結合により、本発明の負極活物質における炭素層の強度が増加したと推察できる。
 4~6族の金属は、炭素層に存在する炭素元素のモル数に対して、0.01~10モル%で存在するのが好ましく、0.1~7モル%で存在するのがより好ましく、1~5モル%で存在するのがさらに好ましい。
 ここで、4~6族の金属は、炭素と結合して炭化物を形成することが知られている。例えば、国際公開第2012/018082号には、n-ヘキサデシルアミンとn-オクチルエーテルとヘキサカルボニルモリブデンの共存下、280℃で加熱したところ、MoCが生成されたことが記載されている。後述する本発明の負極活物質の製造方法の加熱温度からみて、本発明の負極活物質においても、4~6族の金属が炭素と結合した炭化物が生成している場合があると考えられる。
 4~6族の金属が炭素と結合した炭化物は、熱や酸化などに対して、あるいは溶剤との接触に対して、比較的安定であり、また、一定程度の導電性を示す。したがって、本発明の負極活物質において、4~6族の金属が炭素と結合した炭化物の存在が、本発明の負極活物質の好適な機能の要因とも考えられる。
 表1に、4~6族の金属が炭素と結合した炭化物と、その電気抵抗率について示す。なお、電気抵抗率の逆数が導電率である。
Figure JPOXMLDOC01-appb-T000001
 本発明の負極活物質において、4~6族の金属は、1種類でもよいし、複数種類でもよい。4~6族の金属としては、Ti、Zr、V、Nb、Ta、Cr、Mo、Wが好ましい。
 本発明の負極活物質において、4~6族の金属は0.001~1質量%で存在するのが好ましく、0.005~0.5質量%で存在するのがより好ましく、0.01~0.3質量%で存在するのがさらに好ましい。4~6族の金属が多すぎると、本発明の負極活物質の導電率は増加するものの、4~6族の金属は、本発明の負極活物質を具備するリチウムイオン二次電池におけるリチウムイオン拡散に対する抵抗となる懸念がある。
 本発明の負極活物質の電気抵抗率は、0.1~3.0Ω・cmの範囲内が好ましく、0.2~2.5Ω・cmの範囲内がより好ましく、0.3~1.0Ω・cmの範囲内がさらに好ましい。
 本発明の負極活物質の粒度分布としては、平均粒子径が0.5~30μmの範囲内のものが好ましく、1~10μmの範囲内のものがより好ましい。なお、平均粒子径とは、一般的なレーザー回折式粒度分布測定装置で測定した場合における、D50を意味する。 
 以下、本発明の負極活物質の製造方法について説明する。
 本発明の負極活物質の製造方法は、シリコン材料と4~6族の金属を含有する化合物と炭素源との共存下、加熱により、当該化合物と炭素源を分解させる工程(以下、「本発明の工程」ということがある。)を有することを特徴とする。
 本発明の工程は、以下の機序で進行すると推定される。
 1.炭素源が分解してタール状物質が生成する。
 2.当該タール状物質に、4~6族の金属を含有する化合物が分解して生成した金属が取り込まれる。
 3.シリコン材料の表面に、金属を含むタール状物質が付着する。
 4.3のタール状物質が炭化して炭素層となり、4~6族の金属を含有する炭素層で被覆されたシリコン材料が得られる。
 上記機序で本発明の負極活物質が製造されると考えられるため、本発明の負極活物質に含まれる4~6族の金属は、炭素層中に分散して存在すると考えられる。
 SiCの生成を避けるとの観点から、本発明の工程の加熱温度は600~1000℃が好ましく、700~1000℃がより好ましく、800~1000℃がさらに好ましい。加熱時間は製造スケールなどに応じて適宜決定すればよい。
 4~6族の金属を含有する化合物は、600~1000℃の加熱で分解するものが好ましい。4~6族の金属を含有する化合物としては、カルボニルやシクロペンタジエニルなどの配位子と4~6族の金属との錯体、4~6族の金属を含有する塩、並びにこれらの水和物などを挙げることができる。
 4~6族の金属を含有する具体的な化合物として、シュウ酸チタンカリウム、テトラキス(エチルメチルアミノ)チタン、テトラキス(ジメチルアミノ)チタン、テトラメトシキチタン、テトラエトシキチタン、テトラ-n-プロポキシチタン、テトライソプロポキシチタン、テトラブトキシチタン、チタンテトラキス(2-エチル-1-ヘキサノラート)、ビス(シクロペンタジエニル)ジクロロチタン、シクロペンタジエニルトリベンジルチタン、ジルコニウムアセチルアセトナート、テトラメトシキジルコニウム、テトラエトシキジルコニウム、テトラ-n-プロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラブトキシジルコニウム、テトラキス(エチルメチルアミノ)ジルコニウム、テトラキス(ジメチルアミノ)ジルコニウム、ジクロロビス(シクロペンタジエニル)ジルコニウム、ビス(シクロペンタジエニル)ジメチルジルコニウム、メチルトリス(シクロペンタジエニル)ジルコニウム、ビス(シクロペンタジエニル)ジブチルジルコニウム、ビス(シクロペンタジエニル)ジクロロバナジウム、バナジウム(III)アセチルアセトナート、ビス(シクロペンタジエニル)ニオブジクロライド、テトラクロロ(2,3,4,5-テトラメチル-2,4-シクロペンタジエニル)ニオブ、ニオブ(V)ペンタエトキシド、ペンタ-n-プロポキシニオブ(V)、ペンタイソプロポキシニオブ(V)、ペンタブトキシニオブ(V)、ペンタフェノキシニオブ(V)、ペンタメトキシタンタル(V)、ペンタエトキシタンタル(V)、ペンタキス(ジメチルアミノ)タンタル、テトラクロロ(2,3,4,5-テトラメチル-2,4-シクロペンタジエニル)タンタル、三酢酸クロム(III)、クロム(III)アセチルアセトナート、ヘキサカルボニルモリブデン、窒化モリブデン、ジカルボニルシクロペンタジエニルモリブデンダイマー、トリカルボニルシクロペンタジエニルモリブデンダイマー、ビピリジルテトラカルボニルモリブデン、ナフテン酸モリブデン、オクタン酸モリブデン、ヘキサカルボニルタングステン、窒化タングステン、ビス(イソプロピルシクロペンタジエニル)タングステン(IV)二水素化物、ビス(シクロペンタジエニル)タングステン(IV)二水素化物を挙げることができる。
 炭素源は、本発明の工程の加熱で分解して炭素を供給できるものであればよい。炭素源として、具体的に、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサンなどの飽和炭化水素、エチレン、プロピレン、アセチレンなどの不飽和炭化水素、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、酢酸アミルなどのエステル類、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、安息香酸、サリチル酸、ニトロベンゼン、クロルベンゼン、インデン、フラン、ベンゾフラン、ピロール、ピリジン、インドール、アントラセン、フェナントレンなどの芳香族化合物、並びに、各種の樹脂を例示できる。炭素源としては、上記のものを単独で用いてもよいし、複数を併用してもよい。
 4~6族の金属を含有する化合物が炭素を多く含む場合は、当該化合物が炭素源を兼ねていてもよい。
 本発明の工程以降に、4~6族の金属を含有する炭素層で被覆されたシリコン材料を粉砕する粉砕工程、水などの極性溶媒で洗浄する洗浄工程、乾燥工程及び/又は分級工程を行ってもよい。
 本発明の負極活物質は、リチウムイオン二次電池などの二次電池の負極活物質として使用することができる。
 本発明のリチウムイオン二次電池は、本発明の負極活物質を具備する。具体的には、本発明のリチウムイオン二次電池は、正極、本発明の負極活物質を具備する負極、電解液及びセパレータを具備する。
 正極は、集電体と、集電体の表面に結着させた正極活物質層を有する。
 集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。
 正極活物質層は正極活物質、並びに必要に応じて導電助剤及び/又は結着剤を含む。
 正極活物質としては、層状化合物のLiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦3)、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル、及びスピネルと層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の各組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも正極活物質として使用可能である。また、正極活物質として、充放電に寄与するリチウムイオンを含まない正極活物質材料、たとえば、硫黄単体、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウムを含まない正極活物質材料を用いる場合には、正極及び/又は負極に、公知の方法により、予めイオンを添加させておく必要がある。ここで、当該イオンを添加するためには、金属または当該イオンを含む化合物を用いればよい。
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、および各種金属粒子などが例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックなどが例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。
 活物質層中の導電助剤の配合割合は、質量比で、活物質:導電助剤=1:0.005~1:0.5であるのが好ましく、1:0.01~1:0.2であるのがより好ましく、1:0.03~1:0.1であるのがさらに好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。
 結着剤は、活物質や導電助剤を集電体の表面に繋ぎ止め、電極中の導電ネットワークを維持する役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース、アルギン酸ナトリウム、アルギン酸アンモニウム等のアルギン酸塩、水溶性セルロースエステル架橋体、デンプン-アクリル酸グラフト重合体を例示することができる。これらの結着剤を単独で又は複数で採用すれば良い。
 活物質層中の結着剤の配合割合は、質量比で、活物質:結着剤=1:0.001~1:0.3であるのが好ましく、1:0.005~1:0.2であるのがより好ましく、1:0.01~1:0.15であるのがさらに好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。
 負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。集電体については、正極で説明したものを適宜適切に採用すれば良い。負極活物質層は負極活物質、並びに必要に応じて導電助剤及び/又は結着剤を含む。
 負極活物質としては、本発明の負極活物質を用いればよく、本発明の負極活物質のみを採用してもよいし、本発明の負極活物質と公知の負極活物質を併用してもよい。
 負極に用いる導電助剤及び結着剤については、正極で説明したものを同様の配合割合で適宜適切に採用すれば良い。
 集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、溶剤、並びに必要に応じて結着剤及び/又は導電助剤を混合し、スラリーを調製する。上記溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。該スラリーを集電体の表面に塗布後、乾燥する。電極密度を高めるべく、乾燥後のものを圧縮しても良い。
 電解液は、非水溶媒と非水溶媒に溶解した電解質とを含んでいる。
 非水溶媒としては、環状エステル類、鎖状エステル類、エーテル類等が使用できる。環状エステル類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンを例示できる。非水溶媒としては、上記具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換した化合物を採用しても良い。
 電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(SOF)、LiN(CFSO等のリチウム塩を例示できる。
 電解液としては、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジエチルカーボネートなどの非水溶媒に、LiClO、LiPF、LiBF、LiCFSO3、LiN(SOF)などのリチウム塩を0.5mol/Lから3.0mol/L程度の濃度で溶解させた溶液を例示できる。
 セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。
 次に、リチウムイオン二次電池の製造方法について説明する。
 正極および負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から、外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。また、本発明のリチウムイオン二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。
 本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。
 本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、実施例および比較例などを示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。
 (実施例1)
 以下のとおり、実施例1の負極活物質及びリチウムイオン二次電池を製造した。
 平均粒子径3μmのケイ素15g(株式会社高純度化学研究所)とヘキサカルボニルモリブデン38mg(株式会社高純度化学研究所)をロータリーキルン型の反応器に入れ、プロパンガス通気下にて880℃、滞留時間5分間の条件で熱CVDを行い、モリブデンを含有する炭素層で被覆されたシリコン材料を得た。なお、上記反応器の炉芯管は水平方向に配設されている。そして、炉芯管の回転速度は1rpmとした。炉心管の内周壁には邪魔板が配設されており、反応器は炉芯管の回転に伴って邪魔板上に堆積した内容物が所定の高さで邪魔板から落下するように構成され、その構成によって内容物が撹拌される。また、上記の条件下では、ケイ素15gに対して炭素が750mg程度で被覆する。
 モリブデンを含有する炭素層で被覆されたシリコン材料を水で洗浄し、乾燥して、実施例1の負極活物質とした。
 実施例1の負極活物質85質量部、結着剤としてポリアミドイミドを10質量部、導電助剤としてアセチレンブラックを5質量部及び適量のN-メチル-2-ピロリドンを混合してスラリーとした。
 集電体として厚さ30μmの電解銅箔を準備した。該銅箔の表面に、ドクターブレードを用いて上記スラリーが膜状になるように塗布した。スラリーが塗布された銅箔を80℃で20分間乾燥することでN-メチル-2-ピロリドンを揮発により除去し、その結果、表面に負極活物質層が形成された銅箔を得た。該銅箔を負極活物質層の厚みが20μmとなるように、ロールプレス機で圧縮して接合物を得た。この接合物を180℃で2時間減圧加熱乾燥し、負極とした。
 上記負極を径11mmに裁断し、評価極とした。厚さ500μmの金属リチウム箔を径13mmに裁断し対極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。また、エチレンカーボネート50容量部及びジエチルカーボネート50容量部を混合した溶媒にLiPF6を1mol/Lで溶解した電解液を準備した。対極、ガラスフィルター、celgard2400、評価極の順に、2種のセパレータを対極と評価極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容し、さらに電解液を注入して、コイン型電池を得た。これを実施例1のリチウムイオン二次電池とした。
 (実施例2)
 ヘキサカルボニルモリブデンを76mg用いた以外は、実施例1と同様の方法で、モリブデンを含有する炭素層で被覆されたシリコン材料からなる実施例2の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例3)
 ヘキサカルボニルモリブデン38mgに代えて、窒化モリブデン38mg(株式会社高純度化学研究所)を用いた以外は、実施例1と同様の方法で、モリブデンを含有する炭素層で被覆されたシリコン材料からなる実施例3の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例4)
 ヘキサカルボニルモリブデン38mgに代えて、シュウ酸チタンカリウム二水和物38mg(株式会社高純度化学研究所)を用いた以外は、実施例1と同様の方法で、チタンを含有する炭素層で被覆されたシリコン材料からなる実施例4の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例5)
 ヘキサカルボニルモリブデン38mgに代えて、ペンタメトキシタンタル(V)1.05gを用いた以外は、実施例1と同様の方法で、タンタルを含有する炭素層で被覆されたシリコン材料からなる実施例5の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例6)
 ヘキサカルボニルモリブデン38mgに代えて、ヘキサカルボニルタングステン1.10gを用いた以外は、実施例1と同様の方法で、タングステンを含有する炭素層で被覆されたシリコン材料からなる実施例6の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例7)
 ヘキサカルボニルモリブデン38mgに代えて、三酢酸クロム(III)0.77gを用いた以外は、実施例1と同様の方法で、クロムを含有する炭素層で被覆されたシリコン材料からなる実施例7の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例8)
 ヘキサカルボニルモリブデン38mgに代えて、テトラエトシキジルコニウム0.85gを用いた以外は、実施例1と同様の方法で、ジルコニウムを含有する炭素層で被覆されたシリコン材料からなる実施例8の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例9)
 ヘキサカルボニルモリブデン38mgに代えて、ニオブ(V)ペンタエトキシド0.99gを用いた以外は、実施例1と同様の方法で、ニオブを含有する炭素層で被覆されたシリコン材料からなる実施例9の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例10)
 ヘキサカルボニルモリブデン38mgに代えて、ビス(シクロペンタジエニル)ジクロロバナジウム0.79gを用いた以外は、実施例1と同様の方法で、バナジウムを含有する炭素層で被覆されたシリコン材料からなる実施例10の負極活物質及びリチウムイオン二次電池を製造した。
 (比較例1)
 ヘキサカルボニルモリブデンを用いなかった以外は、実施例1と同様の方法で、炭素層で被覆されたシリコン材料からなる比較例1の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例11)
 氷浴中の35質量%HCl水溶液100mLに、アルゴンガス雰囲気下、CaSi5gを加え、90分間撹拌した。反応液中に暗緑粉末が分散するのが確認できた。反応液を濾過し、残渣を蒸留水及びアセトンで洗浄し、さらに、室温で12時間減圧乾燥して、ポリシランを含有する層状シリコン化合物を得た。
 層状シリコン化合物をアルゴンガス雰囲気下、900℃で1時間加熱して、シリコン材料を製造した。当該シリコン材料を粉砕し、目開き25μmの篩を通過させた後に、以下の製造に使用した。
 平均粒子径3μmのケイ素(株式会社高純度化学研究所)に代えて、上記シリコン材料を用いた以外は、実施例3と同様の方法で、モリブデンを含有する炭素層で被覆されたシリコン材料からなる実施例11の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例12)
 平均粒子径3μmのケイ素(株式会社高純度化学研究所)に代えて、実施例11と同様の方法で製造したシリコン材料を用いた以外は、実施例5と同様の方法で、タンタルを含有する炭素層で被覆されたシリコン材料からなる実施例12の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例13)
 平均粒子径3μmのケイ素(株式会社高純度化学研究所)に代えて、実施例11と同様の方法で製造したシリコン材料を用いた以外は、実施例6と同様の方法で、タングステンを含有する炭素層で被覆されたシリコン材料からなる実施例13の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例14)
 平均粒子径3μmのケイ素(株式会社高純度化学研究所)に代えて、実施例11と同様の方法で製造したシリコン材料を用いた以外は、実施例7と同様の方法で、クロムを含有する炭素層で被覆されたシリコン材料からなる実施例14の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例15)
 平均粒子径3μmのケイ素(株式会社高純度化学研究所)に代えて、実施例11と同様の方法で製造したシリコン材料を用いた以外は、実施例8と同様の方法で、ジルコニウムを含有する炭素層で被覆されたシリコン材料からなる実施例15の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例16)
 平均粒子径3μmのケイ素(株式会社高純度化学研究所)に代えて、実施例11と同様の方法で製造したシリコン材料を用いた以外は、実施例9と同様の方法で、ニオブを含有する炭素層で被覆されたシリコン材料からなる実施例16の負極活物質及びリチウムイオン二次電池を製造した。
 (実施例17)
 平均粒子径3μmのケイ素(株式会社高純度化学研究所)に代えて、実施例11と同様の方法で製造したシリコン材料を用いた以外は、実施例10と同様の方法で、バナジウムを含有する炭素層で被覆されたシリコン材料からなる実施例17の負極活物質及びリチウムイオン二次電池を製造した。
 (比較例2)
 窒化モリブデンを用いなかった以外は、実施例11と同様の方法で、炭素層で被覆されたシリコン材料からなる比較例2の負極活物質及びリチウムイオン二次電池を製造した。
 (評価例1)
 実施例1~10、比較例1の各負極活物質をペレット状に成型して、四端子測定法にて電気抵抗を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2を見ると、4~6族の金属が炭素層に含まれることにより、負極活物質の電気抵抗が低下することがわかる。
 また、実施例3、比較例1の各負極活物質とは炭素被覆の対象となるシリコン材料を変えた実施例11及び比較例2の負極活物質につき、上記と同様の評価を行った結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3を見ると、炭素被覆の対象となるシリコン材料が変わった負極活物質においても、4~6族の金属が炭層層に含まれることにより、負極活物質の電気抵抗が低下する現象が確認できた。
 (評価例2)
 実施例1~4、11、比較例1~2の各負極活物質に対し、高周波誘導結合プラズマ発光分光分析を行い、各負極活物質に含まれている元素の量を測定した。結果を表4に示す。表4の数値の単位は質量%である。
Figure JPOXMLDOC01-appb-T000004
 本発明の負極活物質には、4~6族の金属が含まれることが裏付けられた。なお、実施例4の負極活物質におけるカリウムの量について述べると、カリウムは加熱により飛散しやすいことに加えて、水による洗浄で除去されやすいため、実施例4の負極活物質中のカリウムの量が低くなったといえる。
 (評価例3)
 実施例1、3~4、比較例1の各負極活物質に対し、ラマン分光分析を行った。得られた各ラマンスペクトルには、1590cm-1付近にG-bandと称されるピーク、及び、1350cm-1付近にD-bandと称されるピークが観察された。D/G比を算出し、その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 4~6族の金属が含まれることにより、D-bandの割合が増加し、G-bandの割合が減少しているといえる。本発明の負極活物質においては、炭素が4~6族の金属と結合しているため、炭素のみで安定構造となるグラファイトに由来するG-bandの割合が減少したといえる。
 (評価例4)
 粉末X線回折装置にて、実施例1、3~4、比較例1の各負極活物質のX線回折を測定した。実施例1、3~4、比較例1の各負極活物質のX線回折チャートからは、シリコン結晶及び炭素結晶に由来するピークが観察されたものの、4~6族の金属結晶に由来するピークは観察されなかった。図1に実施例1の負極活物質のX線回折チャートを示し、図2に実施例4の負極活物質のX線回折チャートを示し、図3に比較例1の負極活物質のX線回折チャートを示す。各図の●はシリコン結晶に由来するピークであり、◆は炭素結晶に由来するピークである。
 (評価例5)
 実施例1~17、比較例1~2の各リチウムイオン二次電池につき、評価極の対極に対する電圧が0.0085Vになるまで0.2mAで放電を行い、評価極の対極に対する電圧が1.2Vになるまで0.2mAで充電を行う充放電サイクルを20サイクル行った。なお、評価例5では、評価極にLiを吸蔵させることを放電といい、評価極からLiを放出させることを充電という。初回の充電容量に対する20サイクル時の充電容量の比率を容量維持率として算出した。また、初期放電容量に対する初期充電容量の比を初期効率として算出した。これらの結果を、初期充電容量の値と共に、表6に示す。
Figure JPOXMLDOC01-appb-T000006
 本発明の負極活物質を具備するリチウムイオン二次電池は、好適に容量を維持できることがわかる。本発明の負極活物質は、膨張及び収縮を伴う充放電を経ても、その構造を比較的安定に維持できるといえる。本発明の負極活物質が、その強度に優れていることが裏付けられた。

 

Claims (8)

  1.  4~6族の金属を含有する炭素層で被覆されたシリコン材料からなる負極活物質。
  2.  前記金属が前記負極活物質に対して1質量%以下で含まれる、又は、前記金属が前記炭素層に存在する炭素元素のモル数に対して10モル%以下で含まれる請求項1に記載の負極活物質。
  3.  前記金属と前記炭素層に含まれる炭素とが結合している請求項1又は2に記載の負極活物質。
  4.  前記シリコン材料が、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有する請求項1~3のいずれかに記載の負極活物質。
  5.  前記シリコン材料がCaSiから脱カルシウム化反応を経て得られることを特徴とする請求項1~4のいずれかに記載の負極活物質。
  6.  請求項1~5のいずれかに記載の負極活物質を具備する二次電池。
  7.  請求項1~5のいずれかに記載の負極活物質の製造方法であって、
     シリコン材料と4~6族の金属を含有する化合物と炭素源との共存下、加熱により、当該化合物と炭素源を分解させる工程を有することを特徴とする負極活物質の製造方法。
  8.  前記加熱の温度が600~1000℃の範囲内である請求項7に記載の負極活物質の製造方法。

     
PCT/JP2016/004788 2015-11-09 2016-11-01 負極活物質 WO2017081854A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/773,672 US10833325B2 (en) 2015-11-09 2016-11-01 Negative electrode active material
JP2017549980A JP6838556B2 (ja) 2015-11-09 2016-11-01 負極活物質
CN201680065431.3A CN108352516B (zh) 2015-11-09 2016-11-01 负极活性物质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015219275 2015-11-09
JP2015-219275 2015-11-09

Publications (1)

Publication Number Publication Date
WO2017081854A1 true WO2017081854A1 (ja) 2017-05-18

Family

ID=58694827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004788 WO2017081854A1 (ja) 2015-11-09 2016-11-01 負極活物質

Country Status (4)

Country Link
US (1) US10833325B2 (ja)
JP (1) JP6838556B2 (ja)
CN (1) CN108352516B (ja)
WO (1) WO2017081854A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706383A (zh) * 2017-09-21 2018-02-16 合肥国轩高科动力能源有限公司 一种原位钛掺杂碳包覆氧化亚硅/石墨材料及其制备方法
WO2019150725A1 (ja) * 2018-02-05 2019-08-08 株式会社豊田自動織機 炭素被覆シリコン材料
EP3761429A4 (en) * 2018-02-27 2021-04-28 Panasonic Intellectual Property Management Co., Ltd. SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6999619B2 (ja) * 2019-08-27 2022-02-10 株式会社豊田自動織機 シリコンクラスレートiiを含有する負極活物質

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100296A (ja) * 2001-07-19 2003-04-04 Samsung Sdi Co Ltd 電池用活物質及びその製造方法
JP2005294079A (ja) * 2004-03-31 2005-10-20 Nec Corp 二次電池用負極、その製造方法及び二次電池
JP2009149462A (ja) * 2007-12-19 2009-07-09 Canon Inc 複合体材料、複合体材料の製造方法、電極構造体及び蓄電デバイス
JP2011096455A (ja) * 2009-10-28 2011-05-12 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
WO2014080608A1 (ja) * 2012-11-21 2014-05-30 株式会社豊田自動織機 ナノシリコン材料及び負極活物質とその製造方法及び蓄電装置
WO2015129188A1 (ja) * 2014-02-28 2015-09-03 三洋電機株式会社 非水電解質二次電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684585A (en) * 1970-07-13 1972-08-15 Materials Technology Corp Method for forming adherent titanium carbide coatings on metal or composite substrates
KR101560553B1 (ko) 2008-12-09 2015-10-16 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 구비한 리튬 이차 전지
KR101080956B1 (ko) 2009-04-13 2011-11-08 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN103875102B (zh) * 2011-08-19 2017-08-08 德州系统大学董事会 锂离子蓄电池的阳极材料
JP5949194B2 (ja) 2012-06-12 2016-07-06 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法
JP5447618B2 (ja) * 2012-08-28 2014-03-19 株式会社豊田自動織機 非水電解質二次電池用負極材料、その製造方法、非水電解質二次電池用負極及び非水電解質二次電池
KR101560892B1 (ko) * 2012-11-30 2015-10-19 주식회사 엘지화학 다공성 규소 산화물―탄소재 복합체를 포함하는 음극 활물질 및 이의 제조방법
JP6068237B2 (ja) 2013-04-02 2017-01-25 本田技研工業株式会社 電解質−負極構造体及びそれを備えるリチウムイオン二次電池
US10020494B2 (en) * 2013-08-08 2018-07-10 Nanotek Instruments, Inc. Anode containing active material-coated graphene sheets and lithium-ion batteries containing same
US20150044560A1 (en) 2013-08-09 2015-02-12 Semiconductor Energy Laboratory Co., Ltd. Electrode for lithium-ion secondary battery and manufacturing method thereof, and lithium-ion secondary battery
JP6302307B2 (ja) 2014-03-19 2018-03-28 積水化学工業株式会社 シート積層型リチウムイオン二次電池
JP6126546B2 (ja) 2014-03-26 2017-05-10 株式会社日立製作所 リチウムイオン二次電池用負極の製造方法及び製造装置
CN105006549A (zh) * 2014-07-20 2015-10-28 中南大学 一种碳硅复合锂离子电池负极材料及其制备方法
CN104577081A (zh) * 2014-12-30 2015-04-29 华南理工大学 一种锂离子电池负极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100296A (ja) * 2001-07-19 2003-04-04 Samsung Sdi Co Ltd 電池用活物質及びその製造方法
JP2005294079A (ja) * 2004-03-31 2005-10-20 Nec Corp 二次電池用負極、その製造方法及び二次電池
JP2009149462A (ja) * 2007-12-19 2009-07-09 Canon Inc 複合体材料、複合体材料の製造方法、電極構造体及び蓄電デバイス
JP2011096455A (ja) * 2009-10-28 2011-05-12 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
WO2014080608A1 (ja) * 2012-11-21 2014-05-30 株式会社豊田自動織機 ナノシリコン材料及び負極活物質とその製造方法及び蓄電装置
WO2015129188A1 (ja) * 2014-02-28 2015-09-03 三洋電機株式会社 非水電解質二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706383A (zh) * 2017-09-21 2018-02-16 合肥国轩高科动力能源有限公司 一种原位钛掺杂碳包覆氧化亚硅/石墨材料及其制备方法
WO2019150725A1 (ja) * 2018-02-05 2019-08-08 株式会社豊田自動織機 炭素被覆シリコン材料
EP3761429A4 (en) * 2018-02-27 2021-04-28 Panasonic Intellectual Property Management Co., Ltd. SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE

Also Published As

Publication number Publication date
CN108352516B (zh) 2021-07-06
US20180323427A1 (en) 2018-11-08
US10833325B2 (en) 2020-11-10
JPWO2017081854A1 (ja) 2018-09-13
JP6838556B2 (ja) 2021-03-03
CN108352516A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
US10446838B2 (en) Negative electrode for nonaqueous secondary battery and nonaqueous secondary battery, negative electrode active material and method for producing same, complex including nano silicon, carbon layer, and cationic polymer layer, and method for producing complex formed of nano silicon and carbon layer
JP6311947B2 (ja) 炭素被覆シリコン材料の製造方法
JP6311948B2 (ja) 炭素被覆シリコン材料の製造方法
JP6838556B2 (ja) 負極活物質
JP6376054B2 (ja) シリコン材料及びその製造方法並びにシリコン材料を具備する二次電池
JP6555520B2 (ja) 炭素被覆シリコン材料の製造方法
JP7243406B2 (ja) 電解液及びリチウムイオン二次電池
JP2020181806A (ja) 電解液及びリチウムイオン二次電池
JP2021044165A (ja) 電解液及びリチウムイオン二次電池
JP2020043047A (ja) 電解液及びリチウムイオン二次電池
JP2020043000A (ja) 電解液及びリチウムイオン二次電池
JP2018058746A (ja) 炭素被覆シリコン材料の製造方法
JP2020013680A (ja) 電解液
JP7243511B2 (ja) 電解液及びリチウムイオン二次電池
JP7247852B2 (ja) 電解液及びリチウムイオン二次電池
JP7218663B2 (ja) 電解液及び二次電池
JP7188168B2 (ja) 電解液及び二次電池
JP6683107B2 (ja) シリコン材料の製造方法
JP7107177B2 (ja) 電解液及び蓄電装置
JP6852691B2 (ja) 酸素含有シリコン材料及びその製造方法
JP6459798B2 (ja) 炭素含有シリコン材料及びその製造方法並びに炭素含有シリコン材料を具備する二次電池
JP2021068534A (ja) LiBF4を含有する電解液及びリチウムイオン二次電池
JP2020170686A (ja) 電解液及び二次電池
JP2021044109A (ja) 電解液及びリチウムイオン二次電池
JP2019197716A (ja) 電解液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017549980

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15773672

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863821

Country of ref document: EP

Kind code of ref document: A1