WO2017081850A1 - 付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び光学半導体装置 - Google Patents

付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び光学半導体装置 Download PDF

Info

Publication number
WO2017081850A1
WO2017081850A1 PCT/JP2016/004743 JP2016004743W WO2017081850A1 WO 2017081850 A1 WO2017081850 A1 WO 2017081850A1 JP 2016004743 W JP2016004743 W JP 2016004743W WO 2017081850 A1 WO2017081850 A1 WO 2017081850A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mass
sio
silicone resin
addition
Prior art date
Application number
PCT/JP2016/004743
Other languages
English (en)
French (fr)
Inventor
一安 佐藤
利之 小材
栄一 田部井
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP16863817.9A priority Critical patent/EP3360928B1/en
Priority to US15/770,505 priority patent/US10483442B2/en
Priority to KR1020187013520A priority patent/KR102081781B1/ko
Priority to CN201680066149.7A priority patent/CN108350275A/zh
Publication of WO2017081850A1 publication Critical patent/WO2017081850A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/08Polymer mixtures characterised by way of preparation prepared by late transition metal, i.e. Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru or Os, single site catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Definitions

  • the present invention relates to an addition-curable silicone resin composition suitable for optical applications such as a light-emitting diode (LED) element sealing material, a method for producing the composition, and an optical semiconductor device using the composition as a sealing material. .
  • LED light-emitting diode
  • An epoxy resin is generally used as a sealing material for LED elements, but it has been proposed to use a silicone resin as a sealing material instead of an epoxy resin (Patent Documents 1 to 3). Silicone resins are used mainly for blue LEDs and white LEDs because they are superior in heat resistance, weather resistance, and discoloration resistance to epoxy resins.
  • an organopolysiloxane, a cerium carboxylate, and a titanium compound or zirconia compound have been heat-treated at a temperature of 150 ° C. or higher.
  • a heat-resistant organopolysiloxane composition (Patent Document 4) containing the reaction product obtained as an additive and a silicone gel composition (Patent Document 5) containing the same additive have been reported.
  • Patent Document 4 A heat-resistant organopolysiloxane composition containing the reaction product obtained as an additive
  • a silicone gel composition (Patent Document 5) containing the same additive have been reported.
  • Patent Document 4 containing the reaction product obtained as an additive
  • a silicone gel composition Patent Document 5
  • what is described in these patent documents is not an addition-curable silicone resin composition that gives a cured product having rubber hardness, and therefore can be used for applications such as the above-described sealing material for LED elements. It was not a thing.
  • Patent Document 6 reports a heat-resistant silicone rubber composition containing a rare earth salt mixture of 2-ethylhexanoic acid, and a total light transmittance at a wavelength of 600 nm of a sheet having a thickness of 2 mm is 90% or more. It has been reported. However, this heat-resistant silicone rubber composition has a problem that light transmittance of short-wavelength light in the vicinity of a wavelength of 400 nm is inferior.
  • the present invention has been made to solve the above-described problems, and provides an addition-curable silicone resin composition that provides a cured product that is excellent in transparency and has a low hardness change and a small weight loss under high-temperature conditions. Objective.
  • the present invention provides an addition-curable silicone resin composition, (A) an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule and having a viscosity at 25 ° C. of 50 to 100,000 mPa ⁇ s, (B) Organopolysiloxane represented by the following average composition formula (1) and having a viscosity at 25 ° C.
  • Such an addition-curable silicone resin composition is an addition-curable silicone resin composition that gives a cured product that is excellent in transparency and has little hardness change and weight loss under high-temperature conditions.
  • the addition-curable silicone resin composition has a total light transmittance of 80% or more at a wavelength of 400 nm of a sheet having a thickness of 2 mm of a cured product of the composition, and the cured product is stored at 250 ° C. for 500 hours. It is preferable that the weight loss rate is 10% or less.
  • Such an addition-curable silicone resin composition provides a cured product having transparency and heat resistance particularly suitable for LED applications.
  • the above-mentioned addition-curable silicone resin composition is produced by mixing the components (a) to (e), As the component (e), (I) Organopolysiloxane having a viscosity of 10 to 10,000 mPa ⁇ s at 25 ° C .: 100 parts by mass (Ii) Rare earth carboxylate containing cerium carboxylate represented by the following general formula (e-1): The mass of cerium is 0.05 to 5 parts by mass with respect to 100 parts by mass of component (i).
  • a polyorganometallosiloxane having a predetermined Ce content and Ti content (that is, the component (e)) can be easily synthesized.
  • the resin composition can be easily produced.
  • the present invention also provides an optical semiconductor device in which a light-emitting diode is sealed with the above addition-curable silicone resin composition.
  • the light-emitting diode is sealed with the addition-curable silicone resin composition of the present invention that provides a cured product that is excellent in transparency as described above and has a low hardness change and low weight loss under high temperature conditions. Therefore, the optical semiconductor device is excellent in reliability under high temperature conditions.
  • the addition-curable silicone resin composition of the present invention is excellent in transparency and heat discoloration, has an appropriate rubber hardness, has little hardness change and weight loss under high temperature conditions, and cracks. It becomes an addition-curable silicone resin composition that gives a cured product with good resistance. Therefore, the addition-curable silicone resin composition of the present invention is a material for protecting / sealing LED elements, a material for changing / adjusting wavelengths, a material for lenses, and other materials for optical devices or optical components. As particularly useful.
  • the present inventors can achieve the above-described problems and can be suitably used as an LED material or the like as long as it is an addition-curable silicone resin composition containing the following components (a) to (e): As a result, the present invention was completed.
  • the present invention is an addition-curable silicone resin composition that contains the following components (a) to (e) and is cured by heating.
  • (A) Organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule and having a viscosity of 50 to 100,000 mPa ⁇ s at 25 ° C.
  • (b) Expressed by the following average composition formula (1) And an organopolysiloxane whose viscosity at 25 ° C. is a liquid or solid having a viscosity of 1,000 Pa ⁇ s or higher: the component (b) is less than 0 part by mass with respect to a total of 100 parts by mass of the component (a) and the component (b).
  • R 1 is a monovalent hydrocarbon group which may contain an alkenyl group
  • R 2 is a monovalent hydrocarbon group which does not contain an alkenyl group, and 80% or more of all R 2 are methyl groups
  • R 3 is a hydrogen atom or an alkyl group
  • component (c) Component and the amount of SiH bonds in component (c) 0.5 to 5.0 times the total number of alkenyl groups in component (b) and component (b) R 4 a H b SiO (4-a -B) / 2 ...
  • R 4 is a monovalent hydrocarbon group not containing an alkenyl group, and 50% or more of all R 4 is a methyl group; a and b are 0.7 ⁇ a ⁇ 2.1, It is a number that satisfies 0.001 ⁇ b ⁇ 1.0 and 0.8 ⁇ a + b ⁇ 3.0.
  • Platinum group metal catalyst an amount of 1 to 500 ppm in terms of mass of metal atoms with respect to the total of the components (a) to (c) (e) Si—O—Ce bond, and Si—O A polyorganometallosiloxane having a Ti bond, a Ce content of 50 to 5,000 ppm, a Ti content of 50 to 5,000 ppm and a viscosity at 25 ° C. of 10 to 10,000 mPa ⁇ s: 0.01 to 5 parts by mass with respect to 100 parts by mass in total of components a) to (d)
  • Me represents a methyl group
  • Vi represents a vinyl group
  • Component (a) is an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule and having a viscosity at 25 ° C. of 50 to 100,000 mPa ⁇ s.
  • the component (a) is typically a linear organopolysiloxane whose main chain is composed of repeating diorganosiloxane units and whose both molecular chain ends are blocked with triorganosiloxy groups.
  • R is preferably a methyl group.
  • component (a) include organopolysiloxanes represented by the following formula. ViMe 2 SiO (Me 2 SiO) 20 SiMe 2 Vi ViMe 2 SiO (Me 2 SiO) 90 SiMe 2 Vi ViMe 2 SiO (MeViSiO) 1 (Me 2 SiO) 19 SiMe 2 Vi Me 3 SiO (MeViSiO) 2 (Me 2 SiO) 18 SiMe 3
  • the viscosity of the component (a) is 50 to 100,000 mPa ⁇ s at 25 ° C.
  • the viscosity of the component (a) exceeds 100,000 mPa ⁇ s, workability at the time of sealing using the addition-curable silicone resin composition of the present invention is deteriorated.
  • the viscosity of the component (a) is lower than 50 mPa ⁇ s, the component (a) becomes a low-boiling point material, so that weight loss easily occurs in a high temperature environment.
  • the viscosity of component (a) is preferably 1,000 to 50,000 mPa ⁇ s, more preferably 1,000 to 10,000 mPa ⁇ s.
  • the component (b) is an organopolysiloxane which is represented by the following average composition formula (1) and is a liquid or solid having a viscosity at 25 ° C. of 1,000 Pa ⁇ s or more.
  • the addition-curable silicone resin composition it is a component necessary for imparting reinforcing properties while maintaining colorless transparency.
  • R 1 is a monovalent hydrocarbon group which may contain an alkenyl group
  • R 2 is a monovalent hydrocarbon group which does not contain an alkenyl group, and 80% or more of all R 2 are methyl groups
  • R 3 is a hydrogen atom or an alkyl group
  • the component (b) is typically a branched organopolysiloxane having a branched structure such as R 1 SiO 3/2 units or SiO 4/2 units.
  • the component (b) is a liquid having a higher viscosity than the component (a) or a solid organopolysiloxane. Since the component (b) may be solid, the upper limit of the viscosity when the component (b) is a liquid is not particularly limited.
  • R 1 is a monovalent hydrocarbon group which may contain an alkenyl group, and among them, those having 1 to 12 carbon atoms, particularly 1 to 6 carbon atoms are preferable.
  • R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, a cyclohexyl group, a phenyl group, a tolyl group, a vinyl group, and an allyl group.
  • R 2 is a monovalent hydrocarbon group not containing an alkenyl group, and among them, those having 1 to 12 carbon atoms, particularly 1 to 6 carbon atoms are preferable.
  • R 2 examples include those obtained by removing the alkenyl group from the specific examples of R 1 described above. In addition, 80% or more of all R 2 are methyl groups.
  • R 3 is a hydrogen atom or an alkyl group, and the alkyl group preferably has 1 to 6 carbon atoms, particularly 1 to 3 carbon atoms. Specific examples of such R 3 include a methyl group, an ethyl group, and a propyl group.
  • the component (b) preferably has an alkenyl group, and the alkenyl group in the component (b) is most preferably a vinyl group from the viewpoint of availability and price.
  • the amount of the alkenyl group is preferably in the range of 0.01 to 1 mol / 100 g, more preferably 0.05 to 0.5 mol / 100 g, based on the solid content of the component (b). If the amount of the alkenyl group of the component (b) is 0.01 mol / 100 g or more with respect to the solid content, the component (b) is sufficiently incorporated into the crosslinking, so that the hardness of the cured product does not become too low. .
  • the amount of the alkenyl group of the component (b) is 1 mol / 100 g or less based on the solid content, the amount of alkenyl groups in the system does not increase so much, so that the formulation of the component (c) (crosslinking agent) described later
  • the blending amount of the component (b) relative to the amount can be made an appropriate amount. Therefore, there is no possibility that the crosslinking does not proceed sufficiently and the desired hardness cannot be obtained or the cured product becomes brittle.
  • the ratio of the component (b) to the component (a) is also important, and the blending amount of the component (b) is (b) with respect to a total of 100 parts by mass of the component (a) and the component (b).
  • the amount of the component is more than 0 parts by mass and less than 80 parts by mass. Since the hardness of the cured product increases as the blending amount of the component (b) increases, the hardness can be adjusted by changing the blending amount of the component (b) according to the design of the LED or the like. More specifically, for example, when stress relaxation is required for the cured product, the component (b) is more than 0 parts by mass and less than 50 parts by mass with respect to 100 parts by mass in total of the components (a) and (b).
  • the amount of the component (b) is 50 parts by mass or more and less than 80 parts by mass with respect to 100 parts by mass in total of the components (a) and (b). Is preferred.
  • the component (c) is an organohydrogenpolysiloxane represented by the following average composition formula (2), having two or more SiH bonds in one molecule and having a viscosity at 25 ° C. of 1,000 mPa ⁇ s or less.
  • the component (c) is a component that acts as a crosslinking agent that reacts with the alkenyl group contained in the components (a) and (b) by a hydrosilylation reaction to cause crosslinking.
  • R 4 is a monovalent hydrocarbon group not containing an alkenyl group, and 50% or more of all R 4 is a methyl group; a and b are 0.7 ⁇ a ⁇ 2.1, It is a number that satisfies 0.001 ⁇ b ⁇ 1.0 and 0.8 ⁇ a + b ⁇ 3.0.
  • the viscosity of the component (c) is 1,000 mPa ⁇ s or less at 25 ° C., preferably 0.5 to 1,000 mPa ⁇ s, more preferably Is 2 to 200 mPa ⁇ s.
  • the amount of component (c) is such that the number of SiH bonds in component (c) is 0. 0 with respect to the total number of alkenyl groups in component (a) and component (b).
  • the amount is 5 to 5.0 times, preferably 0.7 to 3.0 times.
  • SiH containing 2 or more usually 2 to 200), preferably 3 or more (for example, 3 to 100), more preferably about 4 to 50 in one molecule.
  • the bond may be located at either the molecular chain end or in the middle of the molecular chain, or may be located at both.
  • component (c) may be any of linear, cyclic, branched, and three-dimensional network structures.
  • the number (or degree of polymerization) of silicon atoms in one molecule of component (c) is usually 2 to 200, preferably 3 to 100, and more preferably about 4 to 50.
  • R 4 is a monovalent hydrocarbon group containing no alkenyl group, and among them, those having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms are preferred.
  • R 4 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, Nonyl group, alkyl group such as decyl group; aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group; aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group, etc., particularly methyl group or phenyl group Groups are preferred.
  • organohydrogenpolysiloxane represented by the above average composition formula (2) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris ( Hydrogendimethylsiloxy) methylsilane, tris (hydrogendimethylsiloxy) phenylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane-dimethylsiloxane cyclic copolymer, both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends Trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, both ends dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, both ends dimethylhydrogensiloxy group-blocked methyl Drogen polysiloxane, both ends dimethylhydrogensiloxy-blocked dimethylsi
  • component (c) examples include linear organohydrogenpolysiloxanes and cyclic organohydrogenpolysiloxanes represented by the following formula.
  • the component (d) is a platinum group metal catalyst, and the component (d) is a reaction catalyst that promotes the reaction (hydrosilylation reaction) between the components (a) and (b) and the component (c). It is a working ingredient.
  • platinum group metal catalyst known as a hydrosilylation reaction catalyst can be used.
  • platinum group metals such as platinum black, rhodium and palladium; H 2 PtCl 4 ⁇ kH 2 O, H 2 PtCl 6 ⁇ kH 2 O, NaHPtCl 6 ⁇ kH 2 O, KHPtCl 6 ⁇ kH 2 O, Na 2 PtCl 6 ⁇ kH 2 O, K 2 PtCl 4 ⁇ kH 2 O, PtCl 4 ⁇ kH 2 O, PtCl 2 , Na 2 HPtCl 4 ⁇ kH 2 O (wherein k is an integer of 0 to 6, preferably 0) Or chloroplatinic acid, and chloroplatinate; alcohol-modified chloroplatinic acid (see US Pat.
  • the blending amount of component (d) is a so-called effective amount. Specifically, it is 1 to 500 ppm, preferably 3 to 100 ppm in terms of the mass of metal atoms with respect to the total of components (a) to (c). The amount is preferably 5 to 40 ppm.
  • the component (e) contains a Si—O—Ce bond and a Si—O—Ti bond, has a Ce content of 50 to 5,000 ppm, a Ti content of 50 to 5,000 ppm, and a viscosity at 25 ° C. Of 10 to 10,000 mPa ⁇ s, and this component (e) is an additive for improving the heat resistance of the addition-curable silicone resin composition of the present invention.
  • a method for producing the polyorganometallosiloxane as the component (e) will be described later.
  • Component (e) is blended in an amount of 0.01 to 5 parts by weight, preferably 0.1 to 3 parts by weight, more preferably 0.8 parts per 100 parts by weight of the total of components (a) to (d). 5 to 3 parts by mass. If the amount of component (e) exceeds 5 parts by mass, the resulting addition-curable silicone resin composition may be discolored or the hardness of the cured product may be reduced. Moreover, when the compounding quantity of (e) component is less than 0.01 mass part, sufficient heat resistance cannot be obtained.
  • thixotropic control agents such as fumed silica
  • light scattering agents such as crystalline silica
  • reinforcing materials such as fumed silica and crystalline silica
  • phosphors such as phosphors
  • petroleum solvents reactive functional groups
  • Viscosity modifiers such as non-reactive silicone oils without carbon
  • carbon functional silanes epoxy groups, alkoxy groups, hydrogen atoms bonded to silicon atoms (ie, SiH bonds) and alkenyl groups such as vinyl groups bonded to silicon atoms
  • Adhesion improvers such as silicone compounds other than the components (a) to (e) having at least one of the following: conductivity imparting agents such as metal powders such as silver and gold; pigments and dyes for coloring; ethynylcyclohexanol; Examples
  • the curing conditions for the addition-curable silicone resin composition of the present invention are not particularly limited, but are preferably 120 to 180 ° C. and 30 to 180 minutes.
  • the addition curable silicone resin composition of the present invention has a total light transmittance of 80% or more at a wavelength of 400 nm of a sheet having a thickness of 2 mm of the cured product, and the weight of the cured product after being stored at 250 ° C. for 500 hours. The rate is preferably within 10%.
  • a cured product having transparency and heat resistance particularly suitable for LED applications is provided.
  • the addition-curable silicone resin composition of the present invention is excellent in transparency and heat discoloration, has an appropriate rubber hardness, has little hardness change and weight loss under high temperature conditions, and cracks. It becomes an addition-curable silicone resin composition that gives a cured product with good resistance.
  • the present invention is a method for producing the above addition curable silicone resin composition of the present invention by mixing the above components (a) to (e), As the component (e), (I) Organopolysiloxane having a viscosity of 10 to 10,000 mPa ⁇ s at 25 ° C .: 100 parts by mass (Ii) Rare earth carboxylate containing cerium carboxylate represented by the following general formula (e-1): The mass of cerium is 0.05 to 5 parts by mass with respect to 100 parts by mass of component (i).
  • a polyorganometallosiloxane having a predetermined Ce content and Ti content (that is, the component (e)) can be easily synthesized.
  • the resin composition can be easily produced.
  • the present invention also provides an optical semiconductor device in which a light emitting diode is sealed with the above addition curable silicone resin composition of the present invention.
  • the light-emitting diode can be obtained with the addition-curable silicone resin composition of the present invention that provides a cured product that is excellent in transparency as described above, and that has a reduced hardness change and reduced weight loss under high temperature conditions. Since it is sealed, the optical semiconductor device is excellent in reliability under high temperature conditions.
  • the addition-curable silicone resin composition of the present invention is a material for protecting / sealing LED elements, a material for changing / adjusting wavelengths, a material for forming lenses, and other optical devices or optical components. It is particularly useful as a material.
  • the polyorganometallosiloxane (e1) thus synthesized had a Ce content of 3,400 ppm, a Ti content of 3,700 ppm, and a viscosity at 25 ° C. of 104 mPa ⁇ s.
  • a platinum catalyst (d1) having 1 part by mass of the polyorganometallosiloxane (e1) obtained in Synthesis Example 1 and tetramethylvinyldisiloxane derived from chloroplatinic acid as a ligand is added to the dimethylpolysiloxane (a1).
  • Silicone resin (b1), and methylhydrogenpolysiloxane (c1) are added in an amount of 5 ppm in terms of platinum atom, and the mixture is uniformly mixed so that the viscosity is 5,000 mPa ⁇ s.
  • An addition-curable silicone resin composition was obtained.
  • Example 2 A transparent addition-curing silicone having a viscosity of 4,800 mPa ⁇ s, except that the amount of the polyorganometallosiloxane (e1) obtained in Synthesis Example 1 is changed to 2 parts by mass. A resin composition was obtained.
  • Example 3 A linear dimethylpolysiloxane (a2) having a viscosity of 100,000 mPa ⁇ s at 25 ° C. blocked with three vinyl groups at both ends, and the same silicone resin (b1) used in Example 1
  • Toluene was removed from this mixture under reduced pressure at 120 ° C. and 10 mmHg (about 1.3 kPa) or less to obtain a transparent liquid at room temperature.
  • Example 4 A linear dimethylpolysiloxane (a3) having a viscosity of 60 mPa ⁇ s at both ends blocked with vinyl groups and a toluene solution of the same silicone resin (b1) used in Example 1
  • the dimethylpolysiloxane (a3): silicone resin (b1) 25: 75 in terms of mass ratio in terms of active ingredients.
  • Toluene was removed from this mixture under reduced pressure at 120 ° C. and 10 mmHg (about 1.3 kPa) or less to obtain a transparent liquid at room temperature.
  • Example 2 The same operation as in Example 3 was performed except that the polyorganometallosiloxane (e1) obtained in Synthesis Example 1 was not added to obtain a transparent addition-curable silicone resin composition having a viscosity of 5,100 mPa ⁇ s.
  • the addition-curable silicone resin composition of the present invention provides an addition-curable silicone resin composition that is excellent in transparency and that provides a cured product with less change in hardness and less weight loss under high temperature conditions. Became clear.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Silicon Polymers (AREA)

Abstract

本発明は、(a)ケイ素原子結合アルケニル基を有するオルガノポリシロキサン、(b)(R SiO1/2(RSiO2/2(R SiO2/2(RSiO3/2(R(OR)SiO2/2(SiO4/2で表されるオルガノポリシロキサン、(c)R SiO(4-a-b)/2で表されるオルガノハイドロジェンポリシロキサン、(d)白金族金属系触媒、及び(e)Si-O-Ce結合、及びSi-O-Ti結合を含有し、CeとTiの含有量がそれぞれ50~5,000ppmであるポリオルガノメタロシロキサンを含有し、加熱により硬化する付加硬化型シリコーン樹脂組成物である。これにより、透明性に優れ、かつ高温条件下における硬度変化及び重量減少の少ない硬化物を与える付加硬化型シリコーン樹脂組成物が提供される。

Description

付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び光学半導体装置
 本発明は発光ダイオード(LED)素子の封止材料等の光学用途に好適な付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び該組成物を封止材料として用いた光学半導体装置に関する。
 LED素子の封止材料として一般的にエポキシ樹脂が用いられているが、エポキシ樹脂に代わる封止材料として、シリコーン樹脂を使用することが提案されている(特許文献1~3)。シリコーン樹脂は、耐熱性、耐候性、耐変色性がエポキシ樹脂に比較して優れていることから、特に青色LED、白色LEDを中心に使用されている。
 しかしながら、近年、LEDへの通電量の増加に伴いLED素子周辺の温度が上昇しており、シリコーン樹脂を使用した場合にも封止材料が劣化し、クラックが発生する、あるいは変色によって光透過率が低下するという問題が発生してきた。このような背景から、近年では、LED素子の封止材料に高温環境下における長期信頼性(即ち、耐熱性)が求められている。
 耐熱性を改善させた一般的なシリコーン材料として、これまでに、ベースとなるオルガノポリシロキサンに、オルガノポリシロキサン、セリウムのカルボン酸塩、及びチタン化合物又はジルコニア化合物を150℃以上の温度で熱処理して得られる反応生成物を添加剤として配合した耐熱性オルガノポリシロキサン組成物(特許文献4)や、同様の添加剤を配合したシリコーンゲル組成物(特許文献5)が報告されている。しかしながら、これらの特許文献に記載されているのは、ゴム硬度を有する硬化物を与える付加硬化型のシリコーン樹脂組成物ではなく、従って上記のようなLED素子の封止材料等の用途に使用できるものではなかった。
 一方、特許文献6において、2-エチルヘキサン酸の希土類塩混合物を含有する耐熱性シリコーンゴム組成物が報告されており、厚さ2mmのシートの波長600nmにおける全光線透過率が90%以上であることが報告されている。しかしながら、この耐熱性シリコーンゴム組成物には、波長400nm付近の短波長光の光透過性が劣るという問題があった。
特開平11-001619号公報 特開2002-265787号公報 特開2004-186168号公報 特開昭60-163966号公報 特開2008-291148号公報 国際公開第WO2013/084699号パンフレット
 本発明は、上記問題を解決するためになされたものであり、透明性に優れ、かつ高温条件下における硬度変化及び重量減少の少ない硬化物を与える付加硬化型シリコーン樹脂組成物を提供することを目的とする。
 上記課題を達成するために、本発明では、付加硬化型シリコーン樹脂組成物であって、
(a)一分子中にケイ素原子に結合するアルケニル基を2個以上有し、25℃における粘度が50~100,000mPa・sであるオルガノポリシロキサン、
(b)下記平均組成式(1)で表され、25℃における粘度が1,000Pa・s以上の液体又は固体であるオルガノポリシロキサン:前記(a)成分と(b)成分の合計100質量部に対して(b)成分が0質量部より多く80質量部未満となる量、
  (R SiO1/2(RSiO2/2(R SiO2/2(RSiO3/2(R(OR)SiO2/2(SiO4/2・・・(1)
(式中、Rはアルケニル基を含んでもよい一価炭化水素基であり;Rはアルケニル基を含まない一価炭化水素基であって、全Rのうち80%以上はメチル基であり;Rは水素原子又はアルキル基であり;m、n、p、q、r、及びsはm≧0、n≧0、p≧0、q≧0、r≧0、s≧0、かつm+n>0、q+r+s>0、m+n+p+q+r+s=1を満たす数である。)
(c)下記平均組成式(2)で表され、一分子中にSiH結合を2個以上有し、かつ25℃における粘度が1,000mPa・s以下であるオルガノハイドロジェンポリシロキサン:前記(a)成分及び前記(b)成分のアルケニル基の数の合計に対して、(c)成分のSiH結合の数が0.5~5.0倍となる量、
  R SiO(4-a-b)/2・・・(2)
(式中、Rはアルケニル基を含まない一価炭化水素基であって、全Rのうち50%以上はメチル基であり;a及びbは、0.7≦a≦2.1、0.001≦b≦1.0、かつ0.8≦a+b≦3.0を満たす数である。)
(d)白金族金属系触媒:前記(a)~(c)成分の合計に対して、金属原子の質量換算で1~500ppmとなる量、及び
(e)Si-O-Ce結合、及びSi-O-Ti結合を含有し、Ce含有量が50~5,000ppm、Ti含有量が50~5,000ppmであり、25℃における粘度が10~10,000mPa・sであるポリオルガノメタロシロキサン:前記(a)~(d)成分の合計100質量部に対して0.01~5質量部、
を含有し、加熱により硬化する付加硬化型シリコーン樹脂組成物を提供する。
 このような付加硬化型シリコーン樹脂組成物であれば、透明性に優れ、かつ高温条件下における硬度変化及び重量減少の少ない硬化物を与える付加硬化型シリコーン樹脂組成物となる。
 また、前記付加硬化型シリコーン樹脂組成物が、該組成物の硬化物の厚さ2mmのシートの波長400nmにおける全光線透過率が80%以上であり、前記硬化物の250℃で500時間保管後の重量減少率が10%以内のものであることが好ましい。
 このような付加硬化型シリコーン樹脂組成物であれば、特にLEDの用途に好適な透明性と耐熱性を備えた硬化物を与えるものとなる。
 また、本発明では、前記(a)~(e)成分を混合して上記の付加硬化型シリコーン樹脂組成物を製造する方法であって、
 前記(e)成分として、
(i)25℃における粘度が10~10,000mPa・sであるオルガノポリシロキサン:100質量部、
(ii)下記一般式(e-1)で表されるセリウムカルボン酸塩を含む希土類カルボン酸塩:セリウムの質量が前記(i)成分100質量部に対して0.05~5質量部となる量、及び
  (RCOO)Ce・・・(e-1)
(式中、Rは同種又は異種の一価炭化水素基であり、xは3又は4である。)
(iii)下記一般式(e-2)で表されるチタン化合物及び/又はその部分加水分解縮合物:チタンの質量が前記(i)成分100質量部に対して0.05~5質量部となる量、
  (RO)Ti・・・(e-2)
(式中、Rは同種又は異種の一価炭化水素基である。)
からなる混合物を150℃以上の温度で熱処理して得られるポリオルガノメタロシロキサンを用いる付加硬化型シリコーン樹脂組成物の製造方法を提供する。
 このような製造方法であれば、所定のCe含有量及びTi含有量を有するポリオルガノメタロシロキサン(即ち、上記(e)成分)を容易に合成することができるため、本発明の付加硬化型シリコーン樹脂組成物を容易に製造することができる。
 また、本発明では、上記の付加硬化型シリコーン樹脂組成物で発光ダイオードが封止された光学半導体装置を提供する。
 このような光学半導体装置であれば、上記のように透明性に優れ、かつ高温条件下における硬度変化及び重量減少の少ない硬化物を与える本発明の付加硬化型シリコーン樹脂組成物で発光ダイオードが封止されるため、高温条件下における信頼性に優れた光学半導体装置となる。
 以上のように、本発明の付加硬化型シリコーン樹脂組成物であれば、透明性及び耐熱変色性に優れ、適度なゴム硬度を有し、かつ高温条件下における硬度変化及び重量減少が少なく、クラック耐性が良好な硬化物を与える付加硬化型シリコーン樹脂組成物となる。従って、本発明の付加硬化型シリコーン樹脂組成物は、LED素子の保護・封止用材料、波長の変更・調整用材料、あるいはレンズの構成材料や、その他の光学デバイス用又は光学部品用の材料として特に有用である。
 上述のように、透明性に優れ、かつ高温条件下における硬度変化及び重量減少の少ない硬化物を与える付加硬化型シリコーン樹脂組成物の開発が求められていた。
 本発明者らは、鋭意研究を行った結果、下記の(a)~(e)成分を含む付加硬化型シリコーン樹脂組成物であれば、上記課題を達成でき、LED用材料等として好適なものとなることを見出し、本発明を完成させた。
 即ち、本発明は、付加硬化型シリコーン樹脂組成物であって、下記の(a)~(e)成分を含有し、加熱により硬化する付加硬化型シリコーン樹脂組成物である。
(a)一分子中にケイ素原子に結合するアルケニル基を2個以上有し、25℃における粘度が50~100,000mPa・sであるオルガノポリシロキサン
(b)下記平均組成式(1)で表され、25℃における粘度が1,000Pa・s以上の液体又は固体であるオルガノポリシロキサン:前記(a)成分と(b)成分の合計100質量部に対して(b)成分が0質量部より多く80質量部未満となる量
  (R SiO1/2(RSiO2/2(R SiO2/2(RSiO3/2(R(OR)SiO2/2(SiO4/2・・・(1)
(式中、Rはアルケニル基を含んでもよい一価炭化水素基であり;Rはアルケニル基を含まない一価炭化水素基であって、全Rのうち80%以上はメチル基であり;Rは水素原子又はアルキル基であり;m、n、p、q、r、及びsはm≧0、n≧0、p≧0、q≧0、r≧0、s≧0、かつm+n>0、q+r+s>0、m+n+p+q+r+s=1を満たす数である。)
(c)下記平均組成式(2)で表され、一分子中にSiH結合を2個以上有し、かつ25℃における粘度が1,000mPa・s以下であるオルガノハイドロジェンポリシロキサン:前記(a)成分及び前記(b)成分のアルケニル基の数の合計に対して、(c)成分のSiH結合の数が0.5~5.0倍となる量
  R SiO(4-a-b)/2・・・(2)
(式中、Rはアルケニル基を含まない一価炭化水素基であって、全Rのうち50%以上はメチル基であり;a及びbは、0.7≦a≦2.1、0.001≦b≦1.0、かつ0.8≦a+b≦3.0を満たす数である。)
(d)白金族金属系触媒:前記(a)~(c)成分の合計に対して、金属原子の質量換算で1~500ppmとなる量
(e)Si-O-Ce結合、及びSi-O-Ti結合を含有し、Ce含有量が50~5,000ppm、Ti含有量が50~5,000ppmであり、25℃における粘度が10~10,000mPa・sであるポリオルガノメタロシロキサン:前記(a)~(d)成分の合計100質量部に対して0.01~5質量部
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。なお、本明細書において、「Me」はメチル基を表し、「Vi」はビニル基を表す。
<付加硬化型シリコーン樹脂組成物>
 以下、各成分について更に詳細に説明する。
[(a)成分]
 (a)成分は、一分子中にケイ素原子に結合するアルケニル基を2個以上有し、25℃における粘度が50~100,000mPa・sであるオルガノポリシロキサンであり、この(a)成分は、本発明の付加硬化型シリコーン樹脂組成物において、硬化後の応力緩和をもたらすために必要な成分である。(a)成分は、典型的には、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された、直鎖状のオルガノポリシロキサンである。
 このような(a)成分として、具体的には、下記式で表されるオルガノポリシロキサンが例示される。なお、耐光性、耐熱性の観点から、Rはメチル基であるのが好ましい。
  ViRSiO(SiRO)SiRVi
  ViRSiO(SiRViO)(SiRO)SiRVi
  ViRSiO(SiRO)SiRVi
  ViSiO(SiRO)SiVi
  ViRSiO(SiRViO)(SiRO)SiRVi
  ViSiO(SiRViO)(SiRO)SiVi
  RSiO(SiRViO)(SiRO)SiR
(式中、Rは脂肪族不飽和基及びアリール基のいずれも含まない一価炭化水素基であり、好ましくは炭素原子数が10以下の一価炭化水素基である。cは0~5の整数であり、dは0~200の整数である。)
 (a)成分の具体例としては、下記式で表されるオルガノポリシロキサンが挙げられる。
  ViMeSiO(MeSiO)20SiMeVi
  ViMeSiO(MeSiO)90SiMeVi
  ViMeSiO(MeViSiO)(MeSiO)19SiMeVi
  MeSiO(MeViSiO)(MeSiO)18SiMe
 (a)成分の粘度は、25℃において50~100,000mPa・sである。(a)成分の粘度が100,000mPa・sを超える場合は、本発明の付加硬化型シリコーン樹脂組成物を用いて封止する際の作業性が悪化する。一方、(a)成分の粘度が50mPa・sよりも低い場合は、(a)成分が低沸点材料となるため高温環境下における重量減少が発生しやすくなる。(a)成分の粘度は、好ましくは1,000~50,000mPa・s、更に好ましくは1,000~10,000mPa・sである。
[(b)成分]
 (b)成分は、下記平均組成式(1)で表され、25℃における粘度が1,000Pa・s以上の液体又は固体であるオルガノポリシロキサンであり、この(b)成分は、本発明の付加硬化型シリコーン樹脂組成物において、無色透明性を維持したまま補強性を付与するために必要な成分である。
  (R SiO1/2(RSiO2/2(R SiO2/2(RSiO3/2(R(OR)SiO2/2(SiO4/2・・・(1)
(式中、Rはアルケニル基を含んでもよい一価炭化水素基であり;Rはアルケニル基を含まない一価炭化水素基であって、全Rのうち80%以上はメチル基であり;Rは水素原子又はアルキル基であり;m、n、p、q、r、及びsはm≧0、n≧0、p≧0、q≧0、r≧0、s≧0、かつm+n>0、q+r+s>0、m+n+p+q+r+s=1を満たす数である。)
 なお、(b)成分は、典型的には、RSiO3/2単位又はSiO4/2単位等の分岐構造を有する分岐状のオルガノポリシロキサンである。また、(b)成分は、上述の(a)成分よりも粘度が高い液体であるか、固体のオルガノポリシロキサンである。(b)成分は固体であってもよいことから、(b)成分が液体である場合の粘度の上限は特に限定されない。
 上記平均組成式(1)において、Rはアルケニル基を含んでもよい一価炭化水素基であり、中でも炭素原子数1~12、特に1~6のものが好ましい。このようなRとして、具体的には、メチル基、エチル基、プロピル基、ブチル基、シクロヘキシル基、フェニル基、トリル基、ビニル基、アリル基等が挙げられる。また、Rはアルケニル基を含まない一価炭化水素基であり、中でも炭素原子数1~12、特に1~6のものが好ましい。このようなRとして、具体的には、上記のRの具体例からアルケニル基を除いたものが挙げられる。なお、全Rのうち80%以上はメチル基である。また、Rは水素原子又はアルキル基であり、アルキル基としては、炭素原子数1~6、特に1~3のものが好ましい。このようなRとして、具体的には、メチル基、エチル基、プロピル基等が挙げられる。
 (b)成分はアルケニル基を有するものであることが好ましく、(b)成分中のアルケニル基としては、入手のしやすさ、価格の面よりビニル基が最も好ましい。アルケニル基の量は、(b)成分の固形分に対して0.01~1モル/100gの範囲であることが好ましく、0.05~0.5モル/100gであることがより好ましい。(b)成分のアルケニル基の量が固形分に対して0.01モル/100g以上であれば、(b)成分が架橋に充分に取り込まれるため、硬化物の硬度が低くなりすぎる恐れがない。また、(b)成分のアルケニル基の量が固形分に対して1モル/100g以下であれば、系内のアルケニル基が多くなり過ぎないため、後述の(c)成分(架橋剤)の配合量に対する(b)成分の配合量を適量とすることができる。従って、架橋が充分に進行せず所望の硬度が得られなかったり、硬化物が脆くなってしまう恐れがない。
 本発明においては、(b)成分の(a)成分に対する比率も重要であり、(b)成分の配合量は、(a)成分と(b)成分の合計100質量部に対して(b)成分が0質量部より多く80質量部未満となる量である。(b)成分の配合量が増加するほど硬化物の硬度が増大するため、LED等の設計に合わせて(b)成分の配合量を変えて硬度を調整することが可能である。より具体的には、例えば硬化物に応力緩和が求められる場合は、(a)成分と(b)成分の合計100質量部に対して(b)成分が0質量部より多く50質量部未満となる量とすることが好ましい。一方、例えば硬化物に高硬度が求められる場合は、(a)成分と(b)成分の合計100質量部に対して(b)成分が50質量部以上80質量部未満となる量とすることが好ましい。
[(c)成分]
 (c)成分は、下記平均組成式(2)で表され、一分子中にSiH結合を2個以上有し、かつ25℃における粘度が1,000mPa・s以下であるオルガノハイドロジェンポリシロキサンであり、この(c)成分は、上述の(a)成分及び(b)成分中に含まれるアルケニル基とヒドロシリル化反応により反応して架橋させる架橋剤として働く成分である。
  R SiO(4-a-b)/2・・・(2)
(式中、Rはアルケニル基を含まない一価炭化水素基であって、全Rのうち50%以上はメチル基であり;a及びbは、0.7≦a≦2.1、0.001≦b≦1.0、かつ0.8≦a+b≦3.0を満たす数である。)
 (c)成分が架橋剤として働く成分であるという観点から、(c)成分の粘度は、25℃において1,000mPa・s以下であり、好ましくは0.5~1,000mPa・s、より好ましくは2~200mPa・sである。
 また、架橋のバランスの観点から、(c)成分の配合量は、(a)成分及び(b)成分のアルケニル基の数の合計に対して、(c)成分のSiH結合の数が0.5~5.0倍となる量であり、好ましくは0.7~3.0倍となる量である。
 なお、(c)成分において、一分子中に2個以上(通常、2~200個)、好ましくは3個以上(例えば、3~100個)、より好ましくは4~50個程度含有されるSiH結合は、分子鎖末端、分子鎖途中のいずれに位置していてもよく、またこの両方に位置していてもよい。
 また、(c)成分の分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよい。また、(c)成分の一分子中のケイ素原子の数(又は重合度)は、通常2~200個、好ましくは3~100個、より好ましくは4~50個程度である。
 上記平均組成式(2)において、Rはアルケニル基を含まない一価炭化水素基であり、中でも炭素原子数1~10、特に1~8のものが好ましい。このようなRとして、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基等が挙げられ、特にメチル基又はフェニル基が好ましい。
 上記平均組成式(2)で表されるオルガノハイドロジェンポリシロキサンとしては、例えば、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・メチルフェニルシロキサン共重合体、(CHHSiO1/2単位と(CHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位と(CSiO1/2単位とからなる共重合体や、上記各例示化合物においてメチル基の一部又は全部がフェニル基で置換されたもの等が挙げられる。
 (c)成分の具体例としては、下記式で表される直鎖状のオルガノハイドロジェンポリシロキサンや環状のオルガノハイドロジェンポリシロキサンが挙げられる。
  MeSiO(MeHSiO)SiMe
  MeSiO(MeHSiO)(MeSiO)SiMe
(式中、e、fは2~100、好ましくは2~50の整数である。)
Figure JPOXMLDOC01-appb-C000001
[(d)成分]
 (d)成分は白金族金属系触媒であり、この(d)成分は、上述の(a)成分及び(b)成分と(c)成分との反応(ヒドロシリル化反応)を促進する反応触媒として働く成分である。
 この白金族金属系触媒としては、ヒドロシリル化反応触媒として公知であるいずれのものも使用できる。例えば、白金黒、ロジウム、パラジウム等の白金族金属単体;HPtCl・kHO、HPtCl・kHO、NaHPtCl・kHO、KHPtCl・kHO、NaPtCl・kHO、KPtCl・kHO、PtCl・kHO、PtCl、NaHPtCl・kHO(式中、kは0~6の整数であり、好ましくは0又は6である)等の塩化白金、塩化白金酸、及び塩化白金酸塩;アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照);塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照);白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの;ロジウム-オレフィンコンプレックス;クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒);塩化白金、塩化白金酸、又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックス等が挙げられる。これらの中で、好ましいものとして、相溶性の観点及び塩素不純物の観点から、塩化白金酸をシリコーン変性したものが挙げられ、具体的には例えば塩化白金酸をテトラメチルビニルジシロキサンで変性した白金触媒が挙げられる。
 (d)成分の配合量は、いわゆる有効量であり、具体的には(a)~(c)成分の合計に対して、金属原子の質量換算で1~500ppm、好ましくは3~100ppm、より好ましくは5~40ppmとなる量である。
[(e)成分]
 (e)成分は、Si-O-Ce結合、及びSi-O-Ti結合を含有し、Ce含有量が50~5,000ppm、Ti含有量が50~5,000ppmであり、25℃における粘度が10~10,000mPa・sであるポリオルガノメタロシロキサンであり、この(e)成分は、本発明の付加硬化型シリコーン樹脂組成物の耐熱性を向上させるための添加剤である。なお、この(e)成分のポリオルガノメタロシロキサンを製造する方法については後述する。
 (e)成分の配合量は、(a)~(d)成分の合計100質量部に対して0.01~5質量部であり、好ましくは0.1~3質量部、より好ましくは0.5~3質量部である。(e)成分の配合量が5質量部を超えると、得られる付加硬化型シリコーン樹脂組成物が変色したり、硬化物の硬度が低下する恐れがある。また、(e)成分の配合量が0.01質量部未満だと、十分な耐熱性が得られない。
[その他の成分]
 本発明の付加硬化型シリコーン樹脂組成物には、必須成分である上記(a)~(e)成分以外に、必要に応じて、以下に例示するその他の成分を配合してもよい。その他の成分としては、例えば、ヒュームドシリカ等のチクソ性制御剤;結晶性シリカ等の光散乱剤;ヒュームドシリカ、結晶性シリカ等の補強材;蛍光体;石油系溶剤、反応性官能基を有しない非反応性シリコーンオイル等の粘度調整剤;カーボンファンクショナルシラン、エポキシ基、アルコキシ基、ケイ素原子に結合した水素原子(即ち、SiH結合)及びケイ素原子に結合したビニル基等のアルケニル基の少なくとも一種を有する(a)~(e)成分以外のシリコーン化合物等の接着性向上剤;銀、金等の金属粉等の導電性付与剤;着色のための顔料及び染料;エチニルシクロヘキサノール、テトラメチルテトラビニルテトラシクロシロキサン等の反応抑制剤等が挙げられる。これらのその他の成分は、一種単独で用いても二種以上を併用してもよい。
 なお、本発明の付加硬化型シリコーン樹脂組成物の硬化条件は、特に限定されないが、120~180℃、30~180分の条件とすることが好ましい。
 また、本発明の付加硬化型シリコーン樹脂組成物は、硬化物の厚さ2mmのシートの波長400nmにおける全光線透過率が80%以上であり、硬化物の250℃で500時間保管後の重量減少率が10%以内のものであることが好ましい。このような付加硬化型シリコーン樹脂組成物であれば、特にLEDの用途に好適な透明性と耐熱性を備えた硬化物を与えるものとなる。
 以上のように、本発明の付加硬化型シリコーン樹脂組成物であれば、透明性及び耐熱変色性に優れ、適度なゴム硬度を有し、かつ高温条件下における硬度変化及び重量減少が少なく、クラック耐性が良好な硬化物を与える付加硬化型シリコーン樹脂組成物となる。
<付加硬化型シリコーン樹脂組成物の製造方法>
 また、本発明では、上記の(a)~(e)成分を混合して上述の本発明の付加硬化型シリコーン樹脂組成物を製造する方法であって、
 前記(e)成分として、
(i)25℃における粘度が10~10,000mPa・sであるオルガノポリシロキサン:100質量部、
(ii)下記一般式(e-1)で表されるセリウムカルボン酸塩を含む希土類カルボン酸塩:セリウムの質量が前記(i)成分100質量部に対して0.05~5質量部となる量、及び
  (RCOO)Ce・・・(e-1)
(式中、Rは同種又は異種の一価炭化水素基であり、xは3又は4である。)
(iii)下記一般式(e-2)で表されるチタン化合物及び/又はその部分加水分解縮合物:チタンの質量が前記(i)成分100質量部に対して0.05~5質量部となる量、
  (RO)Ti・・・(e-2)
(式中、Rは同種又は異種の一価炭化水素基である。)
からなる混合物を150℃以上の温度で熱処理して得られるポリオルガノメタロシロキサンを用いる付加硬化型シリコーン樹脂組成物の製造方法を提供する。なお、熱処理温度は、樹脂が変性しない温度であればよく、上限は特に限定されない。
 このような製造方法であれば、所定のCe含有量及びTi含有量を有するポリオルガノメタロシロキサン(即ち、上記(e)成分)を容易に合成することができるため、本発明の付加硬化型シリコーン樹脂組成物を容易に製造することができる。
<光学半導体装置>
 また、本発明では、上記の本発明の付加硬化型シリコーン樹脂組成物で発光ダイオードが封止された光学半導体装置を提供する。このような光学半導体装置であれば、上記のように透明性に優れ、かつ高温条件下におけるの硬度変化及び重量減少の少ない硬化物を与える本発明の付加硬化型シリコーン樹脂組成物で発光ダイオードが封止されるため、高温条件下における信頼性に優れた光学半導体装置となる。
 このように、本発明の付加硬化型シリコーン樹脂組成物は、LED素子の保護・封止用材料、波長の変更・調整用材料、あるいはレンズの構成材料や、その他の光学デバイス用又は光学部品用の材料として特に有用である。
 以下、合成例、実施例、及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[合成例1]
(e)成分の合成
 25℃における粘度が100mPa・sの両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン100質量部に、セリウムを主成分とする2-エチルヘキサン酸塩のターペン溶液(希土類元素含有量6質量%)10質量部(セリウムの質量:0.55質量部)とテトラn-ブチルチタネート2.1質量部(チタンの質量:1.65質量部)を予め混合したものを充分攪拌しながら添加したところ、黄白色の分散液が得られた。これに窒素ガスを少量流通させながら、加熱してターペンを流出させ、次いで300℃で1時間加熱したところ、濃赤褐色で透明なポリオルガノメタロシロキサン(e1)の均一組成物が得られた。このようにして合成したポリオルガノメタロシロキサン(e1)のCe含有量は3,400ppm、Ti含有量は3,700ppmであり、25℃における粘度は104mPa・sであった。
[実施例1]
 両末端がビニル基で封鎖された、25℃における粘度が5,000mPa・sである直鎖状のジメチルポリシロキサン(a1)と、MeSiO1/2単位、ViMeSiO1/2単位、及びSiO4/2単位で構成され、SiO4/2単位に対してMeSiO1/2単位及びViMeSiO1/2単位のモル比が0.8で、固形分に対するビニル基量が0.085モル/100gである固体状のシリコーンレジン(b1)のトルエン溶液とを、有効成分換算にて質量比でジメチルポリシロキサン(a1):シリコーンレジン(b1)=75:25の割合で混合した。この混合物から120℃、10mmHg(約1.3kPa)以下の減圧下でトルエンを除去し、室温で透明な液体を得た。
 次に、この液体100質量部に、平均組成式(2):R SiO(4-a-b)/2において、Rがメチル基、a=1.4、b=0.8であり、両末端がトリメチルシロキシ基で封鎖された、25℃における粘度が4.5mPa・sのメチルハイドロジェンポリシロキサン(c1)2.57質量部と、その他の成分として、エポキシ基含有化合物である3-グリシドキシプロピルトリメトキシシラン0.5質量部、及びエチニルシクロヘキサノール0.05質量部を混合し、透明液体を得た。なお、ジメチルポリシロキサン(a1)及びシリコーンレジン(b1)のアルケニル基の数の合計に対するメチルハイドロジェンポリシロキサン(c1)のSiH結合の数は1.50倍であった。
 更に、合成例1で得られたポリオルガノメタロシロキサン(e1)を1質量部、及び塩化白金酸から誘導したテトラメチルビニルジシロキサンを配位子として有する白金触媒(d1)をジメチルポリシロキサン(a1)、シリコーンレジン(b1)、及びメチルハイドロジェンポリシロキサン(c1)の合計に対して白金原子換算で5ppmとなる量添加し、これを均一に混合して粘度が5,000mPa・sの透明な付加硬化型シリコーン樹脂組成物を得た。
[実施例2]
 合成例1で得られたポリオルガノメタロシロキサン(e1)の添加量を2質量部に変更する以外は実施例1と同様な操作を行い、粘度が4,800mPa・sの透明な付加硬化型シリコーン樹脂組成物を得た。
[実施例3]
 両末端が3つのビニル基で封鎖された25℃における粘度が100,000mPa・sである直鎖状のジメチルポリシロキサン(a2)と、実施例1で使用したものと同じシリコーンレジン(b1)のトルエン溶液とを、有効成分換算にて質量比でジメチルポリシロキサン(a2):シリコーンレジン(b1)=40:60の割合で混合した。この混合物から120℃、10mmHg(約1.3kPa)以下の減圧下でトルエンを除去し、室温で透明な液体を得た。
 次に、この液体100質量部に、平均組成式(2):R SiO(4-a-b)/2において、Rがメチル基、a=1.4、b=0.8であり、両末端がトリメチルシロキシ基で封鎖された、25℃における粘度が20mPa・sのメチルハイドロジェンポリシロキサン(c2)9.2質量部と、その他の成分として、下記式で表されるエポキシ基含有化合物0.5質量部、及びエチニルシクロヘキサノール0.05質量部を混合し、透明液体を得た。なお、ジメチルポリシロキサン(a2)及びシリコーンレジン(b1)のアルケニル基の数の合計に対するメチルハイドロジェンポリシロキサン(c2)のSiH結合の数は1.50倍であった。
Figure JPOXMLDOC01-appb-C000002
 更に、合成例1で得られたポリオルガノメタロシロキサン(e1)を1質量部、及び実施例1で使用したものと同じ白金触媒(d1)をジメチルポリシロキサン(a2)、シリコーンレジン(b1)、及びメチルハイドロジェンポリシロキサン(c2)の合計に対して白金原子換算で5ppmとなる量添加し、これを均一に混合して粘度が5,000mPa・sの透明な付加硬化型シリコーン樹脂組成物を得た。
[実施例4]
 両末端がビニル基で封鎖された25℃における粘度が60mPa・sである直鎖状のジメチルポリシロキサン(a3)と、実施例1で使用したものと同じシリコーンレジン(b1)のトルエン溶液とを、有効成分換算にて質量比でジメチルポリシロキサン(a3):シリコーンレジン(b1)=25:75の割合で混合した。この混合物から120℃、10mmHg(約1.3kPa)以下の減圧下でトルエンを除去し、室温で透明な液体を得た。
 次に、この液体100質量部に、実施例1で使用したものと同じメチルハイドロジェンポリシロキサン(c1)10質量部と、その他の成分として、実施例3で使用したものと同じエポキシ基含有化合物5.0質量部、及びエチニルシクロヘキサノール0.05質量部を混合し、透明液体を得た。なお、ジメチルポリシロキサン(a3)及びシリコーンレジン(b1)のアルケニル基の数の合計に対するメチルハイドロジェンポリシロキサン(c1)のSiH結合の数は1.50倍であった。
 更に、合成例1で得られたポリオルガノメタロシロキサン(e1)を1質量部、及び実施例1で使用したものと同じ白金触媒(d1)をジメチルポリシロキサン(a3)、シリコーンレジン(b1)、及びメチルハイドロジェンポリシロキサン(c1)の合計に対して白金原子換算で5ppmとなる量添加し、これを均一に混合して粘度が5,000mPa・sの透明な付加硬化型シリコーン樹脂組成物を得た。
[比較例1]
 合成例1で得られたポリオルガノメタロシロキサン(e1)を添加しない以外は実施例1と同様な操作を行い、粘度が5,100mPa・sの透明な付加硬化型シリコーン樹脂組成物を得た。
[比較例2]
 合成例1で得られたポリオルガノメタロシロキサン(e1)を添加しない以外は実施例3と同様な操作を行い、粘度が5,100mPa・sの透明な付加硬化型シリコーン樹脂組成物を得た。
[比較例3]
 合成例1で得られたポリオルガノメタロシロキサン(e1)を添加しない以外は実施例4と同様な操作を行い、粘度が5,100mPa・sの透明な付加硬化型シリコーン樹脂組成物を得た。
 上記のようにして調製した付加硬化型シリコーン樹脂組成物について、以下のような試験を行った。試験の結果を表1に示す。
(硬化物の光透過率の測定)
 各実施例及び各比較例において得られた付加硬化型シリコーン樹脂組成物を用いて、150℃で1時間加熱することにより硬化して厚さ2mmのシート状の硬化物を作製した。得られた硬化物の波長400nmにおける全光線透過率(光路長2mm)を測定した。なお、この時点での光透過率を「初期」とする。
(耐熱性試験後の光透過率の測定)
 上記の光透過率の測定に用いた硬化物を250℃、500時間の環境下に保管後、再度波長400nmにおける全光線透過率を測定した。
(硬化物の硬度の測定)
 各実施例及び各比較例において得られた付加硬化型シリコーン樹脂組成物を用いて、150℃で3時間加熱することにより得られた硬化物のTypeA硬度又はShoreD硬度を測定した。なお、実施例1、2、及び比較例1ではTypeA硬度を測定し、実施例3、4、及び比較例2、3ではShoreD硬度を測定した。この時点での硬度を「初期」とする。
(耐熱性試験後の硬度の測定)
 上記の硬度の測定に用いた硬化物を250℃、500時間の環境下に保管後、再度硬化物のTypeA硬度又はShoreD硬度を測定した。硬度の変化率は下記の式に従って求めた。
  (変化率)=((耐熱性試験後の硬度)÷(初期の硬度)×100)-100(%)
(耐熱性試験による重量減少率の測定)
 上記の光透過率の測定に用いた硬化物の初期重量を100とし、250℃、500時間の環境下に保管後の重量を測定し、重量%で比較し、重量減少率を算出した。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、付加硬化型シリコーン樹脂組成物に(e)成分を配合した実施例1~4では、透明性に優れ、また耐熱性試験後にも光透過率及び硬度の変化が小さく、重量減少の少ない硬化物が得られた。一方、付加硬化型シリコーン樹脂組成物に(e)成分を配合しなかった比較例1~3のうち、比較例1では耐熱性試験後の硬度変化及び重量減少が大きいため信頼性に劣っており、比較例2及び比較例3では耐熱性試験後に硬化物が割れており、光透過率及び硬度が測定不可能であった。
 以上のことから、本発明の付加硬化型シリコーン樹脂組成物であれば、透明性に優れ、かつ高温条件下における硬度変化及び重量減少の少ない硬化物を与える付加硬化型シリコーン樹脂組成物となることが明らかとなった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (4)

  1.  付加硬化型シリコーン樹脂組成物であって、
    (a)一分子中にケイ素原子に結合するアルケニル基を2個以上有し、25℃における粘度が50~100,000mPa・sであるオルガノポリシロキサン、
    (b)下記平均組成式(1)で表され、25℃における粘度が1,000Pa・s以上の液体又は固体であるオルガノポリシロキサン:前記(a)成分と(b)成分の合計100質量部に対して(b)成分が0質量部より多く80質量部未満となる量、
      (R SiO1/2(RSiO2/2(R SiO2/2(RSiO3/2(R(OR)SiO2/2(SiO4/2・・・(1)
    (式中、Rはアルケニル基を含んでもよい一価炭化水素基であり;Rはアルケニル基を含まない一価炭化水素基であって、全Rのうち80%以上はメチル基であり;Rは水素原子又はアルキル基であり;m、n、p、q、r、及びsはm≧0、n≧0、p≧0、q≧0、r≧0、s≧0、かつm+n>0、q+r+s>0、m+n+p+q+r+s=1を満たす数である。)
    (c)下記平均組成式(2)で表され、一分子中にSiH結合を2個以上有し、かつ25℃における粘度が1,000mPa・s以下であるオルガノハイドロジェンポリシロキサン:前記(a)成分及び前記(b)成分のアルケニル基の数の合計に対して、(c)成分のSiH結合の数が0.5~5.0倍となる量、
      R SiO(4-a-b)/2・・・(2)
    (式中、Rはアルケニル基を含まない一価炭化水素基であって、全Rのうち50%以上はメチル基であり;a及びbは、0.7≦a≦2.1、0.001≦b≦1.0、かつ0.8≦a+b≦3.0を満たす数である。)
    (d)白金族金属系触媒:前記(a)~(c)成分の合計に対して、金属原子の質量換算で1~500ppmとなる量、及び
    (e)Si-O-Ce結合、及びSi-O-Ti結合を含有し、Ce含有量が50~5,000ppm、Ti含有量が50~5,000ppmであり、25℃における粘度が10~10,000mPa・sであるポリオルガノメタロシロキサン:前記(a)~(d)成分の合計100質量部に対して0.01~5質量部、
    を含有し、加熱により硬化するものであることを特徴とする付加硬化型シリコーン樹脂組成物。
  2.  前記付加硬化型シリコーン樹脂組成物が、該組成物の硬化物の厚さ2mmのシートの波長400nmにおける全光線透過率が80%以上であり、前記硬化物の250℃で500時間保管後の重量減少率が10%以内のものであることを特徴とする請求項1に記載の付加硬化型シリコーン樹脂組成物。
  3.  前記(a)~(e)成分を混合して請求項1又は請求項2に記載の付加硬化型シリコーン樹脂組成物を製造する方法であって、
     前記(e)成分として、
    (i)25℃における粘度が10~10,000mPa・sであるオルガノポリシロキサン:100質量部、
    (ii)下記一般式(e-1)で表されるセリウムカルボン酸塩を含む希土類カルボン酸塩:セリウムの質量が前記(i)成分100質量部に対して0.05~5質量部となる量、及び
      (RCOO)Ce・・・(e-1)
    (式中、Rは同種又は異種の一価炭化水素基であり、xは3又は4である。)
    (iii)下記一般式(e-2)で表されるチタン化合物及び/又はその部分加水分解縮合物:チタンの質量が前記(i)成分100質量部に対して0.05~5質量部となる量、
      (RO)Ti・・・(e-2)
    (式中、Rは同種又は異種の一価炭化水素基である。)
    からなる混合物を150℃以上の温度で熱処理して得られるポリオルガノメタロシロキサンを用いることを特徴とする付加硬化型シリコーン樹脂組成物の製造方法。
  4.  請求項1又は請求項2に記載の付加硬化型シリコーン樹脂組成物で発光ダイオードが封止されたものであることを特徴とする光学半導体装置。
PCT/JP2016/004743 2015-11-13 2016-10-28 付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び光学半導体装置 WO2017081850A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16863817.9A EP3360928B1 (en) 2015-11-13 2016-10-28 Addition-curable silicone resin composition, method for producing said composition, and optical semiconductor device
US15/770,505 US10483442B2 (en) 2015-11-13 2016-10-28 Addition curable type silicone resin composition, process for producing composition, and optical semiconductor apparatus
KR1020187013520A KR102081781B1 (ko) 2015-11-13 2016-10-28 부가경화형 실리콘 수지 조성물, 이 조성물의 제조방법, 및 광학반도체장치
CN201680066149.7A CN108350275A (zh) 2015-11-13 2016-10-28 加成固化型硅酮树脂组合物、所述组合物的制造方法以及光学半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015222567A JP2017088776A (ja) 2015-11-13 2015-11-13 付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び光学半導体装置
JP2015-222567 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017081850A1 true WO2017081850A1 (ja) 2017-05-18

Family

ID=58695130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004743 WO2017081850A1 (ja) 2015-11-13 2016-10-28 付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び光学半導体装置

Country Status (7)

Country Link
US (1) US10483442B2 (ja)
EP (1) EP3360928B1 (ja)
JP (1) JP2017088776A (ja)
KR (1) KR102081781B1 (ja)
CN (1) CN108350275A (ja)
TW (1) TWI679244B (ja)
WO (1) WO2017081850A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052198A (ja) * 2017-09-12 2019-04-04 アイカ工業株式会社 耐熱性を有する縮合硬化型シリコーン樹脂組成物及びこれを使用した光半導体装置
WO2019116892A1 (ja) * 2017-12-15 2019-06-20 信越化学工業株式会社 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
JP2020033407A (ja) * 2018-08-28 2020-03-05 信越化学工業株式会社 付加硬化型シリコーン組成物及び半導体装置
WO2021100535A1 (ja) * 2019-11-22 2021-05-27 信越化学工業株式会社 キーパッド作製用シリコーンゴム組成物及びキーパッド

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088776A (ja) * 2015-11-13 2017-05-25 信越化学工業株式会社 付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び光学半導体装置
CN109075232B (zh) * 2016-05-02 2021-06-15 Lg 伊诺特有限公司 半导体元件封装
JP6923475B2 (ja) * 2018-03-23 2021-08-18 信越化学工業株式会社 付加硬化型シリコーン組成物、シリコーン硬化物、及び光半導体装置
JP6969675B2 (ja) * 2018-04-16 2021-11-24 信越化学工業株式会社 有機el用透明乾燥剤及びその使用方法
WO2020026844A1 (ja) * 2018-08-01 2020-02-06 信越化学工業株式会社 シリコーン粘着剤組成物及びこれを用いた粘着テープ又は粘着フィルム
JP2020132743A (ja) * 2019-02-18 2020-08-31 信越化学工業株式会社 ダイボンディング用シリコーン樹脂組成物、硬化物、発光ダイオード素子及び該組成物の製造方法
JP6998905B2 (ja) * 2019-02-22 2022-01-18 信越化学工業株式会社 付加硬化型シリコーン組成物、硬化物及び光半導体素子
WO2020203597A1 (ja) * 2019-04-01 2020-10-08 信越化学工業株式会社 自己接着性シリコーンゲル組成物及びその硬化物からなるシリコーンゲル
JP7088880B2 (ja) * 2019-05-30 2022-06-21 信越化学工業株式会社 付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び光半導体装置
CN112322048A (zh) * 2020-11-03 2021-02-05 杭州之江新材料有限公司 一种有机硅凝胶组合物及其制备方法和应用
CN112979963B (zh) * 2020-12-30 2022-04-15 北京康美特科技股份有限公司 反应性有机硅触变剂、有机硅封装胶和led元件
CN113337119A (zh) * 2021-05-27 2021-09-03 厦门汉升橡塑制品有限公司 一种耐候硅橡胶及其制备方法
CN115678497A (zh) * 2023-01-04 2023-02-03 北京康美特科技股份有限公司 用于微型led元件的有机硅封装胶及其封装方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268765A (ja) * 1987-04-28 1988-11-07 Shin Etsu Chem Co Ltd ガラス繊維製品処理剤
JPH01272682A (ja) * 1988-04-25 1989-10-31 Shin Etsu Chem Co Ltd 耐熱性シリコーン系感圧接着剤組成物
JP2004186168A (ja) * 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2008291148A (ja) * 2007-05-25 2008-12-04 Shin Etsu Chem Co Ltd 耐熱性に優れたシリコーンゲル組成物
WO2013084699A1 (ja) * 2011-12-08 2013-06-13 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 ヒドロシリル化硬化型シリコーンゴム組成物
WO2013192419A1 (en) * 2012-06-20 2013-12-27 Dow Corning Corporation Polyheterosiloxane composition
WO2015033979A1 (ja) * 2013-09-03 2015-03-12 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220972A (en) 1962-07-02 1965-11-30 Gen Electric Organosilicon process using a chloroplatinic acid reaction product as the catalyst
US3159601A (en) 1962-07-02 1964-12-01 Gen Electric Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes
US3159662A (en) 1962-07-02 1964-12-01 Gen Electric Addition reaction
US3775452A (en) 1971-04-28 1973-11-27 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
JPS60163966A (ja) * 1984-02-06 1985-08-26 Shin Etsu Chem Co Ltd 耐熱性オルガノポリシロキサン組成物
JP3028456B2 (ja) 1994-09-27 2000-04-04 信越化学工業株式会社 難燃性シリコーンゴム組成物
JP3344286B2 (ja) 1997-06-12 2002-11-11 信越化学工業株式会社 付加硬化型シリコーン樹脂組成物
JP4009067B2 (ja) 2001-03-06 2007-11-14 信越化学工業株式会社 付加硬化型シリコーン樹脂組成物
JP4634810B2 (ja) * 2005-01-20 2011-02-16 信越化学工業株式会社 シリコーン封止型led
JP2009256400A (ja) * 2008-04-11 2009-11-05 Shin Etsu Chem Co Ltd 半導体素子用シリコーン接着剤
JP2010268765A (ja) * 2009-05-25 2010-12-02 Suntory Holdings Ltd 焙じウーロン茶及びこれを用いた茶飲料
EP3490015A1 (en) * 2010-03-23 2019-05-29 Asahi Rubber Inc. Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
JP5971835B2 (ja) * 2010-08-23 2016-08-17 信越化学工業株式会社 硬化性シリコーン樹脂組成物及びそれを用いた発光ダイオード装置
JP2014093403A (ja) * 2012-11-02 2014-05-19 Shin Etsu Chem Co Ltd 熱硬化性シリコーン樹脂シート及びその製造方法、該熱硬化性シリコーン樹脂シートを使用する発光装置及びその製造方法
CN104837930B (zh) * 2012-12-07 2020-10-16 杜邦东丽特殊材料株式会社 可固化有机硅组合物和光学半导体器件
JP6096087B2 (ja) * 2012-12-21 2017-03-15 信越化学工業株式会社 硬化性シリコーン樹脂組成物、その硬化物及び光半導体デバイス
KR102120623B1 (ko) 2013-02-22 2020-06-11 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 경화성 실리콘 조성물, 이의 경화물, 및 광반도체 디바이스
KR20150132380A (ko) * 2013-03-15 2015-11-25 다우 코닝 코포레이션 수지-선형 유기실록산 블록 공중합체의 조성물
US9096615B2 (en) * 2013-07-30 2015-08-04 Amgen Inc. Bridged bicyclic amino thiazine dioxide compounds as inhibitors of beta-secretase and methods of use thereof
JP6001523B2 (ja) * 2013-11-14 2016-10-05 信越化学工業株式会社 シリコーン接着剤
JP6254833B2 (ja) * 2013-11-25 2017-12-27 信越化学工業株式会社 シリコーン樹脂組成物及び光半導体装置
TWI648345B (zh) * 2013-12-16 2019-01-21 道康寧公司 選擇性遮光之光物理材料及包括此等選擇性遮光之光物理材料的光學裝置
US9840594B2 (en) * 2014-01-31 2017-12-12 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane compound and method for producing the same, and addition-curable silicone composition
JP6100717B2 (ja) * 2014-03-05 2017-03-22 信越化学工業株式会社 付加硬化型シリコーン組成物及び光学素子
WO2015182143A1 (ja) * 2014-05-30 2015-12-03 東レ・ダウコーニング株式会社 有機ケイ素化合物、硬化性シリコーン組成物、および半導体装置
JP6666625B2 (ja) * 2014-12-26 2020-03-18 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物、それからなる半導体用封止剤および半導体装置
EP3133105B1 (en) * 2015-07-31 2020-12-09 Shin-Etsu Chemical Co., Ltd. Hydrosilyl-containing organopolysiloxane, making method, addition curable silicone composition, and semiconductor package
JP2017088776A (ja) * 2015-11-13 2017-05-25 信越化学工業株式会社 付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び光学半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268765A (ja) * 1987-04-28 1988-11-07 Shin Etsu Chem Co Ltd ガラス繊維製品処理剤
JPH01272682A (ja) * 1988-04-25 1989-10-31 Shin Etsu Chem Co Ltd 耐熱性シリコーン系感圧接着剤組成物
JP2004186168A (ja) * 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2008291148A (ja) * 2007-05-25 2008-12-04 Shin Etsu Chem Co Ltd 耐熱性に優れたシリコーンゲル組成物
WO2013084699A1 (ja) * 2011-12-08 2013-06-13 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 ヒドロシリル化硬化型シリコーンゴム組成物
WO2013192419A1 (en) * 2012-06-20 2013-12-27 Dow Corning Corporation Polyheterosiloxane composition
WO2013192404A1 (en) * 2012-06-20 2013-12-27 Dow Corning Corporation Polyheterosiloxane composition
WO2015033979A1 (ja) * 2013-09-03 2015-03-12 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3360928A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052198A (ja) * 2017-09-12 2019-04-04 アイカ工業株式会社 耐熱性を有する縮合硬化型シリコーン樹脂組成物及びこれを使用した光半導体装置
WO2019116892A1 (ja) * 2017-12-15 2019-06-20 信越化学工業株式会社 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
CN111511841A (zh) * 2017-12-15 2020-08-07 信越化学工业株式会社 室温湿气固化型有机硅凝胶组合物及其固化物以及物品
JPWO2019116892A1 (ja) * 2017-12-15 2020-12-03 信越化学工業株式会社 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
JP7088211B2 (ja) 2017-12-15 2022-06-21 信越化学工業株式会社 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
CN111511841B (zh) * 2017-12-15 2022-08-09 信越化学工业株式会社 室温湿气固化型有机硅凝胶组合物及其固化物以及物品
US11578209B2 (en) 2017-12-15 2023-02-14 Shtn-Etsu Chemical Co., Ltd. Room temperature moisture-curable silicone gel composition, and cured product and article therefrom
JP2020033407A (ja) * 2018-08-28 2020-03-05 信越化学工業株式会社 付加硬化型シリコーン組成物及び半導体装置
WO2021100535A1 (ja) * 2019-11-22 2021-05-27 信越化学工業株式会社 キーパッド作製用シリコーンゴム組成物及びキーパッド
JP2021080415A (ja) * 2019-11-22 2021-05-27 信越化学工業株式会社 キーパッド作製用シリコーンゴム組成物及びキーパッド
JP7484140B2 (ja) 2019-11-22 2024-05-16 信越化学工業株式会社 キーパッド作製用シリコーンゴム組成物及びキーパッド

Also Published As

Publication number Publication date
KR102081781B1 (ko) 2020-02-26
JP2017088776A (ja) 2017-05-25
TWI679244B (zh) 2019-12-11
CN108350275A (zh) 2018-07-31
EP3360928A1 (en) 2018-08-15
US20180315906A1 (en) 2018-11-01
TW201734135A (zh) 2017-10-01
KR20180082451A (ko) 2018-07-18
US10483442B2 (en) 2019-11-19
EP3360928A4 (en) 2019-05-01
EP3360928B1 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
WO2017081850A1 (ja) 付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び光学半導体装置
JP4648099B2 (ja) ダイボンディング用シリコーン樹脂組成物
JP2010285571A (ja) ダイボンディング用シリコーン樹脂組成物
JP4644129B2 (ja) 硬化性シリコーンゴム組成物及びその硬化物
JP2009256400A (ja) 半導体素子用シリコーン接着剤
CN108795053B (zh) 加成固化型硅酮组合物、该组合物的制造方法、硅酮固化物、以及光学元件
CN108795049B (zh) 加成固化型硅酮组合物、该组合物的制造方法、以及光学半导体装置
JP6923475B2 (ja) 付加硬化型シリコーン組成物、シリコーン硬化物、及び光半導体装置
JP2011086844A (ja) 発光ダイオード用ダイボンド材
JP7014745B2 (ja) 付加硬化型シリコーン樹脂組成物及び光学素子
KR20200101291A (ko) 다이본딩용 실리콘 수지 조성물, 경화물 및 광 반도체 장치
JP2020070402A (ja) 付加硬化型シリコーン樹脂組成物、その硬化物、及び光半導体装置
JP2019087588A (ja) ダイボンディング用シリコーン組成物、その硬化物、及び発光ダイオード素子
JP7088880B2 (ja) 付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び光半導体装置
CN111574837A (zh) 管芯键合用硅酮树脂组合物、固化物及发光二极管元件
JP2014162798A (ja) 硬化性オルガノポリシロキサン組成物、光学素子用封止材および光学素子
JP6006554B2 (ja) 付加硬化型シリコーン組成物、該組成物からなる光学素子封止材、該光学素子封止材で封止した光学素子、及び付加硬化型シリコーン組成物の製造方法
TWI834881B (zh) 加成硬化型聚矽氧樹脂組成物、該組成物之製造方法,及光半導體裝置
JP6863878B2 (ja) 付加硬化型シリコーン組成物、硬化物、及び光学素子
JP2020132743A (ja) ダイボンディング用シリコーン樹脂組成物、硬化物、発光ダイオード素子及び該組成物の製造方法
JP5974977B2 (ja) 耐熱性シリコーンゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863817

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770505

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016863817

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187013520

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE