WO2017077895A1 - 光ファイバの製造方法、光ファイバの製造装置、および光ファイバ - Google Patents

光ファイバの製造方法、光ファイバの製造装置、および光ファイバ Download PDF

Info

Publication number
WO2017077895A1
WO2017077895A1 PCT/JP2016/081462 JP2016081462W WO2017077895A1 WO 2017077895 A1 WO2017077895 A1 WO 2017077895A1 JP 2016081462 W JP2016081462 W JP 2016081462W WO 2017077895 A1 WO2017077895 A1 WO 2017077895A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
optical fiber
primary
coating
around
Prior art date
Application number
PCT/JP2016/081462
Other languages
English (en)
French (fr)
Inventor
山崎 卓
一之 相馬
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2017527002A priority Critical patent/JPWO2017077895A1/ja
Priority to RU2018116645A priority patent/RU2018116645A/ru
Priority to CN201680064227.XA priority patent/CN108349797A/zh
Publication of WO2017077895A1 publication Critical patent/WO2017077895A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present invention relates to an optical fiber manufacturing method, an optical fiber manufacturing apparatus, and an optical fiber.
  • Patent document 1 is an invention related to an optical fiber drawing device, and before spinning fiber that has passed through the first coating device and the curing furnace enters the second and subsequent coating devices, the spinning fiber is a fiber with high cooling efficiency. It is disclosed to draw while contacting a guide device, such as a capstan or wheel.
  • Patent Document 2 is an invention relating to a method of manufacturing a coated striate, and after irradiating the striate coated with resin with ultraviolet rays by the first ultraviolet irradiator, the running direction of the striate is changed, It is disclosed that the resin applied to the striate is cured to form a coating layer by irradiating the resin with ultraviolet rays by a second ultraviolet irradiation device different from the first ultraviolet irradiation device. Yes.
  • An optical fiber manufacturing method of the present disclosure includes: An optical fiber manufacturing method in which a drawn glass fiber is coated with an ultraviolet curable resin, While the optical fiber preform is heated in a heating furnace and the glass fiber is drawn and wound, A cooling step of cooling the glass fiber before being coated with the ultraviolet curable resin; An ultraviolet curable primary resin is applied around the cooled glass fiber, an ultraviolet curable secondary resin is applied around the primary resin before the primary resin is cured, and the primary resin and the secondary resin are applied.
  • a primary coating process for curing After changing the traveling direction of the optical fiber coated with the primary resin and the secondary resin with a roller, a secondary application step of additionally applying and curing an ultraviolet curable resin around the secondary resin; Is provided.
  • the optical fiber manufacturing apparatus of the present disclosure includes: An optical fiber manufacturing apparatus in which a drawn optical fiber is coated with an ultraviolet curable resin, A heating furnace that heats and softens the optical fiber preform; A cooling device for cooling the glass fiber drawn from the softened optical fiber preform; A primary coating device that coats an ultraviolet curable primary resin and a secondary resin around the cooled glass fiber; A primary ultraviolet irradiation device for curing the primary resin and the secondary resin applied to the glass fiber; A roller that changes a traveling direction of the optical fiber in which the primary resin and the secondary resin are cured; A secondary coating device for additionally coating an ultraviolet curable resin around the optical fiber whose traveling direction is changed by the roller; A secondary ultraviolet irradiation device that cures the resin applied by the secondary coating device.
  • the optical fiber of the present disclosure is Glass fiber, One UV-curable primary resin layer coated around the glass fiber; A plurality of ultraviolet curable secondary resin layers coated around the primary resin layer.
  • the first ultraviolet irradiation device and the second ultraviolet irradiation device are separately performed. That is, in order to apply the resin for forming the coating layer all at once, it is necessary to cure the resin with the first ultraviolet irradiation device to such an extent that the resin does not deform when changing the traveling direction of the optical fiber, There is a limit to speeding up the drawing, and the distance until the traveling direction of the optical fiber is changed cannot be greatly reduced.
  • This disclosure is intended to provide an optical fiber manufacturing method, an optical fiber manufacturing apparatus, and an optical fiber capable of drawing an optical fiber at a high linear velocity without increasing the scale of the optical fiber drawing facility.
  • an optical fiber can be drawn at a high linear velocity without increasing the scale of an optical fiber drawing facility.
  • An optical fiber manufacturing method is as follows. (1) A method of manufacturing an optical fiber in which a drawn glass fiber is coated with an ultraviolet curable resin, While the optical fiber preform is heated in a heating furnace and the glass fiber is drawn and wound, A cooling step of cooling the glass fiber before being coated with the ultraviolet curable resin; An ultraviolet curable primary resin is applied around the cooled glass fiber, an ultraviolet curable secondary resin is applied around the primary resin before the primary resin is cured, and the primary resin and the secondary resin are applied.
  • a primary coating process for curing After changing the traveling direction of the optical fiber coated with the primary resin and the secondary resin with a roller, a secondary application step of additionally applying and curing an ultraviolet curable resin around the secondary resin; Is provided.
  • the traveling direction of the optical fiber is changed, Thereafter, the remaining resin is applied and cured in the secondary application step. Therefore, the number of ultraviolet irradiation devices used in the primary coating process can be reduced, and a long cooling device can be arranged in an existing drawing tower. Therefore, the optical fiber can be drawn at a high linear velocity without increasing the scale of the optical fiber drawing facility.
  • the method of additionally applying the resin in the secondary application step is a single die method in which a single resin is applied around the secondary resin applied in the primary application step with a single coating die.
  • the resin used in the secondary application step is preferably the secondary resin.
  • coating process can be apply
  • the method of additionally applying the resin in the secondary application step is a single die method in which a single resin is applied around the secondary resin applied in the primary application step with a single coating die.
  • the resin used in the secondary application step is preferably different from the secondary resin.
  • the method of additionally applying the resin in the secondary application step is a dual die method in which at least two layers of resin are applied around the secondary resin applied in the primary application step with a plurality of coating dies. It is preferable.
  • the method of additionally applying the resin in the secondary application step includes a first additional application step of additionally applying a resin around the secondary resin applied in the primary application step, and the first additional application step.
  • the resin applied in the second additional application process is preferably a resin different from the secondary resin.
  • the first-layer resin is preferably the secondary resin, and the second-layer resin is preferably a colored layer. According to these configurations, three or more coating layers can be formed around the glass fiber.
  • the method for manufacturing the optical fiber further includes: A step of changing the direction of the optical fiber with a roller after the secondary coating step; It is preferable to include a tertiary application process in which an ultraviolet curable resin is additionally applied around the resin applied in the secondary application process and cured. According to the above configuration, it is possible to further increase the drawing speed of the optical fiber.
  • An optical fiber manufacturing apparatus is (9) An optical fiber manufacturing apparatus in which a drawn optical fiber is coated with an ultraviolet curable resin, A heating furnace that heats and softens the glass base material; A cooling device for cooling the glass fiber drawn from the softened glass base material; A primary coating device that coats an ultraviolet curable primary resin and a secondary resin around the cooled glass fiber; A primary ultraviolet irradiation device for curing the primary resin and the secondary resin applied to the glass fiber; A roller that changes a traveling direction of the optical fiber in which the primary resin and the secondary resin are cured; A secondary coating device for additionally coating an ultraviolet curable resin around the optical fiber whose traveling direction is changed by the roller; A secondary ultraviolet irradiation device that cures the resin applied by the secondary coating device.
  • the optical fiber manufacturing apparatus a part of the resin to be finally applied around the glass fiber in the primary coating apparatus is applied, and the resin is cured by the primary ultraviolet irradiation apparatus. After that, the traveling direction of the optical fiber is changed, and then the remaining resin is applied and cured in the secondary coating device and the secondary ultraviolet irradiation device. Therefore, it is possible to reduce the number of ultraviolet irradiation devices arranged directly under the heating furnace and arrange a long cooling device using an existing drawing tower. Therefore, the optical fiber can be drawn at a high linear velocity without increasing the scale of the optical fiber drawing facility.
  • An optical fiber according to an embodiment of the present invention is (10) glass fiber; One UV-curable primary resin layer coated around the glass fiber; A plurality of ultraviolet curable secondary resin layers coated around the primary resin layer. According to this configuration, the primary resin layer and the secondary resin layer are hardly separated from each other, and an increase in transmission loss due to the side pressure of the optical fiber is suppressed. (11) Furthermore, it is preferable that the coating thickness of the primary resin layer and the secondary resin layer is 27.5 ⁇ m or more and less than 50 ⁇ m.
  • FIG. 1 is a schematic configuration diagram of an apparatus capable of manufacturing an optical fiber by the optical fiber manufacturing method of the present embodiment.
  • an optical fiber manufacturing apparatus 1 includes a drawing tower 2 erected in a substantially vertical direction, a heating furnace 4 provided on an upper part of the drawing tower 2 for heating an optical fiber preform G, and a glass fiber. And a cooling device 6 that cools G1.
  • the optical fiber manufacturing apparatus 1 includes a first coating application device 8, a first ultraviolet irradiation device 10, and a first guide roller 12 below the cooling device 6.
  • the optical fiber manufacturing apparatus 1 includes a second guide roller 14, a second coating application device 16, a second ultraviolet irradiation device 18, a third guide roller 20, a capstan 22, A take-out bobbin 24.
  • the optical fiber preform G is gripped at the upper part in the drawing tower 2, sent to the heating furnace 4, and can move in the vertical direction.
  • the lower end side of the optical fiber preform G supplied into the heating furnace 4 is heated and melted by the heater 5 of the heating furnace 4 and is drawn downward.
  • the optical fiber preform G is drawn downward to reduce the diameter, whereby a glass body glass fiber G1 is formed.
  • the drawn glass fiber G1 moves along the first traveling direction d1.
  • a laser beam type outer diameter measuring device may be provided below the heating furnace 4 so that the outer diameter of the glass fiber G1 exiting the heating furnace 4 is measured.
  • a long cooling device 6 is provided below the heating furnace 4 along the first traveling direction d1.
  • the cooling device 6 has a predetermined length L1 along the first traveling direction d1 of the glass fiber G1 in order to sufficiently cool the glass fiber G1.
  • the cooling device 6 has an insertion hole through which the glass fiber G1 is passed in the longitudinal direction at the center position of the main body. Cooling gas is fed into the insertion hole, and the glass fiber G1 inserted through the insertion hole is cooled.
  • the cooling device 6 has a cooling fluid passage formed along the longitudinal direction inside the main body of the cooling device 6 so that the cooling fluid circulates in the inside thereof.
  • the cooling gas in the insertion hole is cooled by the cooling fluid, and the glass fiber G1 passes through the cooling gas atmosphere, whereby the drawn glass fiber G1 can be cooled to an appropriate temperature. Thereby, the temperature of the glass fiber G1 can be lowered to such an extent that the resin can be applied to the outer periphery.
  • the first coating application device 8 for applying an ultraviolet curable resin to the glass fiber G1 is provided below the cooling device 6 in the first traveling direction d1.
  • the first coating application device 8 stores a liquid ultraviolet curable resin.
  • the first coating application device 8 is a so-called dual die type device, and includes a dual die provided with a plurality of holes coaxially as a coating die. With the dual die, two layers of ultraviolet curable resin of primary resin and secondary resin can be applied simultaneously around the glass fiber G1.
  • the primary resin applied around the glass fiber G1 is applied, for example, with a coating diameter of 170 ⁇ m or more and 210 ⁇ m or less, preferably with a coating diameter of 200 ⁇ m.
  • the secondary resin applied around the primary resin is made of a resin material that is harder than the resin material constituting the primary resin after curing.
  • the secondary resin is applied with a thickness of, for example, 5 ⁇ m to 15 ⁇ m, preferably 10 ⁇ m. When the thickness of the secondary resin is 5 ⁇ m or less, it is difficult to apply the secondary resin uniformly around the primary resin, and when the thickness is 15 ⁇ m or more, it is difficult to be sufficiently cured by the first ultraviolet irradiation device 10.
  • a first ultraviolet irradiation device 10 for curing the applied ultraviolet curable resin is disposed below the first coating application device 8 in the first traveling direction d1.
  • the first ultraviolet irradiation device 10 is, for example, for irradiating an optical fiber G2 coated with resin with ultraviolet rays using a multi-lamp UV lamp to cure the ultraviolet curable primary resin and secondary resin.
  • Two layers of ultraviolet curable resin are applied to the outer periphery of the glass fiber G1 by the first coating application device 8, and then the ultraviolet curable resin is cured by the first ultraviolet irradiation device 10, whereby the glass fiber G1.
  • An optical fiber G2 in which a primary resin coating layer and a secondary resin coating layer are formed around is manufactured.
  • An outer diameter measuring device (not shown) is provided below the first ultraviolet irradiation device 10, and the first coating application is performed so that the outer diameter of the optical fiber G2 measured by the outer diameter measuring device becomes a predetermined value.
  • the apparatus 8 may be configured to apply an ultraviolet curable resin.
  • a first guide roller 12 is provided below the first ultraviolet irradiation device 10 in the first traveling direction d1.
  • the pass line of the glass fiber G1 and the optical fiber G2 from the heating furnace 4 to the first guide roller 12 is a first pass line PL1.
  • the first guide roller 12 changes the traveling direction of the optical fiber G2 that has passed through the first ultraviolet irradiation device 10 from the first traveling direction d1 to the second traveling direction d2.
  • the second traveling direction d2 is preferably an obliquely upward direction when viewed from the lowermost part of the drawing tower 2.
  • a second guide roller 14 is disposed downstream of the first guide roller 12.
  • the second guide roller 14 is provided in the vicinity of the central portion in the length direction of the drawing tower 2 so that the optical fiber G2 moves along the second traveling direction d2 different from the first traveling direction d1. Yes.
  • the 2nd guide roller 14 is different from the 2nd traveling direction d2 in the traveling direction of the optical fiber G2 which moved along the 2nd traveling direction d2 via the 1st guide roller 12.
  • the travel direction is changed to d3.
  • the third traveling direction d3 is preferably a downward direction substantially parallel to the first traveling direction d1.
  • the second coating and coating apparatus 16 is a so-called single die type apparatus, and includes a single die capable of coating a single layer of ultraviolet curable resin around the optical fiber G2 as a coating die.
  • the resin applied in the second coating application device 16 can be, for example, the same resin material as the secondary resin applied in the first coating application device 8.
  • the secondary resin applied in the second coating application device 16 is applied, for example, with a coating diameter of 230 ⁇ m or more and 260 ⁇ m or less, preferably with a coating diameter of 240 ⁇ m.
  • the coating diameter is not limited to 240 ⁇ m.
  • the final coating diameter may be 200 ⁇ m with a smaller diameter.
  • the primary resin applied around the glass fiber G1 is applied with a coating diameter of 150 ⁇ m or more and 190 ⁇ m or less, preferably a coating diameter of 170 ⁇ m, and is applied around the primary resin.
  • the secondary resin is applied with a thickness of 5 ⁇ m to 15 ⁇ m, preferably 10 ⁇ m.
  • the secondary resin is applied and applied so that the final coating diameter is 180 ⁇ m or more and 220 ⁇ m or less, preferably 200 ⁇ m.
  • the combined thickness of the primary resin and the secondary resin is 27.5 ⁇ m or more and 47.5 ⁇ m or less when the glass diameter is 125 ⁇ m.
  • the glass diameter may be 80 ⁇ m and the final coating diameter may be 160 ⁇ m.
  • the primary resin applied around the glass fiber G1 is applied with a coating diameter of 100 ⁇ m or more and 140 ⁇ m or less, preferably 120 ⁇ m, and is applied around the primary resin.
  • the secondary resin is applied with a thickness of 5 ⁇ m to 15 ⁇ m, preferably 10 ⁇ m.
  • the secondary resin is applied and applied so that the final coating diameter is 140 ⁇ m or more and 180 ⁇ m or less, preferably 160 ⁇ m.
  • the total coating thickness of the primary resin and the secondary resin is 30 ⁇ m or more and 50 ⁇ m or less when the glass diameter is 80 ⁇ m.
  • the second ultraviolet irradiation device 18 is the same device as the first ultraviolet irradiation device 10.
  • the UV coating resin is additionally applied to the outer periphery of the optical fiber G2 by the second coating application device 16, and then the UV curing resin is cured and reacted by the second UV irradiation device 18, whereby a coating layer is formed.
  • the An outer diameter measuring device (not shown) is provided below the second ultraviolet irradiation device 18 so that the outer diameter of the optical fiber G2 measured by the outer diameter measuring device becomes a predetermined value.
  • the apparatus 16 may be configured to apply an ultraviolet curable resin.
  • a third guide roller 20 is provided below the second ultraviolet irradiation device 18.
  • the pass line of the optical fiber G2 from the second guide roller 14 to the third guide roller 20 is defined as a second pass line PL2.
  • the third guide roller 20 changes the traveling direction of the optical fiber G2 toward a capstan 22 described later.
  • the optical fiber G ⁇ b> 2 that has passed through the second ultraviolet irradiation device 18 is drawn into the capstan 22 via the third guide roller 20, and a predetermined tension is applied by the capstan 22. By this capstan 22, the optical fiber G2 is sent further downstream. On the downstream side of the capstan 22, the optical fiber G ⁇ b> 2 is wound around the winding bobbin 24.
  • FIG. 2 is a schematic configuration diagram of an optical fiber manufacturing apparatus according to a conventional example.
  • an optical fiber manufacturing apparatus 1A according to a conventional example cools a drawing tower 2, a heating furnace 4 provided on an upper portion of the drawing tower 2, and heating an optical fiber preform G, and a glass fiber G1.
  • a cooling device 6A Furthermore, the optical fiber manufacturing apparatus 1A includes a coating application device 8, an ultraviolet irradiation device 10A, a guide roller 12A, a capstan 22, and a bobbin 24 at the lower portion of the cooling device 6A.
  • the single coating application apparatus 8 applies the entire amount of the resin that forms the coating layer around the glass fiber G1.
  • the length L2 of the cooling device 6A is the length of the cooling device 6 according to the present embodiment. It becomes shorter than L1.
  • the ultraviolet curable resin before the optical fiber base material G is heated in the heating furnace 4 and the glass fiber G1 is drawn and wound, before the ultraviolet curable resin is coated.
  • a cooling step for cooling the glass fiber G1, and an ultraviolet curable primary resin is applied and cured around the cooled glass fiber G1, and before the primary resin is cured, an ultraviolet curable type is provided around the primary resin.
  • the optical fiber G2 is manufactured through a secondary coating process in which additional resin is applied and cured.
  • the resin applied to the optical fiber G2 in the primary application process is sufficiently cured with a small number of ultraviolet irradiation devices. Can do. Therefore, the number of first ultraviolet irradiation devices 10 arranged immediately below the heating furnace 4 and the cooling device 6 in the first pass line PL1 can be reduced as compared with the conventional case. For example, the number of ultraviolet irradiation devices arranged in the conventional example shown in FIG. 2 can be reduced to three in this embodiment.
  • the cooling capacity can be improved by making the length L1 of the cooling device 6 longer than the length L2 of the cooling device 6A of the conventional example, without performing facility repair such as raising the drawing tower 2.
  • the drawing speed of the optical fiber G2 can be increased without increasing the scale of the drawing equipment for the optical fiber G2.
  • the resin can be applied after the glass fiber G1 and the optical fiber G2 are sufficiently cooled.
  • the resin can be sufficiently cured with a small number of the first ultraviolet irradiation devices 10, the light for changing the traveling direction of the optical fiber G ⁇ b> 2 via the first and second guide rollers 12 and 14. The deformation of the fiber G2 can be suppressed.
  • the method of additionally applying the resin in the secondary application step is a method in which a single layer is provided around the secondary resin applied in the primary application step by the single coating die provided in the first coating application device 8.
  • This is a single die method in which a secondary resin is applied.
  • the secondary resin having a thickness capable of withstanding the contact with the guide roller 12 in the primary application step is applied around the primary resin, and the remaining thickness of the secondary resin is determined in the secondary application step.
  • a secondary resin having a finally required thickness can be applied and cured while maintaining a high linear velocity.
  • the optical fiber G2 manufactured by the optical fiber manufacturing apparatus 1 of the present embodiment includes a glass fiber G1, a single ultraviolet curable primary resin layer coated around the glass fiber G1, and a primary resin layer. And a plurality of ultraviolet curable secondary resin layers coated around the periphery. Since the optical fiber G2 according to the present embodiment is configured such that only the inner side (first secondary resin layer) of the primary resin layer and the secondary resin layer is cured first, the conventional optical fiber has only one layer. As compared with the above, a remarkable effect is obtained that the resin is hardly peeled between the primary resin layer and the secondary resin layer.
  • the secondary resin layer is a single layer as in the prior art, when the entire primary resin layer and the secondary resin layer are cured simultaneously, the secondary resin layer is cured from the outermost part of the secondary resin layer, so that the shrinkage associated with the curing is caused. Stress tends to remain inside the primary resin layer and the secondary resin layer.
  • the secondary resin layer is thinly applied around the primary resin layer and the primary resin layer and the first secondary resin layer are cured, and then in the secondary application step, around the first secondary resin layer.
  • the thickness of the secondary resin layer of the first layer is thinner than the conventional one, so that the secondary resin layer shrinks at the time of curing in the primary application step.
  • stress hardly remains inside the primary resin layer and the first-layer secondary resin layer.
  • the second secondary resin layer is cured in the secondary coating step, the primary resin layer and the first secondary resin layer are already cured, and thus are not easily affected. Therefore, it becomes difficult for stress to remain inside the primary resin layer and the secondary resin layer.
  • the first secondary resin layer is directly irradiated with ultraviolet rays by the three first ultraviolet irradiation devices 10, and then irradiated from the three second ultraviolet irradiation devices 18, and then the second secondary resin layer. Ultraviolet light that has passed through the layer is also irradiated.
  • the second secondary resin layer is only directly irradiated with ultraviolet rays from the three second ultraviolet irradiation devices 18. Therefore, the first-stage secondary resin layer has a higher UV irradiation amount than the second-layer secondary resin layer. Therefore, the first secondary resin layer can be harder than the second secondary resin layer, and the conventional secondary resin layer can suppress deformation of the primary resin layer as compared to a single optical fiber. . As a result, it is possible to obtain the effect that the resin is hardly peeled off and the effect that the increase in transmission loss due to the side pressure of the optical fiber G2 is suppressed.
  • the resin additionally applied by the second coating application device 16 is the same as the secondary resin applied by the first coating application device 8, but is not limited to this example.
  • the resin additionally applied by the second coating application device 16 may be different from the secondary resin, for example, a colored resin used as a color layer for identification. According to this configuration, three or more coating layers can be formed around the glass fiber in the drawing process of the optical fiber.
  • the second coating application device 16 includes a single die, but is not limited to this example.
  • the second coating / coating apparatus a configuration including a dual die provided with a plurality of holes coaxially may be employed as in the first coating / coating apparatus 8.
  • the same resin as the secondary resin can be applied as the first layer, and a resin different from the secondary resin can be applied as the second layer.
  • the second-layer resin for example, a resin harder than the above-described colored resin or a secondary resin used as an outermost covering such as an optical cord can be applied.
  • a resin different from the secondary resin may be applied as the first layer, and a color resin for identification may be applied as the second layer.
  • the second coating / coating apparatus a so-called tandem system in which a coating apparatus that coats the first-layer resin and a coating apparatus that coats the second-layer resin may be provided separately. That is, the method of additionally applying the UV curable resin in the second coating and coating apparatus is the first additional coating in which the first resin is additionally applied and cured around the secondary resin applied by the first coating and coating apparatus. It can be set as the structure provided with the process and the 2nd additional application process which further apply
  • the secondary resin (the remaining portion of the secondary resin applied by the first coating application device) is applied as the first layer in the first additional application step, and the secondary resin as the second layer in the second additional application step.
  • Different colored resins can be applied.
  • three or more coating layers can be formed around the glass fiber in the drawing process of the optical fiber.
  • an additional ultraviolet irradiation device may be provided between the first guide roller 12 and the second guide roller 14. Thereby, the uncured coating layer of the optical fiber G2 can be more reliably prevented.
  • the first pass line PL1 directly below the heating furnace 4 and the second pass line PL2 provided on the downstream side of the first pass line PL1 are provided, but the light shown in FIG. Like the fiber manufacturing apparatus 100, it is good also as a structure further equipped with 3rd pass line PL3 in the downstream of 2nd pass line PL2.
  • a step of changing the traveling direction (orientation) of the optical fiber G2 with the guide rollers 20 and 114 and an additional UV curable resin are additionally coated by the third coating and coating device 116.
  • a third application step of curing the resin by the third ultraviolet irradiation device 118 is included.
  • the remaining part in the tertiary application process is applied.
  • Resin can be applied and cured.
  • Optical fiber manufacturing device 2 Drawing tower 4: Heating furnace 5: Heater 6: Cooling device 8: First coating application device 10: First ultraviolet irradiation device 12: First guide roller 14: Second guide Roller 16: Second coating and coating device 18: Second ultraviolet irradiation device 20: Third guide roller 22: Capstan 24: Winding bobbin G: Optical fiber preform G1: Glass fiber G2: Optical fiber PL1: First First pass line PL2: Second pass line PL3: Third pass line

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

線引きされたガラスファイバG1に紫外線硬化型樹脂が被覆される光ファイバG2の製造方法は、光ファイバ母材Gを加熱炉4で加熱してガラスファイバG1を線引きして巻き取るまでの間に、紫外線硬化型樹脂が被覆される前のガラスファイバG1を冷却する冷却工程と、冷却されたガラスファイバG1の周囲に紫外線硬化型のプライマリ樹脂を塗布し、プライマリ樹脂を硬化させる前にプライマリ樹脂の周囲に紫外線硬化型のセカンダリ樹脂を塗布し、プライマリ樹脂およびセカンダリ樹脂を硬化させる一次塗布工程と、プライマリ樹脂およびセカンダリ樹脂が被覆された光ファイバG2の走行方向をローラ12で変えた後で、セカンダリ樹脂の周囲に紫外線硬化型の樹脂を追加塗布して硬化させる二次塗布工程と、を備える。

Description

光ファイバの製造方法、光ファイバの製造装置、および光ファイバ
 本発明は、光ファイバの製造方法、光ファイバの製造装置および光ファイバに関する。
 光ファイバ製造装置においては、生産技術の向上により、光ファイバの線引きの更なる高速化が求められている。
 特許文献1は、光ファイバ線引き装置に関する発明であって、第1のコーティング装置および硬化炉中を通した紡糸ファイバが第2以降のコーティング装置に入る前に、当該紡糸ファイバを高冷却効率のファイバガイド装置、例えばキャプスタンまたはホイールに接触させながら線引きすることが開示されている。
 特許文献2は、被覆線条体の製造方法に関する発明であって、樹脂が塗布された線条体に第1の紫外線照射装置により紫外線を照射した後、線条体の走行方向を変えて、樹脂に対して第1の紫外線照射装置とは別の第2の紫外線照射装置により紫外線を照射することで、線条体に塗布された樹脂を硬化して被覆層を形成することが開示されている。
日本国特開昭62-241846号公報 日本国特開2005-162502号公報
 本開示の光ファイバの製造方法は、
 線引きされたガラスファイバに紫外線硬化型樹脂が被覆される光ファイバの製造方法であって、
 光ファイバ母材を加熱炉で加熱してガラスファイバを線引きして巻き取るまでの間に、
 前記紫外線硬化型樹脂が被覆される前の前記ガラスファイバを冷却する冷却工程と、
 冷却された前記ガラスファイバの周囲に紫外線硬化型のプライマリ樹脂を塗布し、前記プライマリ樹脂を硬化させる前に前記プライマリ樹脂の周囲に紫外線硬化型のセカンダリ樹脂を塗布し、前記プライマリ樹脂および前記セカンダリ樹脂を硬化させる一次塗布工程と、
 前記プライマリ樹脂および前記セカンダリ樹脂が被覆された光ファイバの走行方向をローラで変えた後で、前記セカンダリ樹脂の周囲に紫外線硬化型の樹脂を追加塗布して硬化させる二次塗布工程と、
 を備える。
 また、本開示の光ファイバの製造装置は、
 線引きされた光ファイバに紫外線硬化型樹脂が被覆される光ファイバの製造装置であって、
 光ファイバ母材を加熱して軟化させる加熱炉と、
 軟化された前記光ファイバ母材から線引きされたガラスファイバを冷却する冷却装置と、
 冷却された前記ガラスファイバの周囲に紫外線硬化型のプライマリ樹脂およびセカンダリ樹脂を塗布する一次塗布装置と、
 前記ガラスファイバに塗布された前記プライマリ樹脂およびセカンダリ樹脂を硬化させる一次紫外線照射装置と、
 前記プライマリ樹脂および前記セカンダリ樹脂が硬化された前記光ファイバの走行方向を変えるローラと、
 前記ローラで走行方向が変えられた前記光ファイバの周囲に紫外線硬化型の樹脂を追加塗布する二次塗布装置と、
 前記二次塗布装置により塗布された樹脂を硬化させる二次紫外線照射装置と、を備える。
 また、本開示の光ファイバは、
 ガラスファイバと、
 前記ガラスファイバの周囲に被覆されている一層の紫外線硬化型のプライマリ樹脂層と、
 前記プライマリ樹脂層の周囲に被覆されている複数層の紫外線硬化型のセカンダリ樹脂層と、を備えている。
本発明に係る光ファイバの製造方法を実施することができる光ファイバ製造装置の一形態を示す概略構成図である。 従来例に係る光ファイバ製造装置の概略構成図である。 光ファイバ製造装置の変形例に係る概略構成図である。
<本開示が解決しようとする課題>
 特許文献1に開示された光ファイバ線引き装置のようにキャプスタンやホイールを介して光ファイバを冷却する方法では、光ファイバの周方向に均一に冷却することができない。そのため、第2以降のコーティング装置における樹脂の塗布が不均一となり樹脂の偏肉が生じる恐れがある。また、線速速度を上げると、第1のコーティング装置に紡糸ファイバが高温のまま入線することとなり、線引きの高速化には限界がある。
 また、特許文献2に開示された被覆線条体の製造方法は、ガラスファイバの周囲を被覆する被覆層を形成するためのすべての紫外線硬化型樹脂が塗布された後に、当該樹脂の硬化を第1の紫外線照射装置と第2の紫外線照射装置とに分けて行うものである。すなわち、被覆層を形成するための樹脂を一度に全量塗布するため、光ファイバの走行方向を変える際に樹脂が変形しない程度に第1の紫外線照射装置で樹脂を硬化しておく必要があり、線引きの高速化には限界があるとともに、光ファイバの走行方向を変えるまでの距離は大きく低減させることができない。
 本開示は、光ファイバの線引き設備の規模を大きくすることなく、高線速で光ファイバを線引き可能な光ファイバの製造方法、光ファイバの製造装置および光ファイバを提供することを目的とする。
<本開示の効果>
 本開示によれば、光ファイバの線引き設備の規模を大きくすることなく、高線速で光ファイバを線引きすることができる。
<本発明の実施形態の概要>
 最初に本発明の実施形態の概要を説明する。
 本願発明の実施形態に係る光ファイバの製造方法は、
(1)線引きされたガラスファイバに紫外線硬化型樹脂が被覆される光ファイバの製造方法であって、
 光ファイバ母材を加熱炉で加熱してガラスファイバを線引きして巻き取るまでの間に、
 前記紫外線硬化型樹脂が被覆される前の前記ガラスファイバを冷却する冷却工程と、
 冷却された前記ガラスファイバの周囲に紫外線硬化型のプライマリ樹脂を塗布し、前記プライマリ樹脂を硬化させる前に前記プライマリ樹脂の周囲に紫外線硬化型のセカンダリ樹脂を塗布し、前記プライマリ樹脂および前記セカンダリ樹脂を硬化させる一次塗布工程と、
 前記プライマリ樹脂および前記セカンダリ樹脂が被覆された光ファイバの走行方向をローラで変えた後で、前記セカンダリ樹脂の周囲に紫外線硬化型の樹脂を追加塗布して硬化させる二次塗布工程と、
 を備える。
 上記の光ファイバの製造方法によれば、一次塗布工程においてガラスファイバの周囲に最終的に塗布すべき樹脂のうち一部の樹脂を塗布および硬化した後で、光ファイバの走行方向を変更し、その後に二次塗布工程において残りの樹脂を塗布および硬化させている。そのため、一次塗布工程で用いられる紫外線照射装置の数を減らして、既存の線引きタワーに長尺の冷却装置を配置することができる。したがって、光ファイバの線引き設備の規模を大きくすることなく、高線速で光ファイバを線引きすることができる。
 (2)前記二次塗布工程で当該樹脂を追加塗布する方法は、前記一次塗布工程で塗布された前記セカンダリ樹脂の周囲に単一の被覆ダイにより一層の樹脂を塗布するシングルダイ方式であって、前記二次塗布工程で用いられる樹脂は前記セカンダリ樹脂であることが好ましい。
 上記構成によれば、一次塗布工程においてローラとの接触に耐えうる強度を備えた厚さのセカンダリ樹脂を塗布し、二次塗布工程においてセカンダリ樹脂の残りの厚さを塗布することができる。
 (3)前記二次塗布工程で当該樹脂を追加塗布する方法は、前記一次塗布工程で塗布された前記セカンダリ樹脂の周囲に単一の被覆ダイにより一層の樹脂を塗布するシングルダイ方式であって、前記二次塗布工程で用いられる樹脂は前記セカンダリ樹脂と異なるものであることが好ましい。
 (4)前記二次塗布工程で当該樹脂を追加塗布する方法は、前記一次塗布工程で塗布された前記セカンダリ樹脂の周囲に複数の被覆ダイにより少なくとも二層の樹脂を塗布するデュアルダイ方式であることが好ましい。
 (5)前記二次塗布工程で当該樹脂を追加塗布する方法は、前記一次塗布工程で塗布された前記セカンダリ樹脂の周囲に樹脂を追加塗布する第一追加塗布工程と、前記第一追加塗布工程で塗布された前記樹脂の周囲に樹脂をさらに追加塗布する第二追加塗布工程とを備えたタンデム方式であることが好ましい。
 (6)前記第二追加塗布工程で塗布される樹脂は、前記セカンダリ樹脂とは異なる樹脂であることが好ましい。
 (7)前記二次塗布工程における、一層目の樹脂は前記セカンダリ樹脂であって、二層目の樹脂は着色層であることが好ましい。
 これらの構成によれば、ガラスファイバの周囲に3層以上の被覆層を形成することができる。
 (8)光ファイバの製造方法は、さらに、
 前記二次塗布工程の後に、前記光ファイバの向きをローラで変える工程と、
 前記二次塗布工程で塗布された樹脂の周囲に紫外線硬化型の樹脂を追加塗布して硬化させる三次塗布工程を含むことが好ましい。
 上記構成によれば、光ファイバの線引き速度のさらなる高速化を実現することができる。
 本願発明の実施形態に係る光ファイバの製造装置は、
 (9)線引きされた光ファイバに紫外線硬化型樹脂が被覆される光ファイバの製造装置であって、
 ガラス母材を加熱して軟化させる加熱炉と、
 軟化された前記ガラス母材から線引きされたガラスファイバを冷却する冷却装置と、
 冷却された前記ガラスファイバの周囲に紫外線硬化型のプライマリ樹脂およびセカンダリ樹脂を塗布する一次塗布装置と、
 前記ガラスファイバに塗布された前記プライマリ樹脂およびセカンダリ樹脂を硬化させる一次紫外線照射装置と、
 前記プライマリ樹脂および前記セカンダリ樹脂が硬化された前記光ファイバの走行方向を変えるローラと、
 前記ローラで走行方向が変えられた前記光ファイバの周囲に紫外線硬化型の樹脂を追加塗布する二次塗布装置と、
 前記二次塗布装置により塗布された樹脂を硬化させる二次紫外線照射装置と、を備える。
 上記の光ファイバの製造装置によれば、一次塗布装置においてガラスファイバの周囲に最終的に塗布すべき樹脂のうち一部の樹脂を塗布して一次紫外線照射装置により当該一部の樹脂を硬化させた後で、光ファイバの走行方向を変更し、その後に二次塗布装置および二次紫外線照射装置において残りの樹脂を塗布および硬化させている。そのため、加熱炉直下に配置される紫外線照射装置の数を減らして、既存の線引きタワーを用いて長尺の冷却装置を配置することができる。したがって、光ファイバの線引き設備の規模を大きくすることなく、高線速で光ファイバを線引きすることができる。
 本願発明の実施形態に係る光ファイバは、
(10)ガラスファイバと、
 前記ガラスファイバの周囲に被覆されている一層の紫外線硬化型のプライマリ樹脂層と、
 前記プライマリ樹脂層の周囲に被覆されている複数層の紫外線硬化型のセカンダリ樹脂層と、を備えている。
 この構成によれば、プライマリ樹脂層とセカンダリ樹脂層との間が剥離しにくくなるとともに、光ファイバの側圧による伝送損失増加が抑えられる。
(11)さらに、前記プライマリ樹脂層と前記セカンダリ樹脂層を合わせた被覆厚が、27.5μm以上50μm未満であることが好ましい。
<本発明の実施形態の詳細>
 以下、本発明に係る光ファイバの製造方法の実施形態の一例について、図面を参照して詳細に説明する。
 図1は、本実施形態の光ファイバの製造方法によって光ファイバを製造することのできる装置の概略構成図である。
 図1に示すように、光ファイバ製造装置1は、ほぼ鉛直方向に立設された線引きタワー2と、線引きタワー2の上部に設けられ光ファイバ母材Gを加熱する加熱炉4と、ガラスファイバG1を冷却する冷却装置6と、を備えている。さらに、光ファイバ製造装置1は、冷却装置6の下方に、第一の被覆塗布装置8と、第一の紫外線照射装置10と、第一のガイドローラ12と、を備えている。さらに、光ファイバの製造装置1は、第二のガイドローラ14と、第二の被覆塗布装置16と、第二の紫外線照射装置18と、第三のガイドローラ20と、キャプスタン22と、巻き取りボビン24と、を備えている。
 光ファイバ母材Gは、線引きタワー2内においてその上部が把持され、加熱炉4内に送られて鉛直方向に移動可能である。加熱炉4内に供給された光ファイバ母材Gは、加熱炉4が有するヒータ5によりその下端側が加熱されて溶融し、下方に引き伸ばされる。光ファイバ母材Gが下方に引き伸ばされて細径化することで、ガラス体のガラスファイバG1が形成される。線引きされたガラスファイバG1は、第一の走行方向d1に沿って移動する。なお、加熱炉4の下方に、例えばレーザ光式の外径測定器(不図示)を設け、加熱炉4を出たガラスファイバG1の外径が測定される構成としてもよい。
 加熱炉4の下方には、第一の走行方向d1に沿って長尺の冷却装置6が設けられている。冷却装置6は、ガラスファイバG1を十分に冷却するためにガラスファイバG1の第一の走行方向d1に沿って所定の長さL1を備えている。冷却装置6は、その本体部の中央の位置に、長手方向にわたってガラスファイバG1が通される挿通孔が形成されている。この挿通孔には冷却ガスが送り込まれ、挿通孔に挿通されたガラスファイバG1が冷却される。また、冷却装置6の本体は、その内部に、長手方向に沿って冷却流体用の流路が形成されておりその内部は冷却流体が循環するようになっている。この冷却流体によって挿通孔内の冷却ガスが冷却され、その冷却ガス雰囲気中をガラスファイバG1が通ることで、線引き後のガラスファイバG1を適切な温度に冷却できる。これにより、樹脂を外周に塗布できる程度にガラスファイバG1の温度を下げることができる。
 第一の走行方向d1における冷却装置6の下方には、ガラスファイバG1に紫外線硬化型樹脂を塗布する第一の被覆塗布装置8が設けられている。第一の被覆塗布装置8には、液状の紫外線硬化型樹脂が貯められている。第一の被覆塗布装置8は、いわゆるデュアルダイ方式の装置であって、被覆ダイとして同軸状に複数の孔部が設けられたデュアルダイを備えている。デュアルダイにより、ガラスファイバG1の周囲にプライマリ樹脂とセカンダリ樹脂の2層の紫外線硬化型樹脂を同時に塗布することができる。ガラスファイバG1の周囲に塗布されるプライマリ樹脂は、例えば被覆径170μm以上210μm以下、好ましくは被覆径200μmで塗布される。また、プライマリ樹脂の周囲に塗布されるセカンダリ樹脂は、硬化後において、プライマリ樹脂を構成する樹脂材料よりも硬い樹脂材料から構成される。セカンダリ樹脂は、例えば厚さ5μm以上15μm以下、好ましくは10μmで塗布される。セカンダリ樹脂は、5μm以下の厚さではプライマリ樹脂の周囲に均一に塗布することが難しく、15μm以上の厚さでは第一の紫外線照射装置10により十分に硬化させることが難しい。
 第一の走行方向d1における第一の被覆塗布装置8の下方には、塗布された紫外線硬化型樹脂を硬化させるための第一の紫外線照射装置10が配置されている。本実施形態においては、図1に示すように、例えば3台の第一の紫外線照射装置10が設けられている。第一の紫外線照射装置10は、例えば、樹脂が塗布された光ファイバG2に多灯のUVランプによって紫外線を照射して、紫外線硬化型のプライマリ樹脂およびセカンダリ樹脂を硬化させるものである。第一の被覆塗布装置8によってガラスファイバG1の外周に2層の紫外線硬化型樹脂が塗布されて、その後、第一の紫外線照射装置10によって紫外線硬化型樹脂が硬化されることにより、ガラスファイバG1の周囲にプライマリ樹脂被覆層およびセカンダリ樹脂被覆層が形成された光ファイバG2が作製される。なお、第一の紫外線照射装置10の下方に不図示の外径測定器を設け、外径測定器で測定される光ファイバG2の外径が所定の値となるように、第一の被覆塗布装置8で紫外線硬化型樹脂が塗布される構成としてもよい。
 第一の走行方向d1における第一の紫外線照射装置10の下方には第一のガイドローラ12が設けられている。本実施形態においては、加熱炉4から第一のガイドローラ12までのガラスファイバG1および光ファイバG2のパスラインを第一のパスラインPL1とする。第一のガイドローラ12は、第一の紫外線照射装置10を通った光ファイバG2の走行方向を、第一の走行方向d1から第二の走行方向d2に変更する。第二の走行方向d2は、線引きタワー2の最下部から見て斜め上方向であることが好ましい。
 第一のガイドローラ12の下流側には、第二のガイドローラ14が配置されている。第二のガイドローラ14は、光ファイバG2が第一の走行方向d1とは異なる第二の走行方向d2に沿って移動するように、線引きタワー2の長さ方向における中央部近傍に設けられている。そして、第二のガイドローラ14は、第一のガイドローラ12を介して第二の走行方向d2に沿って移動した光ファイバG2の走行方向を、第二の走行方向d2とは異なる第三の走行方向d3に変更する。第三の走行方向d3は、第一の走行方向d1と略平行の下方向であることが好ましい。
 第二のガイドローラ14の下方には、光ファイバG2に紫外線硬化型樹脂を塗布する第二の被覆塗布装置16が設けられている。第二の被覆塗布装置16は、いわゆるシングルダイ方式の装置であって、被覆ダイとして光ファイバG2の周囲に紫外線硬化型樹脂を単層で塗布可能なシングルダイを備えている。第二の被覆塗布装置16において塗布される樹脂は、例えば、第一の被覆塗布装置8で塗布されるセカンダリ樹脂と同一の樹脂材料とすることができる。第二の被覆塗布装置16において塗布されるセカンダリ樹脂は、例えば被覆径230μm以上260μm以下、好ましくは被覆径240μmで塗布される。
 なお、被覆径は、240μmに限られない。例えば、より細径に、最終的な被覆径を200μmとしても良い。その場合、第一の被覆塗布装置8では、ガラスファイバG1の周囲に塗布されるプライマリ樹脂が、例えば被覆径150μm以上190μm以下、好ましくは被覆径170μmで塗布され、プライマリ樹脂の周囲に塗布されるセカンダリ樹脂は、前記同様、例えば厚さ5μm以上15μm以下、好ましくは10μmで塗布される。そして、第二の被覆塗布装置16では、セカンダリ樹脂が塗布され、最終的な被覆径が180μm以上220μ以下、好ましくは被覆径200μmになるように塗布される。この場合、プライマリ樹脂とセカンダリ樹脂を合わせた被覆厚は、ガラス径を125μmとすると、27.5μm以上47.5μm以下となる。
 また、さらに細径に、例えば、ガラス径を80μm、最終的な被覆径を160μmとしても良い。その場合、第一の被覆塗布装置8では、ガラスファイバG1の周囲に塗布されるプライマリ樹脂が、例えば被覆径100μm以上140μm以下、好ましくは被覆径120μmで塗布され、プライマリ樹脂の周囲に塗布されるセカンダリ樹脂は、前記同様、例えば厚さ5μm以上15μm以下、好ましくは10μmで塗布される。そして、第二の被覆塗布装置16では、セカンダリ樹脂が塗布され、最終的な被覆径が140μm以上180μ以下、好ましくは被覆径160μmになるように塗布される。この場合、プライマリ樹脂とセカンダリ樹脂を合わせた被覆厚は、ガラス径を80μmとすると、30μm以上50μm以下となる。
 第二の被覆塗布装置16の下方には、光ファイバG2の周囲に追加塗布された紫外線硬化型樹脂を硬化させるための第二の紫外線照射装置18が3台設けられている。第二の紫外線照射装置18は、第一の紫外線照射装置10と同様の装置である。第二の被覆塗布装置16によって光ファイバG2の外周に紫外線硬化型樹脂が追加塗布されて、その後、第二の紫外線照射装置18によって紫外線硬化型樹脂が硬化反応することにより、被覆層が形成される。なお、第二の紫外線照射装置18の下方に不図示の外径測定器を設け、外径測定器で測定される光ファイバG2の外径が所定の値となるように、第二の被覆塗布装置16で紫外線硬化型樹脂が塗布される構成としてもよい。
 第二の紫外線照射装置18の下方には第三のガイドローラ20が設けられている。本実施形態においては、第二のガイドローラ14から第三のガイドローラ20までの光ファイバG2のパスラインを第二のパスラインPL2とする。第三のガイドローラ20は、光ファイバG2の走行方向を、後述のキャプスタン22に向けて変更する。第二の紫外線照射装置18を通った光ファイバG2は、第三のガイドローラ20を介してキャプスタン22に引き込まれ、キャプスタン22によって所定の張力が加えられる。このキャプスタン22により、光ファイバG2はさらに下流側に送られる。キャプスタン22の下流側において、光ファイバG2は、巻き取りボビン24に巻き取られる。
 図2は、従来例に係る光ファイバ製造装置の概略構成図である。
 図2に示すように、従来例に係る光ファイバ製造装置1Aは、線引きタワー2と、線引きタワー2の上部に設けられ光ファイバ母材Gを加熱する加熱炉4と、ガラスファイバG1を冷却する冷却装置6Aと、を備えている。さらに、光ファイバ製造装置1Aは、冷却装置6Aの下部に、被覆塗布装置8と、紫外線照射装置10Aと、ガイドローラ12Aと、キャプスタン22と、ボビン24と、を備えている。
 従来例に係る光ファイバ製造装置1Aにおいては、単一の被覆塗布装置8により、ガラスファイバG1の周囲に被覆層を形成する樹脂の全量が塗布される。この被覆層を十分に硬化するため、被覆塗布装置8の下方には5台の紫外線照射装置10Aが設けられている。線引きタワー2の長さ方向において、加熱炉4から5台の紫外線照射装置10Aまでを一列に配置しているため、冷却装置6Aの長さL2は、本実施形態に係る冷却装置6の長さL1よりも短くなる。
<実施例>
 図1に示す本実施形態に係る光ファイバ製造装置と、図2に示す従来例に係る光ファイバ製造装置とについて、光ファイバの線引き速度の評価を行った。
 各製造装置において、光ファイバの被覆層(プライマリ樹脂およびセカンダリ樹脂)が完全に硬化されるように光ファイバを線引きした場合の速度を評価したところ、本実施形態に係る光ファイバ製造装置においては、従来例に係る光ファイバ製造装置に比べて、線引き速度を約1割程度上げることができた。
 光ファイバ製造装置において、光ファイバの線引きの高速化を実現しようとすると、光ファイバの冷却効率を向上させるために冷却装置を長くする必要がある。そのため、線引きタワーを従来よりも高くして長尺の冷却装置を設置することも考えられる。しかし、既存の線引きタワーの高さを変えるには高額な費用と時間がかかってしまう。
 一方、以上説明したように、本実施形態においては、光ファイバ母材Gを加熱炉4で加熱してガラスファイバG1を線引きして巻き取るまでの間に、紫外線硬化型樹脂が被覆される前のガラスファイバG1を冷却する冷却工程と、冷却されたガラスファイバG1の周囲に紫外線硬化型のプライマリ樹脂を塗布して硬化させるとともに、プライマリ樹脂を硬化させる前に、プライマリ樹脂の周囲に紫外線硬化型のセカンダリ樹脂を塗布して硬化させる一次塗布工程と、プライマリ樹脂およびセカンダリ樹脂が被覆された光ファイバG2の走行方向をガイドローラ12,14で変えた後で、セカンダリ樹脂の周囲に紫外線硬化型の樹脂を追加塗布して硬化させる二次塗布工程と、により光ファイバG2を製造する。本実施形態によれば、一次塗布工程で塗布する樹脂厚さが従来に比べて薄くなるため、一次塗布工程で光ファイバG2に塗布された樹脂を少ない数量の紫外線照射装置で十分に硬化することができる。そのため、第一のパスラインPL1において加熱炉4および冷却装置6の直下に配置される第一の紫外線照射装置10の台数を従来よりも減らすことができる。例えば、図2に示す従来例において5台配置されていた紫外線照射装置を、本実施形態においては3台に減らすことができる。これにより、線引きタワー2を高くする等の設備改修を行うことなく、冷却装置6の長さL1を従来例の冷却装置6Aの長さL2よりも長くして冷却能力を向上させることができる。そのため、光ファイバG2の線引き設備の規模を大きくすることなく、光ファイバG2の線引き速度を上げることができる。このように、本実施形態においては、ガラスファイバG1および光ファイバG2が高速で線引きされた場合であってもガラスファイバG1および光ファイバG2が十分冷却された後に樹脂の塗布を行うことができる。また、少ない数量の第一の紫外線照射装置10で樹脂を十分に硬化することができるため、第一および第二のガイドローラ12,14を介して光ファイバG2の走行方向を変更する際の光ファイバG2の変形を抑えることができる。
 また、本実施形態においては、二次塗布工程で樹脂を追加塗布する方法は、第一の被覆塗布装置8が備える単一の被覆ダイにより一次塗布工程で塗布されたセカンダリ樹脂の周囲に一層のセカンダリ樹脂を塗布するシングルダイ方式である。この構成によれば、一次塗布工程においてガイドローラ12との接触に耐えうる強度を備えた厚さのセカンダリ樹脂をプライマリ樹脂の周囲に塗布し、二次塗布工程においてセカンダリ樹脂の残りの厚さを塗布することで、高線速を維持しながら、最終的に必要な厚さのセカンダリ樹脂を塗布および硬化させることができる。
 また、本実施形態の光ファイバ製造装置1で製造される光ファイバG2は、ガラスファイバG1と、ガラスファイバG1の周囲に被覆されている一層の紫外線硬化型のプライマリ樹脂層と、プライマリ樹脂層の周囲に被覆されている複数層の紫外線硬化型のセカンダリ樹脂層と、を備えている。本実施形態に係る光ファイバG2は、プライマリ樹脂層とセカンダリ樹脂層の内側(一層目のセカンダリ樹脂層)だけを最初に硬化する構成としているため、従来のセカンダリ樹脂層が1層しかない光ファイバと比較して、プライマリ樹脂層とセカンダリ樹脂層との間で樹脂が剥離しにくくなるといった顕著な効果が得られる。すなわち、従来のように、セカンダリ樹脂層が1層の場合は、プライマリ樹脂層とセカンダリ樹脂層の全体を同時に硬化させる際に、セカンダリ樹脂層の最外部から硬化されるため、硬化に伴う収縮でプライマリ樹脂層とセカンダリ樹脂層の内部に応力が残りやすい。一方、一次塗布工程においてセカンダリ樹脂層をプライマリ樹脂層の周囲に薄く塗布してプライマリ樹脂層とこの一層目のセカンダリ樹脂層を硬化させてから二次塗布工程において一層目のセカンダリ樹脂層の周囲に二層目のセカンダリ樹脂層を塗布および硬化させる構成を備えた本実施形態では、一層目のセカンダリ樹脂層の厚みが従来よりも薄いため、一次塗布工程における硬化時のセカンダリ樹脂層の収縮が少なくなり、プライマリ樹脂層および一層目のセカンダリ樹脂層の内部に応力が残りにくい。また、二次塗布工程において二層目のセカンダリ樹脂層を硬化させる際は既にプライマリ樹脂層と一層目のセカンダリ樹脂層は硬化されているため影響を受けにくい。従って、プライマリ樹脂層およびセカンダリ樹脂層の内部に応力が残りにくくなる。さらに、一層目のセカンダリ樹脂層には、3台の第一の紫外線照射装置10により紫外線が直接照射された後に、3台の第二の紫外線照射装置18から照射されて二層目のセカンダリ樹脂層を通過した紫外線も照射される。一方、二層目のセカンダリ樹脂層には3台の第二の紫外線照射装置18から紫外線が直接照射されるのみである。そのため、一層目のセカンダリ樹脂層は、二層目のセカンダリ樹脂層よりも紫外線照射量が多くなる。したがって、一層目のセカンダリ樹脂層は、二層目のセカンダリ樹脂層よりも硬くすることができ、従来のセカンダリ樹脂層が1層の光ファイバと比較してプライマリ樹脂層の変形を抑えることができる。これにより、樹脂が剥離しにくくなる効果や光ファイバG2の側圧による伝送損失増加が抑えられるといった効果を得ることができる。
 以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等に変更することができる。
 上記実施形態においては、第二の被覆塗布装置16で追加塗布される樹脂は第一の被覆塗布装置8で塗布されるセカンダリ樹脂と同一のものであったが、この例に限られない。第二の被覆塗布装置16で追加塗布される樹脂はセカンダリ樹脂と異なるもの、例えば識別用着色層として用いられる着色樹脂を塗布することができる。この構成によれば、光ファイバの線引き工程において、ガラスファイバの周囲に3層以上の被覆層を形成することができる。
 また、上記実施形態においては、第二の被覆塗布装置16はシングルダイを備えていたが、この例に限られない。第二の被覆塗布装置として、第一の被覆塗布装置8と同様に、同軸状に複数の孔部が設けられたデュアルダイを備える構成を採用してもよい。このようなデュアルダイ方式の第二の被覆塗布装置においては、一層目としてセカンダリ樹脂と同じ樹脂を塗布し、二層目としてセカンダリ樹脂とは異なる樹脂を塗布する構成とすることができる。二層目の樹脂としては、例えば上述の着色樹脂や、光コード等の最外被として用いられるセカンダリ樹脂よりも硬質の樹脂を塗布することができる。また、デュアルダイ方式の第二の被覆塗布装置において、一層目としてセカンダリ樹脂と異なる樹脂を塗布し、二層目として識別用着色樹脂を塗布する構成とすることもできる。
 また、第二の被覆塗布装置として、一層目の樹脂を被覆する塗布装置と、二層目の樹脂を被覆する塗布装置とが別個に設けられた、いわゆるタンデム方式を採用してもよい。すなわち、第二の被覆塗布装置において紫外線硬化型樹脂を追加塗布する方法は、第一の被覆塗布装置で塗布されたセカンダリ樹脂の周囲に一層目の樹脂を追加塗布して硬化させる第一追加塗布工程と、第一追加塗布工程で塗布された一層目の樹脂の周囲に二層目の樹脂をさらに追加塗布して硬化させる第二追加塗布工程とを備えた構成とすることができる。この場合、例えば、第一追加塗布工程では一層目としてセカンダリ樹脂(第一の被覆塗布装置で塗布されたセカンダリ樹脂の残りの部分)を塗布し、第二追加塗布工程では二層目としてセカンダリ樹脂と異なる着色樹脂を塗布することができる。この構成によっても、光ファイバの線引き工程において、ガラスファイバの周囲に3層以上の被覆層を形成することができる。
 例えば、第一のガイドローラ12から第二のガイドローラ14までの間に、追加の紫外線照射装置を設ける構成としてもよい。これにより、光ファイバG2の被覆層の未硬化をさらに確実に防止することができる。
 上記実施形態においては、加熱炉4の直下の第一のパスラインPL1と、第1パスラインPL1の下流側に設けられた第二のパスラインPL2とを備えているが、図3に示す光ファイバ製造装置100のように、さらに、第二のパスラインPL2の下流側に第三のパスラインPL3を備える構成としてもよい。図3においては、上記説明した二次塗布工程の後に、光ファイバG2の走行方向(向き)をガイドローラ20,114で変える工程と、第三の被覆塗布装置116により紫外線硬化型樹脂を追加塗布して第三の紫外線照射装置118により樹脂を硬化させる三次塗布工程を含んでいる。この構成によれば、例えば、一次塗布工程および二次塗布工程においてガラスファイバG1の周囲に最終的に塗布すべき樹脂のうち一部の樹脂を塗布および硬化した後で、三次塗布工程において残りの樹脂を塗布および硬化させることができる。これにより、各パスラインPL1~PL3において硬化させるべき樹脂の厚さを薄くすることができるため、光ファイバG2の線引き速度をさらに高速化することができる。
 本出願は、2015年11月4日出願の日本特許出願である特願2015-216394に基づく優先権を主張し、前記日本出願に記載されたすべての記載内容を援用するものである。
 1:光ファイバ製造装置
 2:線引きタワー
 4:加熱炉
 5:ヒータ
 6:冷却装置
 8:第一の被覆塗布装置
 10:第一の紫外線照射装置
 12:第一のガイドローラ
 14:第二のガイドローラ
 16:第二の被覆塗布装置
 18:第二の紫外線照射装置
 20:第三のガイドローラ
 22:キャプスタン
 24:巻き取りボビン
 G:光ファイバ母材
 G1:ガラスファイバ
 G2:光ファイバ
 PL1:第一のパスライン
 PL2:第二のパスライン
 PL3:第三のパスライン
 

Claims (11)

  1.  線引きされたガラスファイバに紫外線硬化型樹脂が被覆される光ファイバの製造方法であって、
     光ファイバ母材を加熱炉で加熱してガラスファイバを線引きして巻き取るまでの間に、
     前記紫外線硬化型樹脂が被覆される前の前記ガラスファイバを冷却する冷却工程と、
     冷却された前記ガラスファイバの周囲に紫外線硬化型のプライマリ樹脂を塗布し、前記プライマリ樹脂を硬化させる前に前記プライマリ樹脂の周囲に紫外線硬化型のセカンダリ樹脂を塗布し、前記プライマリ樹脂および前記セカンダリ樹脂を硬化させる一次塗布工程と、
     前記プライマリ樹脂および前記セカンダリ樹脂が被覆された光ファイバの走行方向をローラで変えた後で、前記セカンダリ樹脂の周囲に紫外線硬化型の樹脂を追加塗布して硬化させる二次塗布工程と、
     を備える、光ファイバの製造方法。
  2.  前記二次塗布工程で当該樹脂を追加塗布する方法は、前記一次塗布工程で塗布された前記セカンダリ樹脂の周囲に単一の被覆ダイにより一層の樹脂を塗布するシングルダイ方式であって、前記二次塗布工程で用いられる樹脂は前記セカンダリ樹脂である、請求項1に記載の光ファイバの製造方法。
  3.  前記二次塗布工程で当該樹脂を追加塗布する方法は、前記一次塗布工程で塗布された前記セカンダリ樹脂の周囲に単一の被覆ダイにより一層の樹脂を塗布するシングルダイ方式であって、前記二次塗布工程で用いられる樹脂は前記セカンダリ樹脂と異なるものである、請求項1に記載の光ファイバの製造方法。
  4.  前記二次塗布工程で当該樹脂を追加塗布する方法は、前記一次塗布工程で塗布された前記セカンダリ樹脂の周囲に複数の被覆ダイにより少なくとも二層の樹脂を塗布するデュアルダイ方式である、請求項1に記載の光ファイバの製造方法。
  5.  前記二次塗布工程で当該樹脂を追加塗布する方法は、前記一次塗布工程で塗布された前記セカンダリ樹脂の周囲に樹脂を追加塗布する第一追加塗布工程と、前記第一追加塗布工程で塗布された前記樹脂の周囲に樹脂をさらに追加塗布する第二追加塗布工程とを備えたタンデム方式である、請求項1に記載の光ファイバの製造方法。
  6.  前記第二追加塗布工程で塗布される樹脂は、前記セカンダリ樹脂とは異なる樹脂である、請求項5に記載の光ファイバの製造方法。
  7.  前記二次塗布工程における、一層目の樹脂は前記セカンダリ樹脂であって、二層目の樹脂は着色層を構成する着色樹脂である、請求項4または請求項5に記載の光ファイバの製造方法。
  8.  さらに、
     前記二次塗布工程の後に、前記光ファイバの向きをローラで変える工程と、
     前記二次塗布工程で塗布された樹脂の周囲に紫外線硬化型の樹脂を追加塗布して硬化させる三次塗布工程を含む、請求項1に記載の光ファイバの製造方法。
  9.  線引きされたガラスファイバに紫外線硬化型樹脂が被覆される光ファイバの製造装置であって、
     光ファイバ母材を加熱して軟化させる加熱炉と、
     軟化された前記光ファイバ母材から線引きされたガラスファイバを冷却する冷却装置と、
     冷却された前記ガラスファイバの周囲に紫外線硬化型のプライマリ樹脂およびセカンダリ樹脂を塗布する一次塗布装置と、
     前記ガラスファイバに塗布された前記プライマリ樹脂およびセカンダリ樹脂を硬化させる一次紫外線照射装置と、
     前記プライマリ樹脂および前記セカンダリ樹脂が硬化された前記光ファイバの走行方向を変えるローラと、
     前記ローラで走行方向が変えられた前記光ファイバの周囲に紫外線硬化型の樹脂を追加塗布する二次塗布装置と、
     前記二次塗布装置により塗布された樹脂を硬化させる二次紫外線照射装置と、を備える、光ファイバの製造装置。
  10.  ガラスファイバと、
     前記ガラスファイバの周囲に被覆されている一層の紫外線硬化型のプライマリ樹脂層と、
     前記プライマリ樹脂層の周囲に被覆されている複数層の紫外線硬化型のセカンダリ樹脂層と、を備えている、光ファイバ。
  11.  前記プライマリ樹脂層と前記セカンダリ樹脂層を合わせた被覆厚が、27.5μm以上50μm未満である、請求項10に記載の光ファイバ。
PCT/JP2016/081462 2015-11-04 2016-10-24 光ファイバの製造方法、光ファイバの製造装置、および光ファイバ WO2017077895A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017527002A JPWO2017077895A1 (ja) 2015-11-04 2016-10-24 光ファイバの製造方法、光ファイバの製造装置、および光ファイバ
RU2018116645A RU2018116645A (ru) 2015-11-04 2016-10-24 Способ изготовления оптического волокна, устройство для изготовления оптического волокна и оптическое волокно
CN201680064227.XA CN108349797A (zh) 2015-11-04 2016-10-24 光纤的制造方法、光纤的制造装置及光纤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015216394 2015-11-04
JP2015-216394 2015-11-04

Publications (1)

Publication Number Publication Date
WO2017077895A1 true WO2017077895A1 (ja) 2017-05-11

Family

ID=58662575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081462 WO2017077895A1 (ja) 2015-11-04 2016-10-24 光ファイバの製造方法、光ファイバの製造装置、および光ファイバ

Country Status (4)

Country Link
JP (1) JPWO2017077895A1 (ja)
CN (1) CN108349797A (ja)
RU (1) RU2018116645A (ja)
WO (1) WO2017077895A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019064853A (ja) * 2017-09-29 2019-04-25 株式会社フジクラ 光ファイバ素線の製造方法及び製造装置
US11306025B2 (en) * 2017-04-10 2022-04-19 Fujikura Ltd. Manufacturing method of optical fiber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7419670B2 (ja) * 2019-05-23 2024-01-23 住友電気工業株式会社 光ファイバの製造方法、および光ファイバの製造装置
JP7159974B2 (ja) * 2019-05-23 2022-10-25 住友電気工業株式会社 光ファイバの製造方法、および光ファイバの製造装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274639A (ja) * 1987-04-30 1988-11-11 Showa Electric Wire & Cable Co Ltd 光フアイバの製造方法
JPH0264041A (ja) * 1988-08-30 1990-03-05 Fujikura Ltd 光ファイバの被覆装置
JPH11116283A (ja) * 1997-10-14 1999-04-27 Furukawa Electric Co Ltd:The 被覆光ファイバの製造方法
JP2005162502A (ja) * 2003-11-28 2005-06-23 Sumitomo Electric Ind Ltd 被覆線条体の製造方法
JP2005320191A (ja) * 2004-05-07 2005-11-17 Fujikura Ltd 光ファイバ素線の製造方法、光ファイバ素線の製造装置
JP2010117526A (ja) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd 紫外線照射装置及び光ファイバの被覆形成方法
JP2012167012A (ja) * 2012-04-12 2012-09-06 Fujikura Ltd 光ファイバ紡糸装置及びその方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804442B1 (en) * 2002-06-07 2004-10-12 Fujikura Ltd. Optical fiber and optical fiber cable having a first jacket layer and a second jacket layer and a coefficient of thermal expansion selecting method
EP2146233B1 (en) * 2007-05-08 2020-11-04 The Furukawa Electric Co., Ltd. Process for producing optical fiber and optical fiber producing apparatus
CN102584000A (zh) * 2012-02-28 2012-07-18 南京烽火藤仓光通信有限公司 一种可窗口化剥离光纤带的光纤制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274639A (ja) * 1987-04-30 1988-11-11 Showa Electric Wire & Cable Co Ltd 光フアイバの製造方法
JPH0264041A (ja) * 1988-08-30 1990-03-05 Fujikura Ltd 光ファイバの被覆装置
JPH11116283A (ja) * 1997-10-14 1999-04-27 Furukawa Electric Co Ltd:The 被覆光ファイバの製造方法
JP2005162502A (ja) * 2003-11-28 2005-06-23 Sumitomo Electric Ind Ltd 被覆線条体の製造方法
JP2005320191A (ja) * 2004-05-07 2005-11-17 Fujikura Ltd 光ファイバ素線の製造方法、光ファイバ素線の製造装置
JP2010117526A (ja) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd 紫外線照射装置及び光ファイバの被覆形成方法
JP2012167012A (ja) * 2012-04-12 2012-09-06 Fujikura Ltd 光ファイバ紡糸装置及びその方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11306025B2 (en) * 2017-04-10 2022-04-19 Fujikura Ltd. Manufacturing method of optical fiber
JP2019064853A (ja) * 2017-09-29 2019-04-25 株式会社フジクラ 光ファイバ素線の製造方法及び製造装置

Also Published As

Publication number Publication date
CN108349797A (zh) 2018-07-31
JPWO2017077895A1 (ja) 2018-08-23
RU2018116645A (ru) 2019-12-04

Similar Documents

Publication Publication Date Title
WO2017077895A1 (ja) 光ファイバの製造方法、光ファイバの製造装置、および光ファイバ
US20200189958A1 (en) Manufacturing method of optical fiber
KR20100097653A (ko) 광섬유 제조 과정 및 이에 의해 획득한 광섬유
US11846407B2 (en) Bare optical fiber manufacturing method
WO2011155570A1 (ja) 光ファイバ素線の製造方法及び製造装置
CN114265162A (zh) 一种柔性光纤带及其制造设备和制造方法
JP2635475B2 (ja) 光ファイバの被覆形成方法
JP6457579B2 (ja) 光ファイバの製造方法
KR20030089422A (ko) 광 파이버의 드로잉 방법 및 그 장치
WO2019111626A1 (ja) 光ファイバ素線の製造方法及び製造装置
JP2006330234A (ja) プラスチック光ファイバテープ心線の製造方法及び製造装置
WO2023248944A1 (ja) 光ファイバの製造方法
JP7347185B2 (ja) 光ファイバの製造方法
JP2023083734A (ja) 光ファイバの製造方法
JPS615211A (ja) 光テ−プ型ユニツトの製造方法
JP3952169B2 (ja) テープ状光ファイバ心線の製造装置,製造方法
JPH01167264A (ja) 光ファイバの被覆方法
JP2002029785A (ja) 被覆光ファイバ及びその製造方法
JP2006178003A (ja) 分割型光ファイバテープ心線の製造方法及び製造装置
JP2023128451A (ja) 光ファイバの製造方法、及び光ファイバの製造装置
JPH11116283A (ja) 被覆光ファイバの製造方法
JP5535057B2 (ja) 被覆光ファイバの製造方法
JP2008241779A (ja) 高分子光導波路とその製造方法
JPS60235748A (ja) 光ファイバ−の被覆方法
JPH09301744A (ja) 被覆光ファイバの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017527002

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018116645

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 16861958

Country of ref document: EP

Kind code of ref document: A1