WO2011155570A1 - 光ファイバ素線の製造方法及び製造装置 - Google Patents

光ファイバ素線の製造方法及び製造装置 Download PDF

Info

Publication number
WO2011155570A1
WO2011155570A1 PCT/JP2011/063273 JP2011063273W WO2011155570A1 WO 2011155570 A1 WO2011155570 A1 WO 2011155570A1 JP 2011063273 W JP2011063273 W JP 2011063273W WO 2011155570 A1 WO2011155570 A1 WO 2011155570A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
coating layer
layer
curing
outer periphery
Prior art date
Application number
PCT/JP2011/063273
Other languages
English (en)
French (fr)
Inventor
健志 岡田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN201180005208.7A priority Critical patent/CN102686529B/zh
Priority to JP2012519429A priority patent/JP5417531B2/ja
Publication of WO2011155570A1 publication Critical patent/WO2011155570A1/ja
Priority to US13/706,587 priority patent/US9096464B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/03Drawing means, e.g. drawing drums ; Traction or tensioning devices
    • C03B37/032Drawing means, e.g. drawing drums ; Traction or tensioning devices for glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/105Organic claddings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/06Rotating the fibre fibre about its longitudinal axis

Definitions

  • the present invention relates to a method and an apparatus for manufacturing an optical fiber.
  • FIG. 7 is a schematic diagram illustrating a schematic configuration of an optical fiber manufacturing apparatus used in a conventional optical fiber manufacturing method.
  • an optical fiber preform 101 containing silica glass as a main component is accommodated in a spinning furnace 102, and in an inert gas atmosphere such as argon (Ar) or helium (He).
  • an inert gas atmosphere such as argon (Ar) or helium (He).
  • the tip portion of the optical fiber preform 101 is heated to about 2000 ° C. at a high temperature and melt-spun to form the bare optical fiber 103.
  • the bare optical fiber 103 is fed into the cooling cylinder 104.
  • a cooling gas such as helium or nitrogen gas is supplied into the cooling cylinder 104, and the optical fiber bare wire 103 is rapidly cooled to a temperature suitable for forming a primary coating layer in the next process.
  • the bare optical fiber 103 cooled by the cooling cylinder 104 is covered with a primary coating layer made of an ultraviolet curable resin or the like by a coating material coating apparatus 105 and a UV lamp 106 for forming a primary coating layer.
  • the bare optical fiber 103 provided with the primary coating layer is coated with a secondary coating layer made of an ultraviolet curable resin or the like by the coating material coating device 107 and the UV lamp 108 for forming the secondary coating layer.
  • a fiber strand 109 is formed.
  • optical fiber 109 being spun is twisted by the twisting device 110 and then turned in the other direction by the turn pulley 111, wound around the take-up drum 114 through the take-up machine 112 and the dancer roll 113. Taken.
  • the optical fiber bare wire 103 is provided while twisting the heating and melting portion of the optical fiber preform 101 (the lower end portion of the optical fiber preform 101) by providing a twist device 110 and twisting the optical fiber 109. Is melt-spun.
  • the twist applied to the optical fiber 109 being spun by the twisting device 110 is transmitted to the heating and melting part of the optical fiber preform 101. Therefore, the optical fiber bare wire 103 is melt-spun while twisting is applied to the heating and melting portion of the optical fiber preform 101. Accordingly, the twist is fixed to the bare optical fiber 103 after spinning.
  • a take-up capstan in which an optical fiber is gripped by a capstan wheel and a capstan belt is generally used (for example, Patent Document 2 below). reference).
  • Patent Document 2 a take-up capstan in which an optical fiber is gripped by a capstan wheel and a capstan belt.
  • the coating layer may be damaged, and the coating layer may be deformed, the primary coating layer may be separated from the glass interface, and the primary coating layer may be cracked. Therefore, the damage to the optical fiber strand coating layer is reduced by adjusting the gripping pressure, tensile strength, surface roughness, and level difference to the optimum ranges.
  • the height of the drawing device is limited, so the cooling zone, coating zone, UV curing zone, twisting device zone, take-up capstan zone, etc. can be efficiently used in a limited space. Need to be placed in. For this reason, a twisting device zone must be installed immediately below the UV curing zone, or a sufficient distance between the UV curing zone and the take-up capstan may not be ensured.
  • the temperature of the coating layer of the optical fiber at the installation position of the twisting device and the position of the take-up capstan is increased.
  • the Young's modulus of the coating layer is lowered, and the coating layer is more likely to be deformed than in the past.
  • the deformation of the optical fiber coating becomes large, and in some cases, the peeling that peels off the interface between the primary coating layer and the glass, There arises a problem that the primary coating layer breaks.
  • the present invention has been devised in view of such a conventional situation, and can prevent deformation and peeling of the coating layer without slowing the drawing speed, and a highly reliable optical fiber. It is a first object to provide a method for manufacturing an optical fiber that can be efficiently manufactured. In addition, the present invention can prevent deformation and peeling of the coating layer without complicating the apparatus or slowing the drawing speed, and can efficiently manufacture a highly reliable optical fiber.
  • a second object of the present invention is to provide an optical fiber manufacturing apparatus.
  • an optical fiber preform is melt-spun to form an optical fiber bare wire (step A); an outer periphery of the optical fiber bare wire is made of a resin.
  • An optical fiber strand intermediate is formed by providing a coating layer (step B); the coating layer forming the optical fiber strand intermediate is primarily cured (step C); the outer periphery of the optical fiber strand intermediate (Step D); the pressed coating layer of the optical fiber intermediate is secondarily cured (step E).
  • the primary cured coating layer is used to press the outer periphery.
  • the pair of twisting rollers is translated or oscillated to twist the optical fiber strand intermediate body. May be added.
  • the capstan wheel and the capstan belt are used to press the outer periphery. You may hold
  • the primary cured coating layer is used to press the outer periphery.
  • the pair of twisting rollers With at least a pair of twisting rollers in contact with a part of the outer periphery of the optical fiber strand intermediate body, the pair of twisting rollers is translated or oscillated to twist the optical fiber strand intermediate body.
  • the optical fiber intermediate body may be gripped and pulled using a capstan wheel and a capstan belt.
  • the coating layer in forming the optical fiber intermediate (step B) is disposed in contact with the bare optical fiber.
  • a first layer and a second layer disposed on the first layer, wherein the Young's modulus of the resin forming the second layer is higher than the Young's modulus of the resin forming the first layer May be adopted.
  • the coating layer when the coating layer forms a two-layer structure including the first layer and the second layer, the first layer is formed.
  • the coating layer may be primarily cured after and after forming the second layer (step C).
  • An apparatus for manufacturing an optical fiber according to a second aspect of the present invention includes: a spinning unit that melt-spins an optical fiber preform to form a bare optical fiber; and a coating made of resin on an outer periphery of the bare optical fiber A coating portion for forming an optical fiber strand intermediate by providing a layer; a first curing portion for primarily curing the coating layer forming the optical fiber strand intermediate; and an outer periphery of the optical fiber strand intermediate; A pressing portion that presses; a second curing portion that secondarily cures the pressed coating layer of the optical fiber intermediate body.
  • At least a pair of the pressing portions are disposed on a part of the outer periphery of the optical fiber intermediate through the primary-cured coating layer.
  • the pair of twisting rollers may be translated or oscillated in a state where the twisting rollers are in contact with each other, and a twisting portion for twisting the optical fiber intermediate body may be provided.
  • the pressing portion grips and pulls the optical fiber intermediate body using a capstan wheel and a capstan belt. May be provided.
  • At least a pair of the pressing portions are disposed on a part of the outer periphery of the optical fiber intermediate through the primary-cured coating layer.
  • a twisted portion that translates or swings the pair of twisted rollers in a state where the twisted rollers of the optical fiber are in contact with each other to twist the optical fiber intermediate body; using a capstan wheel and a capstan belt
  • a take-off portion that holds and pulls the optical fiber strand intermediate body.
  • the coating layer made of resin provided on the outer periphery of the bare optical fiber is primarily cured to form an optical fiber intermediate
  • the outer periphery of the optical fiber intermediate is pressed through the primary-cured coating layer.
  • the coated layer of the pressed optical fiber strand intermediate body is secondarily cured to form an optical fiber strand.
  • the coating layer can be prevented from being deformed or peeled off without slowing the drawing speed, and a highly reliable optical fiber. Can be manufactured efficiently.
  • a primary curing portion that primarily cures the coating material to form an optical fiber strand intermediate having a coating layer, and the coating layer
  • a pressing portion that presses the outer periphery of the optical fiber strand intermediate body, and a secondary curing portion that forms the optical fiber strand by secondarily curing the coating layer after pressing the optical fiber strand intermediate body.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an optical fiber manufacturing apparatus 1A (1) according to an embodiment of the present invention.
  • An apparatus 1 for manufacturing an optical fiber 5 according to this embodiment includes a spinning unit 10 that melts and spins an optical fiber preform 2 to form an optical fiber bare wire 3, and a coating material on the outer periphery of the optical fiber bare wire 3.
  • An optical fiber strand intermediate 4 ⁇ provided with a coating layer by first curing a coating portion 30 to be coated to form an optical fiber strand intermediate 4 ⁇ (4) and a coating material of the optical fiber strand intermediate 4 ⁇ (4).
  • the manufacturing apparatus 1 for the optical fiber 4 according to this embodiment can prevent deformation and peeling of the coating layer without complicating the apparatus and slowing the drawing speed, and is highly reliable. An optical fiber can be efficiently manufactured.
  • the spinning unit 10 includes a heating furnace 11 and melt-spins the optical fiber preform 2 to form a bare optical fiber 3.
  • the spinning unit 10 manufactures an optical fiber by lowering a quartz glass rod called an optical fiber preform 2 suspended in a drawing furnace while the tip is heated and melted by a heating furnace 11 and then drawn.
  • the bare optical fiber 3 drawn out of the spinning furnace is cooled by the cooling unit 20.
  • the coating unit 30 coats the outer periphery of the bare optical fiber 3 to form an optical fiber intermediate 4 ⁇ (4).
  • the cooled optical fiber is coated with a resin at the coating unit 30 for the purpose of protecting the bare optical fiber 3.
  • the resin coating is a two-layer coating, in which a material for a primary coating layer having a low Young's modulus is applied on the inside, and a material for a secondary coating layer having a quotient of Young's modulus is applied on the outside.
  • Many of the materials used are ultraviolet curable resins and are cured by a UV lamp.
  • the coating method includes a method in which the primary coating layer and the secondary coating layer are separately applied and cured, and a method in which the primary coating layer and the secondary coating layer are simultaneously applied and cured in a lump.
  • the case where the primary coating layer and the secondary coating layer are applied simultaneously is mentioned, but the present invention is not limited to this configuration.
  • the primary curing unit 40 includes a UV lamp 41 and primarily cures the coating material of the optical fiber strand intermediate 4 ⁇ (4) to form the optical fiber strand intermediate 4 ⁇ (4).
  • a UV lamp 41 for example, four pairs of UV lamps are arranged along the longitudinal direction so as to sandwich the optical fiber strand intermediate 4 ⁇ (4).
  • the pressing portion presses the outer periphery of the optical fiber strand intermediate 4 ⁇ (4) through the coating layer to form the optical fiber strand intermediate 4 ⁇ (4).
  • the pressing portion is a pair of twisted rollers in a state where at least a pair of twisting rollers are in contact with a part of the outer periphery of the optical fiber intermediate body 4 ⁇ (4) through the primary-cured coating layer.
  • the twisted portion 50 for twisting the optical fiber strand intermediate 4 ⁇ (4) by moving the roller in translation or swinging motion and / or using the capstan wheel and capstan belt the optical fiber strand intermediate is used.
  • a take-up unit 60 is provided that holds and takes 4 ⁇ (4).
  • the twisted portion 50 is generally used for the purpose of reducing polarization mode dispersion (PMD), which is a characteristic of an optical fiber.
  • PMD polarization mode dispersion
  • a countermeasure for example, a method other than adding twist for PMD reduction
  • the take-up portion 60 is only the capstan wheel 61, the optical fiber strand intermediate body 4 ⁇ (4) is not pressed and is not included in the pressing portion.
  • the twisting portion 50 includes at least a pair of twisting rollers 51 and 51 that abut on a part of the outer periphery of the optical fiber strand intermediate 4 ⁇ (4) being spun, and the pair of twisting rollers 51 and 51 translate.
  • a device having a mechanism or a device having a mechanism in which the pair of twisting rollers 51 and 51 swing is used.
  • twisting part 50 having a mechanism in which the pair of twisting rollers move in translation
  • a pair of twisting rollers 51, 51 are pressed between the peripheral curved surfaces of the pair of rotating twisting rollers 51, 51 while pressing the optical fiber strand intermediate body 4 ⁇ (4).
  • the optical fiber strand intermediate 4 ⁇ (4) is moved back and forth in a direction substantially perpendicular to the spinning direction between the peripheral curved surfaces of the pair of twisting rollers 51, 51.
  • the twisted portion 50 includes at least a pair of twisted rollers 51 and 51 that contact a part of the outer periphery of the optical fiber strand intermediate 4 ⁇ (4) being spun, and a support portion (not shown) that supports them. ).
  • the twisting rollers 51 and 51 are arranged so as to sandwich the optical fiber strand intermediate 4 ⁇ (4), and the longitudinal direction thereof is arranged so as to be substantially perpendicular to the spinning direction of the optical fiber strand 4.
  • the twisting roller 51 is rotatable around a central axis that is integral with the twisting roller 51. Further, the twisting roller 51 is capable of translational movement in a direction perpendicular to the spinning direction of the optical fiber 4 along with the central axis.
  • the twisting rollers 51 and 51 are in contact with a part of the outer periphery of the optical fiber intermediate body 4 ⁇ (4) being spun while rotating in the direction of the arrow in the figure about the central axis, and the optical fiber 4.
  • a torque is applied to the optical fiber strand intermediate 4 ⁇ (4) by periodically translating in a direction perpendicular to the spinning direction 4.
  • Spinning is performed by the torque applied to the optical fiber intermediate body 4 ⁇ (4) and the friction between the surface of the twisting rollers 51 and 51 and the coating layer (outer periphery) of the optical fiber intermediate body 4 ⁇ (4). Twisting is applied to the optical fiber strand intermediate 4 ⁇ (4).
  • a twisted optical fiber strand intermediate 4 ⁇ (4) is obtained.
  • the twisted portion 50 As an example of the twisted portion 50 having a mechanism in which the pair of twisted rollers 51, 51 swings, for example, light is transmitted between the circumferential curved surfaces of the pair of rotating twisted rollers 51, 51. While the fiber strand intermediate 4 ⁇ (4) is pressed, the pair of twisting rollers 51, 51 are periodically inclined in different directions and obliquely with respect to the spinning direction, whereby the optical fiber strand intermediate 4 ⁇ (4 ), A device that applies torque by adding a twist that pivots about its longitudinal direction as an axis.
  • twisting part 50 having a mechanism in which the twisting roller swings
  • the rotating twisting rollers 51 and 51 and the optical fiber strand intermediate 4 ⁇ (4) are in contact with each other, and the optical fiber strand intermediate
  • the body 4 ⁇ (4) is periodically swung in the direction parallel to the spinning direction (swinging motion), thereby rotating with respect to the optical fiber intermediate body 4 ⁇ (4) periodically about the longitudinal direction.
  • An apparatus for applying torque by applying twist is cited.
  • the optical fiber strand intermediate body 4 ⁇ (4) on which the covering layer is formed and twisted by the twisted portion 50 that is the pressing portion is turned by the pulley 81, and the capstan wheel 61 that is another pressing portion.
  • the take-up capstan 61 rotates at a high speed, and the drawing speed is determined here.
  • the take-up capstan 61 rotates at a speed corresponding to, for example, 2000 m / min or 1500 m / min.
  • a take-up capstan that presses the optical fiber intermediate body 4 ⁇ (4) with a capstan belt against a capstan wheel as shown in Japanese Patent Laid-Open No. 9-227171 is adopted. can do.
  • the pulley 81 or the like that does not press the optical fiber intermediate 4 ⁇ (4) and only changes the traveling direction does not sandwich the optical fiber intermediate 4 ⁇ (4). Since damage to the coating layer of 4 ⁇ (4) is extremely small and deformation, peeling and cracking of the coating layer do not occur, it is not included in the pressing portion in this embodiment.
  • the secondary curing unit 70 forms the optical fiber 5 by secondarily curing the coating layer of the optical fiber intermediate 4 ⁇ (4) further pressed by the UV lamp and the take-up unit 60. Deformation of the coating layer caused by pressing against the coating layer after primary curing, peeling of the coating layer from the glass surface, and cracking of the coating layer are repaired during secondary curing. This is due to a synergistic effect that the curing reaction further proceeds during the secondary curing, the molecular network extends, and the temperature of the coating material rises locally due to the exothermic reaction due to the curing and becomes the glass transition temperature or higher. This is because peeling and cracking that occurred during the primary curing are repaired.
  • the winding unit 90 winds the optical fiber 5 taken up at high speed by the winding drum 91.
  • a device dancer pulley 80 that absorbs and corrects the difference between the rotational speed of the take-up speed and the take-up speed is generally arranged in the middle of this path.
  • the present method is applied only to the twisted portion 50 by line arrangement, or for an apparatus that does not use the twisted portion 50, it may be applied only to the take-up portion 60, or the twisted portion 50, the take-off portion. You may apply including both 60. More desirably, the present invention is applied to both the twisted portion 50 and the take-up portion 60.
  • the manufacturing apparatus 1B (1) shown in FIG. 2 includes a primary coating layer application unit 31 for applying a primary coating layer and a secondary coating layer application unit 33 for applying a secondary coating layer.
  • a primary coating layer curing unit 32 including a primary coating layer curing UV lamp is disposed between the primary coating layer coating unit 31 and the secondary coating layer coating unit 33.
  • the primary curing portion 40 of the optical fiber strand intermediate 4 ⁇ (4) includes the four pairs of UV lamps 41 arranged along the longitudinal direction has been described as an example.
  • the present invention is not limited to this, and the number of UV lamps can be changed as appropriate.
  • the manufacturing apparatus 1B (1) shown in FIG. 2 includes three UV lamps arranged along the longitudinal direction.
  • the manufacturing apparatus 1B shown in FIG. 2 includes only the twisted portion 50 as the pressing portion.
  • the manufacturing apparatus 1C (1) shown in FIG. 3 only the take-up part is provided as the pressing part.
  • the optical fiber preform 2 is melt-spun to form the optical fiber bare wire 3, and a coating material is applied to the outer periphery of the optical fiber bare wire 3 to apply light.
  • Step C of forming Step C of forming, Step D of pressing the outer periphery of the optical fiber strand intermediate 4 ⁇ (4) through the coating layer to form the optical fiber strand intermediate 4 ⁇ (4), and the optical fiber strand And a step E of forming the optical fiber 5 by secondarily curing the coating layer of the wire intermediate 4 ⁇ (4).
  • the coating layer can be prevented from being deformed or peeled off without slowing the drawing speed, and the highly reliable optical fiber 5 is efficiently manufactured. Is possible.
  • it demonstrates in order of a process.
  • the optical fiber preform 2 is melt-spun to form a bare optical fiber 3 (step A).
  • the optical fiber preform 2 mainly composed of silica glass is suspended in the heating furnace 11 of the melt spinning section 10 so as to be movable in the axial direction, and an inert gas such as argon (Ar) or helium (He).
  • Ar argon
  • He helium
  • the lower end portion is heated to about 2000 ° C. at a high temperature, and then the optical fiber is drawn to form the bare optical fiber 3 (melt spinning).
  • the manufacturing method of the optical fiber preform 2 includes a gas phase axis method (VAD method), an external method (OVD method), an internal method (CVD method, MCVD method, PCVD method), a rod-in-tube method, and the like.
  • VAD method gas phase axis method
  • OLED method external method
  • CVD method internal method
  • MCVD method MCVD method
  • PCVD method PCVD method
  • rod-in-tube method a rod-in-tube method
  • the drawn optical fiber bare wire 3 is sent into the cooling unit 20.
  • a cooling gas such as helium or nitrogen gas is supplied into the cooling unit 20, and the optical fiber bare wire 3 is rapidly cooled to a temperature suitable for application of the coating material in the next process.
  • a coating material is applied to the outer periphery of the bare optical fiber 3 to obtain an optical fiber intermediate 4 ⁇ (4) (step B).
  • the bare optical fiber 3 cooled in the cooling unit 20 is coated (coated) with an ultraviolet curable resin so as to cover the outer periphery of the coating layer forming coating unit 30.
  • the resin coating is a two-layer coating, in which a primary material having a low Young's modulus is applied on the inside, and a secondary material having a Young's modulus is applied on the outside.
  • the coating layer coated with two layers is composed of a first layer disposed in contact with the bare optical fiber 3 and a second layer disposed on the first layer.
  • the application method includes a method in which the first layer (primary coating layer) and the second layer (secondary coating layer) are separately applied and cured, and a method in which the first layer is simultaneously applied and simultaneously cured,
  • the invention is not limited only to these methods.
  • the coating material of the optical fiber strand intermediate 4 ⁇ (4) is primarily cured to form the optical fiber strand intermediate 4 ⁇ (4) (step C).
  • the optical fiber 4 ⁇ (4) on which the coating layer is formed is sent to the primary curing unit 40, and is cured (temporarily cured) by the ultraviolet rays irradiated from the UV lamp 41 included in the primary curing unit 40.
  • a primary-cured coating layer is formed.
  • an optical fiber intermediate 4 ⁇ (4) having a primary-cured coating layer is obtained.
  • the degree of cure of the coating layer formed by primary curing is desirably a gel fraction of 70% to 90%, which is an evaluation method for evaluating the degree of cure of a general coating material.
  • the degree of cure is less than 70%, the curing is insufficient, so that unreacted coating material may adhere to the pressing part (twisted part 50, take-up part 60) in the subsequent process, and the torsional torque caused by the twisted part 50 There is a risk that the number of twists may be reduced due to being hardly transmitted to the bare optical fiber 3.
  • the degree of cure is greater than 90%, since there is little unreacted component, a sufficient repair effect cannot be obtained when the deformation, peeling, and cracking generated in the primary coating layer in the pressing step are repaired by secondary curing.
  • step D The outer periphery of the optical fiber intermediate body 4 ⁇ (4) is pressed through the primary cured coating layer to form the optical fiber intermediate body 4 ⁇ (4) (step D).
  • This process D is a twisting process for twisting the optical fiber strand intermediate 4 ⁇ (4) and / or a take-up process for gripping and pulling the optical fiber strand intermediate 4 ⁇ (4).
  • twisting rollers 51 and 51 are in contact with a part of the outer periphery of the optical fiber intermediate body 4 ⁇ (4) via the primary-cured coating layer.
  • the twisting rollers 51, 51 are translated or oscillated to twist the optical fiber intermediate body 4 ⁇ (4).
  • the moving direction of the pair of twisting rollers 51, 51 is periodically changed.
  • the optical fiber strand intermediate 4 ⁇ (4) is rolled back and forth between the peripheral curved surfaces of the pair of twisting rollers 51, 51 by being reversed or the like, in a direction substantially perpendicular to the spinning direction. Torque is applied by periodically applying a twist that turns about the spinning direction as an axis to (4).
  • Spinning is performed by the torque applied to the optical fiber intermediate body 4 ⁇ (4) and the friction between the surface of the twisting rollers 51 and 51 and the coating layer (outer periphery) of the optical fiber intermediate body 4 ⁇ (4). Twisting is applied to the optical fiber strand intermediate 4 ⁇ (4).
  • the capstan wheel 61 and the capstan belt 62 are used to grip and take the optical fiber intermediate body 4 ⁇ (4) that has undergone the twisting process. And the intermediate body sent out through this taking-out process is optical fiber strand intermediate body 4delta (4).
  • step E The coated layer of the taken optical fiber strand intermediate 4 ⁇ (4) is secondarily cured to form the optical fiber strand 5 (step E). Subsequently, the optical fiber strand intermediate 4 ⁇ (4) is sent to the secondary curing unit 70, and the coating layer is further cured (secondary curing) by ultraviolet rays irradiated from the secondary curing unit 70 (UV lamp). ), The optical fiber 5 is obtained. Deformation of the coating layer caused by pressing against the coating layer after primary curing, peeling of the coating layer from the glass surface, and cracking of the coating layer are repaired in secondary curing.
  • the gel fraction is preferably 85% or more. If the degree of cure is less than 85%, a lot of uncured components remain in the coating layer, and the uncured components react and become volatile components in the subsequent steps, for example, the coloring step and the tape forming step. Defects such as peeling between the coating layer, the colored layer, and the tape layer during drawing, and bumps that are minute changes in the outer diameter are likely to occur. Such a problem can be avoided by setting the gel fraction to 85% or more.
  • the direction of the optical fiber 5 is changed in another direction by the pulley 81, and is wound around the winding drum 91 in the winding portion 90 via the dancer pulley 80.
  • the coating layer is cured in two stages before and after the pressing step, so that the coating layer produced by pressing against the coating layer after the primary curing. Deformation, peeling of the coating layer and the glass surface, and cracking of the coating layer are repaired during secondary curing, and a good optical fiber is obtained.
  • the coating layer can be prevented from being deformed or peeled without complicating the apparatus or slowing the drawing speed, and the highly reliable optical fiber 5 is efficiently manufactured. be able to.
  • An optical fiber was manufactured using the manufacturing apparatus having the above-described configuration.
  • An optical fiber was produced using the manufacturing apparatus 1A (apparatus A) shown in FIG. Drawing was carried out at a drawing speed of 2500 m / min using an optical fiber preform having an outer diameter of 150 mm.
  • the coating layer was coated by simultaneously coating the first layer (primary coating layer) and the second layer (secondary coating layer) and curing them simultaneously.
  • the coating layer was primarily cured at a primary curing portion having a UV lamp, and then a twisting process and a take-up process using a capstan belt were performed. Thereafter, the coating layer was secondarily cured at a second curing portion having a UV lamp. Thereafter, drawing was performed for 500 km while passing an optical fiber through a dancer booley and winding it on a bobbin.
  • Example 2 An optical fiber was produced using the manufacturing apparatus 1A (apparatus A) shown in FIG. UV lamps in the primary and secondary cured portions so that the gel fraction after primary curing of the coating layer is 70% (separately prepared and evaluated) and the gel fraction after secondary curing is 80%. An optical fiber was produced in the same manner as in Experimental Example 1 except that the output was adjusted.
  • Example 3 An optical fiber was manufactured using the manufacturing apparatus 1B (apparatus B) shown in FIG. Drawing was performed at a drawing speed of 1500 m / min using an optical fiber preform having an outer diameter of 150 mm.
  • the coating of the coating layer was carried out by coating the first layer (primary coating layer) and the second layer (secondary coating layer) separately and curing them separately.
  • the coating layer was primarily cured at a primary curing portion having a UV lamp, and then a twisting process was performed. Thereafter, the coating layer was secondarily cured at a second curing portion having a UV lamp. Thereafter, the drawing was carried out for 500 km while passing the take-up capstan (without using a belt) and winding the optical fiber wire around the take-up bobbin.
  • Example 4 An optical fiber was manufactured using the manufacturing apparatus 1B (apparatus B) shown in FIG. An optical fiber was produced in the same manner as in Experimental Example 3 except that the drawing speed of the optical fiber preform was 2000 m / min.
  • Example 5 An optical fiber was manufactured using the manufacturing apparatus 1B (apparatus B) shown in FIG. UV lamps of the primary and secondary cured portions so that the gel fraction after primary curing of the coating layer is 60% (separately prepared and evaluated) and the gel fraction after secondary curing is 85%. An optical fiber was produced in the same manner as in Experimental Example 4 except that the output was adjusted.
  • An optical fiber was manufactured using the manufacturing apparatus 1C (apparatus C) shown in FIG. Drawing was performed at a drawing speed of 2000 m / min using an optical fiber preform having an outer diameter of 150 mm.
  • the coating layer was coated by simultaneously coating the first layer (primary coating layer) and the second layer (secondary coating layer) and curing them simultaneously.
  • the coating layer was primarily cured at a primary curing portion having a UV lamp, and then a take-up process using a capstan belt was performed. Thereafter, the coating layer was secondarily cured at a second curing portion having a UV lamp. Thereafter, drawing was performed for 500 km while passing an optical fiber through a dancer booley and winding it on a bobbin.
  • Example 7 An optical fiber was manufactured using the manufacturing apparatus 1C (apparatus C) shown in FIG. UV lamps in the primary and secondary cured parts so that the gel fraction after primary curing of the coating layer is 92% (separately prepared and evaluated) and the gel fraction after secondary curing is 95%. An optical fiber was produced in the same manner as in Experimental Example 6 except that the output was adjusted.
  • Example 8 An optical fiber was produced using the manufacturing apparatus D (apparatus D) shown in FIG. Drawing was performed at a drawing speed of 1500 m / min using an optical fiber preform having an outer diameter of 150 mm.
  • the coating of the coating layer was carried out by coating the first layer (primary coating layer) and the second layer (secondary coating layer) separately and curing them separately.
  • the coating layer was cured by a curing part having a UV lamp, and then a twisting process was performed. Thereafter, the drawing was performed for 500 km while passing the take-up capstan (no belt) and winding the optical fiber strand around the take-up bobbin.
  • Example 9 An optical fiber was produced using the manufacturing apparatus D (apparatus D) shown in FIG. In the manufacturing apparatus D, an optical fiber was produced in the same manner as in Experimental Example 8, except that one UV lamp in the curing portion was added.
  • An optical fiber was produced using the manufacturing apparatus E (apparatus E) shown in FIG. Drawing was performed at a drawing speed of 2000 m / min using an optical fiber preform having an outer diameter of 150 mm.
  • the coating layer was coated by simultaneously coating the first layer (primary coating layer) and the second layer (secondary coating layer) and curing them simultaneously.
  • the coating layer was cured by a curing part having a UV lamp, and then a twisting process and a take-up process using a capstan belt were performed. Thereafter, drawing was performed for 500 km while passing an optical fiber through a dancer booley and winding it on a bobbin.
  • An optical fiber was produced using the manufacturing apparatus F (apparatus F) shown in FIG. Drawing was carried out at a drawing speed of 2500 m / min using an optical fiber preform having an outer diameter of 150 mm.
  • the coating of the coating layer was carried out by coating the first layer (primary coating layer) and the second layer (secondary coating layer) separately and curing them separately.
  • the coating layer was primarily cured at a primary curing portion having a UV lamp, and then a take-up process using a capstan belt was performed. Thereafter, drawing was performed for 500 km while passing an optical fiber through a dancer booley and winding it on a bobbin.
  • the optical fiber strands drawn as described above in Experimental Examples 1 to 11 were cut every 50 km, samples were taken from the cut strands, gel fraction, and average of coating deformation Evaluation was made for the value and loss change at ⁇ 60 ° C.
  • the gel fraction of the coating layer is measured by immersing the coating layer in a methyl ethyl ketone (MEK) solvent at 60 ° C. for 16 hours, extracting the so-called uncured component, extracting the sample, and then measuring the sample coating weight (W).
  • MEK methyl ethyl ketone
  • the average value of the coating deformation was measured using PK2401 manufactured by photon kinetic.
  • PK2401 manufactured by photon kinetic.
  • the loss change at ⁇ 60 ° C. a 1000 m fiber was put into a free coil state, placed in a thermostatic bath, and the loss fluctuation at ⁇ 60 ° C. was compared using the normal temperature as a reference. If there is damage such as deformation, peeling or cracking of the coating material, the loss becomes microbend loss and the loss increases. Furthermore, peeling and cracking of the coating layer were observed using a microscope.
  • Table 1 shows the evaluation results for the optical fiber strands of Experimental Examples 1 to 11.
  • Experimental Examples 1 to 7 are examples in which secondary curing is performed, and Experimental Examples 8 to 11 are examples in which secondary curing is not performed.
  • the gel fractions after curing were 90%, 95%, 80%, and 70%, respectively, which correspond to the gel fractions after the primary curing in Experimental Examples 1 to 7.
  • Experimental Examples 8 to 11 are good optical fiber wires without breakage deformation, increased loss at low temperature, peeling, cracking, etc. ing. In addition, no adhesion of dirt to the pressing device was observed.
  • coating deformation, increased loss at low temperature, peeling, cracking, etc. were in a bad state. This indicates that the damage of the covering material occurs only by the primary curing, but the damage of the covering material is repaired by installing the secondary curing.
  • the gel fraction after primary curing was 60%. In this case, since the degree of curing was too low, uncured components and volatile components of the coating material adhered to the pressing device. However, the effect of repairing the damage of the covering material is obtained.
  • the gel fraction after primary curing was 92%. In this case, the gel fraction further increased to 95% by secondary curing, but the damage to the coating material due to pressing was not completely repaired, indicating that it remained.
  • the gel fraction after secondary curing was 80%. In this case, although the effect of repairing damage to the covering material due to pressing was obtained, a trouble occurred when proceeding to a subsequent process after drawing, coloring in the coloring process, and tape formation in the tape process.
  • the present invention can be widely applied to a method and an apparatus for manufacturing an optical fiber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

 この光ファイバ素線の製造方法は、光ファイバ母材を溶融紡糸して光ファイバ裸線を形成し;前記光ファイバ裸線の外周に樹脂からなる被覆層を設けて光ファイバ素線中間体を形成し;前記光ファイバ素線中間体を形成する前記被覆層を一次硬化させ;前記光ファイバ素線中間体の外周を押圧し;前記光ファイバ素線中間体の押圧された被覆層を二次硬化させる。

Description

光ファイバ素線の製造方法及び製造装置
 本発明は、光ファイバ素線の製造方法及び製造装置に関する。
 本願は、2010年6月11日に、日本に出願された特願2010-134387号に基づき優先権を主張し、その内容をここに援用する。
 一般に、光ファイバ素線は、以下のようにして製造されている。
 図7は、従来の光ファイバ素線の製造方法で用いられる光ファイバ素線の製造装置の概略構成を示す模式図である。
 光ファイバ素線の製造においては、まず、石英系ガラスを主成分とする光ファイバ母材101を紡糸炉102内に収容し、アルゴン(Ar)、ヘリウム(He)などの不活性ガス雰囲気中で、光ファイバ母材101の先端部分を約2000℃に高温加熱し、溶融紡糸して、光ファイバ裸線103を形成する。
 次いで、光ファイバ裸線103を冷却筒104内に送り込む。冷却筒104内には、ヘリウムや窒素ガスなどの冷却用ガスが供給されており、冷却筒104において光ファイバ裸線103を次工程の一次被覆層の形成に好適な温度に急冷する。
 次いで、冷却筒104で冷却された光ファイバ裸線103は、一次被覆層形成用の被覆材塗布装置105およびUVランプ106により、紫外線硬化型樹脂などからなる一次被覆層で被覆される。
 さらに、一次被覆層が設けられた光ファイバ裸線103は、二次被覆層形成用の被覆材塗布装置107およびUVランプ108により、紫外線硬化型樹脂などからなる二次被覆層で被覆され、光ファイバ素線109が形成される。
 さらに、紡糸中の光ファイバ素線109は、捻り装置110によって捻りが加えられた後、ターンプーリ111によって別方向に向きが変えられ、引取機112、ダンサーロール113を経て、巻取ドラム114に巻き取られる。
 近年、光ファイバ素線の製造において、光ファイバ素線の偏波モード分散(Polarization Mode Dispersion、以下「PMD」と略す。)を低減する目的から、上述のような光ファイバ素線の製造装置では、捻り装置110を設け、光ファイバ素線109に捻りを加えることにより、光ファイバ母材101の加熱溶融部(光ファイバ母材101の下端部)に捻りを付与しながら、光ファイバ裸線103を溶融紡糸している。
 捻り装置110によって、紡糸中の光ファイバ素線109に加えられた捻りは、光ファイバ母材101の加熱溶融部に伝わる。そのため、光ファイバ母材101の加熱溶融部に捻りが加えられながら、光ファイバ裸線103が溶融紡糸される。したがって、紡糸後の光ファイバ裸線103には捻りが固定される。
 従来、捻り装置で光ファイバ素線を捻る場合、例えば一対の捻りロ-ラにより光ファイバ素線を双方向から押圧して捻りトルクを与える。このような捻り装置において、捻りローラ間の距離を制御しながら、捻りを実施することで、光ファイバ素線の被覆層に与えるダメージを小さくして、ダメージが大きい場合に生じる被覆層の変形、一次被覆層とガラス界面の剥離、一次被覆層の割れを防止することが行われている(例えば、下記特許文献1参照)。
 また、引取りキャプスタンで光ファイバを引取る場合、一般的に、キャプスタンホイールとキャプスタンベルトで光ファイバ素線を把持するような引取りキャプスタンが使用される(例えば、下記特許文献2参照)。これにより、キャプスタンと光ファイバ素線とのすべりを防止する。しかしながら、把持条件によっては、被覆層にダメージを与え、被覆層の変形、一次被覆層とガラス界面の剥離、一次被覆層の割れが生じる。そのため、把持圧力、抗張力、表面粗さ、段差を最適範囲に調整することで、光ファイバ素線被覆層へのダメージを小さくすることが行われている。
 また、近年の光ファイバ素線の線引き速度の増加を受けて、UV樹脂材料自体の特性改良(硬化速度の向上など)や、光ファイバの線引き技術改良が行われている。
 しかしながら、従来の装置の改造による高速化対応の場合、線引き装置の高さ制限により、冷却ゾーンやコーティングゾーン、UV硬化ゾーン、捻り装置ゾーン、引取りキャプスタンゾーンなどを限られたスペースに効率的に配置する必要がある。このため、UV硬化ゾーンの直下に捻り装置ゾーンを設置しなければならない場合や、UV硬化ゾーンと引取りキャプスタンまでの距離を十分に確保できない場合が生じる。
 この結果、捻り装置の設置位置や引取りキャプスタンの位置における光ファイバ素線のコーティング層の温度が高くなる。それにより、被覆層のヤング率が低下し、従来以上にコーティング層の変形が生じやすくなる。
 その結果として、従来の捻り装置の押し圧力や引取りキャプスタンベルトの押圧の範囲でも、光ファイパ素線被覆の変形が大きくなり、場合によっては、一次被覆層とガラスの界面が剥がれる剥離や、一次被覆層が割れる問題が生じる。
 また、コーティング層の温度を下げるために冷却装置を導入するためには、新たなスペースの確保が必要になる。この結果、線引き装置の高さ制限により、各種装置(冷却装置、コーティング装置、UV硬化装置など)の必要長のバランスが崩れ、線引き速度を速くすることができなくなる。
日本国特許第4194976号公報 日本国特開平9-227171号公報
 本発明は、このような従来の実情に鑑みて考案されたものであり、線引き速度を遅くすることなく、被覆層の変形や剥離を防止することができ、信頼性の高い光ファイバ素線を効率よく製造することが可能な光ファイバ素線の製造方法を提供することを第一の目的とする。
 また、本発明は、装置を複雑化させたり、線引き速度を遅くすることなく、被覆層の変形や剥離を防止することができ、信頼性の高い光ファイバ素線を効率よく製造することが可能な光ファイバ素線の製造装置を提供することを第二の目的とする。
 本発明の第1の態様に係る光ファイバ素線の製造方法は、光ファイバ母材を溶融紡糸して光ファイバ裸線を形成し(工程A);前記光ファイバ裸線の外周に樹脂からなる被覆層を設けて光ファイバ素線中間体を形成し(工程B);前記光ファイバ素線中間体を形成する前記被覆層を一次硬化させ(工程C);前記光ファイバ素線中間体の外周を押圧し(工程D);前記光ファイバ素線中間体の押圧された被覆層を二次硬化させる(工程E)。
 上記本発明の第1の態様に係る光ファイバ素線の製造方法では、前記光ファイバ素線中間体の外周を押圧する際(工程D)には、前記一次硬化された被覆層を介して前記光ファイバ素線中間体の外周の一部に、少なくとも一対の捻りローラを当接した状態で、この一対の捻りローラを並進運動または揺動運動させて、前記光ファイバ素線中間体に捻りを加えてもよい。
 上記本発明の第1の態様に係る光ファイバ素線の製造方法では、前記光ファイバ素線中間体の外周を押圧する際(工程D)には、キャプスタンホイールとキャプスタンベルトを用いて前記光ファイバ素線中間体を把持して引取ってもよい。
 上記本発明の第1の態様に係る光ファイバ素線の製造方法では、前記光ファイバ素線中間体の外周を押圧する際(工程D)には、前記一次硬化された被覆層を介して前記光ファイバ素線中間体の外周の一部に、少なくとも一対の捻りローラを当接した状態で、この一対の捻りローラを並進運動または揺動運動させて、前記光ファイバ素線中間体に捻りを加え;キャプスタンホイールとキャプスタンベルトを用いて前記光ファイバ素線中間体を把持して引取ってもよい。
 上記本発明の第1の態様に係る光ファイバ素線の製造方法では、前記光ファイバ素線中間体を形成する際(工程B)の被覆層が、前記光ファイバ裸線に接して配される第一層と、この第一層に重ねて配される第二層とを備え、前記第二層を形成する樹脂のヤング率が、前記第一層を形成する樹脂のヤング率よりも高い構成を採用してもよい。
 上記本発明の第1の態様に係る光ファイバ素線の製造方法では、前記被覆層が前記第一層と前記第二層とを有する2層構造を形成する場合、前記第一層を形成した後および前記第二層を形成した後の各々において、前記被覆層が一次硬化されてもよい(工程C)。
 本発明の第2の態様に係る光ファイバ素線の製造装置は、光ファイバ母材を溶融紡糸して光ファイバ裸線を形成する紡糸部と;前記光ファイバ裸線の外周に樹脂からなる被覆層を設けて光ファイバ素線中間体を形成する塗布部と;前記光ファイバ素線中間体を形成する前記被覆層を一次硬化させる第一硬化部と;前記光ファイバ素線中間体の外周を押圧する押圧部と;前記光ファイバ素線中間体の押圧された被覆層を二次硬化させる第二硬化部と;を備える。
 上記本発明の第2の態様に係る光ファイバ素線の製造装置では、前記押圧部が、前記一次硬化された被覆層を介して前記光ファイバ素線中間体の外周の一部に、少なくとも一対の捻りローラを当接した状態で、この一対の捻りローラを並進運動または揺動運動させて、前記光ファイバ素線中間体に捻りを加える捻り部を備えていてもよい。
 上記本発明の第2の態様に係る光ファイバ素線の製造装置では、前記押圧部が、キャプスタンホイールとキャプスタンベルトを用いて前記光ファイバ素線中間体を把持して引取る引取り部を備えていてもよい。
 上記本発明の第2の態様に係る光ファイバ素線の製造装置では、前記押圧部が、前記一次硬化された被覆層を介して前記光ファイバ素線中間体の外周の一部に、少なくとも一対の捻りローラを当接した状態で、この一対の捻りローラを並進運動または揺動運動させて、前記光ファイバ素線中間体に捻りを加える捻り部と;キャプスタンホイールとキャプスタンベルトを用いて前記光ファイバ素線中間体を把持して引取る引取り部と;を備えていてもよい。
 上記本発明の第1の態様に係る光ファイバ素線の製造方法では、光ファイバ裸線の外周に設けた樹脂からなる被覆層を一次硬化させて光ファイバ素線中間体を形成した後に、この一次硬化させた被覆層を介して前記光ファイバ素線中間体の外周を押圧する。さらに、押圧された光ファイバ素線中間体の被覆層を二次硬化して光ファイバ素線を形成している。
 これにより、一次硬化後の被覆層に対して押圧することで生じた被覆層の変形や、一次硬化後の被覆層とガラス表面の剥離や一次被覆層の割れが、二次硬化時に修復され、良好な光ファイバ素線が得られる。その結果、本発明の第1の態様に係る光ファイバ素線の製造方法では、線引き速度を遅くすることなく、被覆層の変形や剥離を防止することができ、信頼性の高い光ファイバ素線を効率よく製造できる。
 上記本発明の第2の態様に係る光ファイバ素線の製造装置では、被覆材を一次硬化させて被覆層を備えた光ファイバ素線中間体を形成する一次硬化部と、この被覆層を介して前記光ファイバ素線中間体の外周を押圧する押圧部と、前記光ファイバ素線中間体の押圧後の被覆層を二次硬化して光ファイバ素線を形成する二次硬化部と、を備えている。
 これにより、一次硬化後の被覆層に対して押圧することで生じた被覆層の変形や、被覆層とガラス表面の剥離や被覆層の割れが、二次硬化時に修復され、良好な光ファイバ素線が得られる。その結果、本発明の第2の態様に係る光ファイバ素線の製造装置では、装置を複雑化させたり、線引き速度を遅くすることなく、被覆層の変形や剥離を防止することができ、信頼性の高い光ファイバ素線を効率よく製造できる。
本発明の一実施形態に係る光ファイバ素線の製造装置の概略構成を示す模式図である。 同実施形態に係る光ファイバ素線の製造装置の概略構成を示す模式図である。 同実施形態に係る光ファイバ素線の製造装置の概略構成を示す模式図である。 実験例で用いた光ファイバ素線の製造装置の概略構成を示す模式図である。 実験例で用いた光ファイバ素線の製造装置の概略構成を示す模式図である。 実験例で用いた光ファイバ素線の製造装置の概略構成を示す模式図である。 従来の光ファイバ素線の製造装置の概略構成を示す模式図である。
 以下、本発明の一実施形態に係る光ファイバ素線の製造方法及び製造装置を、図面を参照しながら説明する。
 図1は、本発明の一実施形態に係る光ファイバ素線の製造装置1A(1)の概略構成を示す模式図である。
 本実施形態に係る光ファイバ素線5の製造装置1は、光ファイバ母材2を溶融紡糸して光ファイバ裸線3を形成する紡糸部10と、光ファイバ裸線3の外周に被覆材を塗布して光ファイバ素線中間体4α(4)とする塗布部30と、光ファイバ素線中間体4α(4)の被覆材を一次硬化して被覆層を備えた光ファイバ素線中間体4β(4)を形成する一次硬化部40と、この被覆層を介して光ファイバ素線中間体4β(4)の外周を押圧して、光ファイバ素線中間体4γを形成する押圧部と、光ファイバ素線中間体4γ(4)の前記被覆層を二次硬化して光ファイバ素線5を形成する二次硬化部70と、を少なくとも備える。
 これにより、一次硬化後の被覆層に対して押圧することで生じた被覆層の変形や、被覆層とガラス表面の剥離や被覆層の割れが、二次硬化時に修復され、良好な光ファイバ素線が得られる。その結果、本実施形態の光ファイバ素線4の製造装置1では、装置を複雑化させたり、線引き速度を遅くすることなく、被覆層の変形や剥離を防止することができ、信頼性の高い光ファイバ素線を効率よく製造できる。
 紡糸部10は、加熱炉11を備え、光ファイバ母材2を溶融紡糸して光ファイバ裸線3を形成する。
 紡糸部10は、線引き炉内に吊り下げられた光ファイバ母材2と呼ばれる石英ガラスロッドを下降させながら、その先端を加熱炉11によって加熱溶融し、これから線引きすることにより光ファイバを製造する。
 紡糸炉外へ引き出された光ファイバ裸線3は、冷却部20により冷却される。
 塗布部30は、光ファイバ裸線3の外周に被覆材を塗布して光ファイバ素線中間体4α(4)を形成する。
 冷却された光ファイバには、光ファイバ裸線3の保護を目的として、塗布部30にて樹脂コーティングされる。一般に樹脂コーティングは、2層コーティングであり、内側にヤング率の低い一次被覆層用の材料を塗布し、外側にヤング率の商い二次被覆層用の材料が塗布される。使用される材料は、紫外線硬化樹脂が多く、UVランプにより硬化される。
 なお、コーティング方法は、一次被覆層と二次被覆層を別々に塗布し、それぞれ硬化させる方法、一次被覆層と二次被覆層を同時に塗布して、一括して硬化させる方法などがある。図1に示す例では、一次被覆層と二次被覆層を同時に塗布する場合を挙げているが、本発明はこの構成のみに限定されない。
 一次硬化部40は、UVランプ41を備え、光ファイバ素線中間体4α(4)の被覆材を一次硬化して光ファイバ素線中間体4β(4)を形成する。
 一次硬化部40として、たとえば、光ファイバ素線中間体4α(4)を挟むように4対のUVランプが、長手方向に沿って配されている。
 押圧部は、被覆層を介して光ファイバ素線中間体4β(4)の外周を押圧して、光ファイバ素線中間体4γ(4)を形成する。
 ここで、押圧部は、前記一次硬化された被覆層を介して光ファイバ素線中間体4β(4)の外周の一部に、少なくとも一対の捻りローラを当接した状態で、この一対の捻りローラを並進運動または揺動運動させて、光ファイバ素線中間体4β(4)に捻りを加える捻り部50、及び/又は、キャプスタンホイールとキャプスタンベルトを用いて前記光ファイバ素線中間体4γ(4)を把持して引取る引取り部60を備える。
 捻り部50は、一般的には光ファイバの特性である偏波モード分散(PMD)を低減させることを目的として使用されるが、PMD低減のために捻りを加える以外の方法での対策(たとえば、光ファイバ母材2の非円を小さくするなど)を実施している場合には、特に必要としない場合もある。
 また、引取り部60が、キャプスタンホイール61だけの場合、光ファイバ素線中間体4β(4)が押圧されることがないので押圧部に含まない。
 捻り部50としては、紡糸中の光ファイバ素線中間体4β(4)の外周の一部に当接する少なくとも一対の捻りローラ51,51を備え、この一対の捻りローラ51,51が並進運動する機構を有する装置、あるいは、一対の捻りローラ51,51が揺動運動する機構を有する装置が用いられる。
 一対の捻りローラが並進運動する機構を有する捻り部50としては、例えば、回転する一対の捻りローラ51,51の周曲面間で光ファイバ素線中間体4β(4)を押圧しながら、一対の捻りローラ51,51の移動方向を周期的に反転させるなどして、光ファイバ素線中間体4β(4)を一対の捻りローラ51,51の周曲面間において、紡糸方向と略垂直方向の前後に転動させ、光ファイバ素線中間体4β(4)に対して周期的に、その紡糸方向を軸として旋回する捻りを加えることにより、トルクを加える装置が挙げられる。
 具体的に、この捻り部50は、紡糸中の光ファイバ素線中間体4β(4)の外周の一部に当接する少なくとも一対の捻りローラ51,51と、これらを支持する支持部(図示略)とから概略構成されている。
 捻りローラ51,51は、光ファイバ素線中間体4β(4)を挟むように配され、その長手方向が光ファイバ素線4の紡糸方向と略垂直となるように配されている。また、捻りローラ51は、捻りローラ51と一体をなす中心軸を中心として回転可能である。
 さらに、捻りローラ51は、中心軸と共に、光ファイバ素線4の紡糸方向と垂直な方向へ並進運動可能である。
 捻りローラ51,51は、中心軸を中心として図中の矢印方向に回転しながら、紡糸中の光ファイバ素線中間体4β(4)の外周の一部に当接し、かつ、光ファイバ素線4の紡糸方向と垂直な方向へ周期的に並進運動することによって、光ファイバ素線中間体4β(4)にトルクを加える。この光ファイバ素線中間体4β(4)に加えられたトルクと、捻りローラ51,51の表面と光ファイバ素線中間体4β(4)の被覆層(外周)との摩擦とによって、紡糸中の光ファイバ素線中間体4β(4)に捻りが加えられる。その結果、捻りが加えられた光ファイバ素線中間体4γ(4)が得られる。
 上述したような捻り部50以外にも、一対の捻りローラ51,51が揺動運動する機構を有する捻り部50の一例として、例えば、回転する一対の捻りローラ51,51の周曲面間で光ファイバ素線中間体4β(4)を押圧しながら、一対の捻りローラ51,51をそれぞれ異なる方向に周期的に、紡糸方向に対して斜めに傾けることにより、光ファイバ素線中間体4β(4)に対して周期的に、その長手方向を軸として旋回する捻りを加えることにより、トルクを加える装置が挙げられる。
 また、捻りローラが揺動運動する機構を有する捻り部50の他の例としては、例えば、回転する捻りローラ51,51と光ファイバ素線中間体4β(4)が接し、光ファイバ素線中間体4β(4)を紡糸方向と平行な方向に周期的に揺り動かす(揺動運動)ことにより、光ファイバ素線中間体4β(4)に対して周期的に、その長手方向を軸として旋回する捻りを加えることにより、トルクを加える装置が挙げられる。
 被覆層が形成され、押圧部である捻り部50により捻りが加えられた光ファイバ素線中間体4γ(4)は、プーリー81によって向きを変えられ、もう一つの押圧部であるキャプスタンホイール61及びキャプスタンベルト62を備えた引取り部60により引き取られる。
 引取り部60において、引取りキャプスタン61は高速で回転し、ここで線引き速度が決定される。線引き速度が例えば2000m/minや1500m/minなどに相当する速度で引取りキャプスタン61は回転する。
 引取り部60としては、例えば特開平9-227171に示されるような、キャプスタンホイールに対してキャプスタンベルトで光ファイバ素線中間体4γ(4)を押圧するような引取りキャプスタンを採用することができる。
 なお、光ファイバ素線中間体4β(4)を押圧せず、進行方向を変えるのみであるプーリー81などは、光ファイバ素線中間体4β(4)を挟み込まないため、光ファイバ素線中間体4β(4)の被覆層に与えるダメージが極めて少なく、被覆層の変形や剥離、割れが生じないため、本実施形態における押圧部には含まれない。
 二次硬化部70は、UVランプ、引取り部60によりさらに押圧された光ファイバ素線中間体4γ(4)の被覆層を二次硬化して光ファイバ素線5を形成する。
 一次硬化後の被覆層に対して押圧することで生じた被覆層の変形や、被覆層とガラス表面の剥離や被覆層の割れが、二次硬化時に修復される。これは、二次硬化時に、さらに硬化反応が進み、分子のネットワークが延びることと、硬化による発熱反応により局所的に被覆材の温度が上昇し、ガラス転移温度以上となることの相乗効果で、一次硬化時に生じた剥離や割れが修復されることによる。
 最後に、巻取り部90は、高速で引き取られた光ファイバ素線5を、巻取りドラム91にて巻き取る。この経路の途中には、一般的には引取り速度と巻取り速度の回転速度の差を吸収し、補正する装置(ダンサープーリー80)が配されている。
 ライン配置により捻り部50のみに本方法を適用しても、または、捻り部50を使用しない装置に対しては、引取り部60のみに適用しても、または、捻り部50、引取り部60両者を含めて適用してもよい。より望ましくは、捻り部50と引取り部60の両者に適用するのが望ましい。
 なお、上述した実施形態では、塗布部30として、一次被覆層と二次被覆層を同時に塗布して、一括して硬化させる場合を例に挙げて説明したが、本発明はこれのみに限定されるものではなく、一次被覆層と二次被覆層を別々に塗布し、それぞれ硬化させてもよい。例えば、図2に示す製造装置1B(1)は、一次被覆層を塗布する一次被覆層用の塗布部31と、二次被覆層を塗布する二次被覆層用の塗布部33を別々に備えている。この場合、一次被覆層用の塗布部31と、二次被覆層用の塗布部33の間に、一次被覆層硬化用のUVランプを備えた一次被覆層用の硬化部32が配されている。
 また、上述した実施形態では、光ファイバ素線中間体4α(4)の一次硬化部40が、長手方向に沿って配された4対のUVランプ41を備えた場合を例に挙げて説明したが、本発明はこれのみに限定されるものではなく、UVランプの数は適宜変更可能である。例えば、図2に示す製造装置1B(1)は、長手方向に沿って配された3体のUVランプを備えている。
 また、上述した実施形態では、押圧部として、捻り部50と引取り部60の双方を備えた場合を例に挙げて説明したが、本発明はこれのみに限定されるものではなく、捻り部50または引取り部60のどちらか一方を備えていればよい。例えば、図2に示す製造装置1Bでは、押圧部として捻り部50のみを備えている。図3に示す製造装置1C(1)では、押圧部として引取り部のみを備えている。
 次に、このような製造装置1A(1)を用いた、光ファイバ素線の製造方法について説明する。
 本実施形態の光ファイバ素線の製造方法は、光ファイバ母材2を溶融紡糸して光ファイバ裸線3を形成する工程Aと、光ファイバ裸線3の外周に被覆材を塗布して光ファイバ素線中間体4α(4)とする工程Bと、光ファイバ素線中間体4α(4)の前記被覆材を一次硬化して被覆層を備えた光ファイバ素線中間体4β(4)を形成する工程Cと、前記被覆層を介して光ファイバ素線中間体4β(4)の外周を押圧して、光ファイバ素線中間体4γ(4)を形成する工程Dと、前記光ファイバ素線中間体4γ(4)の前記被覆層を二次硬化して光ファイバ素線5を形成する工程Eと、を少なくとも備える。
 これにより、一次硬化後の被覆層に対して押圧することで生じた被覆層の変形や、被覆層とガラス表面の剥離や被覆層の割れが、二次硬化時に修復され、良好な光ファイバ素線が得られる。
 その結果、本実施形態の光ファイバ素線の製造方法では、線引き速度を遅くすることなく、被覆層の変形や剥離を防止することができ、信頼性の高い光ファイバ素線5を効率よく製造することが可能である。
 以下、工程順に説明する。
(1)光ファイバ母材2を溶融紡糸して光ファイバ裸線3を形成する(工程A)。
 まず、石英系ガラスを主成分とする光ファイバ母材2を、溶融紡糸部10の加熱炉11内に軸方向に移動可能に吊り下げ、アルゴン(Ar)、ヘリウム(He)などの不活性ガス雰囲気中で、その下端部分を約2000℃に高温加熱し、これから光ファイバを線引きして、光ファイバ裸線3を形成する(溶融紡糸)。
 なお、光ファイバ母材2の製造方法は、気相軸付法(VAD法)、外付け法(OVD法)、内付け法(CVD法、MCVD法、PCVD法)、ロッドインチューブ法などがあるが、本発明はこれらの方法のみに限定されない。
 次いで、引き出された光ファイバ裸線3は、冷却部20内に送り込まれる。冷却部20内には、ヘリウムや窒素ガスなどの冷却用ガスが供給されており、冷却部20において光ファイバ裸線3を次工程の被覆材の塗布に好適な温度に急冷する。
(2)光ファイバ裸線3の外周に被覆材を塗布して光ファイバ素線中間体4α(4)とする(工程B)。
 冷却部20において冷却された光ファイバ裸線3は、被覆層形成用の塗布部30において、その外周を覆うように紫外線硬化型樹脂からなる被覆材が塗布(コーティング)される。
 一般に、樹脂コーティングは、2層コーティングであり、内側にヤング率の低いプライマリ材料を塗布し、外側にヤング率の商いセカンダリ材料が塗布される。換言すると、2層コーティングされた被覆層は、光ファイバ裸線3に接して配される第一層と、この第一層に重ねて配される第二層から構成されている。前記第二層をなす樹脂として、前記第一層をなす樹脂に比べてヤング率の高い樹脂が用いられる。
 塗布方法は、第一層(一次被覆層)と第二層(二次被覆層)を別々に塗布し、それぞれ硬化させる方法、同時に塗布して、一括して硬化させる方法などがあるが、本発明はこれらの方法のみに限定されない。
 これにより、光ファイバ裸線3の外周に第一層(一次被覆層)及び第二層(二次被覆層)からなる被覆層が形成された光ファイバ素線中間体4α(4)が得られる。
(3)光ファイバ素線中間体4α(4)の被覆材を一次硬化して光ファイバ素線中間体4β(4)を形成する(工程C)。
 続いて、被覆層が形成された光ファイバ素線4α(4)は、一次硬化部40へと送られ、この一次硬化部40が備えるUVランプ41から照射される紫外線により硬化(一時硬化)して、一次硬化された被覆層を形成する。これにより、一次硬化された被覆層を備えた光ファイバ素線中間体4β(4)が得られる。
 一次硬化により形成される被覆層の硬化度は、一般的な被覆材の硬化度を評価する評価方法であるゲル分率が70%~90%であることが望ましい。硬化度が70%未満の場合、硬化が不十分なため、後工程で押圧部(捻り部50、引取り部60)に未反応の被覆材が付着するおそれや、捻り部50による捻りトルクが光ファイバ裸線3に伝わりにくく捻り回数が少なくなってしまうおそれがある。一方、硬化度が90%より大きい場合、未反応分が少ないため、押圧工程で一次被覆層に生じた変形、剥離、割れを二次硬化で修復する際に十分な修復効果が得られない。
(4)一次硬化された被覆層を介して光ファイバ素線中間体4β(4)の外周を押圧して、光ファイバ素線中間体4γ(4)を形成する(工程D)。
 この工程Dは、光ファイバ素線中間体4β(4)に捻りを加える捻り工程、及び/又は、光ファイバ素線中間体4β(4)を把持して引取る引取り工程である。
 捻り工程の場合、前記一次硬化された被覆層を介して光ファイバ素線中間体4β(4)の外周の一部に、少なくとも一対の捻りローラ51,51を当接した状態で、この一対の捻りローラ51,51を並進運動または揺動運動させて、光ファイバ素線中間体4β(4)に捻りを加える。
 具体的には、例えば、回転する一対の捻りローラ51,51の周曲面間で光ファイバ素線中間体4β(4)を押圧しながら、一対の捻りローラ51,51の移動方向を周期的に反転させるなどして、光ファイバ素線中間体4β(4)を一対の捻りローラ51,51の周曲面間において、紡糸方向と略垂直方向の前後に転動させ、光ファイバ素線中間体4β(4)に対して周期的に、その紡糸方向を軸として旋回する捻りを加えることにより、トルクを加える。この光ファイバ素線中間体4β(4)に加えられたトルクと、捻りローラ51,51の表面と光ファイバ素線中間体4β(4)の被覆層(外周)との摩擦とによって、紡糸中の光ファイバ素線中間体4β(4)に捻りが加えられる。
 さらに、引取り工程の場合、キャプスタンホイール61とキャプスタンベルト62を用いて、前記捻り工程を経た光ファイバ素線中間体4γ(4)を把持して引取る。そして、この引取り工程を経て送り出された中間体が、光ファイバ素線中間体4δ(4)である。
(5)引き取られた光ファイバ素線中間体4γ(4)の被覆層を二次硬化して光ファイバ素線5を形成する(工程E)。
 続いて、光ファイバ素線中間体4γ(4)は、二次硬化部70へと送られ、この二次硬化部70(UVランプ)から照射される紫外線により被覆層をさらに硬化(二次硬化)することによって、光ファイバ素線5が得られる。
 一次硬化後の被覆層に対して押圧することで生じた被覆層の変形や、被覆層とガラス表面の剥離や被覆層の割れが、二次硬化において修復される。
 これは、二次硬化時に、さらに被覆材の硬化反応が進み、分子のネットワークが延びることと、硬化による発熱反応により局所的に被覆材の温度が上昇し、ガラス転移温度以上となることの相乗効果で、一次硬化時に被覆層に生じた剥離や割れが修復されることによる。
 二次硬化された被覆層の硬化度としては、ゲル分率が85%以上であることが好ましい。硬化度が85%未満では、被覆層中に未硬化成分が多く残留することになり、以降の工程、例えば着色工程やテープ化工程にて、その未硬化成分が反応して揮発成分となり、線引時の被覆層と着色層、テープ層間の剥離が生じたり、微小な外径変化であるコブが生じるなどの不良が発生しやすい。ゲル分率を85%以上とすることで、このような問題を回避することができる。
 最後に、光ファイバ素線5は、プーリー81によって別方向に向きを変えられ、ダンサープーリー80を経て、巻取り部90において巻取りドラム91に巻き取られる。
 以上説明してきたように、本実施形態では、被覆層の硬化を、押圧工程の前後で2段階に分けて行うことで、一次硬化後の被覆層に対して押圧することで生じた被覆層の変形や、被覆層とガラス表面の剥離や被覆層の割れが、二次硬化時に修復され、良好な光ファイバ素線が得られる。
 このように本実施形態では、装置を複雑化させたり、線引き速度を遅くすることなく、被覆層の変形や剥離を防止することができ、信頼性の高い光ファイバ素線5を効率よく製造することができる。
 以上、本実施形態の光ファイバ素線の製造方法及び製造装置について説明してきたが、本発明は上述の例のみに限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更可能である。
 上述したような構成の製造装置を用いて、光ファイバ素線を作製した。
 (実験例1)
 図1に示した製造装置1A(装置A)を用いて、光ファイバ素線を作製した。
 外径φ150mmの光ファイバ母材を使用して、線引き速度2500m/minで線引きを実施した。被覆層のコーティングは、第一層(一次被覆層)、第二層(二次被覆層)を同時にコーティングし、同時に硬化させる方式とした。
 UVランプを有する一次硬化部で被覆層を一次硬化させ、その後、捻り工程とキャプスタンベルトを用いた引取り工程を行った。その後、UVランプを有する二次硬化部で被覆層を二次硬化させた。
 その後、ダンサーブーリーを通し、光ファイバ素線を巻取りボビンに巻取りながら、線引きを500km実施した。
 (実験例2)
 図1に示した製造装置1A(装置A)を用いて、光ファイバ素線を作製した。
 被覆層の一次硬化後のゲル分率が70%(別途サンプルを作製して評価)、二次硬化後のゲル分率が80%となるように、一次硬化部及び二次硬化部のUVランプ出力を調整したこと以外は、実験例1と同様にして光ファイバ素線を作製した。
 (実験例3)
 図2に示した製造装置1B(装置B)を用いて、光ファイバ素線を作製した。
 外径φ150mmの光ファイバ母材を使用して、線引き速度1500m/minで線引きを実施した。被覆層のコーティングは、第一層(一次被覆層)、第二層(二次被覆層)を別々にコーティングし、別々に硬化させる方式とした。
 UVランプを有する一次硬化部で被覆層を一次硬化させ、その後、捻り工程を行った。その後、UVランプを有する二次硬化部で被覆層を二次硬化させた。
 その後、引取りキャプスタン(ベルト使用せず)を通し、光ファイバ素線を巻取りボビンに巻取りながら、線引きを500km実施した。
 (実験例4)
 図2に示した製造装置1B(装置B)を用いて、光ファイバ素線を作製した。
 光ファイバ母材の線引き速度を2000m/minとしたこと以外は、実験例3と同様にして光ファイバ素線を作製した。
 (実験例5)
 図2に示した製造装置1B(装置B)を用いて、光ファイバ素線を作製した。
 被覆層の一次硬化後のゲル分率が60%(別途サンプルを作製して評価)、二次硬化後のゲル分率が85%となるように、一次硬化部及び二次硬化部のUVランプ出力を調整したこと以外は、実験例4と同様にして光ファイバ素線を作製した。
 (実験例6)
 図3に示した製造装置1C(装置C)を用いて、光ファイバ素線を作製した。
 外径φ150mmの光ファイバ母材を使用して、線引き速度2000m/minで線引きを実施した。被覆層のコーティングは、第一層(一次被覆層)、第二層(二次被覆層)を同時にコーティングし、同時に硬化させる方式とした。
 UVランプを有する一次硬化部で被覆層を一次硬化させ、その後、キャプスタンベルトを用いた引取り工程を行った。その後、UVランプを有する二次硬化部で被覆層を二次硬化させた。
 その後、ダンサーブーリーを通し、光ファイバ素線を巻取りボビンに巻取りながら、線引きを500km実施した。
 (実験例7)
 図3に示した製造装置1C(装置C)を用いて、光ファイバ素線を作製した。
 被覆層の一次硬化後のゲル分率が92%(別途サンプルを作製して評価)、二次硬化後のゲル分率が95%となるように、一次硬化部及び二次硬化部のUVランプ出力を調整したこと以外は、実験例6と同様にして光ファイバ素線を作製した。
 (実験例8)
 図4に示した製造装置D(装置D)を用いて、光ファイバ素線を作製した。
 外径φ150mmの光ファイバ母材を使用して、線引き速度1500m/minで線引きを実施した。被覆層のコーティングは、第一層(一次被覆層)、第二層(二次被覆層)を別々にコーティングし、別々に硬化させる方式とした。
 UVランプを有する硬化部で被覆層を硬化させ、その後、捻り工程を行った。
 その後、引取りキャプスタン(ベルトなし)を通し、光ファイバ素線を巻取りボビンに巻取りながら、線引きを500km実施した。
 (実験例9)
 図4に示した製造装置D(装置D)を用いて、光ファイバ素線を作製した。
 製造装置Dにおいて、硬化部のUVランプを1灯追加したこと以外は、実験例8と同様にして光ファイバ素線を作製した。
 (実験例10)
 図5に示した製造装置E(装置E)を用いて、光ファイバ素線を作製した。
 外径φ150mmの光ファイバ母材を使用して、線引き速度2000m/minで線引きを実施した。被覆層のコーティングは、第一層(一次被覆層)、第二層(二次被覆層)を同時にコーティングし、同時に硬化させる方式とした。
 UVランプを有する硬化部で被覆層を硬化させ、その後、捻り工程とキャプスタンベルトを用いた引取り工程を行った。
 その後、ダンサーブーリーを通し、光ファイバ素線を巻取りボビンに巻取りながら、線引きを500km実施した。
 (実験例11)
 図6に示した製造装置F(装置F)を用いて、光ファイバ素線を作製した。
 外径φ150mmの光ファイバ母材を使用して、線引き速度2500m/minで線引きを実施した。被覆層のコーティングは、第一層(一次被覆層)、第二層(二次被覆層)を別々にコーティングし、別々に硬化させる方式とした。
 UVランプを有する一次硬化部で被覆層を一次硬化させ、その後、キャプスタンベルトを用いた引取り工程を行った。
 その後、ダンサーブーリーを通し、光ファイバ素線を巻取りボビンに巻取りながら、線引きを500km実施した。
 以上のようにして作製された、実験例1~実験例11の線引き後の光ファイバ素線に対して、50km毎に切り割り、切り割り素線から、サンプルを取り、ゲル分率、被覆変形の平均値及び-60℃での損失変化について評価を実施した。
 被覆層のゲル分率の測定は、被覆層を60℃のメチルエチルケトン(MEK)溶剤に16時間浸漬し、いわゆる未硬化分を溶剤抽出し、取り出した後に、試料被覆重量(W)を測定する。試料の初期重量をWとするとき、ゲル分率は「(W/W)×100(%)」で表される。
 被覆変形の平均値は、photon kinetic社のPK2401を用いて測定した。
 -60℃での損失変化については、1000mのファイバをフリーコイル状態にして、恒温槽に入れ、常温をリファレンスとして、-60℃での損失変動を比較した。被覆材の変形、剥離、割れなどのダメージがあると、損失がマイクロベンド損失となり損失が増加する。
 さらに、マイクロスコープを用いて、被覆層の剥離、割れを観察した。
 実験例1~実験例11の光ファイバ素線についての評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実験例1~7は二次硬化を行った例であり、実験例8~11は二次硬化を行わなかった例である。実験例8~11においては、硬化後のゲル分率が、それぞれ90%、95%、80%、70%であり、これは、実験例1~7での一次硬化後のゲル分率に相当する。
 実験例1~7と実験例8~11とを比較すると、実験例1~実験例7では、破損変形、低温度での損失増加、剥離、割れ等もなく、良好な光ファイバ素線となっている。また、押圧装置への汚れの付着もみられなかった、これに対し、実験例8~11では、被覆変形、低温度での損失増加、剥離、割れ等が悪い状態となっている。これは、一次硬化のみでは、被覆材のダメージが生じるが、二次硬化を設置することで、この被覆材のダメージが修復していることを示している。
 なお、実験例9では、実験例8に対して硬化部のUVランプを1灯増設した。これは硬化後のゲル分率を上昇させることをねらったためである。結果として、ゲル分率は実験例8の90%から95%に上昇しているものの、被覆層へのダメージが生じている結果となっている。
 また、押圧装置として、実験例1,2では捻り装置と引取りキャプスタン、実験例3~5では捻り装置、実験例6,7では引取りキャプスタン、をそれぞれ用いている。そのいずれの場合であっても、一次硬化後に被覆材にダメージが生じても二次硬化を実施することで、ダメージが修復できることを示している。それぞれ、一次硬化後のゲル分率が70~90%に対し、二次硬化後のゲル分率は80~95%となっている。
 なお、実験例4と実験例6とは、押圧装置が捻り装置であるか、引取キャプスタン(ベルトあり)であること以外は同じ条件である。この結果から、押圧装置として、捻り装置の場合でも、引取キャプスタンの場合でも両者とも同等の効果があることが確認できる。
 実験例5では、一次硬化後のゲル分率が60%であった。この場合、硬化度が低すぎるために、押圧装置に被覆材の未硬化成分や揮発成分が付着してしまった。ただし、被覆材のダメージの修復効果は得られている。
 一方、実験例7では、一次硬化後のゲル分率が92%であった。この場合、二次硬化によりさらにゲル分率が95%と上昇しているが、押圧による被覆材へのダメージが修復しきらず、残っていることを示している。
 実験例2では、二次硬化後のゲル分率が80%であった。この場合、押圧による被覆材へのダメージの修復効果は得られているが、線引き後の後工程に進み、着色工程にて着色、テープ工程にてテープ化を実施したところトラブルが発生した。
 以上の結果から、一次硬化後の被覆層に対して押圧することで、一次被覆層に変形、剥離や割れなどのダメージが生じたとしても、二次硬化を行うことでそのダメージが修復され、良好な光ファイバ素線が得られることが確認された。
 特に、一次硬化後の被覆層の硬化度として、ゲル分率が70~90%のときに十分な修復効果が得られることが確認された。また、二次硬化後の被覆層の硬化度として、ゲル分率が85%以上のときに、後工程でのトラブルを回避することができることが確認された。
 本発明は、光ファイバ素線の製造方法及び製造装置に広く適用可能である。
 1A、1B、1C(1) 光ファイバ素線の製造装置
 2 光ファイバ母材
 3 光ファイバ裸線
 4α、4β、4γ(4) 光ファイバ素線中間体
 5 光ファイバ素線
 10 紡糸部
 20 冷却部
 30 塗布部
 40 一次硬化部
 50 捻り部
 60 引取り部
 70 二次硬化部

Claims (10)

  1.  光ファイバ母材を溶融紡糸して光ファイバ裸線を形成し;
     前記光ファイバ裸線の外周に樹脂からなる被覆層を設けて光ファイバ素線中間体を形成し;
     前記光ファイバ素線中間体を形成する前記被覆層を一次硬化させ;
     前記光ファイバ素線中間体の外周を押圧し;
     前記光ファイバ素線中間体の押圧された被覆層を二次硬化させることを特徴とする光ファイバ素線の製造方法。
  2.  前記光ファイバ素線中間体の外周を押圧する際には、前記一次硬化された被覆層を介して前記光ファイバ素線中間体の外周の一部に、少なくとも一対の捻りローラを当接した状態で、この一対の捻りローラを並進運動または揺動運動させて、前記光ファイバ素線中間体に捻りを加えることを特徴とする請求項1に記載の光ファイバ素線の製造方法。
  3.  前記光ファイバ素線中間体の外周を押圧する際には、キャプスタンホイールとキャプスタンベルトを用いて前記光ファイバ素線中間体を把持して引取ることを特徴とする請求項1に記載の光ファイバ素線の製造方法。
  4.  前記光ファイバ素線中間体の外周を押圧する際には、
     前記一次硬化された被覆層を介して前記光ファイバ素線中間体の外周の一部に、少なくとも一対の捻りローラを当接した状態で、この一対の捻りローラを並進運動または揺動運動させて、前記光ファイバ素線中間体に捻りを加え;
     キャプスタンホイールとキャプスタンベルトを用いて前記光ファイバ素線中間体を把持して引取ることを特徴とする請求項1に記載の光ファイバ素線の製造方法。
  5.  前記光ファイバ素線中間体を形成する際の被覆層が、前記光ファイバ裸線に接して配される第一層と、この第一層に重ねて配される第二層とを備え、
     前記第二層を形成する樹脂のヤング率が、前記第一層を形成する樹脂のヤング率よりも高い
    ことを特徴とする請求項1に記載の光ファイバ素線の製造方法。
  6.  前記被覆層が前記第一層と前記第二層とを有する2層構造を形成する場合、前記第一層を形成した後および前記第二層を形成した後の各々において、前記被覆層が一次硬化されることを特徴とする請求項5に記載の光ファイバ素線の製造方法。
  7.  光ファイバ母材を溶融紡糸して光ファイバ裸線を形成する紡糸部と;
     前記光ファイバ裸線の外周に樹脂からなる被覆層を設けて光ファイバ素線中間体を形成する塗布部と;
     前記光ファイバ素線中間体を形成する前記被覆層を一次硬化させる第一硬化部と;
     前記光ファイバ素線中間体の外周を押圧する押圧部と;
     前記光ファイバ素線中間体の押圧された被覆層を二次硬化させる第二硬化部と;
    を備えることを特徴とする光ファイバ素線の製造装置。
  8.  前記押圧部が、前記一次硬化された被覆層を介して前記光ファイバ素線中間体の外周の一部に、少なくとも一対の捻りローラを当接した状態で、この一対の捻りローラを並進運動または揺動運動させて、光ファイバ素線中間体に捻りを加える捻り部を備えることを特徴とする請求項7に記載の光ファイバ素線の製造装置。
  9.  前記押圧部が、キャプスタンホイールとキャプスタンベルトを用いて前記光ファイバ素線中間体を把持して引取る引取り部を備えることを特徴とする請求項7に記載の光ファイバ素線の製造装置。
  10.  前記押圧部が、
     前記一次硬化された被覆層を介して前記光ファイバ素線中間体の外周の一部に、少なくとも一対の捻りローラを当接した状態で、この一対の捻りローラを並進運動または揺動運動させて、光ファイバ素線中間体に捻りを加える捻り部と;
     キャプスタンホイールとキャプスタンベルトを用いて前記光ファイバ素線中間体を把持して引取る引取り部と;
    を備えることを特徴とする請求項7に記載の光ファイバ素線の製造装置。
     
PCT/JP2011/063273 2010-06-11 2011-06-09 光ファイバ素線の製造方法及び製造装置 WO2011155570A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180005208.7A CN102686529B (zh) 2010-06-11 2011-06-09 光纤素线的制造方法以及制造装置
JP2012519429A JP5417531B2 (ja) 2010-06-11 2011-06-09 光ファイバ素線の製造方法及び製造装置
US13/706,587 US9096464B2 (en) 2010-06-11 2012-12-06 Method and apparatus for manufacturing optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010134387 2010-06-11
JP2010-134387 2010-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/706,587 Continuation US9096464B2 (en) 2010-06-11 2012-12-06 Method and apparatus for manufacturing optical fiber

Publications (1)

Publication Number Publication Date
WO2011155570A1 true WO2011155570A1 (ja) 2011-12-15

Family

ID=45098174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063273 WO2011155570A1 (ja) 2010-06-11 2011-06-09 光ファイバ素線の製造方法及び製造装置

Country Status (4)

Country Link
US (1) US9096464B2 (ja)
JP (1) JP5417531B2 (ja)
CN (1) CN102686529B (ja)
WO (1) WO2011155570A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528863A (ja) * 2017-07-25 2020-10-01 メイド イン スペース インコーポレイティッド 光ファイバを製造するためのシステムおよび方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6457579B2 (ja) 2017-04-10 2019-01-23 株式会社フジクラ 光ファイバの製造方法
JP6561106B2 (ja) * 2017-12-06 2019-08-14 株式会社フジクラ 光ファイバ素線の製造方法及び製造装置
WO2021021421A1 (en) * 2019-07-30 2021-02-04 Corning Incorporated High speed draw optical fiber coating system and method
US11822117B2 (en) * 2019-10-08 2023-11-21 Corning Incorporated Primary coating compositions with improved microbending performance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012454A (ja) * 2000-05-02 2002-01-15 Lucent Technol Inc Uv量および高速uv硬化プロセスのスループットを増加させるための方法および装置
JP2005343703A (ja) * 2004-05-31 2005-12-15 Fujikura Ltd 光ファイバ素線の製造方法、光ファイバ素線
JP2008214134A (ja) * 2007-03-05 2008-09-18 Furukawa Electric Co Ltd:The 光ファイバの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117444A (ja) * 1984-07-02 1986-01-25 Hitachi Cable Ltd 光フアイバの製造方法
GB9121655D0 (en) * 1991-10-11 1991-11-27 Ici Plc Optical fibre coating
US5203896A (en) * 1992-04-02 1993-04-20 Ceramoptec, Inc. Process for producing hard plastic clad optical fiber with improved ultraviolet transmission
EP0738695B1 (en) * 1995-04-20 2001-07-25 AT&T IPM Corp. High speed method for application and curing of optical coating
US5647884A (en) * 1996-01-19 1997-07-15 Alcatel Na Cable Systems, Inc. Apparatus for reducing deformation of a coating on a coated optical fiber
JPH09227171A (ja) 1996-02-22 1997-09-02 Sumitomo Electric Ind Ltd 光ファイバの線引き方法
JPH1010378A (ja) * 1996-06-25 1998-01-16 Toshiba Corp 光ファイバー心線、光ファイバーコイル及び光ファイバー心線の製造方法
EP1346959A4 (en) * 2000-12-22 2005-04-06 Sumitomo Electric Industries COATED OPTICAL FIBER AND ITS MANUFACTURING METHOD
JP3937127B2 (ja) * 2001-02-20 2007-06-27 信越化学工業株式会社 光ファイバの製造方法
JP2003119045A (ja) * 2001-10-12 2003-04-23 Furukawa Electric Co Ltd:The 光ファイバの線引き方法
WO2004050573A1 (en) * 2002-09-25 2004-06-17 Giacomo Stefano Roba Process for producing an optical fiber having a low polarization mode dispersion
JP4194976B2 (ja) * 2004-05-14 2008-12-10 株式会社フジクラ 光ファイバ素線の製造方法
CN101341101B (zh) * 2005-12-23 2012-03-14 普雷斯曼电缆及系统能源有限公司 用于生产具有减小的偏振模色散的光纤的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012454A (ja) * 2000-05-02 2002-01-15 Lucent Technol Inc Uv量および高速uv硬化プロセスのスループットを増加させるための方法および装置
JP2005343703A (ja) * 2004-05-31 2005-12-15 Fujikura Ltd 光ファイバ素線の製造方法、光ファイバ素線
JP2008214134A (ja) * 2007-03-05 2008-09-18 Furukawa Electric Co Ltd:The 光ファイバの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528863A (ja) * 2017-07-25 2020-10-01 メイド イン スペース インコーポレイティッド 光ファイバを製造するためのシステムおよび方法

Also Published As

Publication number Publication date
US9096464B2 (en) 2015-08-04
US20130118208A1 (en) 2013-05-16
JPWO2011155570A1 (ja) 2013-08-01
JP5417531B2 (ja) 2014-02-19
CN102686529A (zh) 2012-09-19
CN102686529B (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5417531B2 (ja) 光ファイバ素線の製造方法及び製造装置
US4427717A (en) Process for producing an object with a chiralic structure obtained from a shapeable material source
JP4134724B2 (ja) 被覆光ファイバ、これを用いた光ファイバテープ心線及び光ファイバユニット
JP2007197273A (ja) 光ファイバ素線及びその製造方法
JP4663277B2 (ja) 光ファイバ素線及びその製造方法
JP2011102964A (ja) 光ファイバおよび光ファイバ製造方法
WO2013024839A1 (ja) 光ファイバ素線の製造方法および製造装置
US20110274397A1 (en) Tight-buffered optical fiber having improved fiber access
AU2010215384B2 (en) Method for producing and processing a preform, preform and optical fiber
US9676659B2 (en) Method of manufacturing an optical fiber
JPH01301531A (ja) 大きな引張り力で延伸することによって機械抵抗の大きい光ファイバを製造する方法
JPH09202640A (ja) ファイバ線引きプロセス中の被覆付き光ファイバの被覆の変形を少なくする方法および装置
JP2635475B2 (ja) 光ファイバの被覆形成方法
JP4134723B2 (ja) 被覆光ファイバ及びその製造方法
US10908354B2 (en) Optical fiber
JP4459720B2 (ja) 光ファイバ素線の製造方法
JP4400026B2 (ja) 光ファイバの製造方法
AU720842B2 (en) Process for producing optical fiber products
JPH11302042A (ja) 光ファイバ素線の製造方法と製造装置
WO2021128213A1 (zh) 光纤及其成型方法
JP2005320191A (ja) 光ファイバ素線の製造方法、光ファイバ素線の製造装置
JP4194976B2 (ja) 光ファイバ素線の製造方法
JP4215943B2 (ja) 光ファイバ素線の製造方法
WO2023248944A1 (ja) 光ファイバの製造方法
JP2003212588A (ja) 光ファイバ素線の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005208.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792527

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519429

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10242/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792527

Country of ref document: EP

Kind code of ref document: A1