JP6561106B2 - 光ファイバ素線の製造方法及び製造装置 - Google Patents

光ファイバ素線の製造方法及び製造装置 Download PDF

Info

Publication number
JP6561106B2
JP6561106B2 JP2017234407A JP2017234407A JP6561106B2 JP 6561106 B2 JP6561106 B2 JP 6561106B2 JP 2017234407 A JP2017234407 A JP 2017234407A JP 2017234407 A JP2017234407 A JP 2017234407A JP 6561106 B2 JP6561106 B2 JP 6561106B2
Authority
JP
Japan
Prior art keywords
optical fiber
coating
unit
irradiation
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017234407A
Other languages
English (en)
Other versions
JP2019099436A (ja
Inventor
健司 山城
健司 山城
啓朗 河原
啓朗 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2017234407A priority Critical patent/JP6561106B2/ja
Priority to PCT/JP2018/041357 priority patent/WO2019111626A1/ja
Priority to US16/770,288 priority patent/US20210171394A1/en
Priority to CN201880077484.6A priority patent/CN111433168B/zh
Publication of JP2019099436A publication Critical patent/JP2019099436A/ja
Application granted granted Critical
Publication of JP6561106B2 publication Critical patent/JP6561106B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • C03C25/109Multiple coatings with at least one organic coating and at least one inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6206Electromagnetic waves
    • C03C25/6226Ultraviolet
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4486Protective covering

Description

本発明は、光ファイバ素線の製造方法に関する。また、光ファイバ素線の製造装置に関する。
光ファイバ素線は、(1)ガラス製の光ファイバ裸線と、(2)光ファイバ素線の側面を覆う、樹脂製の被覆と、により構成されている。被覆は、光ファイバ裸線への側圧を緩和し、耐外傷性を向上させる役割を担う。光ファイバ素線の製造においては、光ファイバ裸線の側面に紫外線硬化樹脂を塗布した後、紫外線を照射することによりこの紫外線硬化樹脂を硬化させて被覆を形成することが一般的である。
また、光ファイバ素線の製造においては、紫外線を照射する複数の照射工程を設けることが知られている。例えば、特許文献1には、第1の照射工程により紫外線硬化樹脂の表層を硬化した後、第2の照射工程により内部の層を硬化することが記載されている。また、特許文献2には、第1の照射工程により紫外線硬化樹脂を部分的に硬化させた光ファイバ素線を、冷却ガスが流れる冷却管を通過させることにより冷却し、第2の照射工程を実施することが記載されている。
特開2014−77918号公報(2014年5月1日公開) 平10−297942号公報(1998年11月10日公開)
しかしながら、従来の光ファイバ素線の製造方法においては、光ファイバ素線の被覆のうち内部の層の硬化が充分でないと、製造後の光ファイバ素線において被覆の割れが生じ得るという問題があった。
本発明は、上記課題に鑑みてなされたものであり、その目的は、製造後の光ファイバ素線において被覆の割れが生じ難い光ファイバ素線の製造方法及び製造装置を実現することにある。
上記の課題を解決するために、本発明の光ファイバ素線の製造方法は、被覆を構成する紫外線硬化樹脂のうち、少なくとも当該被覆の表層を構成する紫外線硬化樹脂が未硬化状態の光ファイバ素線の各点に対して、紫外線を照射する第1の照射工程と、上記第1の照射工程を実施して得られる、少なくとも上記被覆の表層を構成する紫外線硬化樹脂が硬化した上記光ファイバ素線の各点に対して、紫外線を照射する第2の照射工程と、を含み、上記第2の照射工程を実施する直前の上記光ファイバ素線の温度が、50℃以上300℃以下である、ことを特徴とする。
また、上記の課題を解決するために、本発明の光ファイバ素線の製造装置は、被覆を構成する紫外線硬化樹脂のうち、少なくとも当該被覆の表層を構成する紫外線硬化樹脂が未硬化状態の光ファイバ素線の各点に対して、紫外線を照射する第1の照射部と、上記第1の照射部によって上記紫外線が照射されることにより得られる、少なくとも上記被覆の表層を構成する紫外線硬化樹脂が硬化した上記光ファイバ素線の各点に対して、紫外線を照射する第2の照射部と、を含み、上記第2の照射部によって上記紫外線が照射される直前の上記光ファイバ素線の温度が、50℃以上300℃以下である、ことを特徴とする。
上記の構成によれば、第1の照射工程(第1の照射部)により少なくとも被覆の表層が硬化された光ファイバ素線は、第2の照射工程(第2の照射部)に突入する直前において、その温度が50℃以上300℃以下である。この温度範囲で突入した光ファイバ素線に紫外線を照射することにより、被覆の表層以外の部分である内部の層が、従来よりも充分に硬化される。これにより、製造後の工程において被覆に側圧がかかっても、被覆の割れの発生頻度が低減する。
本発明に係る光ファイバ素線の製造方法においては、上記第1の照射工程を実施した直後の上記光ファイバ素線の各点の温度が、300℃以下である、ことが好ましい。
上記の構成によれば、第2の照射工程に突入する直前における光ファイバ素線の温度を、より確実に50℃以上300℃以下にすることができる。
本発明に係る光ファイバ素線の製造方法においては、自然冷却によって上記第2の照射工程を実施する直前の上記光ファイバ素線の温度が50℃以上300℃以下となるように、上記第1の照射工程が実施されてから上記第2の照射工程が実施されるまでの上記光ファイバ素線の走行路の長さが設定されている、ことが好ましい。
上記の構成によれば、冷却部等の構成を追加することなく、上記の効果を得ることができる。
本発明によれば、製造後の光ファイバ素線において被覆の割れが生じ難い光ファイバ素線の製造方法及び製造装置を実現することができる。
本発明の各実施形態において製造される光ファイバ素線の横断面を示す断面図である。 本発明の第1の実施形態に係る光ファイバ素線の製造装置の構成を示すブロック図である。 本発明の第1の実施形態において1次照射部のUVランプ及び2次照射部のUVLEDからそれぞれ出射される紫外線のスペクトルの一例を示す図である。 本発明の第1の実施形態に係る1次照射部を構成する第1照射ユニットの断面図である。 本発明の第1の実施形態に係る2次照射部を構成する第2照射ユニットの断面図である。 本発明の第1の実施形態において、2次照射部に突入する直前の光ファイバ素線の温度と、製造後の1次被覆の硬化度との関係を示すグラフである。 本発明の第1の実施形態に係る光ファイバ素線の製造方法を説明するフローチャートである。
以下、本発明の各実施形態に係る光ファイバの製造装置及び製造方法について説明する。なお、各実施形態において、同一の構成及び工程には同一の符号を付し、重複する説明は省略する。
〔光ファイバ素線の構成〕
まず、後述する各実施形態に係る光ファイバの製造装置及び製造方法により製造される光ファイバ素線10について、図1を参照して説明する。図1は、光ファイバ素線10の横断面(光軸に直交する断面)を示す断面図である。
光ファイバ素線10は、円柱状の光ファイバ裸線11と、光ファイバ裸線11の側面を覆う被覆12と、を備えている。
光ファイバ裸線11は、円柱状のコア11aと、コア11aの側面を覆う円筒状のクラッド11bと、により構成される。コア11a及びクラッド11bは、何れも石英ガラスにより構成されている。ただし、クラッド11bを構成する石英ガラスの屈折率は、コア11aを構成する石英ガラスの屈折率よりも低い。コア11aとクラッド11bとの屈折率差は、例えば、コア11aを構成する石英ガラスに屈折率を上昇させるためのドーパント(例えば、ゲルマニウム)を添加することによって、あるいは、クラッド11bを構成する石英ガラスに屈折率を低下させるためのドーパント(例えば、フッ素)を添加することによって形成される。なお、クラッド11bの屈折率をコア11aの屈折率よりも低くするのは、コア11aに光を閉じ込める機能を光ファイバ裸線11に付与するためである。
被覆12は、光ファイバ裸線11の側面(クラッド11bの外側面)を覆う円筒状の1次被覆12aと、1次被覆12aの外側面を覆う円筒状の2次被覆12bと、により構成されている。1次被覆12a及び2次被覆12bは、何れも紫外線硬化樹脂により構成されている。ただし、1次被覆12aを構成する紫外線硬化樹脂のヤング率は、2次被覆12bを構成する紫外線硬化樹脂のヤング率よりも低い。1次被覆12aと2次被覆12bとのヤング率差は、例えば、1次被覆12a及び2次被覆12bを構成する紫外線硬化樹脂の重合度を異ならせることにより形成される。なお、2次被覆12bのヤング率を相対的に高く、1次被覆12aのヤング率を相対的に低くするのは、硬質の2次被覆12bにより耐外傷性を向上させると共に、軟質の1次被覆12aにより衝撃吸収性を向上させるためである。
1次被覆12a及び2次被覆12bを構成する紫外線硬化樹脂には、それぞれ、光重合開始剤が含まれている。これらの紫外線硬化樹脂の硬化は、光重合開始剤の吸収波長帯に属する波長を有する紫外線により開始される。なお、硬化時の温度が高いほど、2次被覆12bを構成する紫外線硬化樹脂の硬化が進みやすく、1次被覆12aを構成する紫外線硬化樹脂の硬化が進みにくい傾向がある。また、硬化時の温度が低いほど、2次被覆12bを構成する紫外線硬化樹脂の硬化が進みにくく、1次被覆12aを構成する紫外線硬化樹脂の硬化が進みやすい傾向がある。
〔第1の実施形態〕
(光ファイバの製造装置の構成)
本発明の第1の実施形態に係る製造装置1の構成について、図2を参照して説明する。図2は、製造装置1の構成を示すブロック図である。
製造装置1は、光ファイバ素線10(図1参照)を製造するための装置であり、線引部101、冷却部102、裸線外径測定部103、塗布部104、素線外径測定部105、1次照射部106、引取部107、2次照射部108、及び巻取部109を備えている。これらの構成要素は、光ファイバ素線10の走行経路に沿ってこの順に配置される。さらに、製造装置1は、裸線外径測定部103及び素線外径測定部105から取得したモニタ信号を参照して塗布部104及び引取部107を制御する制御部110を備えている。また、製造装置1は、複数のプーリ111_1〜111_6を備えている。光ファイバ素線10の走行経路は、これらのプーリ111_1〜111_6によって規定される。
なお、1次照射部106は、本発明における第1の照射部の一例を構成する。また、2次照射部108は、本発明における第2の照射部の一例を構成する。
線引部101は、光ファイバ裸線11の母材となるプリフォームを線引きするための手段である。本実施形態においては、加熱炉を線引部101として用いる。プリフォームは、この加熱炉により加熱され、溶融する。そして、溶融したプリフォームは、自重により引き伸ばされる。このように、プリフォームを溶融して引き伸ばすことを、「線引き」という。線引部101において線引きされたプリフォームは、線引部101の下方に配置された冷却部102に送り込まれる。
冷却部102は、線引きされたプリフォームを冷却するための手段である。本実施形態においては、冷却筒を冷却部102として用いる。線引きされたプリフォームは、この冷却筒内を流れる冷却ガスにより冷却され、硬化する。これにより、光ファイバ裸線11が得られる。冷却部102において得られた光ファイバ裸線11は、光ファイバ裸線11の外径を測定するための裸線外径測定部103を経由した後、冷却部102の下方に配置された塗布部104に送り込まれる。
塗布部104は、被覆12の母材となる未硬化状態の紫外線硬化樹脂を光ファイバ裸線11の側面に塗布するための手段である。本実施形態においては、2つの塗布ダイスが重ねて設けられた二重塗布ダイスを塗布部104として用いる。光ファイバ裸線11の側面には、上流側の塗布ダイスによって、1次被覆12aの母材となる未硬化状態の紫外硬化樹脂が塗布され、1次被覆12aの外側面には、下流側の塗布ダイスによって、2次被覆12bの母材となる未硬化状態の紫外線硬化樹脂が塗布される。これにより、1次被覆12a及び2次被覆12bが共に未硬化状態である光ファイバ素線10が得られる。この状態の光ファイバ素線10のことを、以下、光ファイバ素線10αと記載する。塗布部104において得られた光ファイバ素線10αは、光ファイバ素線10αの外径を測定するための素線外径測定部105を経由した後、塗布部104の下方に配置された1次照射部106に送り込まれる。
なお、塗布部104が塗布する紫外線硬化樹脂の厚みは、可変であり、素線外径測定部105にて測定された光ファイバ素線10αの外径に基づいて、制御部110により制御されている。制御部110は、光ファイバ素線10αの外径が予め定められた値よりも小さい場合、塗布する紫外線硬化樹脂の厚み増加するように塗布部104を制御する。逆に、制御部110は、光ファイバ素線10αの外径が予め定められた値よりも大きい場合、塗布する紫外線硬化樹脂の厚みが減少するように塗布部104を制御する。これにより、得られる光ファイバ素線10の外径を予め定められた値に近づけることができる。
1次照射部106は、光ファイバ素線10αに対して、低酸素雰囲気化においてUVランプ(紫外線ランプ)を用いて紫外線を照射するための手段である。本実施形態においては、UVランプを光源とするn個(nは1以上の自然数)のUVランプユニット106_1〜106_nを、1次照射部106として用いる。各UVランプユニット106_i(iは1以上n以下の自然数)の構成については、参照する図面を代えて後述する。なお、図2においては、n=3の場合を例示しているが、1次照射部106を構成するUVランプユニット106_iの個数は任意である。
被覆12の母材となる紫外線硬化樹脂は、1次照射部106におけるUVランプを用いた紫外線照射によって、外側から順に硬化していく。1次照射部106におけるUVランプを用いた紫外線照射では、主に2次被覆12bを構成する紫外線硬化樹脂が硬化する。ただし、1次照射部106におけるUVランプを用いた紫外線照射が完了した段階では、少なくとも2次被覆12bの表層を構成する紫外線硬化樹脂が十分に硬化していればよく、その余の紫外硬化樹脂は、未硬化状態であっても、半硬化状態であっても構わない。この状態の光ファイバ素線10のことを、以下、光ファイバ素線10βと記載する。1次照射部106において得られた光ファイバ素線10βは、プーリ111_1を経由した後、引取部107に送り込まれる。プーリ111_1は、光ファイバ素線10βの走行経路を重力方向に平行な第1方向(図2における下方向)から重力方向に垂直な第2方向(図2における右方向)に変えるターンプーリとして機能する。
引取部107は、光ファイバ素線10βを特定の引取速度で引き取るための手段である。ここで、引取速度とは、引取部107が単位時間あたりに引き取る光ファイバ素線10βの長さのことである。本実施形態においては、キャプスタンを引取部107として用いる。引取部107により引き取られた光ファイバ素線10βは、プーリ111_2〜111_6を経由した後、引取部107の側方に配置された2次照射部108に送り込まれる。ここで、プーリ111_5は、第1方向と平行に(図2における上下方向に)変位可能なダンサープーリである。このプーリ111_5を第1方向に(図2における下方向に)付勢することによって、光ファイバ素線10βに張力が掛けられる。
なお、引取部107の引取速度は、可変であり、裸線外径測定部103にて測定された光ファイバ裸線11の外径に基づいて、制御部110により制御されている。制御部110は、光ファイバ裸線11の外径が予め定められた値よりも小さい場合、引取速度が低下するように引取部107を制御する。逆に、制御部110は、光ファイバ裸線11の外径が予め定められた値よりも大きい場合、引取速度が上昇するように引取部107を制御する。これにより、得られる光ファイバ裸線11の外径を予め定められた値に近づけることができる。
2次照射部108は、UVLED(紫外線発光ダイオード)を用いて光ファイバ素線10βに紫外線を照射するための手段である。本実施形態においては、UVLEDを光源とするm個(mは1以上の自然数)のUVLEDユニット108_1〜108_mを、2次照射部108として用いる。各UVLEDユニット108_j(jは1以上m以下の自然数)の構成については、参照する図面を代えて後述する。なお、図2においては、m=2の場合を例示しているが、2次照射部108を構成するUVLEDユニット108_jの個数は任意である。
被覆12の母材となる紫外線硬化樹脂のうち、1次照射部106におけるUVランプを用いた紫外線照射でも未だ十分に硬化していない紫外線硬化樹脂は、2次照射部108におけるUVLEDを用いた紫外線照射によって硬化が完了する。2次照射部108におけるUVLEDを用いた紫外線照射では、主に1次被覆12aを構成する紫外線硬化樹脂が硬化する。これにより、光ファイバ素線10が得られる。2次照射部108において得られた光ファイバ素線10は、巻取部109に送り込まれる。
巻取部109は、光ファイバ素線10を巻き取るための手段である。本実施形態においては、第2方向に平行な回転軸を有する巻取ドラム109aと、第2方向と平行に変位可能なプーリ109bを、巻取部109として用いる。巻取ドラム109aを回転させながら、プーリ109bを第2方向と平行に往復移動させることによって、光ファイバ素線10が巻取ドラム109aに均等に巻き取られる。
以上のように、製造装置1においては、1次照射部106の光源として、UVランプを用いると共に、2次照射部108の光源として、UVLEDを用いている。これは、以下の理由による。
UVLEDは、UVランプに比べて消費電力が小さい。また、UVLEDは、高温になりにくいため、冷却装置を簡略化することができ、その結果、運転時の消費電力を更に抑えることができる。また、UVLEDには、高温環境下で生じ得る紫外線硬化樹脂の劣化を抑えることができるというメリットがある。しかしながら、1次照射部106の光源として、UVLEDを用いると、次のような問題を生じる。
すなわち、図3に示すように、UVLEDから発せられる紫外線は、UVランプから発せられる紫外線に比べてスペクトル幅が狭い。そのため、UVLEDのピーク波長が、2次被覆12bに含まれる光重合開始剤の吸収波長と異なる可能性が高い。加えて、2次被覆12bは、硬化時のファイバ温度が高いほど硬化が進みやすい傾向がある。そのため、1次照射部106にUVLEDを用いると、2次被覆12bの表層を構成する紫外線硬化樹脂を1次照射部106において十分に硬化することができない可能性が高くなる。そうすると、光ファイバ素線10βがプーリ111_1に接触した際に、2次被覆12bの表面がプーリ111_1に付着して剥離されるといった問題を生じる。
そこで、製造装置1においては、1次照射部106の光源として、UVランプを用いることによって、これらの問題を回避している。
さらに、製造装置1は、上述の1次照射部106において、次の構成を採用する。
すなわち、1次照射部106は、光ファイバ素線10αに対して、UVランプを用いた紫外線照射を、酸素濃度が2%以下の低酸素雰囲気下で行う。これは、紫外線硬化樹脂の酸素による硬化阻害を防止するためである。具体的には、1次照射部106は、UVランプから発光される紫外線を照射する光ファイバ素線10αが走行する石英管に、酸素濃度が2%以下の不活性ガスが流れるよう構成される。
また、1次照射部106は、光ファイバ素線10αの各点に対して、UVランプを用いた紫外線照射を、0.01秒以上行うよう構成される。これは、2次被覆12bの少なくとも表層を構成する紫外線硬化樹脂を十分に硬化させるための照射時間である。なお、照射時間とは、光ファイバ素線10αの各点が、1次照射部106による紫外線照射区間に進入してから進出するまでの時間をいう。例えば、線引速度が3000メートル/分であることを想定する。この場合、0.01秒の照射時間を確保するためには、1次照射部106における低酸素雰囲気下での照射区間の長さが、0.6メートル以上となるよう構成すればよい。
さらに、1次照射部106は、光ファイバ素線10αの各点に対して、UVランプを用いた紫外線の照射時間が、0.07秒以下となるよう構成される。これは、2次被覆12bの少なくとも表層を構成する紫外線硬化樹脂を十分に硬化させながらも、UVランプによる高温環境下で生じ得る紫外線硬化樹脂の劣化を防止するための照射時間である。例えば、線引速度が1000メートル/分であることを想定する。この場合、照射時間を0.07秒以下にするためには、1次照射部106における低酸素雰囲気下での照射区間の長さが、1.2メートル以下となるよう構成すればよい。
さらに、製造装置1は、上述の2次照射部108において、次の構成を採用してもよい。
すなわち、2次照射部108は、UVLEDとして、1次被覆12aを構成する紫外線硬化樹脂に含まれる光重合開始材の吸収波長を有する紫外線を発光するUVLEDを用いてもよい。これは、本実施形態では、光ファイバ素線10βでは、1次照射部106を通過したことによって2次被覆12aを構成する紫外線硬化樹脂がある程度硬化している可能性が高い。そのため、光ファイバ素線10βにおいて、被覆12の母材となる紫外線硬化樹脂のうち未だ硬化が十分でない部分は、主に1次被覆12aを構成する紫外線硬化樹脂であると考えられるからである。
(UVランプユニット及びUVLEDユニットの構成)
1次照射部106を構成するUVランプユニット106_iの構成について、図4を参照して説明する。図4は、UVランプユニット106_iの断面図である。
UVランプユニット106_iは、筐体106aと、筐体106aを貫通する石英管106bと、筐体106aの内部に収容されたUVランプ106cと、筐体106aの内部において石英管106b及びUVランプ106cを取り囲む反射板106dと、を備えている。UVランプ106cとしては、例えば、メタルハライドランプを挙げることができる。UVランプ106cから発せられた紫外線は、直接、又は、反射板106dにて反射された後、石英管106bの内部を走行する光ファイバ素線10αに照射される。
なお、筐体106aには、冷却用ガスを筐体106a内に給気するための給気口106a1と、この冷却用ガスを筐体106a外に排気するための排気口106a2とが設けられている。筐体106aの内部に収容されたUVランプ106cは、この冷却用ガスによって冷却される。
また、UVランプユニット106_iは、さらに、筐体106aから上方に突出した石英管106bの上端を収容する上部キャップ106eと、筐体106aから下方に突出した石英管106bの下端を収容する下部キャップ106fと、を備えている。上部キャップ106eには、低酸素濃度の不活性ガスを上部キャップ106e内に供給するための給気口106e1が設けられており、下部キャップ106fには、この不活性ガスを下部キャップ106f外に排気するための排気口106f1が設けられている。不活性ガスとしては、例えば、窒素、アルゴン、又はヘリウムが挙げられる。上部キャップ106e、石英管106b、及び下部キャップ106fの内部は、この不活性ガスにより満たされる。このため、石英管106bの内部を走行する光ファイバ素線10αは、低酸素雰囲気下で紫外線を照射されることになる。
本実施形態では、このようなUVランプユニット106_1〜3が、連続して配置される。各UVランプユニット106_iにおいて紫外線が照射される区間の合計の長さは、引取速度の変化に伴い照射時間が0.01秒以上0.07秒以下となる長さであるものとする。
次に、2次照射部108を構成するUVLEDユニット108_jの構成について、図5を参照して説明する。図5は、UVLEDユニット108_jの断面図である。
UVLEDユニット108_jは、筐体108aと、筐体108aを貫通する石英管108bと、筐体108aの内部に収容されたUVLEDバー108cと、筐体108aの内部においてUVLEDバー108cと対向するように石英管108bを取り囲む反射板108dと、を備えている。UVLEDバー108cは、複数のUVLED素子108c1〜108c5を直線状に並べた紫外線光源である。UVLEDバー108cから発せられた紫外線は、直接、又は、反射板108dにて反射された後、石英管108bの内部を走行する光ファイバ素線10βに照射される。
(2次照射部108に突入する直前のファイバ素線10βの温度)
2次照射部108に突入する直前の光ファイバ素線10βの温度は、50℃以上300℃以下であることが好ましい。このため、本実施形態においては、自然冷却によって2次照射部108へ突入する直前の光ファイバ素線10βの温度が50℃以上300℃以下となるように、1次照射部106から2次照射部108までの光ファイバ素線10βの走行経路の長さを十分に長く取っている。なお、光ファイバ素線10βの自然冷却による温度下降速度は、例えば、400℃毎秒以上1400℃毎秒以下の範囲である。ただし、光ファイバ素線10βの自然冷却による温度下降速度は、線引速度に応じて変化する。したがって、1次照射部106から2次照射部108までの光ファイバ素線10βの走行経路の長さも、線引速度に応じた値に設定される。
ここで、2次照射部108に突入する直前の光ファイバ素線10βの温度が50℃以上300℃以下であることが好ましい理由について、図6を参照して説明する。図6は、2次照射部108に突入する直前の光ファイバ素線10βの温度と、製造された光ファイバ素線10を構成する1次被覆12aの硬化度との関係を示すグラフである。ここでは、1次被覆12aの硬化度を示す指標として、ゲル分率を用いている。図6に示すグラフによれば、2次照射部108に突入する直前の光ファイバ素線10βの温度が50℃以上300℃以下であるときに、1次被覆12aのゲル分率が85%以上となることが分かる。
製造後の工程において、光ファイバ素線10に側圧が掛かると、被覆12に割れを生じることがある。本願発明者らが得た知見によれば、(1)1次被覆12aのゲル分率が80%未満であるとき、被覆12に割れが生じる光ファイバ素線10は全体の数十%であり、(2)1次被覆12aのゲル分率が80%以上85%未満であるとき、被覆12に割れが生じる光ファイバ素線10は全体の数%であり、(3)1次被覆12aのゲル分率が85%以上であるとき、被覆12に割れを生じる光ファイバ素線10は発生しない。したがって、2次照射部108に突入する直前の光ファイバ素線10βの温度が50℃以上300℃以下である場合、1次被覆12aのゲル分率が85%以上となり、その結果、被覆12に生じる得る割れを防止することができる。
さらに、好ましくは、2次照射部108に突入する直前の光ファイバ素線10βの温度は、63℃以上100℃以下であることが望ましい。この場合、1次被覆12aのゲル分率がさらに上がり、その結果、被覆12に生じる得る割れをさらに防止することができる。
(1次照射部106を通過した直後のファイバ素線10βの温度)
1次照射部106を通過した直後の光ファイバ素線10βの温度は、300℃以下であることが好ましい。なぜなら、1次照射部106を通過した直後の光ファイバ素線10βの温度が300℃以下であれば、2次照射部108に突入する直前の光ファイバ素線10βの温度を確実に300℃以下にすることができるからである。
なお、1次照射部106における光ファイバ素線10αの温度上昇速度は、3000℃/秒以上24000℃/秒以下である。例えば、1次照射部106における光ファイバ素線10αの温度上昇速度が3000℃/秒である場合、光ファイバ素線10αが1次照射部106を通過する時間が0.1秒以下になるように線引速度を設定すれば、1次照射部106を通過した直後の光ファイバ素線10βの温度を300℃以下に抑えることができる。また、1次照射部106における光ファイバ素線10αの温度上昇速度が24000℃/秒である場合、光ファイバ素線10αが1次照射部106を通過する時間が0.0125秒以下になるように線引速度を設定すれば、1次照射部106を通過した直後の光ファイバ素線10βの温度を300℃以下に抑えることができる。
また、光ファイバ
(光ファイバ素線の製造方法)
本発明の第1の実施形態に係る光ファイバ素線10の製造方法S1について、図7を参照して説明する。図7は、光ファイバ素線10の製造方法S1を示すフローチャートである。製造方法S1は、光ファイバ素線10(図1参照)を製造するための方法であり、以下に説明する工程S101〜S109を含んでいる。
工程S101:線引部101は、光ファイバ裸線11の母材となるプリフォームを線引きする。
工程S102:冷却部102は、工程S101にて線引きされたプリフォームを冷却する。これにより、光ファイバ裸線11が得られる。
工程S103:裸線外径測定部103は、工程S102にて得られた光ファイバ裸線11の外径を測定し、外径の測定値を表すモニタ信号を制御部110に提供する。
工程S104(塗布工程):塗布部104は、工程S103にて外径を測定された光ファイバ裸線11の側面に、被覆12の母材となる未硬化状態の紫外線硬化樹脂を塗布する。詳細には、塗布部104は、光ファイバ裸線11の外側面に、1次被覆12aの母材となる未硬化状態の紫外硬化樹脂を塗布する作業と、1次被覆12aの外側面に、2次被覆12bの母材となる未硬化状態の紫外線硬化樹脂を塗布する作業とを一括して実施する。これにより、光ファイバ素線10αが得られる。
なお、工程S104にて塗布される紫外線硬化樹脂の厚みは、後述する工程S105で測定される光ファイバ素線10αの外径に基づく制御部110の制御により調整される。
工程S105:素線外径測定部105は、工程S104にて得られた光ファイバ素線10αの外径を測定し、外径の測定値を表すモニタ信号を制御部110に提供する。
工程S106(第1の照射工程):1次照射部106は、工程S105にて得られた光ファイバ素線10αに、UVランプを用いて紫外線を照射する。これにより、主に2次被覆12bの母材となる紫外線硬化樹脂が硬化し、光ファイバ素線10βが得られる。少なくとも2次被覆12bの表層を構成する紫外線硬化樹脂は、本工程において十分に硬化される。このとき、得られた光ファイバ素線10βの温度は、300℃以下である。
工程S107:引取部107は、工程S106にて得られた光ファイバ素線10βを特定の引取速度で引き取る。
なお、工程S107にて光ファイバ素線10βを引き取る引取速度は、前述した工程S103で測定された光ファイバ裸線11の外径に基づく制御部110の制御により調整される。
工程S108(第2の照射工程):2次照射部108は、工程S107にて引き取られた光ファイバ素線10βに、UVLEDを用いて紫外線を照射する。これにより、主に1次被覆12aの母材となる紫外線硬化樹脂が硬化し、光ファイバ素線10が得られる。なお、工程S108を実施する直前の光ファイバ素線10βの温度は、工程S106の実施後に自然冷却され、50℃以上300℃以下となっている。
工程S109:巻取部109は、工程S108にて得られた光ファイバ素線10を巻取ドラム109aに巻き取る。これにより、巻取ドラム109aに巻き取られた光ファイバ素線10が得られる。
なお、上述した工程S106において、1次照射部106によるUVランプを用いた紫外線照射は、前述したように、酸素濃度が2%以下の低酸素雰囲気下で0.01秒以上行われる。
以上説明したように、本実施形態は、被覆を構成する紫外線硬化樹脂の少なくとも表層を含む部分が未硬化状態の光ファイバ素線の各点に対して、酸素濃度が2%の低酸素雰囲気下で、UVランプによる紫外線照射を0.01秒以上行う。その後、本実施の形態は、光ファイバ素線の各点に対して、UVLEDによる紫外線照射を行う。
ここで、2次被覆12bに含まれる光重合開始剤の吸収波長は、UVランプから発せられるスペクトル幅が広帯域の紫外線に含まれる可能性が高い。また、2次被覆12bは、硬化時のファイバ温度が高いほど硬化が進みやすい傾向がある。
したがって、本実施形態は、光ファイバ素線10の製造工程の前段の照射において、2次被覆12bの少なくとも表層を十分に硬化させることができる。その結果、本実施形態は、1次被覆12a及び2次被覆12bを一括して塗布する製造装置1において、従来よりも表面性の悪化が生じにくい光ファイバ素線10を製造することができる。
(変形例)
本実施形態では、1次照射部106を構成するUVランプユニット106_1〜106_3において、それぞれ酸素濃度が2%以下の低酸素雰囲気下で照射が行われるものとして説明した。ただし、1次照射部106を構成するUVランプユニット106_iのうち、下流側の1つ以上のUVランプユニット106_iにおける紫外線照射は、必ずしも低酸素雰囲気下で実施されなくてもよい。つまり、上流側の1つ以上のUVランプユニット106_iにより0.01秒以上の照射時間が確保されれば、残りの下流側のUVランプユニット106_iでは、紫外線の照射は空気中で行われても構わない。すなわち、そのような下流側のUVランプユニット106_i内には、低酸素濃度の不活性ガスが流れていなくてもよい。
これは、1次照射部106の上流側のUVランプユニット106_iで2次被覆12bを構成する紫外線硬化樹脂の表層が十分に硬化すれば、その余の紫外線硬化樹脂は露出していないため、酸素による硬化阻害を防止する必要がないからである。
このように構成した場合、本発明における第1の照射工程が、1次照射部106のうち低酸素雰囲気下で紫外線を照射する上流側の1つ以上のUVランプユニット106_iにより実施される。その後、本発明における第4の照射工程が、1次照射部106のうち空気中で紫外線を照射する下流側の残りのUVランプユニット106_iにより実施される。その後、本発明における第2の照射工程が、2次照射部108により実施される。
また、本実施形態では、光ファイバ素線10の被覆12が、1次被覆12a及び2次被覆12bの2層からなる例について説明した。ただし、本実施形態は、被覆12が1層からなる場合にも適用可能である。その場合、本実施形態において、塗布部104が、被覆12を形成する紫外線硬化樹脂を光ファイバ裸線11に塗布するよう構成すればよい。
また、本実施形態では、1次照射部106から2次照射部108までの区間における光ファイバ素線10βの冷却が、自然冷却によって実現されている。しかしながら、本発明は、これに限定されない。すなわち、1次照射部106から2次照射部108までの区間における光ファイバ素線10βの冷却は、強制冷却によって実現することも可能である。この場合、1次照射部106から2次照射部108までの区間に、強制冷却する冷却部を設ける。この冷却部は、2次照射部208に突入する直前の温度が50℃以上300℃以下となるように光ファイバ素線10βを冷却する。なお、この冷却部は、例えば、冷却ガスが流れる冷却筒によって構成される。
また、本実施形態では、1次照射部106における紫外線照射がUVランプによって実現されており、2次照射部108における紫外線照射がUVLEDによって実現されている。しかしながら、本発明は、これに限定されない。すなわち、1次照射部106における紫外線照射は、UVLEDによって実現することも可能である。また、2次照射部108における紫外線照射は、UVランプによって実現することも可能である。
〔付記事項〕
本発明は、上述した各実施形態に限定されるものでなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1 製造装置
10 光ファイバ素線
11a コア
11b クラッド
12a 1次被覆
12b 2次被覆
11 光ファイバ裸線
101 線引部
102 冷却部
103 裸線外径測定部
104 塗布部
105 素線外径測定部
106 1次照射部
107 引取部
108 2次照射部
109 巻取部
110 制御部
111 プーリ
106a、108a 筐体
106b、108b 石英管
106c UVランプ
108c UVLEDバー
106a1、106e1 給気口
106a2、106f2 排気口
106d、108d 反射板

Claims (4)

  1. 被覆を構成する紫外線硬化樹脂のうち、少なくとも当該被覆の表層を構成する紫外線硬化樹脂が未硬化状態の光ファイバ素線の各点に対して、紫外線ランプが発する紫外線を照射する第1の照射工程と、
    上記第1の照射工程を実施して得られる、少なくとも上記被覆の表層を構成する紫外線硬化樹脂が硬化した上記光ファイバ素線の各点に対して、紫外線発光ダイオードが発する紫外線を照射する第2の照射工程と、を含み、
    上記第2の照射工程を実施する直前の上記光ファイバ素線の温度が、50℃以上300℃以下である、
    ことを特徴とする光ファイバ素線の製造方法。
  2. 上記第1の照射工程を実施した直後の上記光ファイバ素線の温度が、300℃以下である、
    ことを特徴とする請求項1に記載の光ファイバ素線の製造方法。
  3. 自然冷却によって上記第2の照射工程を実施する直前の上記光ファイバ素線の温度が50℃以上300℃以下となるように、上記第1の照射工程が実施されてから上記第2の照射工程が実施されるまでの上記光ファイバ素線の走行路の長さが設定されている、
    ことを特徴とする請求項1又は2に記載の光ファイバ素線の製造方法。
  4. 被覆を構成する紫外線硬化樹脂のうち、少なくとも当該被覆の表層を構成する紫外線硬化樹脂が未硬化状態の光ファイバ素線の各点に対して、紫外線ランプが発する紫外線を照射する第1の照射部と、
    上記第1の照射部によって上記紫外線が照射されることにより得られる、少なくとも上記被覆の表層を構成する紫外線硬化樹脂が硬化した上記光ファイバ素線の各点に対して、紫外線発光ダイオードが発する紫外線を照射する第2の照射部と、を含み、
    上記第2の照射部によって上記紫外線が照射される直前の上記光ファイバ素線の温度が、50℃以上300℃以下である、
    ことを特徴とする光ファイバ素線の製造装置。
JP2017234407A 2017-12-06 2017-12-06 光ファイバ素線の製造方法及び製造装置 Active JP6561106B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017234407A JP6561106B2 (ja) 2017-12-06 2017-12-06 光ファイバ素線の製造方法及び製造装置
PCT/JP2018/041357 WO2019111626A1 (ja) 2017-12-06 2018-11-07 光ファイバ素線の製造方法及び製造装置
US16/770,288 US20210171394A1 (en) 2017-12-06 2018-11-07 Method and apparatus for manufacturing optical fiber cable
CN201880077484.6A CN111433168B (zh) 2017-12-06 2018-11-07 光纤素线的制造方法和制造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017234407A JP6561106B2 (ja) 2017-12-06 2017-12-06 光ファイバ素線の製造方法及び製造装置

Publications (2)

Publication Number Publication Date
JP2019099436A JP2019099436A (ja) 2019-06-24
JP6561106B2 true JP6561106B2 (ja) 2019-08-14

Family

ID=66750848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017234407A Active JP6561106B2 (ja) 2017-12-06 2017-12-06 光ファイバ素線の製造方法及び製造装置

Country Status (4)

Country Link
US (1) US20210171394A1 (ja)
JP (1) JP6561106B2 (ja)
CN (1) CN111433168B (ja)
WO (1) WO2019111626A1 (ja)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635475B2 (ja) * 1992-02-03 1997-07-30 株式会社フジクラ 光ファイバの被覆形成方法
EP0854022A1 (en) * 1997-01-15 1998-07-22 Lucent Technologies Inc. Two stage curing for optical fiber
EP0854121B1 (en) * 1997-01-15 2004-09-29 Alcatel Apparatus for curing a fiber having at least two fiber coating curing stages separated by a cooling stage
US7322122B2 (en) * 1997-01-15 2008-01-29 Draka Comteq B.V. Method and apparatus for curing a fiber having at least two fiber coating curing stages
FR2762594B1 (fr) * 1997-04-24 1999-06-11 Alsthom Cge Alcatel Procede de fabrication d'une fibre optique resistante aux microcourbures ayant au moins deux revetements
JP2010117527A (ja) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd 紫外線照射装置及び光ファイバの被覆形成方法
EP2523802A1 (en) * 2010-01-13 2012-11-21 3M Innovative Properties Company Optical films with microstructured low refractive index nanovoided layers and methods therefor
US8871311B2 (en) * 2010-06-03 2014-10-28 Draka Comteq, B.V. Curing method employing UV sources that emit differing ranges of UV radiation
JP5417531B2 (ja) * 2010-06-11 2014-02-19 株式会社フジクラ 光ファイバ素線の製造方法及び製造装置
JP2014077918A (ja) * 2012-10-11 2014-05-01 Sumitomo Electric Ind Ltd 光ファイバ素線の製造方法
EP3176134B1 (en) * 2014-07-29 2020-09-02 Furukawa Electric Co. Ltd. Colored optical fiber core strand
JP5917736B1 (ja) * 2015-02-10 2016-05-18 株式会社フジクラ 光ファイバ素線の製造方法、制御装置および製造装置
JP6457579B2 (ja) * 2017-04-10 2019-01-23 株式会社フジクラ 光ファイバの製造方法

Also Published As

Publication number Publication date
US20210171394A1 (en) 2021-06-10
CN111433168A (zh) 2020-07-17
CN111433168B (zh) 2022-06-21
JP2019099436A (ja) 2019-06-24
WO2019111626A1 (ja) 2019-06-13

Similar Documents

Publication Publication Date Title
JP2010117527A (ja) 紫外線照射装置及び光ファイバの被覆形成方法
JP2010117531A (ja) 紫外線照射装置及び光ファイバの被覆形成方法
JPWO2019044703A1 (ja) 光ファイバの製造方法
US11846407B2 (en) Bare optical fiber manufacturing method
JP6576995B2 (ja) 光ファイバ素線の製造方法及び製造装置
KR100324176B1 (ko) 광파이버테이프심선의제조방법
JP6561106B2 (ja) 光ファイバ素線の製造方法及び製造装置
JP2022115744A (ja) 光ファイバ心線の製造方法
JP6622272B2 (ja) 光ファイバ素線の製造方法及び光ファイバ素線の製造装置
JP2013082594A (ja) 光ファイバ素線の製造方法
JP2010117526A (ja) 紫外線照射装置及び光ファイバの被覆形成方法
CN108349797A (zh) 光纤的制造方法、光纤的制造装置及光纤
JP6670278B2 (ja) 光ファイバ素線の製造方法、光ファイバ素線の製造装置、及び、プログラム
JP6545767B2 (ja) 光ファイバ素線の製造方法及び光ファイバ素線の製造装置
JP6582815B2 (ja) 光ファイバの製造方法
WO2017141832A1 (ja) 光ファイバ素線の製造方法
JP2016124731A (ja) 光ファイバの製造方法
JP4172062B2 (ja) 線状体に紫外線硬化樹脂を被覆する方法
JP5942630B2 (ja) 光ファイバ製造方法
JP4139953B2 (ja) 光ファイバの製造方法およびこれに用いられる光ファイバ製造装置
US20220404571A1 (en) Low-attenuation rollable optical fiber ribbon
JP2002356343A (ja) 光ファイバ、その製造方法、及び長周期ファイバグレーティング
JP2004163678A (ja) 分割型リボンファイバの製造方法
JP2004264743A (ja) 光ファイバおよび光ファイバの製造方法
JP2004029087A (ja) テープ状光ファイバ心線の製造装置,製造方法およびテープ状光ファイバ心線

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R151 Written notification of patent or utility model registration

Ref document number: 6561106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250