WO2017077740A1 - 光学フィルム、偏光板および画像表示装置 - Google Patents

光学フィルム、偏光板および画像表示装置 Download PDF

Info

Publication number
WO2017077740A1
WO2017077740A1 PCT/JP2016/070960 JP2016070960W WO2017077740A1 WO 2017077740 A1 WO2017077740 A1 WO 2017077740A1 JP 2016070960 W JP2016070960 W JP 2016070960W WO 2017077740 A1 WO2017077740 A1 WO 2017077740A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
acid
layer
acrylate
cured layer
Prior art date
Application number
PCT/JP2016/070960
Other languages
English (en)
French (fr)
Inventor
知世 安達
秀人 木村
田中 博文
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020187010906A priority Critical patent/KR102041740B1/ko
Priority to CN201680064172.2A priority patent/CN108351458B/zh
Priority to JP2017548652A priority patent/JP6673363B2/ja
Publication of WO2017077740A1 publication Critical patent/WO2017077740A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Definitions

  • the present invention relates to an optical film having at least two cured layers on one surface side of a film substrate as a quarter-wave retardation film (hereinafter also referred to as ⁇ / 4 film), and the optical film.
  • the present invention relates to a polarizing plate having a polarizing plate and an image display device having the polarizing plate.
  • polarized glasses When an observer observes an image displayed on a liquid crystal display device through polarized glasses for observing a stereoscopic image (3D video) or polarized sunglasses (hereinafter, also referred to as “polarized glasses”), the observer When lying down, the transmission axis (polarization axis for transmitting linearly polarized light) of polarized glasses or the like tilts with respect to the upright state, and crosstalk (luminance change, darkness) occurs. In order to reduce such crosstalk and improve image visibility, it is known to arrange a ⁇ / 4 film on the outermost surface on the viewing side of the liquid crystal display device.
  • the angle between the slow axis of the ⁇ / 4 film and the absorption axis of the polarizer is approximately 30 ° to 60 °.
  • a polarizing plate in which a ⁇ / 4 film is attached to a polarizer is also referred to as a circularly polarizing plate below.
  • the ⁇ / 4 film is produced in a long shape using a so-called oblique stretching method, for example, by stretching a polymer film in a direction substantially 45 ° with respect to the longitudinal direction.
  • a long ⁇ / 4 film and a long polarizer in a roll-to-roll manner to produce a long circular polarizing plate, a long circular polarizing plate is obtained. Since each circularly polarizing plate can be obtained by cutting at a predetermined position, the productivity of the circularly polarizing plate is dramatically improved.
  • JP-A-2015-179204 see claim 1, paragraphs [0026], [0029], [0033], FIG. 1, FIG. 2, etc.
  • the optical film after the cured layer is formed as a single layer on the ⁇ / 4 film is wound into a roll as described above to form a long wound body, and is stored or transported as such a long wound body. Is done.
  • the environment at the time of storage or transportation of the long wound body becomes high temperature and high humidity (or when a wet heat endurance test assuming such a severe environment is performed)
  • it is caused by oblique stretching of the ⁇ / 4 film.
  • Residual stress is relieved.
  • the ⁇ / 4 film tends to shrink in the orientation direction (obliquely stretched direction) (the ⁇ / 4 film tends to cause a dimensional change).
  • the single cured layer is thin, poor curing is likely to occur, and the original function of the cured layer, that is, the surface protection of the ⁇ / 4 film, cannot be exhibited. For this reason, a certain thickness is required for the single-layer cured layer.
  • a region where the mechanical strength is weakened is increased in the film thickness direction because the solvent contained in the cured layer composition penetrates the ⁇ / 4 film. The region follows the dimensional change of the ⁇ / 4 film and causes a dimensional change. For this reason, the dimensional change of the ⁇ / 4 film cannot be suppressed by the entire cured layer.
  • the present invention has been made in order to solve the above-described problems, and its object is to provide a 1/4 in a high-temperature and high-humidity environment while protecting the surface of the quarter-wave retardation film with a cured layer.
  • An optical film that can suppress winding deformation of the optical film due to a dimensional change of the wavelength retardation film, and thereby can suppress deterioration in flatness when drawn out from the winding body, and polarized light having the optical film
  • An object of the present invention is to provide a plate and an image display device having the polarizing plate.
  • the inventors of the present application have a configuration having at least two cured layers on one surface side of a film substrate as a quarter-wave retardation film, and appropriately set the thickness relationship of the two cured layers. As a result, the inventors have found that the above-mentioned problems can be solved, and have reached the present invention. That is, the above object of the present invention is achieved by the following configuration.
  • the optical film which concerns on 1 side of this invention is an optical film which has a film base material as a quarter wavelength phase difference film, and the at least 2 layer hardening layer located in the one surface side of the said film base material.
  • the cured layer closest to the film substrate is defined as a first cured layer
  • the cured layer closest to the film substrate next to the first cured layer is a second cured layer.
  • L1 ( ⁇ m) and the thickness of the second cured layer is L2 ( ⁇ m)
  • the cured layer on the film substrate as a quarter retardation film is composed of a plurality of layers, and the film thickness of two layers (first cured layer, second cured layer) on the film substrate side among the plurality of layers is
  • the winding deformation of the optical film due to the change can be suppressed. As a result, even when the optical film is unwound from the wound body, it is possible to suppress a decrease in flatness of the optical film.
  • the optical film of this embodiment includes a film substrate as a quarter-wave retardation film ( ⁇ / 4 film), and at least two cured layers located on one surface side of the film substrate.
  • a cured layer closest to the film substrate is defined as a first cured layer
  • a cured layer closest to the film substrate next to the first cured layer Is the second cured layer
  • the thickness of the first cured layer is L1 ( ⁇ m)
  • the thickness of the second cured layer is L2 ( ⁇ m)
  • the second cured layer next to the film substrate is next to the thickness L1 of the first cured layer closest to the film substrate.
  • the thickness L2 is larger. Since the thickness of the second cured layer is large, the surface of the ⁇ / 4 film (film substrate) can be protected by the second cured layer.
  • the solvent contained in the composition forming the first hardened layer penetrates into the ⁇ / 4 film and the mechanical strength is weakened (the component that forms the first hardened layer and In the mixed region where the components forming the ⁇ / 4 film are mixed, the relatively fragile region is also thinned in the film thickness direction. For this reason, the area
  • the residual stress generated by the oblique stretching of the ⁇ / 4 film in a high temperature and high humidity environment is relieved, and even if the ⁇ / 4 film attempts to shrink in the orientation direction (diagonal stretching direction), the entire cured layer has ⁇ /
  • the dimensional change of 4 films can be suppressed.
  • twisting in the wound body, blocking of the optical film due to the twisting, and generation of black bands can be suppressed. That is, it becomes possible to suppress the winding deformation of the optical film.
  • the flatness of the optical film can be ensured when the optical film is unwound from the roll.
  • a circularly polarizing plate is formed using the optical film, and the circularly polarizing plate is Even when applied to an image display device, it is possible to suppress a decrease in visibility (a decrease in contrast) during image observation using polarized sunglasses or the like.
  • the polarizing plate of the present embodiment has a configuration in which the optical film is located on one surface side of the polarizer. According to the structure of the said optical film, even when an optical film is wound up in roll shape, the winding shape deformation
  • a polarizing plate for example, circularly-polarizing plate
  • the image display device of the present embodiment has a configuration in which the polarizing plate is located on at least one surface side of the display cell.
  • FIG. 1 is an exploded sectional view showing a schematic configuration of an image display device 1 according to an embodiment of the present application.
  • the image display device 1 is, for example, a liquid crystal display device, and is configured by bonding a protective portion 3 to a polarizing plate 5 (particularly on an optical film 16 described later) of the liquid crystal display panel 2 via a filling layer 31.
  • the filling layer 31 is an adhesive layer (void filler) made of a photocurable resin such as acrylic, and is formed on the entire surface of the polarizing plate 5 of the liquid crystal display panel 2.
  • the protection unit 3 protects the surface of the liquid crystal display panel 2 and is formed of a front plate made of acrylic resin or glass, for example. Note that a touch panel (such as a capacitance method or a resistance film method) may be used as the protection unit 3 instead of the front plate.
  • the liquid crystal display panel 2 is configured by disposing polarizing plates 5 and 6 on both sides of a liquid crystal cell 4 (display cell) in which a liquid crystal layer is sandwiched between a pair of substrates.
  • the polarizing plate 5 is attached to one surface side (for example, the viewing side) of the liquid crystal cell 4 via the adhesive layer 7.
  • the polarizing plate 6 is attached to the other surface side (for example, the backlight 9 side) of the liquid crystal cell 4 through the adhesive layer 8.
  • the driving method of the liquid crystal display panel 2 is not particularly limited, and various driving methods such as an IPS (In Plane Switching) type, a TN (Twisted Nematic) method, and a VA (Vertical Alignment) method can be employed.
  • the polarizing plate 5 includes a polarizer 11 that transmits predetermined linearly polarized light, a film substrate 12, a first cured layer 13, a second cured layer 14, and a polarizer that are sequentially stacked on the protective unit 3 side of the polarizer 11. 11 and the back surface protective film 15 laminated on the liquid crystal cell 4 side.
  • the film base 12, the first cured layer 13, and the second cured layer 14 constitute an optical film 16 as a protective film formed on the viewing side surface of the polarizer 11.
  • the film substrate 12 is made of, for example, a cellulose resin (cellulose ester resin), and is also referred to as a cellulose ester film substrate.
  • the back surface protective film 15 is provided to protect the back surface of the polarizing plate 5.
  • the back surface protective film 15 may be made of the same material as the film substrate 12 (for example, cellulose ester), or may be made of other materials.
  • the back surface protective film 15 may be comprised with the film (retardation film) which has an optical compensation function, and may be comprised with the zero phase difference film which provides almost no phase difference with respect to transmitted light.
  • the polarizing plate 6 is disposed on the opposite side of the polarizer 21 that transmits predetermined linearly polarized light, the surface protection film 22 disposed on the liquid crystal cell 4 side of the polarizer 21, and the liquid crystal cell 4 of the polarizer 21.
  • the back surface protective film 23 is laminated.
  • the polarizer 21 is disposed so that the transmission axis is perpendicular to the polarizer 11 (crossed Nicol state).
  • the surface protective film 22 and the back surface protective film 23 are provided to protect the front surface and the back surface of the polarizing plate 6, and these are composed of the same material (for example, cellulose ester) as the film substrate 12 of the polarizing plate 5. It may be made of other materials.
  • the optical film 16 on the viewing side of the polarizing plate 5 will be further described as follows.
  • the film base 12 of the optical film 16 is bonded to the polarizer 11 with water paste, and the film thickness is preferably in the range of 5 to 50 ⁇ m, for example.
  • the film substrate 12 thinner, the optical film 16 and the polarizing plate 5 can be made thinner, which can contribute to reducing the thickness of the entire image display device 1.
  • the film substrate 12 is composed of a quarter wavelength retardation film ( ⁇ / 4 film).
  • the ⁇ / 4 film is a layer that imparts in-plane retardation of about 1 ⁇ 4 of the wavelength to transmitted light, and in the present embodiment, the ⁇ / 4 film is composed of a film that is obliquely stretched.
  • the angle (crossing angle) formed between the slow axis of the ⁇ / 4 film and the absorption axis of the polarizer 11 is 30 ° to 60 °, whereby the linearly polarized light from the polarizer 11 is converted into the ⁇ / 4 film ( It is converted into circularly polarized light or elliptically polarized light by the film substrate 12).
  • the polarizing plate can be used regardless of how the transmission axis of the polarizer 11 (perpendicular to the absorption axis) and the transmission axis of the polarized sunglasses are misaligned.
  • the light component parallel to the transmission axis of the polarized sunglasses contained in the light emitted from 5 (circularly polarized light or elliptically polarized light) can be guided to the eyes of the observer. Thereby, it can suppress that it becomes difficult to see a display image with the angle to observe.
  • the thickness of the first cured layer 13 that is closest to the film substrate 12 is L1 ( ⁇ m), and then the second curing that is close to the film substrate 12.
  • L1 ⁇ L2 It is.
  • the second cured layer 14 includes a resin having an alicyclic structure and fine particles coated with a polymer silane coupling agent
  • the first cured layer 13 includes a resin having an alicyclic structure of the second cured layer 14 and May contain different resins and fine particles coated with a polymer silane coupling agent.
  • the 2nd hardened layer 14 contains resin which has an alicyclic structure
  • the second cured layer 14 is formed on the film substrate 12 via the first cured layer 13. That is, the first cured layer 13 is interposed between the second cured layer 14 and the film substrate 12.
  • the first hardened layer 13 includes fine particles formed by coating with a polymer silane coupling agent. Since the fine particles have hygroscopicity (water absorption), for example, when the optical film 16 is used as a protective film and bonded to one surface of the polarizer 11 with water paste, the water content of the water paste is applied to the film base 12.
  • the moisture escapes from the film substrate 12 to the first cured layer 13 due to the hygroscopicity of the first cured layer 13 (the fine particles).
  • moisture content the fine particles.
  • the first cured layer 13 includes a resin (for example, urethane acrylate resin is preferable) different from the 14 resin of the second cured layer that realizes low moisture permeability. Even when an external impact is applied to the formed second cured layer 14, the impact can be relaxed (absorbed) by the first cured layer 13. Furthermore, the hardness of the 2nd hardened layer 14 can be raised by making the 2nd hardened layer 14 contain the microparticles
  • urethane acrylate resin is preferable
  • the film substrate 12 is prevented from being deformed by moisture, the first cured layer 13 is configured to absorb the impact, and the hardness of the second cured layer 14 is ensured to some extent, whereby an external force is applied to the second cured layer 14.
  • the second hardened layer 14 is difficult to break. Therefore, even if it is the structure which provides the 2nd hardened layer 14 of low moisture permeability, the crack of the 2nd hardened layer 14 can be reduced.
  • the moisture of the water paste that has entered the film base material 12 escapes to the first hardened layer 13 side, the dimensional deformation due to the water content of the film base material 12 and the phase difference fluctuation due to the water content can also be suppressed. Accordingly, it is possible to further suppress a decrease in contrast when the optical film 16 is applied to the image display device 1 and to reduce crosstalk due to a phase difference variation of the film substrate 12 when observing an image using polarized glasses or the like. it can.
  • the resin (resin having an alicyclic structure) contained in the second hardened layer 14 and the fine particles have poor compatibility.
  • the fine particles are likely to aggregate by reacting with an extract (for example, an additive) from the film substrate 12, and the fine particle layer becomes the first layer.
  • the two hardened layers 14 are easily formed separately.
  • the fine particle layer is formed, the reflected light of the external light on the surface of the second hardened layer 14 interferes with the reflected light of the external light on the fine particle layer, and unevenness occurs during black display.
  • the first cured layer 13 is provided between the film substrate 12 and the second cured layer 14 as in this embodiment, the first cured layer 13 is included in the second cured layer 14 due to the presence of the first cured layer 13.
  • the fine particles are less likely to react with the extract from the film substrate 12, and the fine particles are less likely to aggregate. Accordingly, the fine particle layer is hardly formed, and the above-described display unevenness due to the formation of the layer can be reduced.
  • the first hardened layer 13 does not contain the fine particles, a refractive index difference occurs between the second hardened layer 14 and the first hardened layer 13 depending on the presence or absence of the fine particles, and light interference due to the refractive index difference. Occurs.
  • the first hardened layer 13 since the first hardened layer 13 also contains the same fine particles as the fine particles contained in the second hardened layer 14, the refractive indexes of the second hardened layer 14 and the first hardened layer 13 are the same. The difference can be reduced, and the light interference caused by the refractive index difference can be reduced.
  • the resin included in the first cured layer 13 (a resin different from the resin of the second cured layer 14) is desirably a urethane acrylate resin.
  • a resin different from the resin of the second cured layer 14 is desirably a urethane acrylate resin.
  • the 1st hardened layer 13 is too soft, even if the 2nd hardened layer 14 is formed on it, as the hardness of the optical film 16, high hardness will become difficult to come out.
  • the urethane acrylate resin together with fine particles coated with the polymer silane coupling agent the first hardened layer 13 that is relatively hard can be formed as long as the buffer property is not impaired. Therefore, it is possible to easily increase the hardness of the optical film 16 by forming the second cured layer 14 on the first cured layer 13 containing the urethane acrylate resin.
  • the thickness L1 of the first hardened layer 13 is preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
  • L1 is in the above range, the dimensional change of the film substrate 12 in a high temperature and high humidity environment can be reliably suppressed while ensuring the hardness of the second cured layer 14.
  • the first hardened layer 13 is too thin and is liable to cause poor curing. If poor curing occurs in the first hardened layer 13, when the second hardened layer 14 is formed thereon, the extract from the first hardened layer 13 aggregates in the second hardened layer 14, and second It becomes difficult for the hardened layer 14 to exhibit a predetermined hardness.
  • L1 exceeds 3 ⁇ m, the first cured layer 13 becomes too thick, and the solvent contained in the composition forming the first cured layer 13 penetrates into the film base 12 and the mechanical strength is weakened. Becomes thicker in the film thickness direction, and it becomes difficult to suppress the dimensional change of the film substrate 12 in a high temperature and high humidity environment.
  • the optical film 16 described above can also be used for applications other than polarizing plates.
  • the first cured layer 13 and the second cured layer 14 may be provided on both surfaces of the film substrate 12.
  • the image display device 1 can be configured by arranging two polarizing plates 5 on both sides of the liquid crystal cell 4.
  • FIG. 2 is a cross-sectional view showing another configuration of the optical film 16.
  • the optical film 16 may have an antistatic layer 17 as a functional layer on the surface opposite to the first cured layer 13 with respect to the second cured layer 14.
  • three or more cured layers may be formed on one surface side of the film substrate 12, and the antistatic layer 17 may be formed on the outermost cured layer. Good.
  • FIG. 3 is a cross-sectional view showing still another configuration of the optical film 16.
  • the optical film 16 may have an antistatic layer 17 on both the one surface side (on the second cured layer) and the other surface side of the film substrate 12, and although not shown, the film substrate
  • the antistatic layer 17 may be provided only on the surface opposite to the first cured layer 13.
  • the optical film 16 further includes the antistatic layer 17 on at least one surface side of the film base 12, thereby preventing the film from being charged and suppressing blocking during film winding.
  • the winding deformation of the optical film 16 can be further suppressed.
  • the antistatic function can be imparted to the optical film 16, for example, a polarizing plate of an image display device whose surface is easily charged (for example, in a configuration in which a touch panel is provided as the protection unit 3 on the image display device 1) It is very effective to apply the optical film 16 to the polarizing plate 5) on the touch panel side.
  • the second cured layer of the present embodiment contains an active energy ray-curable resin having an alicyclic structure (hereinafter also simply referred to as a curable resin).
  • alicyclic structure include norbornyl, tricyclodecanyl, tetracyclododecanyl, pentacyclopentadecanyl, adamantyl, diamantanyl and the like.
  • An active energy ray is defined as an energy ray that can decompose an active species-generating compound (photopolymerization initiator) to generate an active species.
  • active energy rays include light energy rays such as visible light, ultraviolet rays (UV), electron beams (EB), infrared rays, X rays, ⁇ rays, ⁇ rays, and ⁇ rays.
  • UV ultraviolet rays
  • EB electron beams
  • infrared rays X rays
  • ⁇ rays ⁇ rays
  • ⁇ rays ⁇ rays
  • the active energy ray curable resin preferably has an ethylenically unsaturated double bond.
  • the ethylenically unsaturated double bond group include polymerizable functional groups such as (meth) acryloyl group, vinyl group, styryl group and allyl group. Among them, (meth) acryloyl group and —C (O) OCH ⁇ CH 2 is preferred.
  • the active energy ray-curable resin having an alicyclic structure is preferably composed of a hydrocarbon group having an alicyclic structure and a group having an ethylenically unsaturated double bond bonded via a linking group.
  • the linking group include a single bond, an alkylene group, an amide group, a carbamoyl group, an ester group, an oxycarbonyl group, an ether group, or a group obtained by combining these.
  • polyols such as diols and triols having an alicyclic structure, carboxylic acids having (meth) acryloyl groups, vinyl groups, styryl groups, allyl groups, carboxylic acid derivatives, epoxy derivatives, isocyanate derivative compounds, etc.
  • polyols such as diols and triols having an alicyclic structure, carboxylic acids having (meth) acryloyl groups, vinyl groups, styryl groups, allyl groups, carboxylic acid derivatives, epoxy derivatives, isocyanate derivative compounds, etc.
  • R1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R2 is an alkylene group or alkylene oxide group having 1 to 5 carbon atoms
  • R3 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • n is 1) Or an integer of 2.
  • R1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom, a methyl group, or an ethyl group.
  • R2 represents an alkylene group having 1 to 5 carbon atoms or an alkylene oxide group, and preferably represents a methylene group, an ethylene group, a methylene oxide group, or an ethylene oxide group.
  • R3 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and preferably represents a hydrogen atom, a methyl group, or an ethyl group.
  • Examples of commercially available compounds represented by the above general formulas (I) and (II) include NK ester A-DCP (tricyclodecane dimethanol diacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.). However, it is not limited to these.
  • L and L ′ each independently represent a divalent or higher valent linking group and are not divalent simultaneously.
  • n represents an integer of 1 to 3.
  • L and L ′ each independently represent a divalent or higher valent linking group and are not divalent simultaneously.
  • n represents an integer of 1 to 2.
  • L and L ′ each independently represent a divalent or higher valent linking group and are not divalent simultaneously.
  • n represents an integer of 1 to 2.
  • L, L ′, and L ′′ each independently represent a divalent or higher linking group.
  • L and L ′ each independently represent a divalent or higher linking group and are not divalent simultaneously.
  • the second cured layer preferably contains 30% by mass or more, more preferably 50% by mass or more, of an active energy ray-curable resin having an alicyclic structure.
  • the second cured layer preferably contains a photopolymerization initiator to accelerate the curing of the actinic radiation curable resin.
  • Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone and the like, and derivatives thereof. It is not something.
  • Commercially available products may be used as the photopolymerization initiator, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan.
  • the second hardened layer may contain fine particles. Although it does not restrict
  • the silica fine particles may be hollow particles having cavities inside. Among these, fine particles coated with a polymer silane coupling agent are particularly preferable because they give an appropriate hardness to the cured layer and exhibit good mechanical properties.
  • the polymer silane coupling agent refers to a reaction product of a polymerizable monomer and a silane coupling agent (reactive silane compound).
  • a polymer silane coupling agent can be obtained, for example, according to the method for producing a reaction product of a polymerizable monomer and a reactive silane compound disclosed in JP-A-11-116240.
  • polymerizable monomer examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid-n-propyl, (meth) acrylic acid isopropyl, (meth) -N-butyl, isobutyl (meth) acrylate, (meth) acrylic acid-n-hexyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid-n-heptyl, (meth) acrylic acid-n-octyl, ( 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, toluyl (meth) acrylate, benzyl (meth) acrylate , 2-methoxyethyl (meth) acrylate
  • an organosilicon compound represented by the following formula (1) is preferably used as the reactive silane compound.
  • XR-Si (OR) 3 (1) (In the formula, R represents an organic group having 1 to 10 carbon atoms selected from a substituted or unsubstituted hydrocarbon group.
  • X represents a (meth) acryloyl group, an epoxy group (glycid group), a urethane group, an amino group, One or more functional groups selected from fluoro groups.)
  • organosilicon compound represented by the formula (1) examples include 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, ⁇ - (3, 4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxymethyltrimethoxysilane, ⁇ -glycidoxymethyltriethoxysilane, ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrie
  • Polymeric silane coupling agent is prepared by reacting a polymerizable monomer with a reactive silane compound. Specifically, an organic solvent solution in which a reactive silane compound is mixed in an amount of 0.5 to 20 parts by weight, further 1 to 10 parts by weight with respect to 100 parts by weight of the polymerizable monomer is prepared, and polymerization is started. It can be obtained by adding an agent and heating.
  • the polymer silane coupling agent-coated fine particles can be prepared by adding a polymer silane coupling agent to a fine particle organic solvent dispersion and coating the fine particles with the polymer silane coupling agent in the presence of an alkali.
  • the average particle diameter of the resulting polymer silane coupling agent-coated fine particles is preferably 5 to 500 nm, more preferably 10 to 200 nm, from the viewpoint of securing optical properties when used in an optical film.
  • the content of the polymer silane coupling agent-coated fine particles in the second cured layer is 0.5 to 80 parts by mass, more preferably 1 to 60 parts by mass as the solid content, so that the film strength of the second cured layer is ensured. From the viewpoint of
  • the second hardened layer may contain a conductive agent in order to impart antistatic properties.
  • Preferred conductive agents include metal oxide particles or ⁇ -conjugated conductive polymers.
  • An ionic liquid is also preferably used as the conductive compound.
  • the antistatic layer may be formed on the second hardened layer without containing the conductive agent in the second hardened layer. Details of the antistatic layer will be described later.
  • the second cured layer may contain a fluorine-siloxane graft compound, a fluorine compound, a silicone compound, or a compound having an HLB value of 3 to 18 from the viewpoint of improving the coating property.
  • the hydrophilicity can be easily controlled by adjusting the types and amounts of these additives.
  • the HLB value is Hydrophile-Lipophile-Balance, that is, a hydrophilic-lipophilic balance, and is a value indicating the hydrophilicity or lipophilicity of a compound. The smaller the HLB value, the higher the lipophilicity, and the higher the value, the higher the hydrophilicity.
  • the HLB value can be obtained by the following calculation formula.
  • HLB 7 + 11.7Log (Mw / Mo)
  • Mw represents the molecular weight of the hydrophilic group
  • Mo represents the molecular weight of the lipophilic group
  • Mw + Mo M (molecular weight of the compound).
  • HLB value 20 ⁇ total formula weight of hydrophilic part / molecular weight (J. Soc. Cosmetic Chem., 5 (1954), 294) and the like.
  • Emulgen 109P (13.6), Emulgen 120 (15.3), Emulgen 123P (16.9), Emulgen 147 (16.3), Emulgen 210P (10.7), Emulgen 220 (14.2) , Emulgen 306P (9.4), Emulgen 320P (13.9), Emulgen 404 (8.8), Emulgen 408 (10.0), Emulgen 409PV (12.0), Emulgen 420 (13.6), Emulgen 430 (16.2), Emulgen 705 (10.5), Emulgen 707 (12.1), Emulgen 7 9 (13.3), Emulgen 1108 (13.5), Emulgen 1118S-70 (16.4), Emulgen 1135S-70 (17.9), Emulgen 2020G-HA (13.0), Emulgen 2025G (15.
  • Emulgen LS-106 (12.5), Emulgen LS-110 (13.4), Emulgen LS-114 (14.0), manufactured by Nissin Chemical Industry Co., Ltd .: Surfynol 104E (4), Surfynol 104H (4), Surfinol 104A (4), Surfinol 104BC (4), Surfinol 104DPM (4), Surfinol 104PA (4), Surfinol 104PG-50 (4), Surfinol 104S (4), Surfi Knoll 420 (4), Surfynol 440 (8), Surfynol 46 (13), Surfynol 485 (17), Surfynol SE (6), Shin-Etsu Chemical Co., Ltd.: X-22-4272 (7), X-22-6266 (8).
  • the fluorine-siloxane graft compound refers to a copolymer compound obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone on at least a fluorine resin.
  • a fluorine-siloxane graft compound can be prepared by a method as described in Examples described later.
  • examples of commercially available products include ZX-022H, ZX-007C, ZX-049, and ZX-047-D manufactured by Fuji Chemical Industry Co., Ltd.
  • fluorine-based compound examples include Megafac series (F-477, F-487, F-569, etc.) manufactured by DIC Corporation, OPTOOL DSX, OPTOOL DAC, etc. manufactured by Daikin Industries, Ltd.
  • silicone compounds are Shin-Etsu Chemical Co., Ltd .: KF-351, KF-352, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-618, KF-6011, KF. -6015, KF-6004, manufactured by Big Chemie Japan KK: BYK-UV3576, BYK-UV3535, BYK-UV3510, BYK-UV3505, BYK-UV3500, BYK-UV3510, and the like. These components are preferably added in the range of 0.005 parts by mass or more and 10 parts by mass or less with respect to the solid component in the second cured layer forming composition. Two or more kinds of these components may be added as long as the total additive amount is in the range of 0.005 parts by mass or more and 10 parts by mass or less.
  • a 2nd hardened layer may contain the ultraviolet absorber demonstrated by the cellulose-ester film mentioned later.
  • the second cured layer is obtained by diluting the above-mentioned component forming the second cured layer with a solvent to form a second cured layer forming composition, which is applied onto the first cured layer by the following method, dried and cured. It is preferable to provide them.
  • Solvents include ketones (methyl ethyl ketone, acetone, etc.) and / or acetate esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (ethanol, methanol, normal propanol, isopropanol), propylene glycol monomethyl ether, cyclohexanone, methyl isobutyl ketone. Etc. are preferable.
  • the coating amount of the second cured layer forming composition is suitably an amount that results in a wet film thickness of 0.1 to 80 ⁇ m, and preferably an amount that results in a wet film thickness of 0.5 to 30 ⁇ m.
  • the dry film thickness is in the range of an average film thickness of 0.01 to 20 ⁇ m, preferably in the range of 1 to 15 ⁇ m. More preferably, it is in the range of 2 to 12 ⁇ m.
  • a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, or an inkjet method can be used.
  • the composition for forming the second cured layer is applied onto the first cured layer described later, then dried and cured (irradiated with active rays (also referred to as UV curing treatment)), and further heated after UV curing as necessary. It may be processed.
  • the heat treatment temperature after UV curing is preferably 60 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. By performing the heat treatment after UV curing at such a high temperature, a second cured layer having excellent film strength can be obtained.
  • drying process changes from a constant state to a gradually decreasing state when drying starts.
  • a section in which the drying speed is constant is called a constant rate drying section, and a section in which the drying speed decreases is called a decreasing rate drying section.
  • Drying is preferably performed at a temperature of 30 ° C. or higher in the drying section. More preferably, the temperature in the drying section is 50 ° C. or higher.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually in the range of 50 to 1000 mJ / cm 2 , preferably in the range of 50 to 300 mJ / cm 2 .
  • oxygen removal for example, replacement with an inert gas such as nitrogen purge
  • the cured state of the surface can be controlled by adjusting the removal amount of the oxygen concentration.
  • the tension to be applied is preferably 30 to 300 N / m.
  • the method for applying tension is not particularly limited, and tension may be applied in the conveying direction on the back roller, or tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
  • the first hardened layer contains a resin different from the resin contained in the second hardened layer. It is preferable that the resin of the first cured layer contains an acrylic material.
  • Acrylic materials are synthesized from monofunctional or polyfunctional (meth) acrylate compounds such as (meth) acrylic acid esters of polyhydric alcohols, diisocyanates and polyhydric alcohols, and hydroxy esters of (meth) acrylic acid. Such a polyfunctional urethane (meth) acrylate compound can be used.
  • polyether resins having an acrylate functional group polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can be used.
  • (meth) acryl means both “acryl” and “methacryl”
  • “(meth) acrylate” means both “acrylate” and “methacrylate”
  • “( “Meth) acryloyl” refers to both “acryloyl” and “methacryloyl”.
  • urethane (meth) acrylate” indicates both “urethane acrylate” and “urethane methacrylate”.
  • Examples of the monofunctional (meth) acrylate compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl ( (Meth) acrylate, t-butyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine, N-vinylpyrrolidone, tetrahydrofurfuryl acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) ) Acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, benz
  • bifunctional (meth) acrylate compound examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, and nonanediol di (meth).
  • Examples of the tri- or higher functional (meth) acrylate compound include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, and tris 2-hydroxyethyl.
  • tri (meth) acrylate such as isocyanurate tri (meth) acrylate and glycerol tri (meth) acrylate
  • pentaerythritol tri (meth) acrylate dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate
  • Functional (meth) acrylate compounds pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tet Trifunctional or more polyfunctional (meta) such as (meth) acrylate, dipentaerythritol penta (meth) acrylate, ditrimethylolpropane penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane hexa (meth) acrylate
  • UV curable acrylate resins UV curable acrylate resins, UV curable urethane acrylate resins, UV curable polyester acrylate resins, UV curable epoxy acrylate resins, UV curable polyol acrylate resins, or UV curable epoxy resins are preferred.
  • an ultraviolet curable acrylate resin is preferable.
  • polyfunctional acrylate is preferable.
  • the polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
  • the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule.
  • the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate.
  • a monofunctional acrylate may also be used.
  • Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and cyclohexyl acrylate. Such acrylates can be obtained from Nippon Kasei Kogyo Co., Ltd., Shin-Nakamura Chemical Co., Ltd., Osaka Organic Chemical Co., Ltd., etc.
  • the desired molecular weight and molecular structure can be designed, the first cured layer can have an appropriate hardness, and the physical properties of the formed first cured layer can be easily balanced.
  • a polyfunctional urethane acrylate can be suitably used because it is possible.
  • the urethane acrylate is obtained by reacting a polyhydric alcohol, a polyvalent isocyanate, and a hydroxyl group-containing acrylate.
  • the solvent contained in the first cured layer forming composition used for forming the first cured layer is preferably a solvent that dissolves or swells the film substrate.
  • the composition for forming the first cured layer easily penetrates from the surface of the film substrate to the inside, and improves the adhesion between the film substrate and the first cured layer. be able to.
  • a layer in which the resin component of the film substrate and the resin component of the first cured layer are mixed is formed in the vicinity of the surface layer of the film substrate, and the refraction of the film substrate and the first cured layer is caused by the action of this layer.
  • the rate can be tilted, and the occurrence of uneven interference can be prevented.
  • examples of the solvent for dissolving or swelling the surface of the film substrate include dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, 1, 4 -Ethers such as dioxane, 1,3-dioxolane, 1,3,5-trioxane, tetrahydrofuran, anisole and phenetole, acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone , And ketones such as methylcyclohexanone, as well as ethyl formate, propyl formate, n-pentyl formate, methyl acetate, ethyl acetate, methyl propionate, eth
  • the first cured layer preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include 2,2-ethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, dibenzoyl, benzoin, benzoin methyl ether, benzoin ethyl ether, p-chlorobenzophenone, p-methoxybenzophenone, Michler ketone, acetophenone, 2 -Chlorothioxanthone and the like. You may use these individually or in combination of 2 or more types.
  • the first hardened layer preferably contains a photosensitizer.
  • Photosensitizers include tertiary amines such as triethylamine, triethanolamine and 2-dimethylaminoethanol, alkylphosphine series such as triphenylphosphine, and thioether series such as ⁇ -thiodiglycol. These may be used alone or in combination of two or more.
  • the first hardened layer preferably contains a leveling agent.
  • a leveling agent it is most preferable to use an acrylic leveling agent.
  • the leveling agent it is possible to prevent defects such as film thickness unevenness and coating liquid repellency that may occur when the first cured layer is formed.
  • an acrylic leveling agent recoatability when the second cured layer is laminated on the first cured layer, compared with the case where a fluorine-based or silicone-based leveling agent is used, the first cured layer and the first cured layer 2 It is possible to prevent deterioration of adhesion with the cured layer.
  • quaternary ammonium cations or conductive metal fine particles may be added to the first hardened layer to impart conductivity to the first hardened layer.
  • the coating method of the first cured layer forming composition dip coating method, spin coating method, flow coating method, spray coating method, roll coating method, gravure roll coating method, air doctor coating method, plate coating method, wire A doctor coating method, knife coating method, reverse coating method, transfer roll coating method, micro gravure coating method, kiss coating method, cast coating method, slot orifice coating method, calendar coating method, die coating method and the like can be employed.
  • the microgravure coating method is preferable when a uniform thin film layer is formed, and the die coating method is preferable when a thick film layer needs to be formed.
  • the first hardened layer contains the same fine particles as those contained in the second hardened layer, that is, fine particles coated with a polymer silane coupling agent.
  • the ratio a / b between the content a of the fine particles contained in the second cured layer and the content b of the fine particles contained in the first cured layer may be 1, but 2 or more and 10 The following is desirable. The reason is as described above.
  • the first hardened layer may contain the same additive as the second hardened layer in addition to the fine particles.
  • a 1st hardened layer can be formed on a film base material by the method similar to the formation method of a 2nd hardened layer.
  • ⁇ Back coat layer> You may provide a backcoat layer in the surface on the opposite side to the side which provided the cured layer (1st cured layer, 2nd cured layer) of the optical film.
  • the back coat layer is provided to correct curling caused by providing a hardened layer or other layers by coating or CVD. That is, the degree of curling can be balanced by imparting the property of being rounded with the surface on which the backcoat layer is provided facing inward.
  • the back coat layer is preferably applied also as an anti-blocking layer. In that case, fine particles may be added to the back coat layer coating composition to provide an anti-blocking function. preferable.
  • examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, and oxide. Mention may be made of indium, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable in terms of low haze, and silicon dioxide is particularly preferable.
  • These fine particles are commercially available under the trade names of, for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, and TT600 (manufactured by Nippon Aerosil Co., Ltd.). .
  • Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
  • the polymer fine particles include a silicone resin, a fluororesin, and an acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.
  • Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large anti-blocking effect while keeping haze low.
  • the dynamic friction coefficient on the back side of the optical film used in this embodiment is preferably 0.9 or less, particularly preferably 0.1 to 0.9.
  • the fine particles contained in the backcoat layer are preferably contained in an amount of 0.1 to 50% by weight, more preferably 0.1 to 10% by weight, based on the binder.
  • the increase in haze when the backcoat layer is provided is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.0 to 0.1%.
  • the backcoat layer is preferably formed by applying a composition containing a solvent that dissolves or swells the transparent resin film (film substrate).
  • the solvent to be used may include a solvent to be dissolved and / or a solvent to be swollen in addition to a solvent to be swelled, a composition in which these are mixed at an appropriate ratio depending on the degree of curl of the transparent resin film and the type of resin, and What is necessary is just to form by the application quantity.
  • Examples of the solvent for dissolving or swelling the transparent resin film contained in such a mixed composition include dioxane, acetone, methyl ethyl ketone, N, N-dimethylformamide, methyl acetate, ethyl acetate, cyclohexane, diacetone alcohol, 1 , 3-dioxolane, N-methylpyrrolidone, propylene glycol monomethyl ether acetate, propylene carbonate, cyclopentanone, 3-pentanone, 1,2-dimethoxyethane, tetrahydrofuran, ethyl lactate, bis (2-methoxyethyl) ether, acetic acid 2 -Methoxyethyl, propylene glycol dimethyl ether, trichloroethylene, methylene chloride, ethylene chloride, tetrachloroethane, trichloroethane, chloroform and the like.
  • solvent that does not dissolve examples include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butanol, propylene glycol monomethyl ether, and hydrocarbons (toluene, xylene, cyclohexanol).
  • the back coat layer may contain a resin as a binder.
  • the resin used as the binder for the backcoat layer include vinyl chloride-vinyl acetate copolymer, vinyl chloride resin, vinyl acetate resin, vinyl acetate-vinyl alcohol copolymer, partially hydrolyzed vinyl chloride-vinyl acetate copolymer.
  • Vinyl polymer or copolymer nitrocellulose, cellulose acetate propionate (preferably acetyl group substitution degree 1.8-2.3, propionyl group substitution degree 0.1-1.0), diacetylcellulose, cellulose Cellulose derivatives such as acetate butyrate resin, maleic acid and / or Or acrylic acid copolymer, acrylic ester copolymer, acrylonitrile-styrene copolymer, chlorinated polyethylene, acrylonitrile-chlorinated polyethylene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, acrylic resin Rubber resins such as polyvinyl acetal resin, polyvinyl butyral resin, polyester polyurethane resin, polyether polyurethane resin, polycarbonate polyurethane resin, polyester resin, polyether resin, polyamide resin, amino resin, styrene-butadiene resin, butadiene-acrylonitrile resin, Examples thereof include, but are
  • acrylic resins Acrypet MD, VH, MF, V (manufactured by Mitsubishi Rayon Co., Ltd.), Hyperl M-4003, M-4005, M-4006, M-4202, M-5000, M-5001, M-4501 (manufactured by Negami Kogyo Co., Ltd.), Dialnal BR-50, BR-52, BR-53, BR-60, BR-64, BR-73, BR-75, BR-77, BR-79, BR -80, BR-82, BR-83, BR-85, BR-87, BR-88, BR-90, BR-93, BR-95, BR-100, BR-101, BR-102, BR-105 BR-106, BR-107, BR-108, BR-112, BR-113, BR-115, BR-116, BR-117, BR-118, etc.
  • the methacrylic monomers such as various homopolymers and copolymers were prepared as raw materials are commercially available and can also be selected as appropriate preferred from among these.
  • a cellulose resin layer such as diacetyl cellulose or cellulose acetate propionate is preferable.
  • the order of coating the backcoat layer may be before or after coating the cured layer on the side opposite to the backcoat layer of the optical film, but if the backcoat layer also serves as an anti-blocking layer, coat it first. It is desirable to do.
  • the back coat layer can be applied twice or more before and after the coating of the hardened layer.
  • the arithmetic average roughness Ra (JIS B0601: 2001) of the cured layer is preferably in the range of 2 to 100 nm, particularly preferably in the range of 2 to 20 nm.
  • the arithmetic average roughness Ra is a value measured with an optical interference surface roughness meter (manufactured by ZYGO, NewView) according to JIS B0601: 2001.
  • Haze The haze of the optical film is preferably in the range of 0.05% to 10% in view of visibility when used in an image display device. Haze can be measured according to JIS K7105 and JIS K7136.
  • the pencil hardness which is a parameter
  • the pencil hardness is specified by JIS K5400 using a test pencil specified by JIS S 6006 under the condition of a weight of 500 g after the prepared optical film is conditioned at a temperature of 23 ° C. and a relative humidity of 55% for 2 hours or more. It is obtained by measuring according to the pencil hardness evaluation method.
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, cellulose resins or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, and syndiotactic.
  • the film base is mainly composed of a cellulose-based resin, particularly a cellulose ester.
  • the film substrate include a cellulose diacetate film, a cellulose triacetate film, a cellulose acetate propionate film, and a cellulose acetate butyrate film.
  • cellulose ester films examples include Konica Minoltack KC8UX, KC4UX, KC8UY, KC4UAY, KC6UA, KC4UA, KC2UA, KC4UE and KC4UZ (manufactured by Konica Minolta, Inc.).
  • the refractive index of the cellulose ester film is preferably 1.45 to 1.55.
  • the refractive index can be measured according to JIS K7142-2008.
  • the cellulose resin (cellulose ester, cellulose ester resin) is preferably a lower fatty acid ester of cellulose.
  • Lower fatty acid means a fatty acid having 6 or less carbon atoms.
  • the lower fatty acid ester of cellulose include, for example, cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate and the like, and mixed fatty acid esters such as cellulose acetate propionate and cellulose acetate butyrate. it can.
  • Particularly preferably used lower fatty acid esters of cellulose are cellulose diacetate, cellulose triacetate, and cellulose acetate propionate. These cellulose esters can be used alone or in combination.
  • Cellulose diacetate preferably has an average degree of acetylation (bound acetic acid amount) of 51.0% to 56.0%.
  • Commercially available products include L20, L30, L40, and L50 manufactured by Daicel Corporation, and Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S manufactured by Eastman Chemical Japan Co., Ltd. .
  • the cellulose triacetate preferably has an average degree of acetylation (bound acetic acid amount) of 54.0 to 62.5%, and more preferably cellulose triacetate having an average degree of acetylation of 58.0 to 62.5%. is there.
  • the cellulose triacetate preferably contains cellulose triacetate A and cellulose triacetate B.
  • Cellulose triacetate A is a cellulose triacetate having a number average molecular weight (Mn) of 125,000 or more and less than 155000, a weight average molecular weight (Mw) of 265,000 or more and less than 310,000, and Mw / Mn of 1.9 to 2.1.
  • Cellulose triacetate B has an acetyl group substitution degree of 2.75 to 2.90, Mn of 155,000 or more and less than 180,000, Mw of 290000 or more and less than 360,000, and Mw / Mn of 1.8 to 2.0.
  • Cellulose acetate propionate has an acyl group having 2 to 4 carbon atoms as a substituent, and when the substitution degree of acetyl group is X and the substitution degree of propionyl group or butyryl group is Y, the following formula (I ) And (II) are preferably satisfied at the same time.
  • the method for measuring the substitution degree of the acyl group can be measured according to ASTM-D817-96.
  • the number average molecular weight (Mn) and molecular weight distribution (Mw) of the cellulose ester can be measured using high performance liquid chromatography.
  • the measurement conditions are as follows.
  • the film substrate may be configured by using a thermoplastic acrylic resin in combination with a cellulose ester resin.
  • Acrylic resin includes methacrylic resin.
  • the acrylic resin is not particularly limited but is preferably composed of 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These may be used alone or in combination of two or more.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • -Butyl acrylate is particularly preferably used.
  • the weight average molecular weight (Mw) is preferably 80,000 to 500,000, more preferably 110,000 to 500,000.
  • the weight average molecular weight of the acrylic resin can be measured by gel permeation chromatography.
  • Commercially available acrylic resins include, for example, Delpet 60N, 80N (Asahi Kasei Chemicals Corporation), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) )) And the like. Two or more acrylic resins can be used in combination.
  • a ⁇ / 4 film may be used as the film substrate.
  • the ⁇ / 4 film when the optical film of the present embodiment is incorporated in an image display device, it is preferable from the viewpoint of excellent visibility and crosstalk.
  • the ⁇ / 4 film refers to a film (a quarter wavelength retardation film) in which the in-plane retardation of the film is about 1 ⁇ 4 with respect to a predetermined wavelength of light (usually visible light region).
  • the ⁇ / 4 film is preferably a broadband ⁇ / 4 film having a phase difference of approximately 1 ⁇ 4 of the wavelength in the visible light wavelength range in order to obtain almost perfect circularly polarized light in the visible light wavelength range. .
  • the ⁇ / 4 film has an in-plane retardation value Ro (550) measured at a wavelength of 550 nm, preferably in the range of 60 nm to 220 nm, more preferably in the range of 80 nm to 200 nm, and more preferably in the range of 90 nm to 190 nm. More preferably, it is the range.
  • nx and ny are the maximum refractive index in the plane of the film (also referred to as the refractive index in the slow axis direction) out of the refractive index at 23 ° C.
  • Ro can be calculated by measuring the birefringence at each wavelength in an environment of 23 ° C. and 55% RH using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments).
  • Ro (A) indicates an in-plane retardation value measured at a wavelength of Anm.
  • a circularly polarizing plate is obtained by laminating so that the angle between the slow axis of the ⁇ / 4 film and the transmission axis of the polarizer described later is substantially 45 °.
  • Substantially 45 ° means in the range of 30 ° to 60 °, more preferably in the range of 40 ° to 50 °.
  • the angle between the in-plane slow axis of the ⁇ / 4 film and the transmission axis of the polarizer is preferably 41 to 49 °, more preferably 42 to 48 °, and 43 to 47 °. Is more preferably 44 to 46 °.
  • the ⁇ / 4 film is not particularly limited as long as it is an optically transparent resin.
  • the cellulose-based resin described above can be used.
  • the ⁇ / 4 film is preferably a cellulose resin or a polycarbonate resin.
  • the ⁇ / 4 film is preferably a cellulose resin.
  • the retardation adjustment of ⁇ / 4 can be performed by adding the following retardation adjusting agent to the above-described film base material.
  • the retardation adjusting agent an aromatic compound having two or more aromatic rings as described in the specification of European Patent 911,656A2 can be used.
  • the aromatic ring of the aromatic compound includes an aromatic heterocycle in addition to an aromatic hydrocarbon ring. Particularly preferred is an aromatic heterocycle, and the aromatic heterocycle is generally an unsaturated heterocycle. Of these, a 1,3,5-triazine ring is particularly preferred.
  • (Fine particles) In order to improve the handling property, for example, acrylic particles, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate Further, it is preferable to contain inorganic fine particles such as magnesium silicate and calcium phosphate and a matting agent such as a crosslinked polymer.
  • the acrylic particles are not particularly limited, but are preferably multi-layered acrylic granular composites.
  • silicon dioxide is preferable in that the haze of the film substrate can be reduced.
  • the primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably in the range of 5 to 16 nm, and particularly preferably in the range of 5 to 12 nm.
  • a film base material contains the ester compound or sugar ester represented by the following general formula (X) from a viewpoint of the dimensional stability by environmental change.
  • the ester compound represented by the general formula (X) will be described.
  • B is a hydroxy group or carboxylic acid residue
  • G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms.
  • A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms
  • n represents an integer of 1 or more.
  • the alkylene glycol component having 2 to 12 carbon atoms includes ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2 , 2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl- 1,5-pentanediol 1,6-hexanediol, 2,2,4-trimethyl 1,3-pentanediol, 2-ethyl
  • alkylene glycols having 2 to 12 carbon atoms are particularly preferable because of excellent compatibility with cellulose acetate.
  • aryl glycol component having 6 to 12 carbon atoms include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol and the like, and these glycols can be used as one kind or a mixture of two or more kinds.
  • Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. These glycols may be used alone or in combination of two or more. Can be used as a mixture.
  • Examples of the alkylene dicarboxylic acid component having 4 to 12 carbon atoms include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, and the like. Used as a mixture of two or more.
  • arylene dicarboxylic acid component having 6 to 12 carbon atoms examples include phthalic acid, terephthalic acid, isophthalic acid, 1,5 naphthalene dicarboxylic acid, and 1,4 naphthalene dicarboxylic acid.
  • Specific examples of the compound represented by formula (X) (compound X-1 to compound X-17) are shown below, but are not limited thereto.
  • the sugar ester compound is an ester other than cellulose ester, and is a compound obtained by esterifying all or part of the OH group of a sugar such as the following monosaccharide, disaccharide, trisaccharide or oligosaccharide.
  • sugar examples include glucose, galactose, mannose, fructose, xylose, arabinose, lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose, raffinose And kestose.
  • gentiobiose, gentiotriose, gentiotetraose, xylotriose, galactosyl sucrose, and the like are also included.
  • compounds having a furanose structure and / or a pyranose structure are particularly preferable.
  • sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
  • oligosaccharides maltooligosaccharides, isomaltooligosaccharides, fructooligosaccharides, galactooligosaccharides, and xylo-oligosaccharides can also be preferably used.
  • the monocarboxylic acid used for esterifying the sugar is not particularly limited, and known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid and the like can be used.
  • the carboxylic acid to be used may be one kind or a mixture of two or more kinds.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laxelic acid And unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and octen
  • Examples of preferred alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, or derivatives thereof.
  • Examples of preferred aromatic monocarboxylic acids include benzoic acid, aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, naphthalenecarboxylic acid, tetralin
  • An aromatic monocarboxylic acid having two or more benzene rings such as carboxylic acid, or a derivative thereof can be mentioned, and more specifically, xylic acid, hemelic acid, mesitylene acid, planicylic acid, ⁇ -isojurylic acid, Julylic acid, mesitic acid, ⁇ -isoduric acid, cumic acid, ⁇ -toluic acid, hydroatropic acid
  • the ester compound or sugar ester compound represented by the general formula (X) is preferably contained in the cellulose acetate film in an amount of 1 to 30% by mass, more preferably 5 to 25% by mass. It is particularly preferred that
  • the film substrate may contain a plasticizer as necessary.
  • the plasticizer is not particularly limited, but is a polycarboxylic acid ester plasticizer, glycolate plasticizer, phthalate ester plasticizer, phosphate ester plasticizer, polyhydric alcohol ester plasticizer, acrylic plasticizer. Agents and the like. In these, an acrylic plasticizer is preferable from the viewpoint of easily controlling the cellulose ester film to the retardation value described later.
  • the polyhydric alcohol ester plasticizer is a plasticizer composed of an ester of a divalent or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
  • a divalent to 20-valent aliphatic polyhydric alcohol ester is preferred.
  • the above-mentioned plasticizer is contained in the film base material of this embodiment, it is preferably contained in an amount of 1 to 50% by mass, more preferably 5 to 35% by mass with respect to cellulose acetate. It is particularly preferable to contain 25% by mass.
  • the film base material of this embodiment may contain an ultraviolet absorber. Since the ultraviolet absorber absorbs ultraviolet rays of 400 nm or less, durability can be improved. In particular, the ultraviolet absorber preferably has a transmittance of 10% or less at a wavelength of 370 nm, more preferably 5% or less, and still more preferably 2% or less. Specific examples of the ultraviolet absorber are not particularly limited. For example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex salts, inorganic powders. Examples include the body.
  • 5-chloro-2- (3,5-di-sec-butyl-2-hydroxylphenyl) -2H-benzotriazole, (2-2H-benzotriazol-2-yl) -6 -(Linear and side chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone, and the like can be used.
  • Commercially available products may be used.
  • TINUVIN such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, and TINUVIN 328 manufactured by BASF Japan Ltd. can be preferably used.
  • UV absorbers are benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and triazine ultraviolet absorbers, and particularly preferably benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers.
  • a discotic compound such as a compound having a 1,3,5 triazine ring is also preferably used as the ultraviolet absorber.
  • a polymer UV absorber can be preferably used, and a polymer type UV absorber is particularly preferably used.
  • TINUVIN 109 octyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro-2H-benzotriazole-2-) manufactured by BASF Japan Ltd., which is a commercial product, is available.
  • TINUVIN 400 (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -manufactured by BASF Japan Ltd.- Reaction product of 5-hydroxyphenyl and oxirane
  • TINUVIN 460 (2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3-5 Triazine)
  • TINUVIN 405 (2- (2,4-dihydroxyphenyl) -4,6-bis- (2,4-dimethylphenyl) -1,3,5-triazine and (2-ethylhexyl) -glycidic acid ester Reaction products) and the like.
  • the ultraviolet absorber is added by dissolving the ultraviolet absorber in an alcohol, such as methanol, ethanol, butanol or the like, an organic solvent such as methylene chloride, methyl acetate, acetone, dioxolane, or a mixed solvent thereof, and then becomes a film substrate. It may be added to the resin solution (dope) or directly during the dope composition.
  • an organic solvent such as methylene chloride, methyl acetate, acetone, dioxolane, or a mixed solvent thereof.
  • a dissolver or a sand mill is used in the organic solvent and cellulose acetate to disperse and then added to the dope.
  • the amount of the ultraviolet absorber used is preferably 0.5 to 10% by mass, more preferably 0.6 to 4% by mass with respect to the cellulose acetate film.
  • the film substrate of the present embodiment may further contain an antioxidant (deterioration inhibitor).
  • the antioxidant has a role of delaying or preventing the cellulose acetate film from being decomposed by a residual solvent amount of halogen in the cellulose acetate film, phosphoric acid of a phosphoric acid plasticizer, or the like.
  • hindered phenol compounds are preferably used.
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl) are used.
  • the film substrate preferably has a defect of 5 ⁇ m or more in diameter of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.
  • the diameter of the defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope by the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object.
  • the defect is a change in the surface shape such as transfer of a roller scratch or an abrasion
  • the size can be confirmed by observing the defect with the reflected light of a differential interference microscope.
  • the film When the number of defects is more than 1/10 cm square, for example, when a tension is applied to the film during processing in a later process, the film may be broken with the defect as a starting point and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • the coating film may not be formed uniformly, resulting in a defect (missing coating).
  • the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign matter in the film forming stock solution, or a foreign matter mixed in the film forming. This refers to the foreign matter (foreign matter defect) in the film.
  • the film base material preferably has a breaking elongation of at least one direction of 10% or more, more preferably 20% or more in the measurement based on JIS-K7127-1999.
  • the upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
  • the film substrate preferably has a total light transmittance of 90% or more, more preferably 92% or more. Moreover, as a realistic upper limit, it is about 99%.
  • the haze value is preferably 2% or less, more preferably 1.5% or less.
  • the total light transmittance and haze value can be measured according to JIS K7361 and JIS K7136.
  • the film forming method is not limited to this.
  • a production method such as an inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, a hot press method, or the like can be used.
  • Organic solvent An organic solvent useful for forming a resin solution (dope composition) in the case of producing a cellulose ester film by a solution casting film forming method described later is one that can simultaneously dissolve a cellulose ester resin and other additives. Can be used without limitation.
  • a chlorinated organic solvent methylene chloride
  • a non-chlorinated organic solvent methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butan
  • Can, methylene chloride, methyl acetate, ethyl acetate, may be used preferably acetone.
  • the solvent is preferably a dope composition in which a total of 15 to 45 mass% of cellulose ester resin and other additives are dissolved.
  • solution casting film forming method a step of preparing a dope by dissolving a resin and an additive in a solvent, a step of casting the dope on a belt-shaped or drum-shaped metal support, and drying the cast dope as a web It is carried out by a step of peeling off from the metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished cellulose ester film.
  • a stainless steel belt or a drum whose surface is plated with a casting is preferably used.
  • the width of the cast (casting) can be 1 to 4 m.
  • the surface temperature of the metal support in the casting process is set to ⁇ 50 ° C. to a temperature at which the solvent boils and does not foam. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • the residual solvent amount when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 60%. It is 130% by mass, particularly preferably 20 to 30% by mass or 70 to 120% by mass.
  • M is the mass of the sample collected at any time during or after the production of the web or film
  • N is the mass after heating at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support and dried to make the residual solvent amount 1% by mass or less, more preferably 0.1% by mass or less, and particularly preferably 0. -0.01 mass% or less.
  • a roller drying method (a method in which webs are alternately passed through a plurality of rollers arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
  • the film in the stretching step, can be sequentially or simultaneously stretched in the longitudinal direction (MD direction) and the lateral direction (TD direction).
  • the draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 1.0 to 2.0 times in the MD direction and 1.05 to 2.0 times in the TD direction, respectively. More preferably, it is carried out in the range of 1.0 to 1.5 times and 1.05 to 2.0 times in the TD direction.
  • a method of making a difference in peripheral speed between a plurality of rollers and stretching in the MD direction using the difference in peripheral speed of the roller between them, fixing both ends of the web with clips and pins, and widening the interval between the clips and pins in the traveling direction And a method of stretching in the MD direction, a method of stretching in the lateral direction and stretching in the TD direction, a method of stretching the MD direction and the TD direction simultaneously, and stretching in both directions.
  • a tenter it may be a pin tenter or a clip tenter.
  • the film transport tension in the film forming process such as a tenter is preferably 120 to 200 N / m, more preferably 140 to 200 N / m, and most preferably 140 to 160 N / m, although it depends on the temperature.
  • the stretching temperature is (Tg-30) to (Tg + 100) ° C., more preferably (Tg-20) to (Tg + 80) ° C., more preferably (Tg-5), where Tg is the glass transition temperature of the cellulose ester film. ⁇ (Tg + 20) ° C.
  • the Tg of the cellulose ester film can be controlled by the material type constituting the film and the ratio of the constituting materials.
  • the Tg when the cellulose ester film is dried is preferably 110 ° C. or higher, more preferably 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
  • the glass transition temperature is preferably 190 ° C. or lower, more preferably 170 ° C. or lower.
  • the Tg of the cellulose ester film can be determined by the method described in JIS K7121.
  • the stretching temperature is preferably 150 ° C. or more and the stretching ratio is 1.15 times or more because the surface is appropriately roughened. Roughening the surface of the cellulose ester film is preferable because it improves slipperiness and improves surface processability.
  • the cellulose ester film may be formed by a melt casting film forming method.
  • a composition containing other additives such as a cellulose ester resin and a plasticizer is heated and melted to a temperature showing fluidity, and then a melt containing the fluid cellulose ester is cast. To do.
  • the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. It is preferable that a plurality of raw materials used for melt extrusion are usually kneaded in advance and pelletized.
  • Pelletization may be performed by a known method, for example, dry cellulose ester, plasticizer, and other additives are fed to an extruder with a feeder, kneaded using a single or twin screw extruder, and formed into a strand from a die. Can be extruded, water-cooled or air-cooled, and then cut.
  • Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
  • a small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
  • the extruder is preferably processed at a temperature as low as possible so that it can be pelletized so that the shearing force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a temperature as low as possible so that it can be pelletized so that the shearing force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
  • the pellets are melted at a temperature of about 200 to 300 ° C, filtered through a leaf disk filter, etc. to remove foreign matter, and then formed into a film from the T die.
  • the cellulose ester film is formed by niping the film with a cooling roller and an elastic touch roller and solidifying the film on the cooling roller.
  • the extrusion flow rate is preferably adjusted stably by introducing a gear pump or the like.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • the stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
  • Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the cellulose ester film temperature on the touch roller side when the cellulose ester film is nipped by the cooling roller and the elastic touch roller is preferably Tg or more (Tg + 110 ° C.) or less of the film.
  • a known roller can be used as the roller having an elastic surface used for such a purpose.
  • the elastic touch roller is also called a pinching rotator.
  • a commercially available elastic touch roller can also be used.
  • the cellulose ester film obtained as described above is stretched by the stretching operation after passing through the step of contacting the cooling roller.
  • the stretching method a known roller stretching machine or tenter can be preferably used.
  • the stretching temperature is usually preferably in the temperature range of Tg to (Tg + 60) ° C. of the resin constituting the film.
  • the end Before winding, the end may be slit and trimmed to the width of the product, and knurled (embossed) may be applied to both ends to prevent sticking and scratching during winding.
  • the knurling method can be performed by heating or pressurizing using a metal ring having an uneven pattern on the side surface.
  • the grip portion of the clip at both ends of the film is usually cut out and reused because the cellulose ester film is deformed and cannot be used as a product.
  • the ⁇ / 4 film can be produced by a method for producing an obliquely stretched film.
  • the method for producing an obliquely stretched film is a method for producing a stretched film having a slow axis at an angle of more than 0 ° and less than 90 ° with respect to the extending direction of the film.
  • the unstretched film before oblique stretching the cellulose ester film described above can be used.
  • the angle with respect to the extending direction of the film is an angle in the film plane. Since the slow axis is usually expressed in the stretching direction or a direction perpendicular to the stretching direction, stretching having such a slow axis is performed by stretching at an angle of more than 0 ° and less than 90 ° with respect to the extending direction of the film.
  • a film can be manufactured.
  • the angle between the film extension direction and the slow axis can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °, more preferably 10 ° to 80 °. °, more preferably 40 ° to 50 °.
  • the obliquely stretched film can be produced using an obliquely stretching apparatus (obliquely stretched tenter).
  • obliquely stretched tenter As an obliquely stretched tenter, the orientation angle of the film can be set freely by changing the rail pattern in various ways, and furthermore, the orientation axis of the film can be oriented with high precision evenly on the left and right across the width direction of the film.
  • An apparatus capable of controlling the film thickness and retardation with high accuracy can be preferably used.
  • the film thickness of the cellulose ester film substrate is preferably 5 to 200 ⁇ m, more preferably 5 to 80 ⁇ m, and particularly preferably 5 to 34 ⁇ m. By forming the cured layer of this embodiment on a thin cellulose ester film substrate, the effect of this embodiment is more easily exhibited.
  • the length of the film substrate is preferably 500 to 10000 m, more preferably 1000 to 8000 m. By setting it as the range of the said length, it is excellent in the processability in application
  • the arithmetic average roughness Ra of the film substrate is preferably 2 to 10 nm, more preferably 2 to 5 nm.
  • the arithmetic average roughness Ra can be measured according to JIS B0601: 1994.
  • the optical film of this embodiment can be provided with other layers such as an antireflection layer and a conductive layer.
  • the optical film of this embodiment can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on a cured layer.
  • the antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference.
  • the antireflection layer is composed of a low refractive index layer having a lower refractive index than the protective film as the support, or a combination of a high refractive index layer and a low refractive index layer having a higher refractive index than the protective film as the support. Preferably it is.
  • the low refractive index layer preferably contains silica-based fine particles, and the refractive index is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm.
  • the film thickness of the low refractive index layer is preferably in the range of 5 nm to 0.5 ⁇ m, more preferably in the range of 10 nm to 0.3 ⁇ m, and in the range of 30 nm to 0.2 ⁇ m. Most preferred.
  • the composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles.
  • the particles having the outer shell layer and porous or hollow inside are preferably hollow silica-based fine particles.
  • the composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1) or a hydrolyzate thereof, or a polycondensate thereof.
  • OSi-1) Si (OR) 4
  • R represents an alkyl group having 1 to 4 carbon atoms.
  • tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used as the organosilicon compound represented by the general formula.
  • a compound having a thermosetting property and / or a photocurable property which mainly contains a fluorine-containing compound containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group, has a low refractive index. You may make it contain in the composition for layer formation. Specifically, a fluorine-containing polymer or a fluorine-containing sol-gel compound is used.
  • fluorine-containing polymer examples include hydrolysates and dehydration condensates of perfluoroalkyl group-containing silane compounds [eg (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane], and fluorine-containing monomers. Examples thereof include fluorine-containing copolymers having units and cross-linking reactive units as constituent units.
  • ⁇ High refractive index layer> In the high refractive index layer, it is preferable to adjust the refractive index to a range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm.
  • the thickness of the high refractive index layer is preferably 5 nm to 1 ⁇ m, more preferably 10 nm to 0.2 ⁇ m, and most preferably 30 nm to 0.1 ⁇ m. Adjustment of the refractive index can be achieved by adding metal oxide fine particles and the like.
  • the metal oxide fine particles used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.
  • the kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from can be used.
  • the optical film of this embodiment may have an antistatic layer (conductive layer) on the cured layer.
  • the antistatic layer desirably contains a conductive compound.
  • the conductive compound include metal oxide fine particles, ⁇ -conjugated conductive polymer compounds, ionic compounds, and the like. Among these, metal oxide fine particles are desirable in that the antistatic performance can be stably maintained even after a more severe wet heat durability test.
  • the metal oxide fine particles are not particularly limited, and include Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S.
  • a metal oxide having at least one selected element can be used as the metal oxide fine particles.
  • These metal oxide fine particles may be doped with a trace amount of atoms such as Al, In, Sn, Sb, Nb, a halogen element, and Ta.
  • the metal oxide fine particles may be a mixture of metal oxides containing any of the above elements.
  • At least one metal oxide fine particle selected from zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate is used as a main component.
  • Antimony compounds such as antimony-doped tin oxide (ATO) and zinc antimonate are particularly preferable.
  • the average particle size of the primary particles of these metal oxide fine particles is preferably 5 to 200 nm, more preferably 10 to 150 nm.
  • the average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. The average particle diameter may be measured by a particle size distribution meter using a dynamic light scattering method or a static light scattering method. If the particle size is too small, the metal oxide fine particles are likely to aggregate and the dispersibility deteriorates. When the particle size is too large, the haze is remarkably increased, which is not preferable.
  • the shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
  • ⁇ -conjugated conductive polymer any organic polymer whose main chain is composed of a ⁇ -conjugated system can be used. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
  • the ⁇ -conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group.
  • a functional group such as a group, a hydroxy group, or a cyano group may be introduced into the ⁇ -conjugated conductive polymer.
  • ⁇ -conjugated conductive polymers include polythiophene, poly (3-methylthiophene), poly (3-ethylthiophene), poly (3-propylthiophene), poly (3-butylthiophene), poly (3-hexylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), poly (3-dodecylthiophene), poly (3-bromothiophene), poly (3-chlorothiophene), poly (3 -Cyanothiophene), poly (3-phenylthiophene), poly (3,4-dimethylthiophene), poly (3,4-dibutylthiophene), poly (3-hydroxythiophene), poly (3-methoxythiophene), poly (3-ethoxythiophene), poly (3-butoxythiophene), poly (3-hexyloxythio) Phen), poly (3-octyloxythi
  • a dopant component may be added to these ⁇ -conjugated conductive polymers.
  • the dopant component include low molecular weight dopants such as halogens, Lewis acids, proton acids, transition metal halides, and polymers such as polyanions.
  • a polyanion is a polymer having an anionic group that functions as a dopant for a ⁇ -conjugated conductive polymer, and is a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted A substituted polyamide, a substituted or unsubstituted polyester, and a copolymer thereof, which are composed of a structural unit having an anionic group and a structural unit having no anionic group.
  • Polyalkylene is a polymer whose main chain is composed of repeating methylene, and examples thereof include polyethylene, polypropylene, polybutene, polypentene, polyhexene, polyvinyl alcohol, polyvinylphenol, polyacrylonitrile, polyacrylate, polystyrene, and the like.
  • Polyalkenylene is a polymer composed of structural units having one or more unsaturated bonds in the main chain.
  • propenylene 1-methylpropenylene, 1-butylpropenylene, 1-decylpropenylene, 1-cyanopropene.
  • polyimides examples include pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-tetracarboxydiphenyl ether dianhydride, 2,2 ′-[ And a polyimide composed of an anhydride such as 4,4′-di (dicarboxyphenyloxy) phenyl] propane dianhydride and a diamine such as oxydiamine, paraphenylenediamine, metaphenylenediamine, and benzophenonediamine.
  • anhydride such as 4,4′-di (dicarboxyphenyloxy) phenyl] propane dianhydride
  • a diamine such as oxydiamine, paraphenylenediamine, metaphenylenediamine, and benzophenonediamine.
  • polyamides examples include polyamide 6, polyamide 6,6, polyamide 6,10 and the like.
  • polyester examples include polyethylene terephthalate and polybutylene terephthalate.
  • the anion group of the polyanion may be a functional group that can undergo chemical oxidation doping to the ⁇ -conjugated conductive polymer, but from the viewpoint of ease of production and stability, a monosubstituted sulfate group and a monosubstituted phosphate ester Group, phosphoric acid group, carboxy group, sulfo group and the like are preferable. Furthermore, from the viewpoint of the doping effect of the functional group on the ⁇ -conjugated conductive polymer, a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
  • polyanion examples include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly (2-acrylamido-2-methylpropane sulfonic acid), polyisoprene.
  • These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
  • polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polyacrylic acid butyl sulfonic acid are preferable.
  • These polyanions have high compatibility with the binder resin, and can further increase the conductivity of the resulting antistatic layer.
  • the following donor or acceptor dopant can be used as long as the ⁇ -conjugated conductive polymer can be oxidized and reduced.
  • Donor dopants include alkali metals such as sodium and potassium, alkaline earth metals such as calcium and magnesium, quaternary compounds such as tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, methyltriethylammonium and dimethyldiethylammonium. An amine compound etc. are mentioned.
  • acceptor dopant examples include halogen compounds such as Cl 2 , Br 2 , I 2 , ICl, IBr and IF, Lewis acids such as PF 5 , AsF 5 , SbF 5 , BF 5 , BCl 5 , BBr 5 and SO 3 , Tetracyanoethylene, tetracyanoethylene oxide, tetracyanobenzene, dichlorodicyanobenzoquinone, tetracyanoquinodimethane, tetracyanoazanaphthalene and other organic cyano compounds, protonic acids, organometallic compounds, fullerenes, hydrogenated fullerenes, fullerene hydroxides, Carboxy oxide fullerene, sulfonated fullerene and the like can be used.
  • halogen compounds such as Cl 2 , Br 2 , I 2 , ICl, IBr and IF
  • Lewis acids such as PF 5 , AsF 5 , SbF 5
  • Examples of the protonic acid include inorganic acids and organic acids.
  • Examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, perchloric acid and the like.
  • organic carboxylic acid, organic sulfonic acid, etc. are mentioned as an organic acid.
  • organic carboxylic acid aliphatic, aromatic, cycloaliphatic or the like containing one or more carboxy groups
  • organic sulfonic acid aliphatic, aromatic, cycloaliphatic or the like containing one or more sulfo groups or a polymer containing sulfo groups can be used.
  • Examples of those containing one sulfo group include methanesulfonic acid, ethanesulfonic acid, 1-propanesulfonic acid, 1-butanesulfonic acid, 1-hexanesulfonic acid, 1-heptanesulfonic acid, 1-octanesulfonic acid, 1-nonanesulfonic acid, 1-decanesulfonic acid, 1-pentadecanesulfonic acid, 2-bromoethanesulfonic acid, 3-chloro-2-hydroxypropanesulfonic acid, trifluoromethanesulfonic acid, trifluoroethanesulfonic acid, colistin methanesulfone Acid, 2-acrylamido-2-methylpropanesulfonic acid, aminomethanesulfonic acid, 1-amino-2-naphthol-4-sulfonic acid, 2-amino-5-naphthol-7-sulfonic acid, 3-aminopropanesulf
  • Examples of those containing two or more sulfo groups include ethanedisulfonic acid, butanedisulfonic acid, pentanedisulfonic acid, decanedisulfonic acid, o-benzenedisulfonic acid, m-benzenedisulfonic acid, p-benzenedisulfonic acid, and toluenedisulfonic acid.
  • Xylene disulfonic acid chlorobenzene disulfonic acid, fluorobenzene disulfonic acid, dimethylbenzene disulfonic acid, diethylbenzene disulfonic acid, aniline-2,4-disulfonic acid, aniline-2,5-disulfonic acid, 3,4-dihydroxy-1,3 Benzenedisulfonic acid, naphthalene disulfonic acid, methyl naphthalene disulfonic acid, ethyl naphthalene disulfonic acid, pentadecyl naphthalene disulfonic acid, 3-amino-5-hydroxy-2,7-naphthalene disulfonic acid, 1 Acetamide-8-hydroxy-3,6-naphthalenedisulfonic acid, 2-amino-1,4-benzenedisulfonic acid, 1-amino-3,8-naphthalenedisulfonic acid, 3-amino-1,5-naphthalenedisulf
  • ionic compounds examples include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based and aliphatic phosphonium-based cations, inorganic ions such as BF 4 ⁇ and PF 6 ⁇ , CF 3 SO 2 ⁇ , and the like. , (CF 3 SO 2 ) 2 N ⁇ , CF 3 CO 2 — and the like, and the like compounds composed of fluorine-based anions.
  • Examples of the ionic compound include anionic polymer compounds such as those described in JP-B-49-23828, JP-A-49-23827, and JP-A-47-28937, JP-B-55-734, and JP-A-50-54672.
  • Ionene type polymers having a dissociating group in the main chain as shown in JP-B Nos. 59-14735, 57-18175, 57-18176, 57-56059, etc. No. 57-15376, No. 53-45231, No. 55-145783, No. 55-65950, No. 55-67746, No. 57-11342, No. 57-19735, No. 58-56858.
  • a cationic pendant having a cationic dissociation group in the side chain Mention may be made of a polymer, and the like. It is also desirable to contain an ionene conductive polymer described in JP-A-9-203810 or a quaternary ammonium cationic conductive polymer having intermolecular crosslinking (for example, P-1 shown below).
  • the polymer compounds described above are generally in the particle size range of about 0.05 ⁇ m to 0.5 ⁇ m, preferably in the range of 0.05 ⁇ m to 0.2 ⁇ m.
  • the ratio of the polymer to the binder described later is preferably 10 to 400 parts by mass of the binder with respect to 100 parts by mass of the polymer in terms of adhesion to the film substrate, and particularly preferably 100 parts by mass of the polymer. Part to 100 parts by weight of binder.
  • anionic antistatic agents include anionic antistatic agents, nonionic antistatic agents, and zwitterionic antistatic agents.
  • anionic antistatic agent examples include fatty acid salts, higher alcohol sulfate esters, liquid fatty oil sulfate esters, aliphatic amine and aliphatic amide sulfates, aliphatic alcohol phosphate esters, dibasic fatty acid esters. Sulfonic acid salts, aliphatic amide sulfonic acid salts, alkylallyl sulfonic acid salts, formalin-condensed naphthalene sulfonic acid salts, and the like.
  • cationic antistatic agents include aliphatic amine salts and quaternary ammonium salts. And alkylpyridinium salts.
  • nonionic antistatic agent examples include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenol ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, polyoxyethylene sorbitan alkyl esters, and the like.
  • zwitterionic antistatic agents include imidazoline derivatives, betaine type higher alkylamino derivatives, sulfate ester derivatives, phosphate ester derivatives, and the like.
  • the surface resistivity of the antistatic layer is preferably a layer adjusted to 10 13 ⁇ / sq (25 ° C., 55% RH) or less. More preferably, it is 10 10 ⁇ / sq (25 ° C., 55% RH) or less, and particularly preferably 10 9 ⁇ / sq (25 ° C., 55% RH) or less.
  • the surface resistivity of the antistatic layer is preferably a layer adjusted to 10 3 ⁇ / sq (25 ° C., 55% RH) or more. More preferably, it is 10 7 ⁇ / sq (25 ° C., 55% RH) or more.
  • the measurement of the surface specific resistance is a value measured using a resistivity meter after conditioning the sample for 24 hours under the conditions of 25 ° C. and 55% RH.
  • a resistivity meter device for example, Hiresta UP MCP-HT450 manufactured by Mitsubishi Chemical Corporation can be used.
  • the resin binder of the antistatic layer is preferably a curable resin.
  • an active energy ray-curable resin is preferable from the viewpoint of excellent film formability and physical characteristics of the coating film and adhesion to the laminated film.
  • the active energy ray-curable resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays or electron beams.
  • the active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active energy ray curable resin layer is cured by irradiation with an active ray such as an ultraviolet ray or an electron beam. It is formed.
  • an active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin is particularly preferable.
  • an ultraviolet curable urethane acrylate resin for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, UV curable acrylate resins are preferred.
  • UV curable urethane acrylate resins are obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and further adding 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter referred to as methacrylate to acrylate).
  • methacrylate to acrylate can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • a mixture of 100 parts Unidic 17-806 (Dainippon Ink Chemical Co., Ltd.) and 1 part Coronate L (Nihon Polyurethane Co., Ltd.) is preferably used. It is done.
  • Examples of the UV curable polyester acrylate resin generally include those easily formed by reacting polyester polyol with 2-hydroxyethyl acrylate or 2-hydroxy acrylate monomer. Can be used.
  • ultraviolet curable epoxy acrylate resin examples include those produced by reacting epoxy acrylate with an oligomer, a reactive diluent and a photopolymerization initiator added thereto. Those described in US Pat. No. 105738 can be used.
  • UV curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, etc. Can be mentioned.
  • ultraviolet curable resins are preferably used together with a photopolymerization initiator from the viewpoint of promoting the reaction.
  • the photopolymerization initiator examples include benzoin and its derivatives, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof. You may use with a photosensitizer.
  • the photopolymerization initiator can also be used as a photosensitizer.
  • a sensitizer such as n-butylamine, triethylamine, or tri-n-butylphosphine can be used.
  • the photopolymerization initiator or photosensitizer used in the ultraviolet curable resin composition is 0.1 to 20 parts by mass, preferably 1 to 15 parts by mass with respect to 100 parts by mass of the curable resin.
  • monomers include, for example, common monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, benzyl acrylate, cyclohexyl acrylate, vinyl acetate, and styrene as monomers having one unsaturated double bond. Further, as monomers having two or more unsaturated double bonds, ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, isobornyl acrylate, etc. Can be mentioned. In addition, monomers described in JP-A-2006-3647 can be preferably used.
  • UV curable resins include Adekaoptomer KR / BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (manufactured by Asahi Denka Co., Ltd.); A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT-102Q8, MAG-1-P20, AG-106, M-101-C (Guangei Chemical Co., Ltd.); Seica Beam PHC2210 (S), PHCX-9 (K-3), PHC2213, DP-10, DP-20, DP- 30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (manufactured by Dainichi Seika Kogyo Co., Ltd.); KRM7033 KRM 7039, KRM 7130, K
  • the curable resin includes a thermosetting resin.
  • thermosetting resin include unsaturated polyester resins, epoxy resins, vinyl ester resins, phenol resins, thermosetting polyimide resins, thermosetting polyamide imides, and the like.
  • the unsaturated polyester resin for example, orthophthalic acid resin, isophthalic acid resin, terephthalic acid resin, bisphenol resin, propylene glycol-maleic acid resin, dicyclopentadiene or derivatives thereof are introduced into the unsaturated polyester composition.
  • Low-shrinkage resin with low styrene volatile resin and thermoplastic resin polyvinyl acetate resin, styrene / butadiene copolymer, polystyrene, saturated polyester, etc.
  • thermoplastic resin polyvinyl acetate resin, styrene / butadiene copolymer, polystyrene, saturated polyester, etc.
  • Reactive types such as bromating unsaturated polyester directly with Br 2 , or copolymerizing heptic acid and dibromoneopentyl glycol, halides such as chlorinated paraffin and tetrabromobisphenol, antimony trioxide, and phosphorus compounds
  • epoxy resin examples include glycidyl ether type epoxy resins including bisphenol A type, novolak phenol type, bisphenol F type, brominated bisphenol A type, glycidyl amine type, glycidyl ester type, cyclic aliphatic type, and heterocyclic epoxy type.
  • the special epoxy resin containing can be mentioned.
  • vinyl ester resins include those obtained by dissolving an oligomer obtained by a ring-opening addition reaction between an ordinary epoxy resin and an unsaturated monobasic acid such as methacrylic acid in a monomer such as styrene.
  • vinyl monomers having vinyl groups at the molecular ends and side chains are also special types.
  • vinyl ester resins of glycidyl ether type epoxy resins include bisphenol type, novolak type, brominated bisphenol type, etc.
  • special vinyl ester resins include vinyl ester urethane type, isocyanuric acid vinyl type, side chain vinyl ester type, etc.
  • the phenol resin is obtained by polycondensation using phenols and formaldehydes as raw materials, and there are a resol type and a novolac type.
  • thermosetting polyimide resins include maleic acid-based polyimides such as polymaleimide amine, polyamino bismaleimide, bismaleimide, diallyl bisphenol-A resin, bismaleimide / triazine resin, nadic acid-modified polyimide, and acetylene-terminated polyimide. There is.
  • the antistatic layer may contain inorganic particles or organic particles.
  • the average particle size of these particles is preferably 0.01 to 5 ⁇ m, more preferably 0.1 to 5.0 ⁇ m, and particularly preferably 0.1 to 4.0 ⁇ m.
  • the antistatic layer may contain two or more kinds of particles having different particle diameters. The particles are desirably blended so as to be 0.1 to 30 parts by mass with respect to 100 parts by mass of the curable resin.
  • the antistatic layer has a vinyl group and a carboxyl group in the side chain of the polyurethane resin as a curing aid, has a weight average molecular weight of 10,000 to 30,000, and a double bond equivalent of 500 to 2,000.
  • You may contain the acrylic polymer, other functional thiol compound, etc. which are 120 degreeC or more.
  • Examples of other functional thiol compounds include 1,4-bis (3-mercaptobutyryloxy) butane, pentaerythritol tetrakis (3-mercaptobutyrate), 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione and the like.
  • Showa Denko Co., Ltd. make, brand name Karenz MT series, etc. are mentioned.
  • the antistatic layer may contain a fluorine-acrylic copolymer resin.
  • the fluorine-acrylic copolymer resin is a copolymer resin composed of a fluorine monomer and an acrylic monomer. In particular, a block copolymer comprising a fluorine monomer segment and an acrylic monomer segment is preferable.
  • the molecular weight of the fluorine-acrylic copolymer resin is preferably 5,000 to 1,000,000 in terms of number average molecular weight, more preferably 10,000 to 300,000, and even more preferably 10,000 to 100,000.
  • the fluorine-acrylic copolymer resin can be produced by a known production process using polymeric peroxide as a polymerization initiator (see, for example, Japanese Patent Publication Nos. 5-41668 and 5-59942).
  • Polymeric peroxide is a compound having two or more peroxy bonds in one molecule.
  • the polymer peroxide one or more of various polymer peroxides described in JP-B-5-59942 can be used.
  • fluorine-acrylic copolymer resins examples include Nippon Oil & Fats Co., Ltd., Modiper F-200, Modiper F-600, and Modiper F-2020.
  • the antistatic layer contains a silicone-based surfactant and a fluorine-based compound from the viewpoint of enhancing productivity by imparting high-speed coating suitability while improving surface uniformity.
  • the fluorine-based compound include a fluorine-siloxane graft polymer.
  • the antistatic layer may contain a color tone adjusting agent (dye or pigment, etc.) having a color tone adjusting function, an electromagnetic wave blocking agent, an infrared absorber or the like as a color correction filter for various display elements.
  • a color tone adjusting agent die or pigment, etc.
  • an electromagnetic wave blocking agent an infrared absorber or the like as a color correction filter for various display elements.
  • the antistatic layer may contain a cellulose ester resin or an acrylic resin.
  • the following solvents are preferably used.
  • the solvent hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents can be used by appropriately mixing them, but are not particularly limited thereto.
  • hydrocarbons examples include benzene, toluene, xylene, hexane, and cyclohexane.
  • alcohols include methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butanol, 2-butanol, tert-butanol, pentanol, 2-methyl-2-butanol, and cyclohexanol.
  • ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • esters examples include methyl formate, ethyl formate, methyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, ethyl lactate, and methyl lactate.
  • Glycol ethers include methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol Examples thereof include monobutyl ether or propylene glycol mono (C1-C4) alkyl ether esters (propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, etc.). Examples of other solvents include methylene chloride and N-methylpyrrolidone. Although not particularly limited to these, a solvent in which these are appropriately mixed is also preferably used.
  • a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, or spray coating, inkjet coating, etc., and wet film thickness on one surface of a film substrate Apply 0.1-100 ⁇ m, preferably 0.5-30 ⁇ m, and dry film thickness with average film thickness 0.1-30 ⁇ m, preferably 1-20 ⁇ m, and after application, heat-dry and cure as necessary Formed.
  • the curing process is performed by heat treatment or UV curing treatment.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 5 to 500 mJ / cm 2 , preferably 5 to 200 mJ / cm 2 .
  • the tension to be applied is preferably 30 to 500 N / m.
  • the method for applying tension is not particularly limited, and tension may be applied in the transport direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. This makes it possible to obtain a film with further excellent flatness.
  • the antistatic layer may be a single layer or a multilayer structure of two or more layers.
  • the antistatic layer may be provided by the above-described application, or may be provided by a method such as vapor deposition.
  • the thickness of the antistatic layer is preferably 0.1 ⁇ m or more and 20 ⁇ m or less. More preferably, they are 0.1 micrometer or more and 10 micrometers or less.
  • the polarizing plate can be produced by a general method.
  • a polarizing film produced by subjecting the optical film to alkali saponification treatment and immersing and stretching the treated optical film in an iodine solution It is preferable to attach to one side of this using a completely saponified polyvinyl alcohol aqueous solution (water glue, water-based adhesive).
  • the optical film may be bonded to the other surface of the polarizer, or the above-described film substrate may be bonded.
  • the film thickness of the film substrate to be bonded to the other surface is preferably in the range of 5 to 100 ⁇ m, more preferably in the range of 5 to 34 ⁇ m, from the viewpoint of adjusting smoothness and curl balance and further improving the effect of preventing winding deviation.
  • the polarizing film which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction, and a typical polarizing film that is known at present is a polyvinyl alcohol polarizing film.
  • the polarizing film includes a polyvinyl alcohol film dyed with iodine and a dichroic dye dyed, but is not limited thereto.
  • polarizing film a polyvinyl alcohol aqueous solution is formed and dyed by uniaxial stretching or dyeing, or after uniaxial stretching after dyeing, a film subjected to durability treatment with a boron compound is preferably used.
  • the thickness of the polarizing film is 5 to 30 ⁇ m, preferably 8 to 15 ⁇ m.
  • a circularly polarizing plate can also be constituted using an optical film. That is, a circularly polarizing plate can be formed by laminating a polarizing plate protective film, a polarizer, and a ⁇ / 4 film in this order. In this case, the angle formed between the slow axis of the ⁇ / 4 film and the absorption axis (or transmission axis) of the polarizing film is 45 °.
  • a long polarizing plate protective film, a long polarizer, and a long ⁇ / 4 film (long diagonally stretched film) are preferably laminated in this order.
  • the circularly polarizing plate can be produced by using a stretched polyvinyl alcohol doped with iodine or a dichroic dye as a polarizer, and laminating with a configuration of ⁇ / 4 film / polarizer.
  • the thickness of the polarizer is 5 to 40 ⁇ m, preferably 5 to 30 ⁇ m, particularly preferably 5 to 20 ⁇ m.
  • the circularly polarizing plate can be produced by a general method. In other words, it is preferable to attach an alkali saponified ⁇ / 4 film to one surface of a polarizer produced by immersing and stretching a polyvinyl alcohol film in an iodine solution, using a completely saponified polyvinyl alcohol aqueous solution.
  • the pressure-sensitive adhesive layer used on one side of the film of the polarizing plate is preferably optically transparent and exhibits moderate viscoelasticity and pressure-sensitive adhesive properties.
  • the adhesive layer include adhesives or adhesives such as acrylic copolymers, epoxy resins, polyurethane, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, and synthetic rubbers.
  • a film such as a drying method, a chemical curing method, a thermal curing method, a thermal melting method, a photocuring method, or the like can be formed and cured using a polymer such as the above.
  • the acrylic copolymer can be preferably used because it is most easy to control the physical properties of the adhesive and is excellent in transparency, weather resistance, durability and the like.
  • the optical film of this embodiment is preferable in that the performance excellent in visibility is exhibited by using it for an image display apparatus.
  • an image display device a reflection type, a transmission type, a transflective type liquid crystal display device, a liquid crystal display device of various driving methods such as a TN type, an STN type, an OCB type, a VA type, an IPS type, and an ECB type, an organic EL display Examples thereof include a device and a plasma display.
  • a liquid crystal display device is preferable because of its high visibility.
  • Protective part may be arranged on the further viewing side of the cured layer of the optical film of the viewing side polarizing plate.
  • This protection part can be constituted by a front plate or a touch panel.
  • the said protection part is bonded together by the said hardened layer via the filler (photocurable resin) for filling the space
  • the front plate in particular of a protection part is not restrict
  • a solvent-free filler is preferable, and as commercially available products, for example, SVR1120, SVR1150, SVR1320, SVR1241H (above, manufactured by Dexerials Corporation), or HRJ-60, HRJ-302, HRJ-53 (above, Kyoritsu) Chemical Industry Co., Ltd.).
  • SVR1120, SVR1150, SVR1320, SVR1241H above, manufactured by Dexerials Corporation
  • HRJ-60, HRJ-302, HRJ-53 above, Kyoritsu Chemical Industry Co., Ltd.
  • Bonding of the optical film and the front plate can be performed as follows, for example. First, a filler is prepared. Then, a filler is applied to the surface of the cured layer of the optical film, and the front plate is overlaid on the coating film of the filler. In this state, the filler is cured by light irradiation or the like, and the optical film and the front plate are bonded together. When the filler is applied to the surface of the cured layer, the surface free energy of the cured layer is set to 30 mN / m or more so that the filler is uniformly spread without being repelled at the end of the cured layer. An image display device that is maintained and has excellent visibility can be obtained.
  • ⁇ Preparation of optical film 1> [Production of Cellulose Ester Film 1] ⁇ Preparation of silicon dioxide dispersion> Aerosil R812 (Nippon Aerosil Co., Ltd., average primary particle diameter of 7 nm) 10 parts by mass Ethanol 90 parts by mass The above was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed for 30 minutes with a dissolver to prepare a silicon dioxide dispersion dilution. The mixture was filtered with a fine particle dispersion dilution filter (Advantech Toyo Co., Ltd .: polypropylene wind cartridge filter TCW-PPS-1N).
  • the belt was cast evenly on a stainless steel band support using a belt casting apparatus.
  • the solvent was evaporated until the residual solvent amount reached 100% by mass, and the stainless steel band support was peeled off.
  • the cellulose ester film web was evaporated at 35 ° C., slit to 1.15 m width, obliquely stretched with an oblique stretching tenter at a stretching temperature of 175 ° C. and a stretching ratio of 1.5 times, and a take-up tension at the tenter outlet of 200 N / m, the film was stretched in an oblique direction so that the orientation angle ⁇ (an angle formed by the film width direction and the slow axis) was 45 °.
  • the cellulose ester film 1 as a ⁇ / 4 film was obtained.
  • the film thickness of the cellulose ester film 1 was 30 ⁇ m
  • the winding length was 3900 m
  • the in-plane retardation Ro was 135 nm
  • the thickness direction retardation Rt was 140 nm
  • the orientation angle ⁇ was 45 °.
  • silica sol manufactured by JGC Catalysts & Chemicals Co., Ltd .: Si-45P, SiO 2 concentration 30% by weight, average particle size 45 nm, dispersion medium: water
  • silica sol manufactured by JGC Catalysts & Chemicals Co., Ltd .: Si-45P, SiO 2 concentration 30% by weight, average particle size 45 nm, dispersion medium: water
  • an ultrafiltration membrane method is used.
  • water was replaced with ethanol to prepare 100 g of an ethanol dispersion of silica fine particles (SiO 2 concentration 30 wt%).
  • silica fine particle ethanol dispersion and 1.5 g of the polymer silane coupling agent are dispersed in 20 g (25 ml) of acetone, and 20 mg of aqueous ammonia having a concentration of 29.8% by weight is added thereto, followed by stirring at room temperature for 30 hours.
  • the polymer silane coupling agent was adsorbed on the silica fine particles.
  • silica particles having an average particle diameter of 5 ⁇ m are added and stirred for 2 hours to adsorb the unadsorbed polymer silane coupling agent in the solution to the silica particles, and then the polymer silane coupling that has not been adsorbed by centrifugation.
  • Silica particles having an average particle diameter of 5 ⁇ m adsorbing the agent were removed. 1000 g of ethanol is added to the silica fine particle dispersion adsorbing the polymer silane coupling agent, and the silica fine particles are precipitated, separated, dried under reduced pressure, and then dried at 25 ° C.
  • the obtained polymer silane coupling agent-coated silica (1) had an average particle size of 57 nm. The average particle size was measured with a laser particle size measuring device.
  • composition for forming first cured layer The polymer silane coupling agent-coated silica (1) prepared above and the following compound were mixed with stirring to prepare a first cured layer forming composition.
  • Polymer silane coupling agent-coated silica (1) 50 parts by mass (active ray curable resin) NK Ester A-DCP (Tricyclodecane dimethanol diacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.) 35 parts by mass (photopolymerization initiator) Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (additive) KF-642 (polyether-modified silicone oil, manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts by mass (solvent) Propylene glycol monomethyl ether 80 parts by weight Methyl acetate 20 parts by weight
  • Particle dispersion 60 parts by weight Dioxane glycol diacrylate (NK ester A-DOG, Shin-Nakamura Chemical Co., Ltd.) 3 parts by mass Urethane (meth) acrylate (UA-1100H, manufactured by Shin-Nakamura Chemical Co., Ltd.) 15 parts by mass 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (Irgacure 907, manufactured by Ciba Japan Co., Ltd.) 2 parts by mass Methyl ethyl ketone 22 parts by mass KF-354L (polyether-modified silicone, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 parts by mass
  • the first cured layer forming composition is applied on the surface A (the surface not in contact with the casting belt) of the produced cellulose ester film 1 using an extrusion coater, and the constant rate drying zone temperature is 50 ° C. After drying at a reduced-rate drying section temperature of 50 ° C., while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less, the illuminance of the irradiated part is 100 mW / cm 2 using an ultraviolet lamp, and the irradiation amount is The coating layer was cured at 0.25 J / cm 2 to form a first cured layer having a dry film thickness of 0.5 ⁇ m.
  • the second cured layer forming composition prepared above is applied onto the first cured layer using a micro gravure coater and dried at a constant rate drying zone temperature of 50 ° C. and a reduced rate drying zone temperature of 50 ° C. After that, while purging with nitrogen so that the oxygen concentration becomes 1.0 volume% or less, the irradiance of the irradiated part is 100 mW / cm 2 and the irradiation amount is 0.3 J / cm 2 using an ultraviolet lamp. Was cured to form a second cured layer having a dry film thickness of 2 ⁇ m.
  • the charged layer forming composition was treated with an ultrasonic homogenizer for 5 minutes, filtered through a polypropylene filter having a pore size of 30 ⁇ m, coated with an extrusion coater, dried at 80 ° C., and then irradiated with an ultraviolet lamp.
  • the coating layer was cured with an illuminance of 100 mW / cm 2 and an irradiation amount of 0.2 J / cm 2 to prepare an antistatic layer having a dry film thickness of 1.0 ⁇ m.
  • the produced optical film 1 was wound up in a roll shape.
  • the optical film 1 was attached to one surface of the polarizing film, and a commercially available optical film KC4UZ (manufactured by Konica Minolta) was attached to the other surface of the polarizing film to produce a polarizing plate 101. More details are as follows.
  • the obtained PVA film was continuously processed in the order of pre-swelling, dyeing, uniaxial stretching by a wet method, fixing treatment, drying, and heat treatment to produce a polarizing film. That is, the PVA film was preliminarily swollen in water at a temperature of 30 ° C. for 30 seconds, and immersed in an aqueous solution having an iodine concentration of 0.4 g / liter and a potassium iodide concentration of 40 g / liter at a temperature of 35 ° C. for 3 minutes.
  • the film was uniaxially stretched 6 times in a 50% aqueous solution with a boric acid concentration of 4% under the condition that the tension applied to the film was 700 N / m, and the potassium iodide concentration was 40 g / liter and the boric acid concentration was 40 g / liter. Then, it was immersed in an aqueous solution having a zinc chloride concentration of 10 g / liter and a temperature of 30 ° C. for 5 minutes for fixing. Thereafter, the PVA film was taken out, dried with hot air at a temperature of 40 ° C., and further heat-treated at a temperature of 100 ° C. for 5 minutes. The obtained polarizing film had an average thickness of 5 ⁇ m, polarization performance of transmittance of 43.0%, polarization degree of 99.5%, and dichroic ratio of 40.1.
  • Step 1 The polarizing film described above was immersed in a storage tank of a polyvinyl alcohol adhesive solution having a solid content of 2% by mass for 1 to 2 seconds.
  • Process 2 The alkali saponification process was implemented on the following conditions with respect to the optical film 1 and KC4UZ. Next, excess adhesive adhered to the polarizing film immersed in the polyvinyl alcohol adhesive solution in Step 1 was lightly removed, and this polarizing film was sandwiched between the opposite surface of the optical film 1 from the cured layer and KC4UZ, and laminated.
  • Step 3 The above laminate was sandwiched between two rotating rollers and bonded at a pressure of 20 to 30 N / cm 2 at a speed of about 2 m / min. At this time, it was carried out with care to prevent bubbles from entering.
  • Step 4 The sample prepared in Step 3 was dried in a dryer at a temperature of 100 ° C. for 5 minutes to prepare a polarizing plate.
  • Step 5 Apply a commercially available acrylic adhesive to the protective film (KC4UZ) side of the polarizing plate prepared in Step 4 so that the thickness after drying is 5 ⁇ m, and dry in an oven at 110 ° C. for 5 minutes to form an adhesive layer And a peelable protective film was attached to the adhesive layer.
  • This polarizing plate was cut (punched) to produce a polarizing plate 101.
  • the upper polarizing plate of a commercially available liquid crystal display device (60 type display BRAVIA LX900 manufactured by SONY) was peeled off, and the polarizing plate 101 was attached to the liquid crystal cell as the upper polarizing plate. That is, the adhesive layer of the polarizing plate 101 and the glass of the liquid crystal cell were bonded so that KC4UZ of the polarizing plate 101 was on the liquid crystal cell side. At this time, the crossed Nicols were arranged so that the transmission axis of the upper polarizing plate (polarizing plate 101) was in the vertical direction and the transmission axis of the lower polarizing plate was in the horizontal direction.
  • Polarizing plates 102 to 113 were prepared in the same manner as the polarizing plate 101 except that the optical film 1 of the polarizing plate 101 was changed to the optical films 2 to 13, respectively.
  • Liquid crystal display devices 202 to 213 were produced in the same manner as the liquid crystal display device 101 except that the polarizing plate 101 was changed to the polarizing plates 102 to 113.
  • Such front contrast calculation was performed for each of the liquid crystal display devices 201 to 213. And the contrast nonuniformity was evaluated based on the following criteria. "Evaluation criteria" A: The front contrast variation is less than 1% and there is no contrast unevenness. A: Variation in front contrast is 1% or more and less than 3%, and contrast unevenness is very small. ⁇ : Variation in front contrast is 3% or more and less than 5%, and contrast unevenness is small. ⁇ : Front contrast variation is 5% or more and less than 10%, and there is some contrast unevenness, but there is no actual harm. X: Variation in front contrast is 10% or more, contrast unevenness is large, and there is a real harm.
  • Black band evaluation The produced optical films 1 to 13 were each wound up to 2600 m and left to stand for 200 hours under high-temperature and high-humidity conditions (40 ° C. and 90% RH). Based on the evaluation. "Evaluation criteria" A: No black band is generated. ⁇ : A black band is finally seen when illuminated with a hand lamp, but there is no actual harm. ⁇ : A black band can be seen without a hand lamp, but there is no actual harm. ⁇ : A black band is weakly generated but is not actually harmful. X: A black band is strongly generated and is actually harmful.
  • Table 1 shows the main composition, parameters, and evaluation results of each optical film 1-13.
  • CE refers to cellulose ester
  • COP refers to cycloolefin resin
  • UA refers to urethane acrylate
  • PETA pentaerythritol tri / tetraacrylate.
  • the second cured layer contains a resin having an alicyclic structure (for example, A-DCP) and silica fine particles
  • the first cured layer is composed of the resin and
  • different resins for example, urethane acrylate resin, PETA
  • silica fine particles it can be said that the effect of suppressing contrast unevenness is particularly enhanced. This is because, since the first cured layer and the second cured layer have the above-described configuration, dimensional deformation due to water content of the film base material can be suppressed, and thus the winding deformation of the optical film can be further suppressed. it is conceivable that.
  • the effect of suppressing contrast unevenness, blocking, and black bands is higher than when the first cured layer contains a non-urethane resin.
  • the first hardened layer contains a urethane-based resin and silica fine particles, so that a relatively hard first hardened layer is formed, and the second hardened layer is formed on the first hardened layer.
  • the hardness of the entire cured layer is increased, so that the dimensional change of the film substrate and the winding deformation of the optical film in a high temperature and high humidity environment can be further suppressed.
  • the film thickness L1 of the first hardened layer is 0.3 ⁇ m like the optical film 5, the effect of suppressing the contrast unevenness is small. If the first cured layer is too thin, poor curing of the first cured layer is likely to occur, and it becomes difficult to impart a predetermined hardness to the second cured layer on the first cured layer. 2 It is considered that due to insufficient hardness of the cured layer, the effect of suppressing the dimensional deformation of the film substrate in a high-temperature and high-humidity environment is reduced, and the effect of suppressing the winding unevenness of the optical film and suppressing the unevenness of contrast is reduced. Therefore, it can be said that the film thickness L1 of the first cured layer is desirably secured to 0.5 ⁇ m or more as in the optical films 1 to 3.
  • the film thickness L1 of the first hardened layer is 3.2 ⁇ m as in the optical film 6, the effect of suppressing the contrast unevenness is small. This is because if the first cured layer becomes too thick, the region with low mechanical strength formed by the penetration of the solvent at the time of forming the first cured layer into the film substrate becomes too thick. This is considered to be because the effect of suppressing the dimensional change of the film base material is small. Therefore, it can be said that the film thickness L1 of the first cured layer is desirably 3.0 ⁇ m or less, which is a value between 2.8 ⁇ m in the optical film 3 and 3.2 ⁇ m in the optical film 6.
  • the effect of suppressing contrast unevenness, blocking, and black band is higher than in the configuration in which the antistatic layer is not included. This is considered to be because the film is prevented from being charged by providing the antistatic layer, blocking at the time of film winding can be suppressed, and winding deformation of the optical film can be further suppressed.
  • the film thickness of the cured layer closest to the film substrate is set to be smaller than the film thickness of the cured layer next to the film substrate. It was confirmed that by reducing the thickness, the dimensional change of the film substrate and the winding deformation of the optical film under a high temperature and high humidity environment can be suppressed. Moreover, even when the film substrate is composed of a resin other than cellulose ester resin and cycloolefin resin (acrylic, polycarbonate, polyester, etc.), the film thicknesses of the two cured layers on the film substrate should be set in the same manner as described above. Thus, it was confirmed that the winding deformation of the optical film can be suppressed.
  • optical film, polarizing plate, and liquid crystal display device of the present embodiment described above can be expressed as follows.
  • a film substrate as a quarter-wave retardation film;
  • the second hardened layer is Including a resin having an alicyclic structure and fine particles coated with a polymer silane coupling agent
  • the first hardened layer is 2.
  • a thickness L1 of the first cured layer is 0.5 ⁇ m or more and 3 ⁇ m or less.
  • optical film as described in any one of 1 to 4, further comprising an antistatic layer on at least one surface side of the film substrate.
  • the optical film of the present invention can be used for image display devices such as polarizing plates and liquid crystal display devices.
  • Image display device Liquid crystal cell (display cell) 5 Polarizing plate 11 Polarizer 12 Film substrate (1 ⁇ 4 wavelength retardation film) 13 First cured layer 14 Second cured layer 16 Optical film 17 Antistatic layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

光学フィルム(16)は、1/4波長位相差フィルムとしてのフィルム基材(12)と、フィルム基材(12)の一方の面側に位置する、少なくとも2層の硬化層とを有する。少なくとも2層の硬化層のうち、フィルム基材(12)に最も近い硬化層を第1硬化層(13)とし、第1硬化層(13)の次にフィルム基材(12)に近い硬化層を第2硬化層(14)とし、第1硬化層(13)の厚みをL1(μm)とし、第2硬化層(14)の厚みをL2(μm)としたとき、L1<L2である。

Description

光学フィルム、偏光板および画像表示装置
 本発明は、1/4波長位相差フィルム(以下、λ/4フィルムとも記載する)としてのフィルム基材の一方の面側に、少なくとも2層の硬化層を有する光学フィルムと、その光学フィルムを有する偏光板と、その偏光板を有する画像表示装置とに関するものである。
 液晶表示装置に表示された画像を、立体画像(3D映像)観察用の偏光メガネや、偏光サングラス(以下、「偏光メガネ等」とも称する)を介して観察者が観察するとき、観察者が横に寝そべった状態では、直立した状態を基準として、偏光メガネ等の透過軸(直線偏光を透過させる軸)が傾くため、クロストーク(輝度変化、暗転)が発生する。このようなクロストークを低減して画像の視認性を改善するため、液晶表示装置の視認側の最表面にλ/4フィルムを配置することが知られている。
 すなわち、液晶セルに対して視認側に配置される偏光板において、λ/4フィルムの遅相軸と偏光子の吸収軸とのなす角度が概ね30°~60°となるように、偏光子の視認側にλ/4フィルムを貼り付けることにより、偏光子からの直線偏光は、λ/4フィルムによって円偏光または楕円偏光に変換される。これにより、観察者が偏光メガネ等を装着して表示画像を観察する場合において、偏光子の透過軸(吸収軸に垂直)と、偏光メガネ等の透過軸とがどのようにズレていても、偏光板から出射される光(円偏光または楕円偏光)に含まれる、偏光メガネ等の透過軸に平行な光の成分を観察者の眼に導くことができる。したがって、観察する角度によって表示画像が見え難くなるのを抑えることができ、上記のクロストークを低減することができる。なお、偏光子にλ/4フィルムを貼り付けた偏光板のことを、以下では、円偏光板とも称する。
 λ/4フィルムは、例えばポリマーフィルムを長手方向に対して実質的に45゜の方向に延伸する、いわゆる斜め延伸という手法を用いて長尺状に製造される。長尺状のλ/4フィルムと、長尺状の偏光子とをロール・トゥ・ロール方式で貼り合わせて、長尺状の円偏光板を製造することにより、長尺状の円偏光板を所定の位置で切断して個々の円偏光板を得ることができるため、円偏光板の生産性が飛躍的に向上する。
 ところで、円偏光板の物理的な損傷防止の観点から、λ/4フィルム上に硬化層を形成する構成が知られている(例えば特許文献1参照)。λ/4フィルム上に硬化層を形成した光学フィルムを用いて円偏光板を製造する場合、斜め延伸されたλ/4フィルム上に硬化層を形成した後、光学フィルムを一旦ロール状に巻き取り、ロール状の巻状体から光学フィルムを繰り出して、長尺状の偏光子とロール・トゥ・ロール方式で貼り合わせて円偏光板を製造することになる。
特開2015-179204号公報(請求項1、段落〔0026〕、〔0029〕、〔0033〕、図1、図2等参照)
 ところが、λ/4フィルム上に硬化層を単層で形成して光学フィルムを構成した場合、その光学フィルムを含む円偏光板を用いて液晶表示装置を構成すると、偏光メガネ等による画像観察時に視認性の低下(特にコントラストの低下)が生じることがわかった。その理由については、以下のように推測している。
 λ/4フィルム上に硬化層を単層で形成した後の光学フィルムは、上述のようにロール状に巻き取られて長尺巻状体となり、このような長尺巻状体として保存または運搬される。このとき、長尺巻状体の保存または運搬時の環境が高温高湿になると(あるいは、そのような厳しい環境を想定した湿熱耐久試験を行うと)、λ/4フィルムの斜め延伸によって生じた残留応力が緩和される。その結果、λ/4フィルムがその配向方向(斜め延伸方向)に縮もうとする(λ/4フィルムが寸法変化を起こそうとする)。
 このとき、単層の硬化層が薄いと、硬化不良が生じやすくなり、λ/4フィルムの表面保護という硬化層本来の機能を発揮することができなくなる。このため、単層の硬化層にはある程度の厚さが必要である。しかし、単層の硬化層を厚くすると、硬化層組成物に含まれる溶剤がλ/4フィルムに浸透することで機械的強度の弱くなる領域(脆い領域)が膜厚方向に厚くなるため、上記領域が、λ/4フィルムの寸法変化に追従して寸法変化を起こす。このため、硬化層全体によってλ/4フィルムの寸法変化を抑えることができなくなる。その結果、光学フィルムの長尺巻状体においては、λ/4フィルムの寸法変化に起因するねじれが発生し、このねじれによって、ブロッキング(フィルム同士の貼り付き)やブラックバンド(周方向に帯状のスジ)も生じやすくなる。このように、光学フィルムの巻き状態が良好でなくなると、円偏光板を製造すべく、長尺巻状体から光学フィルムを繰り出したときに、光学フィルムの平面性を確保することができず、このような光学フィルムの平面性の低下が、光学フィルムを画像表示装置に適用したときにコントラストムラとなって現れるものと考えている。
 したがって、上記のコントラストムラを抑えるためには、硬化層によってλ/4フィルムの表面保護を図りながら、高温高湿環境下でのλ/4フィルムの寸法変化による光学フィルムの巻状変形を抑え、これによって巻状体から繰り出したときの光学フィルムの平面性の低下を抑えることが必要となる。しかし、この点については、従来一切検討されていない。
 本発明は、上記の問題を解決するためになされたものであって、その目的は、硬化層によって1/4波長位相差フィルムの表面保護を図りながら、高温高湿環境下での1/4波長位相差フィルムの寸法変化による光学フィルムの巻状変形を抑えることができ、これによって、巻状体から繰り出したときの平面性の低下を抑えることができる光学フィルムと、その光学フィルムを有する偏光板と、その偏光板を有する画像表示装置とを提供することにある。
 本願発明者らは、1/4波長位相差フィルムとしてのフィルム基材の一方の面側に、少なくとも2層の硬化層を有する構成とし、上記2層の硬化層の膜厚の大小関係を適切に設定することにより、前記課題を解決できることを見出し、本発明に至った。すなわち、本発明の上記目的は、以下の構成により達成される。
 本発明の一側面に係る光学フィルムは、1/4波長位相差フィルムとしてのフィルム基材と、前記フィルム基材の一方の面側に位置する、少なくとも2層の硬化層とを有する光学フィルムであって、前記少なくとも2層の硬化層のうち、前記フィルム基材に最も近い硬化層を第1硬化層とし、前記第1硬化層の次に前記フィルム基材に近い硬化層を第2硬化層とし、前記第1硬化層の厚みをL1(μm)とし、前記第2硬化層の厚みをL2(μm)としたとき、
    L1<L2
である。
 1/4位相差フィルムとしてのフィルム基材上の硬化層を複数層で構成し、上記複数層のうちでフィルム基材側の2層(第1硬化層、第2硬化層)の膜厚の大小関係を適切に設定することにより、硬化層(特に第2硬化層)によって1/4波長位相差フィルムの表面保護を図りながら、高温高湿環境下での1/4波長位相差フィルムの寸法変化による光学フィルムの巻状変形を抑えることができる。その結果、光学フィルムを巻状体から繰り出したときでも、光学フィルムの平面性の低下を抑えることができる。
本発明の実施の形態に係る画像表示装置の概略の構成を分解して示すとともに、上記画像表示装置に用いられる光学フィルムの構成を併せて示す断面図である。 上記光学フィルムの他の構成を示す断面図である。 上記光学フィルムのさらに他の構成を示す断面図である。
 本発明の実施の一形態について、図面に基づいて説明すれば以下の通りである。なお、本明細書において、数値範囲をA~Bと表記した場合、その数値範囲に下限Aおよび上限Bの値は含まれるものとする。また、本発明は、以下の内容に限定されるものではない。
 本願発明者らは、上述した課題を解決すべく、以下の構成の光学フィルムを検討した。すなわち、本実施形態の光学フィルムは、1/4波長位相差フィルム(λ/4フィルム)としてのフィルム基材と、前記フィルム基材の一方の面側に位置する、少なくとも2層の硬化層とを有する光学フィルムであって、前記少なくとも2層の硬化層のうち、前記フィルム基材に最も近い硬化層を第1硬化層とし、前記第1硬化層の次に前記フィルム基材に近い硬化層を第2硬化層とし、前記第1硬化層の厚みをL1(μm)とし、前記第2硬化層の厚みをL2(μm)としたとき、
    L1<L2
である。この特徴は、特許請求の範囲に記載した各請求項に係る発明に共通する技術的特徴である。
 上記光学フィルムの構成による効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 λ/4フィルムとしてのフィルム基材上に、少なくとも2層の硬化層を有する構成において、フィルム基材に最も近い第1硬化層の厚みL1よりも、次にフィルム基材に近い第2硬化層の厚みL2のほうが大きい。第2硬化層の膜厚が厚いため、この第2硬化層によって、λ/4フィルム(フィルム基材)の表面保護を図ることができる。
 また、第1硬化層が薄いため、第1硬化層を形成する組成物に含まれる溶剤がλ/4フィルムに浸透することで機械的強度の弱くなる領域(第1硬化層を形成する成分とλ/4フィルムを形成する成分とが混合した混合領域で、比較的脆い領域)も膜厚方向に薄くなる。このため、第1硬化層と第2硬化層とを含む硬化層全体において、機械的強度の相対的に強い領域が増大する。したがって、高温高湿環境下でλ/4フィルムの斜め延伸によって生じた残留応力が緩和され、これによってλ/4フィルムが配向方向(斜め延伸方向)に縮もうとしても、硬化層全体によってλ/4フィルムの寸法変化を抑えることができる。その結果、光学フィルムをロール状に巻き取った場合でも、巻状体におけるねじれや、そのねじれによる光学フィルムのブロッキングおよびブラックバンドの発生を抑えることができる。つまり、光学フィルムの巻状変形を抑えることが可能となる。その結果、光学フィルムを巻状体から繰り出したときに、光学フィルムの平面性を確保することができる。
 このように光学フィルムの平面性が確保されることにより、光学フィルムの光学特性がフィルム面全体で良好に発揮されるため、上記光学フィルムを用いて円偏光板を構成し、この円偏光板を画像表示装置に適用した場合でも、偏光サングラス等による画像観察時の視認性の低下(コントラストの低下)を抑えることができる。
 本実施形態の偏光板は、上記の光学フィルムが、偏光子の一方の面側に位置している構成である。上記光学フィルムの構成によれば、光学フィルムをロール状に巻き取った場合でも、巻状体の巻状変形を抑えて、光学フィルムの平面性を確保することができる。これにより、上記光学フィルムを偏光子に貼り付けて偏光板(例えば円偏光板)を構成しても、偏光板の平面性を良好に確保することができる。その結果、上記偏光板を画像表示装置に適用した場合において、偏光サングラス等による画像観察時の視認性の低下(例えばコントラストムラ)を抑えることができる。
 本実施形態の画像表示装置は、上記偏光板が、表示セルの少なくとも一方の面側に位置している構成である。平面性に優れた上記偏光板を用いて画像表示装置を構成することにより、偏光サングラス等による画像観察時の視認性の低下(例えばコントラストムラ)を抑えることができる。
 以下、本実施形態の光学フィルムが適用される画像表示装置の具体的な構成について説明する。
 〔画像表示装置の構成〕
 図1は、本願の一実施形態の画像表示装置1の概略の構成を分解して示す断面図である。画像表示装置1は、例えば液晶表示装置であり、液晶表示パネル2の後述する偏光板5(特に後述する光学フィルム16上)に、充填層31を介して保護部3を貼り合わせて構成されている。充填層31は、アクリルなどの光硬化性樹脂からなる接着層(空隙充填剤)であり、液晶表示パネル2の偏光板5の表面全体に形成されている。保護部3は、液晶表示パネル2の表面を保護するものであり、例えばアクリル樹脂やガラスからなる前面板で構成される。なお、前面板の代わりにタッチパネル(静電容量方式や抵抗膜方式など)を保護部3として用いてもよい。
 液晶表示パネル2は、液晶層を一対の基板で挟持した液晶セル4(表示セル)の両側に、偏光板5・6をそれぞれ配置して構成されている。偏光板5は、粘着層7を介して液晶セル4の一方の面側(例えば視認側)に貼り付けられている。偏光板6は、粘着層8を介して液晶セル4の他方の面側(例えばバックライト9側)に貼り付けられている。液晶表示パネル2の駆動方式は特に限定されず、IPS(In Plane Switching)型式、TN(Twisted Nematic)方式、VA(Vertical Alignment)方式など、様々な駆動方式を採用することができる。
 偏光板5は、所定の直線偏光を透過する偏光子11と、偏光子11の保護部3側に順に積層されるフィルム基材12、第1硬化層13および第2硬化層14と、偏光子11の液晶セル4側に積層される裏面保護フィルム15とで構成されている。フィルム基材12、第1硬化層13および第2硬化層14により、偏光子11の視認側の面に形成される保護フィルムとしての光学フィルム16が構成されている。フィルム基材12は、例えばセルロース系樹脂(セルロースエステル系樹脂)からなり、セルロースエステルフィルム基材とも称する。フィルム基材12上に硬化層(第1硬化層13、第2硬化層14)を設けることにより、偏光板5の表面を保護することができる。
 裏面保護フィルム15は、偏光板5の裏面を保護するために設けられている。裏面保護フィルム15は、フィルム基材12と同様の材料(例えばセルロースエステル)で構成されてもよいし、他の材料で構成されてもよい。また、裏面保護フィルム15は、光学補償機能を有するフィルム(位相差フィルム)で構成されてもよし、透過光に対してほとんど位相差を付与しないゼロ位相差フィルムで構成されてもよい。
 偏光板6は、所定の直線偏光を透過する偏光子21と、偏光子21の液晶セル4側に配置される表面保護フィルム22と、偏光子21の液晶セル4とは反対側に配置される裏面保護フィルム23とを積層して構成されている。偏光子21は、透過軸が偏光子11と垂直となるように配置されている(クロスニコル状態)。表面保護フィルム22および裏面保護フィルム23は、偏光板6の表面および裏面を保護するために設けられているが、これらは偏光板5のフィルム基材12と同様の材料(例えばセルロースエステル)で構成されてもよいし、他の材料で構成されてもよい。
 上記した偏光板5の視認側の光学フィルム16について、さらに説明すれば以下の通りである。
 光学フィルム16のフィルム基材12は、偏光子11と水糊によって貼合されており、その膜厚は、例えば5~50μmの範囲内であることが望ましい。フィルム基材12を薄膜化することで、光学フィルム16および偏光板5を薄膜化することができ、画像表示装置1全体の薄型化に寄与できる。
 フィルム基材12は、1/4波長位相差フィルム(λ/4フィルム)で構成されている。λ/4フィルムは、透過光に対して波長の1/4程度の面内位相差を付与する層であり、本実施形態では、斜め延伸が施されたフィルムで構成されている。λ/4フィルムの遅相軸と偏光子11の吸収軸とのなす角度(交差角)は、30°~60°であり、これによって、偏光子11からの直線偏光は、λ/4フィルム(フィルム基材12)によって円偏光または楕円偏光に変換される。
 したがって、観察者が偏光サングラスを装着して表示画像を観察する場合において、偏光子11の透過軸(吸収軸に垂直)と、偏光サングラスの透過軸とがどのようにズレていても、偏光板5から出射される光(円偏光または楕円偏光)に含まれる、偏光サングラスの透過軸に平行な光の成分を観察者の眼に導くことができる。これにより、観察する角度によって表示画像が見え難くなるのを抑えることができる。また、観察者が偏光サングラスを装着しない場合でも、偏光板5から出射されて観察者の眼に入射するのは円偏光または楕円偏光であるので、直線偏光が観察者の眼に直接入射する構成に比べて、観察者の眼の負担を軽減することができる。なお、立体画像を観察すべく、偏光サングラスの代わりに偏光メガネを用いて表示画像を観察する場合においても、上記と同様の理由により、観察する角度によって表示画像が見え難くなるのを抑えることができる。
 光学フィルム16において、フィルム基材12上の複数の硬化層のうち、フィルム基材12に最も近い第1硬化層13の厚みをL1(μm)とし、次にフィルム基材12に近い第2硬化層14の厚みをL2(μm)としたとき、本実施形態では、
    L1<L2
である。このようにL1およびL2の大小関係を設定することにより、第2硬化層14によってフィルム基材12の表面保護を図りながら、高温高湿環境下でのフィルム基材12の寸法変化による光学フィルム16の巻状変形を抑えることができる。その結果、光学フィルム16を巻状体から繰り出したときでも、光学フィルム16の平面性の低下を抑えることができる。その詳細な理由は、前述した通りである。
 第2硬化層14は、脂環構造を有する樹脂と、ポリマーシランカップリング剤で被覆されてなる微粒子とを含み、第1硬化層13は、第2硬化層14の脂環構造を有する樹脂とは異なる樹脂と、ポリマーシランカップリング剤で被覆されてなる微粒子とを含んでいてもよい。
 第2硬化層14が、脂環構造を有する樹脂を含むことにより、低透湿の第2硬化層14(低透湿層)が実現される。この第2硬化層14は、フィルム基材12上に第1硬化層13を介して形成されている。すなわち、第2硬化層14とフィルム基材12との間には、第1硬化層13が介在している。この第1硬化層13は、ポリマーシランカップリング剤で被覆されてなる微粒子を含む。上記微粒子は吸湿性(吸水性)を有しているため、例えば上記光学フィルム16を保護フィルムとして偏光子11の片面に水糊によって貼合したときに、水糊の水分がフィルム基材12に進入したとしても、その水分は第1硬化層13(上記微粒子)の吸湿性によって、フィルム基材12から第1硬化層13に抜ける。これにより、フィルム基材12が含水によって変形〈膨張)するのを抑えることができ、その変形によって第2硬化層14に引張応力が付与され、その応力による負荷が生じるのを低減することができる。
 また、第1硬化層13が、低透湿を実現する第2硬化層の14樹脂とは異なる樹脂(例えばウレタンアクリレート樹脂が好ましい)を含んでいることにより、この第1硬化層13の上に形成される第2硬化層14に外部からの衝撃が加わった場合でも、その衝撃を第1硬化層13で緩和(吸収)することができる。さらに、第2硬化層14にも、ポリマーシランカップリング剤で被覆されてなる微粒子を含有させることにより、第2硬化層14の硬度を上げることができる。なお、第2硬化層14では、脂環構造を有する樹脂によって低透湿が実現されるため、第2硬化層14が吸湿性を有する上記微粒子を含有していても、低透湿の第2硬化層14を実現することができる。
 このように、フィルム基材12の含水による変形を抑え、第1硬化層13にて衝撃を吸収する構成とし、第2硬化層14の硬度をある程度確保することにより、第2硬化層14に外力(例えば画像表示装置1の曲面化による曲げ応力や、外部からの衝撃)が加わった場合でも、第2硬化層14が割れにくくなる。したがって、低透湿の第2硬化層14を設ける構成であっても、第2硬化層14の割れを低減することができる。
 また、フィルム基材12に進入した水糊の水分は第1硬化層13側に抜けるため、フィルム基材12の含水による寸法変形および含水による位相差変動を抑えることもできる。これにより、光学フィルム16を画像表示装置1に適用したときのコントラストの低下をより抑えるとともに、偏光メガネ等を用いた画像観察時に、フィルム基材12の位相差変動によるクロストークを低減することができる。
 また、第2硬化層14に含まれる樹脂(脂環構造を有する樹脂)と上記微粒子とは、相溶性が悪い。このため、フィルム基材12上に第2硬化層14を直接設けると、フィルム基材12からの抽出物(例えば添加物)と反応して上記微粒子が凝集しやすくなり、上記微粒子の層が第2硬化層14内で分離して形成されやすくなる。上記微粒子の層が形成されると、第2硬化層14表面での外光の反射光と、上記微粒子の層での外光の反射光とが干渉し、黒表示時にムラが生じる。
 一方、本実施形態のように、フィルム基材12と第2硬化層14との間に第1硬化層13を設けると、この第1硬化層13の存在によって、第2硬化層14に含まれる上記微粒子がフィルム基材12からの抽出物と反応しにくくなり、上記微粒子が凝集しにくくなる。したがって、上記微粒子の層が形成されにくくなり、上記層の形成に起因する上述の表示ムラを低減することができる。
 また、第1硬化層13に上記微粒子が含有されていない場合、上記微粒子の有無によって第2硬化層14と第1硬化層13と間で屈折率差が生じ、この屈折率差による光の干渉が生じる。しかし、本実施形態では、第1硬化層13にも、第2硬化層14に含まれる微粒子と同じ微粒子が含まれているので、第2硬化層14と第1硬化層13とでの屈折率差を小さくでき、上記屈折率差に起因する光の干渉を低減することができる。
 第1硬化層13が含む樹脂(第2硬化層14の樹脂とは異なる樹脂)は、ウレタンアクリレート樹脂であることが望ましい。第1硬化層13が柔らかすぎると、その上に第2硬化層14を形成しても、光学フィルム16の硬度として、高い硬度が出にくくなる。ウレタンアクリレート樹脂を、ポリマーシランカップリング剤で被覆されてなる微粒子と併せて用いることで、緩衝性を損なわない範囲で比較的硬い第1硬化層13を形成することができる。したがって、ウレタンアクリレート樹脂を含む第1硬化層13上に第2硬化層14を形成することにより、光学フィルム16の硬度を容易に上げることが可能となる。
 第1硬化層13の厚みL1は、0.5μm以上3μm以下であることが望ましい。L1が上記範囲の場合、第2硬化層14の硬度を確保しながら、高温高湿環境下でのフィルム基材12の寸法変化を確実に抑えることができる。
 ちなみに、L1が0.5μm未満では、第1硬化層13が薄すぎて、硬化不良を起こしやすくなる。第1硬化層13に硬化不良が生じていると、その上に第2硬化層14を形成したときに、第1硬化層13からの抽出物が第2硬化層14にて凝集し、第2硬化層14が所定の硬度を発揮しにくくなる。一方、L1が3μmを超えると、第1硬化層13が厚くなりすぎて、第1硬化層13を形成する組成物に含まれる溶剤がフィルム基材12に浸透し、機械的強度の弱くなる領域が膜厚方向に厚くなり、高温高湿環境下でのフィルム基材12の寸法変化を抑えることが困難となる。
 上記した光学フィルム16は、偏光板以外の用途に用いることも可能である。この場合、第1硬化層13および第2硬化層14はフィルム基材12の両面に設けられてもよい。また、2つの偏光板5を液晶セル4の両側に配置して画像表示装置1を構成することも可能である。
 図2は、光学フィルム16の他の構成を示す断面図である。光学フィルム16は、第2硬化層14に対して第1硬化層13とは反対側の表面に、機能性層としての帯電防止層17を有していてもよい。また、図示はしないが、フィルム基材12の一方の面側に、硬化層を3層以上形成してもよく、さらに最表面の硬化層上に、上記の帯電防止層17を形成してもよい。
 また、図3は、光学フィルム16のさらに他の構成を示す断面図である。光学フィルム16は、フィルム基材12の一方の面側(第2硬化層上)および他方の面側の両方に、帯電防止層17を有していてもよく、図示はしないが、フィルム基材12の第1硬化層13とは反対側の面にのみ、帯電防止層17を有していてもよい。
 このように、光学フィルム16が、フィルム基材12の少なくとも一方の面側に、帯電防止層17をさらに有していることによりフィルムの帯電が防止され、フィルム巻き取り時のブロッキングを抑制することができ、光学フィルム16の巻状変形をより抑えることができる。また、光学フィルム16に帯電防止機能を付与できるため、例えば表面が帯電しやすい画像表示装置の偏光板(例えば画像表示装置1上に保護部3としてタッチパネルを設ける構成において、その画像表示装置1におけるタッチパネル側の偏光板5)に上記光学フィルム16を適用することが非常に有効となる。
 〔光学フィルム〕
 以下、光学フィルム16の詳細について説明する。
 <第2硬化層>
 本実施形態の第2硬化層は、脂環構造を有する活性エネルギー線硬化性樹脂(以下、単に硬化性樹脂とも記載する)を含有している。脂環構造としては、具体的には、ノルボルニル、トリシクロデカニル、テトラシクロドデカニル、ペンタシクロペンタデカニル、アダマンチル、ジアマンタニル等が挙げられる。
 活性エネルギー線とは、活性種を発生する化合物(光重合開始剤)を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、紫外線(UV)、電子線(EB)、赤外線、X線、α線、β線、γ線等の光エネルギー線が挙げられる。ただし、一定のエネルギーレベルを有し、硬化速度が速く、しかも照射装置が比較的安価で、小型である点から、紫外線を使用することが好ましい。
 活性エネルギー線硬化性樹脂は、エチレン性不飽和二重結合を有することが好ましい。エチレン性不飽和二重結合基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性官能基が挙げられ、中でも、(メタ)アクリロイル基及び-C(O)OCH=CH2が好ましい。
 脂環構造を有する活性エネルギー線硬化性樹脂は、脂環構造の炭化水素基とエチレン性不飽和二重結合を有する基とが連結基を介して結合することで構成されているものが好ましい。連結基としては、単結合、アルキレン基、アミド基、カルバモイル基、エステル基、オキシカルボニル基、エーテル基等またはこれらを組み合わせた基が挙げられる。具体的には、脂環構造を有するジオール、トリオール等のポリオールと、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等を有するカルボン酸、カルボン酸誘導体、エポキシ誘導体、イソシアナート誘導体化合物等との一段あるいは二段階の反応により、容易に合成できる。
 以下、脂環構造を有する活性エネルギー線硬化性樹脂の具体的化合物を、下記一般式(I)~(VII)で示すが、本発明はこれらには限定されるものではない。
(式中、R1は水素原子または炭素数1~3のアルキル基、R2は炭素数1~5のアルキレン基またはアルキレンオキサイド基、R3は水素原子または炭素数1~3のアルキル基、nは1または2の整数。)
Figure JPOXMLDOC01-appb-C000002
(式中、R1、R3およびnは、上記一般式(I)と同じ意味である。)
 一般式(I)及び一般式(II)において、R1は、水素原子または炭素数1~3のアルキル基を表し、好ましくは、水素原子、メチル基、エチル基を表す。R2は炭素数1~5のアルキレン基またはアルキレンオキサイド基を表し、好ましくは、メチレン基、エチレン基、メチレンオキサイド基、エチレンオキサイド基を表す。R3は、水素原子または炭素数1~3のアルキル基を表し、好ましくは、水素原子、メチル基、エチル基を表す。
 以下、一般式(I)で表される化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000003
 以下、一般式(II)で表される化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(I)、(II)で表される化合物の市販品としては、例えばNKエステルA-DCP(トリシクロデカンジメタノールジアクリレート、新中村化学工業社製)などを挙げることができるが、これらには限定されない。
Figure JPOXMLDOC01-appb-C000005
 一般式(III)中、L及びL’は各々独立に二価以上の連結基を表し、同時に二価とはならない。nは1~3の整数を表す。
Figure JPOXMLDOC01-appb-C000006
 一般式(IV)中、L及びL’は各々独立に二価以上の連結基を表し、同時に二価とはならない。nは1~2の整数を表す。
Figure JPOXMLDOC01-appb-C000007
 一般式(V)中、L及びL’は各々独立に二価以上の連結基を表し、同時に二価とはならない。nは1~2の整数を表す。
Figure JPOXMLDOC01-appb-C000008
 一般式(VI)中、L、L’及びL’’は各々独立に二価以上の連結基を表す。
Figure JPOXMLDOC01-appb-C000009
 一般式(VII)中、L及びL’は各々独立に二価以上の連結基を表し、同時に二価とはならない。
 前記一般式(III)~(VII)で表される化合物の具体例を以下に示すが、これらには限定されない。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 第2硬化層は、脂環構造を有する活性エネルギー線硬化性樹脂を30質量%以上含有することが好ましく、より好ましくは50質量%以上である。
 (光重合開始剤)
 第2硬化層は、活性線硬化樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤の含有量は、質量比で、光重合開始剤:活性線硬化樹脂=20:100~0.01:100となる含有量であることが好ましい。光重合開始剤としては、具体的には、アルキルフェノン系、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等、およびこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。光重合開始剤としては市販品を用いてもよく、例えば、BASFジャパン(株)製のイルガキュア184、イルガキュア907、イルガキュア651などが好ましい例示として挙げられる。
 (微粒子)
 第2硬化層は微粒子を含有しても良い。微粒子としては、特に制限されないが、シリカ、アルミナ、ジルコニア、酸化チタン、五酸化アンチモン等が挙げられ、好ましくはシリカである。シリカ微粒子は、内部に空洞を有する中空粒子でも良い。中でも、ポリマーシランカップリング剤で被覆されてなる微粒子が、硬化層に適度な硬度を与え、良好な機械特性を発揮することから特に好ましい。含有量については、微粒子:活性線硬化樹脂=0.1:100~400:100となる含有量が好ましい。
 (ポリマーシランカップリング剤)
 ポリマーシランカップリング剤とは、重合性モノマーとシランカップリング剤(反応性シラン化合物)との反応物をいう。このようなポリマーシランカップリング剤は、例えば、特開平11-116240号公報に開示された重合性モノマーと反応性シラン化合物との反応物の製法に準じて得ることができる。
 重合性モノマーとして、具体的には、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸-n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)-n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸-n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸-n-ヘプチル、(メタ)アクリル酸-n-オクチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-3-メトキシブチル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸2-パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジバーフルオロメチルメチル、(メタ)アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル等の(メタ)アクリル酸系モノマー;スチレン、ビニルトルエン、α-メチルシチレン、クロルスチレン、スチレンスルホン酸及びその塩等のスチレン系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニルモノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール、アクリル樹脂モノマー類;ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサアクリレート、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、イソブチルメタクリレート、2-エチルヘキシルメテクリレート、イソデシルメテクリレート、n-ラウリルアクリレート、n-ステアリルアクリレート、1,6-ヘキサンジオールジメタクリレート、パーフルオロオクチルエチルメタクリレート、トリフロロエチルメテクリレート、ウレタンアクリレート等およびこれらの混合物が挙げられる。
 反応性シラン化合物としては、下記式(1)で表される有機ケイ素化合物を用いることが好ましい。
   X-R-Si(OR)3   (1)
(式中、Rは、置換または非置換の炭化水素基から選ばれる炭素数1~10の有機基を表す。Xは(メタ)アクロイル基、エポキシ基(グリシド基)、ウレタン基、アミノ基、フルオロ基から選ばれる1種または2種以上の官能基。)
 式(1)で表される有機ケイ素化合物として、具体的には、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-(β-グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等およびこれらの混合物が挙げられる。
 重合性モノマーと反応性シラン化合物とを反応させて、ポリマーシランカップリング剤が調製される。具体的には、重合性モノマー100重量部に対し、反応性シラン化合物を0.5~20重量部、さらには1~10重量部の範囲で混合した有機溶媒溶液を調製し、これに重合開始剤を添加し、加熱することによって得ることができる。
 (ポリマーシランカップリング剤被覆微粒子の調製方法)
 ポリマーシランカップリング剤被覆微粒子は、具体的には、微粒子の有機溶媒分散液にポリマーシランカップリング剤を加え、アルカリ存在下にポリマーシランカップリング剤で微粒子を被覆することによって調製できる。得られるポリマーシランカップリング剤被覆微粒子の平均粒子径の範囲は、5~500nm、さらには10~200nmであることが、光学フィルムに用いた際の光学特性を確保できる点で好ましい。
 第2硬化層中のポリマーシランカップリング剤被覆微粒子の含有量は、固形分として0.5~80質量部、さらには1~60質量部であることが、第2硬化層の膜強度を確保する観点から好ましい。
 (導電剤)
 第2硬化層には、帯電防止性を付与するために導電剤が含まれていても良い。好ましい導電剤としては、金属酸化物粒子又はπ共役系導電性ポリマーが挙げられる。また、イオン液体も導電性化合物として好ましく用いられる。また、第2硬化層に導電剤を含有させず、第2硬化層上に帯電防止層を形成するようにしてもよい。なお、帯電防止層の詳細については後述する。
 (添加剤)
 第2硬化層には、塗布性を良好にする観点から、フッ素-シロキサングラフト化合物、フッ素系化合物、シリコーン系化合物やHLB値が3~18の化合物が含まれていても良い。これら添加剤の種類や添加量を調整することで、親水性を制御しやすい。HLB値とは、Hydrophile-Lipophile-Balance、つまり、親水性-親油性のバランスのことであり、化合物の親水性又は親油性の大きさを示す値である。HLB値が小さいほど親油性が高く、値が大きいほど親水性が高くなる。また、HLB値は以下のような計算式によって求めることができる。
 HLB=7+11.7Log(Mw/Mo)
 式中、Mwは親水基の分子量、Moは親油基の分子量を表し、Mw+Mo=M(化合物の分子量)である。或いはグリフィン法によれば、HLB値=20×親水部の式量の総和/分子量(J.Soc.Cosmetic Chem.,5(1954),294)等が挙げられる。
 HLB値が3~18の化合物の具体的化合物を下記に挙げるが、これに限定されるものでない。( )内はHLB値を示す。花王株式会社製:エマルゲン102KG(6.3)、エマルゲン103(8.1)、エマルゲン104P(9.6)、エマルゲン105(9.7)、エマルゲン106(10.5)、エマルゲン108(12.1)、エマルゲン109P(13.6)、エマルゲン120(15.3)、エマルゲン123P(16.9)、エマルゲン147(16.3)、エマルゲン210P(10.7)、エマルゲン220(14.2)、エマルゲン306P(9.4)、エマルゲン320P(13.9)、エマルゲン404(8.8)、エマルゲン408(10.0)、エマルゲン409PV(12.0)、エマルゲン420(13.6)、エマルゲン430(16.2)、エマルゲン705(10.5)、エマルゲン707(12.1)、エマルゲン709(13.3)、エマルゲン1108(13.5)、エマルゲン1118S-70(16.4)、エマルゲン1135S-70(17.9)、エマルゲン2020G-HA(13.0)、エマルゲン2025G(15.7)、エマルゲンLS-106(12.5)、エマルゲンLS-110(13.4)、エマルゲンLS-114(14.0)、日信化学工業株式会社製:サーフィノール104E(4)、サーフィノール104H(4)、サーフィノール104A(4)、サーフィノール104BC(4)、サーフィノール104DPM(4)、サーフィノール104PA(4)、サーフィノール104PG-50(4)、サーフィノール104S(4)、サーフィノール420(4)、サーフィノール440(8)、サーフィノール465(13)、サーフィノール485(17)、サーフィノールSE(6)、信越化学工業株式会社製:X-22-4272(7)、X-22-6266(8)。
 フッ素-シロキサングラフト化合物とは、少なくともフッ素系樹脂に、シロキサン及び/又はオルガノシロキサン単体を含むポリシロキサン及び/又はオルガノポリシロキサンをグラフト化させて得られる共重合体の化合物をいう。このようなフッ素-シロキサングラフト化合物は、後述の実施例に記載されているような方法で調製することができる。あるいは、市販品としては、富士化成工業株式会社製のZX-022H、ZX-007C、ZX-049、ZX-047-D等を挙げることができる。
 フッ素系化合物としては、DIC株式会社製のメガファックシリーズ(F-477、F-487、F-569等)、ダイキン工業株式会社社製のオプツールDSX、オプツールDACなどを挙げることができる。
 シリコーン系化合物としては、信越化学工業株式会社製:KF-351、KF-352、KF-353、KF-354L、KF-355A、KF-615A、KF-945、KF-618、KF-6011、KF-6015、KF-6004、ビックケミージャパン株式会社製:BYK-UV3576、BYK-UV3535、BYK-UV3510、BYK-UV3505、BYK-UV3500、BYK-UV3510などを挙げることができる。これら成分は第2硬化層形成用組成物中の固形分成分に対し、0.005質量部以上、10質量部以下の範囲で添加することが好ましい。これらの成分は全添加剤量が0.005質量部以上、10質量部以下の範囲であれば、2種類以上添加しても良い。
 (紫外線吸収剤)
 第2硬化層は、後述するセルロースエステルフィルムで説明する紫外線吸収剤を含有しても良い。紫外線吸収剤の含有量としては、質量比で、紫外線吸収剤:硬化性樹脂=0.01:100~20:100となる含有量であることが好ましい。
 (溶剤)
 第2硬化層は、上記した第2硬化層を形成する成分を溶剤で希釈して第2硬化層形成用組成物とし、これを以下の方法で第1硬化層上に塗布し、乾燥、硬化して設けることが好ましい。
 溶剤としては、ケトン(メチルエチルケトン、アセトンなど)及び/又は酢酸エステル(酢酸メチル、酢酸エチル、酢酸ブチルなど)、アルコール(エタノール、メタノール、ノルマルプロパノール、イソプロパノール)、プロピレングリコールモノメチルエーテル、シクロヘキサノン、メチルイソブチルケトンなどが好ましい。第2硬化層形成用組成物の塗布量は、ウェット膜厚で0.1~80μmとなる量が適当であり、好ましくはウェット膜厚で0.5~30μmとなる量である。また、ドライ膜厚としては、平均膜厚0.01~20μmの範囲、好ましくは1~15μmの範囲である。より好ましくは、2~12μmの範囲である。
 第2硬化層形成用組成物の塗布方法は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等の公知の方法を用いることができる。
 (第2硬化層の形成方法)
 後述する第1硬化層上に第2硬化層形成用組成物を塗布した後、乾燥し、硬化(活性線を照射(UV硬化処理とも言う))し、更に必要に応じて、UV硬化後に加熱処理しても良い。UV硬化後の加熱処理温度は60℃以上が好ましく、更に好ましくは100℃以上であり、特に好ましくは120℃以上である。このような高温でUV硬化後の加熱処理を行うことで、膜強度に優れた第2硬化層を得ることができる。
 一般に、乾燥プロセスは、乾燥が始まると、乾燥速度が一定の状態から徐々に減少する状態へと変化していくことが知られている。乾燥速度が一定の区間を恒率乾燥区間、乾燥速度が減少していく区間を減率乾燥区間と呼ぶ。
 乾燥は、上記乾燥区間の温度を30℃以上で行うことが好ましい。更に好ましくは、上記乾燥区間の温度は50℃以上である。
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。
 照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常50~1000mJ/cm2の範囲、好ましくは50~300mJ/cm2の範囲である。また、UV硬化処理では、酸素による反応阻害を防止するため、酸素除去(例えば、窒素パージなどの不活性ガスによる置換)を行うこともできる。酸素濃度の除去量を調整することで、表面の硬化状態を制御できる。
 活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30~300N/mが好ましい。張力を付与する方法は特に限定されず、バックローラ上で搬送方向に張力を付与してもよく、テンターにて幅方向、又は2軸方向に張力を付与してもよい。これによって更に平面性の優れたフィルムを得ることができる。
 <第1硬化層>
 第1硬化層は、第2硬化層に含まれる樹脂とは異なる樹脂を含有している。第1硬化層の樹脂としては、アクリル系材料を含んでいることが好ましい。アクリル系材料としては、多価アルコールの(メタ)アクリル酸エステルのような単官能または多官能の(メタ)アクリレート化合物、ジイソシアネートと多価アルコールおよび(メタ)アクリル酸のヒドロキシエステル等から合成されるような多官能のウレタン(メタ)アクリレート化合物を使用することができる。また、これらの他にも、アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等を使用することができる。
 なお、本実施形態において、「(メタ)アクリル」とは、「アクリル」と「メタクリル」の両方を示し、「(メタ)アクリレート」とは「アクリレート」と「メタクリレート」の両方を示し、「(メタ)アクリロイル」とは、「アクリロイル」と「メタクリロイル」の両方を示している。例えば、「ウレタン(メタ)アクリレート」は「ウレタンアクリレート」と「ウレタンメタクリレート」の両方を示している。
 単官能の(メタ)アクリレート化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、アクリロイルモルフォリン、N-ビニルピロリドン、テトラヒドロフルフリールアクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、リン酸(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド変性フェノキシ(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート、ジメチルアミノエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、2-アダマンタンおよびアダマンタンジオールから誘導される1価のモノ(メタ)アクリレートを有するアダマンチルアクリレート等のアダマンタン誘導体モノ(メタ)アクリレート等が挙げられる。
 2官能の(メタ)アクリレート化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、エトキシ化ヘキサンジオールジ(メタ)アクリレート、プロポキシ化ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート等のジ(メタ)アクリレート等が挙げられる。
 3官能以上の(メタ)アクリレート化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、トリス2-ヒドロキシエチルイソシアヌレートトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等のトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート等の3官能の(メタ)アクリレート化合物や、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンヘキサ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレート化合物や、これら(メタ)アクリレートの一部をアルキル基やε-カプロラクトンで置換した多官能(メタ)アクリレート化合物等が挙げられる。
 特に、紫外線硬化型アクリレート系樹脂、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられ、中でも紫外線硬化型アクリレート系樹脂が好ましい。
 紫外線硬化型アクリレート系樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。
 ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基又はメタクロイルオキシ基を有する化合物である。多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリ/テトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、多塩基酸性アクリレート等が挙げられる。また、単官能アクリレートを用いてもよい。単官能アクリレートとしては、イソボロニルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、イソステアリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、テトラヒドロフルフリルアクリレート、ベヘニルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、シクロヘキシルアクリレートなどが挙げられる。このようなアクリレートは、日本化成工業株式会社、新中村化学工業株式会社、大阪有機化学工業株式会社等から入手できる。
 アクリル系材料の中でも、所望する分子量、分子構造を設計することができ、第1硬化層に適度な硬度を持たせ、かつ、形成される第1硬化層の物性のバランスを容易にとることが可能であるといった理由から、多官能ウレタンアクリレートを好適に用いることができる。ウレタンアクリレートは、多価アルコール、多価イソシアネートおよび水酸基含有アクリレートを反応させることによって得られる。
 第1硬化層の形成に用いる第1硬化層形成用組成物に含まれる溶剤としては、フィルム基材を溶解または膨潤させる溶剤が好ましい。溶剤がフィルム基材を溶解または膨潤させることにより、第1硬化層形成用組成物がフィルム基材の表面から内部に浸透し易くなり、フィルム基材と第1硬化層との密着性を向上させることができる。
 また、フィルム基材の表層近傍で、フィルム基材の樹脂成分と第1硬化層の樹脂成分とが混在した層が形成され、この層の作用により、フィルム基材と第1硬化層との屈折率を傾斜させることができ、干渉ムラの発生を防ぐことができる。
 フィルム基材として、後述するセルロースエステル系樹脂を用いた場合、フィルム基材表面を溶解または膨潤させる溶剤としては、例えば、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4-ジオキサン、1,3-ジオキソラン、1,3,5-トリオキサン、テトラヒドロフラン、アニソールおよびフェネトール等のエーテル類、またアセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、およびメチルシクロヘキサノン等のケトン類、また蟻酸エチル、蟻酸プロピル、蟻酸n-ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン醸エチル、酢酸n-ペンチル、およびγ-プチロラクトン等のエステル類、さらにメチルセロソルブ、セロソルブ、ブチルセロソルブ、セロソルブアセテート等のセロソルブ類が挙げられ、これらを単独で、もしくは2種類以上組み合わせて用いることができる。また、酢酸メチル、酢酸エチル、メチルエチルケトン、アセチルアセトン、アセトンおよびシクロヘキサノンの少なくとも1種類を用いることが好ましい。
 第1硬化層は、光重合開始剤を含むことが望ましい。光重合開始剤としては、例えば、2,2-エトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、ジベンゾイル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、p-クロロベンゾフェノン、p-メトキシベンゾフェノン、ミヒラーケトン、アセトフェノン、2-クロロチオキサントン等が挙げられる。これらを単独、もしくは2種類以上合わせて用いても良い。
 第1硬化層は、光増感剤を含むことが望ましい。光増感剤としては、トリエチルアミン、トリエタノールアミン、2-ジメチルアミノエタノール等の3級アミン、トリフェニルホスフィン等のアルキルフォスフィン系、β-チオジグリコール等のチオエーテル系をあげることが出来、これらを1種類あるいは2種類以上を混合して使用することもできる。
 第1硬化層は、レベリング剤を含むことが望ましい。レベリング剤の中でも、アクリル系レベリング剤を用いることが最も好ましい。レベリング剤を用いることで、第1硬化層形成時に発生し得る、膜厚ムラや塗液ハジキなどの欠陥を防止することができる。また、アクリル系レベリング剤を用いることで、フッ素系やシリコーン系のレベリング剤を用いた場合よりも、第1硬化層上に第2硬化層を積層する場合のリコート性、第1硬化層と第2硬化層との密着性の劣化を防ぐことができる。
 また、第1硬化層に四級アンモニウムカチオンや導電性金属微粒子等を添加し、第1硬化層に導電性を付与しても構わない。
 第1硬化層形成用組成物の塗工方法としては、ディップコーティング法、スピンコーティング法、フローコーティング法、スプレーコーティング法、ロールコーティング法、グラビアロールコーティング法、エアドクターコーティング法、プレードコーティング法、ワイヤードクターコーティング法、ナイフコーティング法、リバースコーティング法、トランスファロールコーティング法、マイクログラビアコーティング法、キスコーティング法、キャストコーティング法、スロットオリフィスコーティング法、カレンダーコーティング法、ダイコーティング法等を採用することができる。中でも特に、均一な薄膜層を形成する場合には、マイクログラビアコーティング法が好ましく、また、厚膜層を形成する必要がある場合にはダイコーティング法が好ましい。
 第1硬化層は、第2硬化層が含有するものと同じ微粒子、つまり、ポリマーシランカップリング剤で被覆されてなる微粒子を含有している。このとき、第2硬化層に含まれる上記微粒子の含有量aと、第1硬化層に含まれる上記微粒子の含有量bとの比a/bは、1であってもよいが、2以上10以下であることが望ましい。その理由は、前述の通りである。
 その他、第1硬化層は、上記微粒子以外にも、第2硬化層と同様の添加物を含んでいてもよい。また、第1硬化層は、第2硬化層の形成方法と同様の方法で、フィルム基材上に形成することができる。
 <バックコート層>
 光学フィルムの硬化層(第1硬化層、第2硬化層)を設けた側と反対側の面に、バックコート層を設けても良い。バックコート層は、塗布やCVDなどによって、硬化層やその他の層を設けることで生じるカールを矯正する為に設けられる。即ち、バックコート層を設けた面を内側にして丸まろうとする性質を持たせることにより、カールの度合いをバランスさせることができる。なお、バックコート層は、好ましくはブロッキング防止層を兼ねて塗設されることも好ましく、その場合、バックコート層塗布組成物には、ブロッキング防止機能を持たせる為に微粒子が添加されることが好ましい。
 バックコート層に添加される微粒子としては、無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子は珪素を含むものが、ヘイズが低くなる点で好ましく、特に二酸化珪素が好ましい。これらの微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。ポリマー微粒子の例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。
 これらの中でも、アエロジル200V、アエロジルR972Vが、ヘイズを低く保ちながら、ブロッキング防止効果が大きい為、特に好ましく用いられる。本実施形態で用いられる光学フィルムの裏面側の動摩擦係数が0.9以下、特に0.1~0.9であることが好ましい。
 バックコート層に含まれる微粒子は、バインダーに対して0.1~50質量%含まれていることが好ましく、0.1~10質量%含まれていることがより好ましい。バックコート層を設けた場合のヘイズの増加は、1%以下であることが好ましく、0.5%以下であることがより好ましく、特に0.0~0.1%であることが好ましい。
 バックコート層は、具体的には、透明樹脂フィルム(フィルム基材)を溶解させる溶媒または膨潤させる溶媒を含む組成物を塗布することによって形成されることが好ましい。用いる溶媒としては、溶解させる溶媒及び/または膨潤させる溶媒の混合物の他更に溶解させない溶媒を含む場合もあり、これらを透明樹脂フィルムのカール度合や樹脂の種類によって適宜の割合で混合した組成物及び塗布量で形成すればよい。
 カール防止機能を強めたい場合は、用いる溶媒組成を溶解させる溶媒及び/または膨潤させる溶媒の混合比率を大きくし、溶解させない溶媒の比率を小さくするのが効果的である。この混合比率は、好ましくは(溶解させる溶媒及び/または膨潤させる溶媒):(溶解させない溶媒)=10:0~0.3:9.7である。このような混合組成物に含まれる、透明樹脂フィルムを溶解または膨潤させる溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、酢酸メチル、酢酸エチル、シクロヘキサン、ジアセトンアルコール、1,3-ジオキソラン、N-メチルピロリドン、プロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン、シクロペンタノン、3-ペンタノン、1,2-ジメトキシエタン、テトラヒドロフラン、乳酸エチル、ビス(2-メトキシエチル)エーテル、酢酸2-メトキシエチル、プロピレングリコールジメチルエーテル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロロエタン、トリクロロエタン、クロロホルムなどがある。溶解させない溶媒としては、例えば、メタノール、エタノール、n-プロピルアルコール、i-プロピルアルコール、n-ブタノール、プロピレングリコールモノメチルエーテル、或いは炭化水素類(トルエン、キシレン、シクロヘキサノール)などがある。
 これらの塗布組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター等を用いて透明樹脂フィルムの表面にウェット膜厚1~100μmで塗布するのが好ましいが、特に5~30μmであることが好ましい。バックコート層はバインダーとして樹脂を含有しても良い。バックコート層のバインダーとして用いられる樹脂としては、例えば塩化ビニル-酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、エチレン-ビニルアルコール共重合体、塩素化ポリ塩化ビニル、エチレン-塩化ビニル共重合体、エチレン-酢酸ビニル共重合体等のビニル系重合体或いは共重合体、ニトロセルロース、セルロースアセテートプロピオネート(好ましくはアセチル基置換度1.8~2.3、プロピオニル基置換度0.1~1.0)、ジアセチルセルロース、セルロースアセテートブチレート樹脂等のセルロース誘導体、マレイン酸及び/またはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリル-スチレン共重合体、塩素化ポリエチレン、アクリロニトリル-塩素化ポリエチレン-スチレン共重合体、メチルメタクリレート-ブタジエン-スチレン共重合体、アクリル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン-ブタジエン樹脂、ブタジエン-アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂等を挙げることができるが、これらに限定されるものではない。例えば、アクリル樹脂としては、アクリペットMD、VH、MF、V(三菱レイヨン(株)製)、ハイパールM-4003、M-4005、M-4006、M-4202、M-5000、M-5001、M-4501(根上工業株式会社製)、ダイヤナールBR-50、BR-52、BR-53、BR-60、BR-64、BR-73、BR-75、BR-77、BR-79、BR-80、BR-82、BR-83、BR-85、BR-87、BR-88、BR-90、BR-93、BR-95、BR-100、BR-101、BR-102、BR-105、BR-106、BR-107、BR-108、BR-112、BR-113、BR-115、BR-116、BR-117、BR-118等(三菱レイヨン(株)製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマーなどが市販されており、この中から好ましいものを適宜選択することもできる。好ましくは、ジアセチルセルロース、セルロースアセテートプロピオネートのようなセルロース系樹脂層である。
 バックコート層を塗設する順番は、光学フィルムのバックコート層とは反対側の硬化層を塗設する前でも後でも構わないが、バックコート層がブロッキング防止層を兼ねる場合は先に塗設することが望ましい。或いは硬化層の塗設の前後に2回以上に分けてバックコート層を塗布することもできる。
 <光学フィルム特性>
 (表面形状)
 硬化層(第1硬化層、第2硬化層)の算術平均粗さRa(JIS B0601:2001)は、2~100nmの範囲内が好ましく、特に好ましくは2~20nmの範囲内である。前記範囲の算術平均粗さRaとすることで、視認性やクリア性に優れる。算術平均粗さRaは、JIS B0601:2001に準じて光学干渉式表面粗さ計(ZYGO社製、NewView)で測定した値である。
 (ヘイズ)
 光学フィルムのヘイズは、画像表示装置に用いた場合の視認性から0.05%~10%の範囲内であることが好ましい。ヘイズは、JIS K7105及びJIS K7136に準じて測定できる。
 (硬度)
 光学フィルムの硬度については、硬度の指標である鉛筆硬度がHB以上であることが好ましい。鉛筆硬度がHB以上であれば、偏光板化工程で、傷が付きにくい。鉛筆硬度は、作製した光学フィルムを温度23℃、相対湿度55%の条件で2時間以上調湿した後、加重500g条件でJIS S 6006が規定する試験用鉛筆を用いて、JIS K5400が規定する鉛筆硬度評価方法に従って測定することによって得られる。
 <フィルム基材>
 光学フィルムのフィルム基材を構成する樹脂としては、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロース系樹脂又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン、ポリスルホン類、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、ウレタン変性アクリル、アートン(商品名、JSR社製)又はアペル(商品名、三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。好ましくは、フィルム基材は、セルロース系樹脂、特にセルロースエステルを主成分とする。例えば、フィルム基材として、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルムが挙げられる。
 セルロースエステルフィルムの市販品としては、例えばコニカミノルタタックKC8UX、KC4UX、KC8UY、KC4UY、KC6UA、KC4UA、KC2UA、KC4UE及びKC4UZ(以上、コニカミノルタ(株)製)が挙げられる。セルロースエステルフィルムの屈折率は1.45~1.55であることが好ましい。屈折率は、JIS K7142-2008に準じて測定することができる。
 (セルロース系樹脂)
 セルロース系樹脂(セルロースエステル、セルロースエステル樹脂)は、セルロースの低級脂肪酸エステルであることが好ましい。低級脂肪酸とは、炭素原子数が6以下の脂肪酸を意味する。セルロースの低級脂肪酸エステルとしては、例えば、セルロースアセテート、セルロースジアセテート、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート等や、セルロースアセテートプロピオネート、セルロースアセテートブチレート等の混合脂肪酸エステルを用いることができる。特に好ましく用いられるセルロースの低級脂肪酸エステルは、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネートである。これらのセルロースエステルは単独或いは混合して用いることができる。
 セルロースジアセテートは、平均酢化度(結合酢酸量)51.0%~56.0%のものが好ましく用いられる。市販品としては、(株)ダイセル製のL20、L30、L40、L50、イーストマンケミカルジャパン(株)製のCa398-3、Ca398-6、Ca398-10、Ca398-30、Ca394-60Sが挙げられる。
 セルローストリアセテートは、平均酢化度(結合酢酸量)54.0~62.5%のものが好ましく用いられ、更に好ましいのは、平均酢化度が58.0~62.5%のセルローストリアセテートである。
 セルローストリアセテートは、セルローストリアセテートAと、セルローストリアセテートBとを含有することが好ましい。セルローストリアセテートAは、数平均分子量(Mn)が125000以上155000未満であり、重量平均分子量(Mw)が265000以上310000未満であり、Mw/Mnが1.9~2.1であるセルローストリアセテートである。セルローストリアセテートBは、アセチル基置換度が2.75~2.90であり、Mnが155000以上180000未満であり、Mwが290000以上360000未満であり、Mw/Mnが1.8~2.0であるセルローストリアセテートである。
 セルロースアセテートプロピオネートは、炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとしたとき、下記式(I)及び(II)を同時に満たすものであることが好ましい。
 式(I) 2.6≦X+Y≦3.0
 式(II) 0≦X≦2.5
 中でも、1.9≦X≦2.5、0.1≦Y≦0.9であることが好ましい。
 上記アシル基の置換度の測定方法は、ASTM-D817-96に準じて測定することができる。セルロースエステルの数平均分子量(Mn)及び分子量分布(Mw)は、高速液体クロマトグラフィーを用いて測定できる。測定条件は以下の通りである。
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G
(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 (熱可塑性アクリル樹脂)
 フィルム基材は、セルロースエステル樹脂に熱可塑性アクリル樹脂を併用して構成されても良い。併用する場合には、熱可塑性アクリル樹脂とセルロースエステル樹脂の含有質量比が、熱可塑性アクリル樹脂:セルロースエステル樹脂=95:5~50:50であることが好ましい。
 アクリル樹脂には、メタクリル樹脂も含まれる。アクリル樹脂としては、特に制限されるものではないが、メチルメタクリレート単位50~99質量%、及びこれと共重合可能な他の単量体単位1~50質量%からなるものが好ましい。共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独あるいは2種以上を併用してよい。
 これらの中でも共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。また、重量平均分子量(Mw)は80000~500000であることが好ましく、更に好ましくは110000~500000の範囲内である。
 アクリル樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。アクリル樹脂の市販品としては、例えばデルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。アクリル樹脂は2種以上を併用することもできる。
 (λ/4フィルム)
 フィルム基材として、λ/4フィルムを用いても良い。λ/4フィルムを用いることで、画像表示装置に本実施形態の光学フィルムを組み入れた場合、視認性に優れるばかりか、クロストークにも優れる点から好ましい。
 λ/4フィルムとは、所定の光の波長(通常、可視光領域)に対して、フィルムの面内位相差が約1/4となるフィルム(1/4波長位相差フィルム)をいう。λ/4フィルムは、可視光の波長の範囲においてほぼ完全な円偏光を得るため、可視光の波長の範囲において概ね波長の1/4の位相差を有する広帯域λ/4フィルムであることが好ましい。
 λ/4フィルムは、波長550nmで測定した面内リタデーション値Ro(550)が、60nm以上220nm以下の範囲にあることが好ましく、80nm以上200nm以下の範囲であることがより好ましく、90nm以上190nm以下の範囲であることがさらに好ましい。なお、面内リタデーション値Roは、以下の式で表される。
 Ro=(nx-ny)×d
 ただし、式中、nx、nyは、23℃55%RH、波長550nmにおける屈折率のうち、フィルムの面内で最大の屈折率(遅相軸方向の屈折率ともいう)、およびフィルム面内で遅相軸に直交する方向の屈折率であり、dはフィルムの厚み(nm)である。Roは、自動複屈折率計KOBRA-21ADH(王子計測機器(株)製)を用いて、23℃、55%RHの環境下で、各波長での複屈折率測定により算出することができる。
 さらに、λ/4フィルムとして有効に機能するためには、同時に、Ro(590)-Ro(450)≧2nmの関係を満足することが好ましく、Ro(590)-Ro(450)≧5nmであることがより好ましく、Ro(590)-Ro(450)≧10nmであることがさらに好ましい。なお、Ro(A)は、波長Anmで測定した面内リタデーション値を指す。
 λ/4フィルムの遅相軸と後述する偏光子の透過軸との角度が実質的に45°になるように積層すると円偏光板が得られる。実質的に45°とは、30°~60°の範囲、より望ましくは40°~50°の範囲であることを意味する。λ/4フィルムの面内の遅相軸と偏光子の透過軸との角度は、41~49°であることが好ましく、42~48°であることがより好ましく、43~47°であることがより一層好ましく、44~46°であることがさらに好ましい。
 λ/4フィルムとしては、光学的に透明な樹脂であれば特に限定はなく、例えば、アクリル系樹脂、ポリカーボネート系樹脂、シクロオレフィン系樹脂、ポリエステル系樹脂、ポリ乳酸系樹脂、ポリビニルアルコール系樹脂、前述したセルロース系樹脂などを用いることができる。中でも、耐薬品性の観点から、λ/4フィルムは、セルロース系樹脂またはポリカーボネート系樹脂であることが好ましい。また、耐熱性の観点から、λ/4フィルムは、セルロース系樹脂であることが好ましい。
 (リタデーション調整剤)
 λ/4のリタデーション調整は、前述したフィルム基材に以下のリタデーション調整剤を添加することで行うことができる。リタデーション調整剤としては、欧州特許911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物を使用することができる。
 また、2種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環が含まれる。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。中でも1,3,5-トリアジン環が特に好ましい。
 (微粒子)
 フィルム基材には、取扱性を向上させるため、例えばアクリル粒子、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などのマット剤を含有させることが好ましい。また、アクリル粒子は、特に限定されるものではないが、多層構造アクリル系粒状複合体であることが好ましい。これらの中でも二酸化ケイ素がフィルム基材のヘイズを小さくできる点で好ましい。微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5~16nmの範囲内であり、特に好ましくは、5~12nmの範囲内である。
 (エステル化合物)
 フィルム基材は、環境変化での寸法安定性の観点から、下記一般式(X)で表されるエステル化合物又は糖エステルを含有することが好ましい。先ずは、一般式(X)で表されるエステル化合物について説明する。
 一般式(X)B-(G-A)n-G-B
(式中、Bはヒドロキシ基又はカルボン酸残基、Gは炭素数2~12のアルキレングリコール残基又は炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基、Aは炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を表す。nは1以上の整数を表す。)
 一般式(X)において、炭素数2~12のアルキレングリコール成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等があり、これらのグリコールは、1種又は2種以上の混合物として使用される。特に炭素数2~12のアルキレングリコールがセルロースアセテートとの相溶性に優れているため、特に好ましい。炭素数6~12のアリールグリコール成分としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノール等があり、これらのグリコールは1種又は2種以上の混合物として使用できる。
 また、炭素数4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリコールは、1種又は2種以上の混合物として使用できる。炭素数4~12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等があり、これらは、それぞれ1種又は2種以上の混合物として使用される。炭素数6~12のアリーレンジカルボン酸成分としては、フタル酸、テレフタル酸、イソフタル酸、1,5ナフタレンジカルボン酸、1,4ナフタレンジカルボン酸等がある。以下に、一般式(X)で表される化合物の具体例(化合物X-1~化合物X-17)を示すが、これに限定されない。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 (糖エステル化合物)
 次に糖エステル化合物について説明する。糖エステル化合物としては、セルロースエステル以外のエステルであって、下記単糖、二糖、三糖又はオリゴ糖などの糖のOH基のすべてもしくは一部をエステル化した化合物である。糖としては例えば、グルコース、ガラクトース、マンノース、フルクトース、キシロース、アラビノース、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノース及びケストースを挙げることができる。このほか、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども挙げられる。これらの化合物の中で、特にフラノース構造及び/又はピラノース構造を有する化合物が好ましい。これらの中でも、スクロース、ケストース、ニストース、1F-フラクトシルニストース、スタキオースなどが好ましく、さらに好ましくは、スクロースである。また、オリゴ糖として、マルトオリゴ糖、イソマルトオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖も好ましく使用することができる。
 糖をエステル化するのに用いられるモノカルボン酸は、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。使用するカルボン酸は1種類でもよいし、2種以上の混合であってもよい。好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチルーヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、べヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等を挙げることができる。好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。好ましい芳香族モノカルボン酸の例としては、安息香酸、安息香酸のベンゼン環にアルキル基、アルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体を挙げることができ、より具体的には、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、γ-イソジュリル酸、ジュリル酸、メシト酸、α-イソジュリル酸、クミン酸、α-トルイル酸、ヒドロアトロパ酸、アトロパ酸、ヒドロケイ皮酸、サリチル酸、o-、m、p-アニス酸、クレオソート酸、o-、m、p-ホモサリチル酸、o-ピロカテク酸、β-レソルシル酸、バニリン酸、イソバニリン酸、ベラトルム酸、o-ベラトルム酸、没食子酸、アサロン酸、マンデル酸、ホモアニス酸、ホモバニリン酸、ホモベラトルム酸、o-ホモベラトルム酸、フタロン酸、p-クマル酸を挙げることができるが、特に安息香酸が好ましい。エステル化したエステル化合物の中では、エステル化によりアセチル基が導入されたアセチル化合物が好ましい。
 一般式(X)で表わされるエステル化合物又は糖エステル化合物は、セルロースアセテートフィルムに、1~30質量%含有させることが好ましく、5~25質量%含有させることがより好ましく、5~20質量%含有させることが特に好ましい。
 (可塑剤)
 フィルム基材は、必要に応じて可塑剤を含有しても良い。可塑剤としては、特に限定されないが、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、リン酸エステル系可塑剤、多価アルコールエステル系可塑剤、アクリル系可塑剤等が挙げられる。これらの中では、後述するリタデーション値にセルロースエステルフィルムを制御しやすい点から、アクリル系可塑剤が好ましい。
 多価アルコールエステル系可塑剤は、2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環又はシクロアルキル環を有することが好ましい。好ましくは2~20価の脂肪族多価アルコールエステルである。
 なお、本実施形態のフィルム基材に、上述した可塑剤を含有させる場合、セルロースアセテートに対し、1~50質量%含有させることが好ましく、5~35質量%含有させることがより好ましく、5~25質量%含有させることが特に好ましい。
 (紫外線吸収剤)
 本実施形態のフィルム基材は、紫外線吸収剤を含有していてもよい。紫外線吸収剤は400nm以下の紫外線を吸収するため、耐久性を向上させるができる。紫外線吸収剤は、特に波長370nmでの透過率が10%以下となるものであることが好ましく、より好ましくは上記透過率が5%以下、更に好ましくは2%以下である。紫外線吸収剤の具体例としては特に限定されないが、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。
 より具体的には、例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシルフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等を用いることができる。これらは、市販品を用いてもよく、例えば、BASFジャパン社製のチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328等のチヌビン類を好ましく使用できる。
 好ましく用いられる紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤などである。この他、1,3,5トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特にポリマータイプの紫外線吸収剤が好ましく用いられる。
 ベンゾトリアゾール系紫外線吸収剤としては、市販品であるBASFジャパン社製のTINUVIN 109(オクチル-3-[3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ―2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネートと2-エチルヘキシル-3-[3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ―2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネートの混合物)、TINUVIN 928(2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール)などを用いることができる。トリアジン系紫外線吸収剤としては、市販品であるBASFジャパン社製のTINUVIN 400(2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヒドロキシフェニルとオキシランとの反応生成物)、TINUVIN 460(2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3-5-トリアジン)、TINUVIN 405(2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルの反応生成物)などを用いることができる。
 紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコールやメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の有機溶媒あるいはこれらの混合溶媒に紫外線吸収剤を溶解してから、フィルム基材となる樹脂溶液(ドープ)に添加するか、又は直接ドープ組成中に添加してもよい。無機粉体のように有機溶剤に溶解しないものは、有機溶剤とセルロースアセテート中にディゾルバーやサンドミルを使用し、分散してからドープに添加する。
 紫外線吸収剤の使用量は、セルロースアセテートフィルムに対して0.5~10質量%が好ましく、0.6~4質量%が更に好ましい。
 (酸化防止剤)
 本実施形態のフィルム基材は、さらに酸化防止剤(劣化防止剤)を含有していてもよい。酸化防止剤は、セルロースアセテートフィルム中の残留溶媒量のハロゲンやリン酸系可塑剤のリン酸等によりセルロースアセテートフィルムが分解するのを遅らせたり、防いだりする役割を有する。酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート等を挙げることができる。これら化合物の添加量は、セルロースアセテートフィルムに対して、質量割合で1ppm~10000ppmが好ましく、10~1000ppmが更に好ましい。
 (欠点)
 フィルム基材は、直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ローラ傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認できる。
 欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。
 また、目視で確認できない場合でも、硬化層を形成したときに、塗膜が均一に形成できず欠点(塗布抜け)となる場合がある。ここで、欠点とは、溶液製膜の乾燥工程において溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物(異物欠点)を言う。また、フィルム基材は、JIS-K7127-1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。
 (光学特性)
 フィルム基材は、その全光線透過率が90%以上であることが好ましく、より好ましくは92%以上である。また、現実的な上限としては、99%程度である。ヘイズ値は2%以下が好ましく、より好ましくは1.5%以下である。全光線透過率、ヘイズ値はJIS K7361及びJIS K7136に準じて測定することができる。
 <セルロースエステルフィルムの製膜>
 次に、フィルム基材の一例であるセルロースエステルフィルムの製膜方法の例を説明するが、製膜方法はこれに限定されるものではない。セルロースエステルフィルムの製膜方法としては、インフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できる。
 (有機溶媒)
 セルロースエステルフィルムを後述する溶液流延製膜法で製造する場合の樹脂溶液(ドープ組成物)を形成するのに有用な有機溶媒は、セルロースエステル樹脂、その他の添加剤を同時に溶解するものであれば制限なく用いることができる。例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等を挙げることができ、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。前記溶媒はセルロースエステル樹脂、その他添加剤を計15~45質量%溶解させたドープ組成物であることが好ましい。
 (溶液流延製膜法)
 溶液流延製膜法では、樹脂及び添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸又は幅保持する工程、更に乾燥する工程、仕上がったセルロースエステルフィルムを巻き取る工程により行われる。
 金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
 キャスト(流延)の幅は1~4mとすることができる。流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。
 好ましい支持体温度としては0~100℃で適宜決定され、5~30℃が更に好ましい。又は、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。
 温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。
 特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
 セルロースエステルフィルムが良好な平面性を得るためには、金属支持体からウェブを剥離する際の残留溶媒量が10~150質量%であることが好ましく、更に好ましくは20~40質量%又は60~130質量%であり、特に好ましくは、20~30質量%又は70~120質量%である。残留溶媒量は下記式で定義される。
  残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、Nは質量Mのものを115℃で1時間の加熱後の質量である。
 セルロースエステルフィルムの乾燥工程では、ウェブを金属支持体より剥離し、乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。
 フィルム乾燥工程では、一般にローラ乾燥方式(上下に配置した多数のローラにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
 延伸工程では、フィルムの長手方向(MD方向)、及び幅手方向(TD方向)に対して、逐次又は同時に延伸することができる。互いに直交する2軸方向の延伸倍率は、それぞれ最終的にはMD方向に1.0~2.0倍、TD方向に1.05~2.0倍の範囲とすることが好ましく、MD方向に1.0~1.5倍、TD方向に1.05~2.0倍の範囲で行うことがさらに好ましい。例えば、複数のローラに周速差をつけ、その間でローラ周速差を利用してMD方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げてMD方向に延伸する方法、同様に横方向に広げてTD方向に延伸する方法、或いはMD方向及びTD方向を同時に広げて両方向に延伸する方法等が挙げられる。
 製膜工程のこれらの幅保持或いは幅手方向の延伸はテンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。
 テンター等の製膜工程でのフィルム搬送張力は、温度にもよるが、120~200N/mが好ましく、140~200N/mが更に好ましく、140~160N/mが最も好ましい。
 延伸する際の温度は、セルロースエステルフィルムのガラス転移温度をTgとすると(Tg-30)~(Tg+100)℃、より好ましくは(Tg-20)~(Tg+80)℃、更に好ましく(Tg-5)~(Tg+20)℃である。
 セルロースエステルフィルムのTgは、フィルムを構成する材料種及び構成する材料の比率によって制御することができる。セルロースエステルフィルムの乾燥時のTgは、110℃以上が好ましく、更に120℃以上が好ましい。特に好ましくは150℃以上である。ガラス転移温度は190℃以下、より好ましくは170℃以下であることが好ましい。セルロースエステルフィルムのTgはJIS K7121に記載の方法等によって求めることができる。延伸する際の温度は、150℃以上、延伸倍率は1.15倍以上にすると、表面が適度に粗れるため、好ましい。セルロースエステルフィルム表面を粗らすことにより、滑り性が向上するとともに、表面加工性が向上するため好ましい。
 (溶融流延製膜法)
 セルロースエステルフィルムは、溶融流延製膜法によって製膜しても良い。溶融流延製膜法は、セルロースエステル樹脂、可塑剤等のその他の添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のセルロースエステルを含む溶融物を流延することをいう。
 溶融流延製膜法では、機械的強度及び表面精度等の点から、溶融押出し法が好ましい。溶融押出しに用いる複数の原材料は、通常予め混錬してペレット化しておくことが好ましい。
 ペレット化は、公知の方法でよく、例えば、乾燥セルロースエステルや可塑剤、その他添加剤をフィーダーで押出し機に供給して1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることでできる。
 添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。
 粒子や酸化防止剤等の少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。
 押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないように、ペレット化できる程度になるべく低温で加工することが好ましい。例えば、2軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。
 以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。
 上記ペレットを1軸や2軸タイプの押出し機を用いて、押出す際の溶融温度を200~300℃程度とし、リーフディスクタイプのフィルター等で濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ローラと弾性タッチローラでフィルムをニップし、冷却ローラ上で固化させることにより、セルロースエステルフィルムを製膜する。
 供給ホッパーから押出し機へ導入する際は、真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。
 押出し流量は、ギヤポンプを導入する等して安定に調整することが好ましい。また、異物の除去に用いるフィルターには、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。
 可塑剤や粒子等の添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサー等の混合装置を用いることが好ましい。
 冷却ローラと弾性タッチローラでセルロースエステルフィルムをニップする際のタッチローラ側のセルロースエステルフィルム温度は、フィルムのTg以上(Tg+110℃)以下にすることが好ましい。このような目的で使用する弾性体表面を有するローラは、公知のローラを使用できる。
 弾性タッチローラは挟圧回転体ともいう。弾性タッチローラとしては、市販されているものを用いることもできる。
 冷却ローラからセルロースエステルフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。
 また、上記のようにして得られたセルロースエステルフィルムは、冷却ローラに接する工程を通過後、前記延伸操作により延伸することが好ましい。
 延伸する方法は、公知のローラ延伸機やテンター等を好ましく用いることができる。延伸温度は、通常フィルムを構成する樹脂のTg~(Tg+60)℃の温度範囲で行われることが好ましい。
 巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きや、すり傷防止のために、ナール加工(エンボッシング加工)を両端に施してもよい。ナール加工の方法は凹凸のパターンを側面に有する金属リングを用いて加熱や加圧をすることにより加工することができる。フィルム両端部のクリップの把持部分は通常、セルロースエステルフィルムが変形しており、製品として使用できないので切除され、再利用される。
 (斜め延伸フィルムの製造方法)
 λ/4フィルムは、斜め延伸フィルムの製造方法により製造することができる。斜め延伸フィルムの製造方法とは、フィルムの延長方向に対して0°を超え90°未満の角度に遅相軸を有する延伸フィルムを製造する方法である。斜め延伸前の未延伸フィルムとしては、前述したセルロースエステルフィルムを用いることができる。
 ここで、フィルムの延長方向に対する角度とは、フィルム面内における角度である。遅相軸は、通常延伸方向又は延伸方向に直角な方向に発現するので、フィルムの延長方向に対して0°を超え90°未満の角度で延伸を行うことにより、かかる遅相軸を有する延伸フィルムを製造できる。
 フィルムの延長方向と遅相軸とがなす角度(配向角θ)は、0°を超え90°未満の範囲で、所望の角度に任意に設定することができるが、より好ましくは10°~80°、更に好ましくは40°~50°である。
 (斜め延伸)
 斜め延伸フィルムは、斜め延伸装置(斜め延伸テンター)を用いて作製することができる。斜め延伸テンターとしては、レールパターンを多様に変化させることにより、フィルムの配向角を自在に設定でき、さらに、フィルムの配向軸をフィルム幅手方向に渡って左右均等に高精度に配向させることができ、かつ、高精度でフィルム厚みやリタデーションを制御できる装置を好ましく用いることができる。
 (フィルム基材の物性)
 セルロースエステルフィルム基材の膜厚は、5~200μmが好ましく、より好ましくは5~80μmであり、特に好ましくは5~34μmである。薄膜のセルロースエステルフィルム基材に本実施形態の硬化層を形成することにより、本実施形態の効果がより発揮されやすい。また、フィルム基材の長さは、500~10000mが好ましく、より好ましくは1000~8000mである。前記長さの範囲とすることで、硬化層等の塗布における加工適正やフィルム基材自体のハンドリング性に優れる。
 また、フィルム基材の算術平均粗さRaは、好ましくは2~10nm、より好ましくは2~5nmである。算術平均粗さRaは、JIS B0601:1994に準じて測定できる。
 <その他の層>
 本実施形態の光学フィルムには、反射防止層や導電性層等、その他の層を設けることができる。
 (反射防止層)
 本実施形態の光学フィルムは、硬化層上に反射防止層を塗設して、外光反射防止機能を有する反射防止フィルムとして用いることができる。
 反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体である保護フィルムよりも屈折率の低い低屈折率層、もしくは支持体である保護フィルムよりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが好ましい。
 〈低屈折率層〉
 低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、23℃、波長550nm測定で、1.30~1.45の範囲であることが好ましい。
 低屈折率層の膜厚は、5nm~0.5μmの範囲内であることが好ましく、10nm~0.3μmの範囲内であることが更に好ましく、30nm~0.2μmの範囲内であることが最も好ましい。
 低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質又は空洞の粒子を少なくとも1種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質又は空洞である粒子が、中空シリカ系微粒子であることが好ましい。
 なお、低屈折率層形成用組成物には、下記一般式(OSi-1)で表される有機珪素化合物もしくはその加水分解物、或いは、その重縮合物を併せて含有させても良い。
 一般式(OSi-1):Si(OR)4
 式中、Rは炭素数1~4のアルキル基を表す。一般式で表される有機珪素化合物としては、具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。
 また、フッ素原子を35~80質量%の範囲で含み、且つ架橋性若しくは重合性の官能基を含む含フッ素化合物を主としてなる、熱硬化性及び/又は光硬化性を有する化合物を、低屈折率層形成用組成物に含有させても良い。具体的には含フッ素ポリマー、あるいは含フッ素ゾルゲル化合物などである。含フッ素ポリマーとしては、例えばパーフルオロアルキル基含有シラン化合物〔例えば(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリエトキシシラン〕の加水分解物や脱水縮合物の他、含フッ素モノマー単位と架橋反応性単位とを構成単位とする含フッ素共重合体が挙げられる。その他、溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を低屈折率層形成用組成物に添加してもよい。
 〈高屈折率層〉
 高屈折率層においては、23℃、波長550nm測定で、屈折率を1.4~2.2の範囲に調整することが好ましい。また、高屈折率層の厚さは5nm~1μmが好ましく、10nm~0.2μmであることが更に好ましく、30nm~0.1μmであることが最も好ましい。屈折率の調整は、金属酸化物微粒子等を添加することで達成できる。また、用いる金属酸化物微粒子の屈折率は1.80~2.60であるものが好ましく、1.85~2.50であるものが更に好ましい。
 金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができる。
 〈帯電防止層〉
 本実施形態の光学フィルムは、硬化層上に帯電防止層(導電性層)を有していてもよい。帯電防止層は、導電性化合物を含むことが望ましい。導電性化合物としては、例えば、金属酸化物微粒子、π共役系導電性ポリマー化合物、イオン性化合物、などを挙げることができる。中でも、金属酸化物微粒子は、より厳しい湿熱耐久試験を行った後も、帯電防止性能を安定して維持することができる点で望ましい。
 〈金属酸化物微粒子〉
 金属酸化物微粒子は、特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を金属酸化物微粒子として用いることができる。これらの金属酸化物微粒子には、Al、In、Sn、Sb、Nb、ハロゲン元素、Ta等の微量の原子がドープされていてもよい。また、金属酸化物微粒子は、上記いずれかの元素を含む金属酸化物の混合物であってもよい。中でも、酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム-スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが好ましく、特に好ましくは、アンチモンドープ酸化スズ(ATO)、アンチモン酸亜鉛といったアンチモン化合物である。
 これら金属酸化物微粒子の一次粒子の平均粒径は、5~200nmであることが好ましく、10~150nmであることがより好ましい。金属酸化物微粒子の平均粒径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。なお、動的光散乱法や静的光散乱法等を利用する粒度分布計等によって、上記平均粒径を計測してもよい。粒径が小さすぎると、金属酸化物微粒子が凝集しやすくなり、分散性が劣化する。粒径が大きすぎると、ヘイズが著しく上昇し、好ましくない。金属酸化物微粒子の形状は、米粒状、球状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。
 〈π共役系導電性ポリマー〉
 π共役系導電性ポリマーとしては、主鎖がπ共役系で構成されている有機高分子であれば使用することができる。例えば、ポリチオフェン類、ポリピロール類、ポリアニリン類、ポリフェニレン類、ポリアセチレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体が挙げられる。重合の容易さ、安定性点からは、ポリチオフェン類、ポリアニリン類、ポリアセチレン類が好ましい。
 π共役系導電性ポリマーは、無置換のままでも十分な導電性やバインダー樹脂への溶解性が得られるが、導電性や溶解性をより高めるために、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基をπ共役系導電性ポリマーに導入してもよい。
 このようなπ共役系導電性ポリマーの具体例としては、ポリチオフェン、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブテンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-N-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリアニリン、ポリ(2-メチルアニリン)、ポリ(3-イソブチルアニリン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)、ポリフェニルアセチレン等が挙げられる。これらはそれぞれ単独で用いてよいし、2種からなる共重合体でも好適に用いることができる。
 これらのπ共役系導電性ポリマーには、ドーパント成分が添加されていても良い。ドーパント成分としては、例えば、ハロゲン類、ルイス酸、プロトン酸、遷移金属ハライドなどの低分子量ドーパントや、ポリアニオンのようなポリマー等が挙げられる。
 ポリアニオンとは、π共役系導電性ポリマーに対するドーパントとして機能するアニオン基を有する高分子であり、置換もしくは未置換のポリアルキレン、置換もしくは未置換のポリアルケニレン、置換もしくは未置換のポリイミド、置換もしくは未置換のポリアミド、置換もしくは未置換のポリエステル及びこれらの共重合体であって、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるものである。
 ポリアルキレンは、主鎖がメチレンの繰り返しで構成されているポリマーであり、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリヘキセン、ポリビニルアルコール、ポリビニルフェノール、ポリアクリロニトリル、ポリアクリレート、ポリスチレン等が挙げられる。
 ポリアルケニレンは、主鎖に不飽和結合が1個以上含まれる構成単位からなるポリマーであり、例えば、プロペニレン、1-メチルプロペニレン、1-ブチルプロペニレン、1-デシルプロペニレン、1-シアノプロペニレン、1-フェニルプロペニレン、1-ヒドロキシプロペニレン、1-ブテニレン、1-メチル-1-ブテニレン、1-エチル-1-ブテニレン、1-オクチル-1-ブテニレン、2-メチル-1-ブテニレン、2-エチル-1-ブテニレン、2-ブチル-1-ブテニレン、2-ヘキシル-1-ブテニレン、2-オクチル-1-ブテニレン、2-デシル-1-ブテニレン、2-フェニル-1-ブテニレン、2-ブテニレン、1-メチル-2-ブテニレン、1-エチル-2-ブテニレン、1-オクチル-2-ブテニレン、2-メチル-2-ブテニレン、2-エチル-2-ブテニレン、2-ブチル-2-ブテニレン、2-ヘキシル-2-ブテニレン、2-オクチル-2-ブテニレン、2-デシル-2-ブテニレン、2-フェニル-2-ブテニレン、2-プロピレンフェニル-2-ブテニレン、2-ペンテニレン、4-エチル-2-ペンテニレン、4-プロピル-2-ペンテニレン、4-ブチル-2-ペンテニレン、4-ヘキシル-2-ペンテニレン、4-シアノ-2-ペンテニレン、3-メチル-2-ペンテニレン、3-フェニル-2-ペンテニレン、4-ヒドロキシ-2-ペンテニレン、ヘキセニレン等から選ばれる1種以上の構成単位を含む重合体が挙げられる。
 ポリイミドとしては、ピロメリット酸二無水物、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-テトラカルボキシジフェニルエーテル二無水物、2,2’-[4,4’-ジ(ジカルボキシフェニルオキシ)フェニル]プロパン二無水物等の無水物と、オキシジアミン、パラフェニレンジアミン、メタフェニレンジアミン、ベンゾフェノンジアミン等のジアミンとからなるポリイミドが挙げられる。
 ポリアミドとしては、ポリアミド6、ポリアミド6,6、ポリアミド6,10等が挙げられる。ポリエステルとしてはポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられる。
 ポリアニオンのアニオン基としては、π共役系導電性ポリマーへの化学酸化ドープが起こりうる官能基であれば良いが、製造の容易さや安定性の観点から、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。更に、官能基のπ共役系導電性ポリマーへのドープ効果の観点から、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。
 ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ(2-アクリルアミド-2-メチルプロパンカルボン酸)、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよく、2種以上の共重合体であってもよい。これらのうち、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。これらのポリアニオンは、バインダー樹脂との相溶性が高く、得られる帯電防止層の導電性をより高めることができる。
 ポリアニオンの他にも、π共役系導電性ポリマーを酸化還元することができれば、以下のようなドナー性或いはアクセプタ性のドーパントを用いることができる。
 ドナー性ドーパントとしては、ナトリウム、カリウム等のアルカリ金属、カルシウム、マグネシウム等のアルカリ土類金属、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、メチルトリエチルアンモニウム、ジメチルジエチルアンモニウム等の4級アミン化合物等が挙げられる。
 アクセプタ性ドーパントとしては、Cl2、Br2、I2、ICl、IBr、IF等のハロゲン化合物、PF5、AsF5、SbF5、BF5、BCl5、BBr5、SO3等のルイス酸、テトラシアノエチレン、テトラシアノエチレンオキサイド、テトラシアノベンゼン、ジクロロジシアノベンゾキノン、テトラシアノキノジメタン、テトラシアノアザナフタレン等の有機シアノ化合物、プロトン酸、有機金属化合物、フラーレン、水素化フラーレン、水酸化フラーレン、カルボン酸化フラーレン、スルホン酸化フラーレン等を使用できる。
 プロトン酸としては、無機酸、有機酸が挙げられる。無機酸としては、例えば塩酸、硫酸、硝酸、リン酸、フッ化水素酸、過塩素酸等が挙げられる。また、有機酸としては、有機カルボン酸、有機スルホン酸等が挙げられる。
 有機カルボン酸としては、脂肪族、芳香族、環状脂肪族等にカルボキシ基を1つまたは2つ以上を含むものを使用できる。例えば、ギ酸、酢酸、シュウ酸、安息香酸、フタル酸、マレイン酸、フマル酸、マロン酸、酒石酸、クエン酸、乳酸、コハク酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ニトロ酢酸、トリフェニル酢酸等が挙げられる。
 有機スルホン酸としては、脂肪族、芳香族、環状脂肪族等にスルホ基を1つまたは2つ以上含むもの、またはスルホ基を含む高分子を使用できる。
 スルホ基を1つ含むものとしては、例えば、メタンスルホン酸、エタンスルホン酸、1-プロパンスルホン酸、1-ブタンスルホン酸、1-ヘキサンスルホン酸、1-ヘプタンスルホン酸、1-オクタンスルホン酸、1-ノナンスルホン酸、1-デカンスルホン酸、1-ペンタデカンスルホン酸、2-ブロモエタンスルホン酸、3-クロロ-2-ヒドロキシプロパンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロエタンスルホン酸、コリスチンメタンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、アミノメタンスルホン酸、1-アミノ-2-ナフトール-4-スルホン酸、2-アミノ-5-ナフトール-7-スルホン酸、3-アミノプロパンスルホン酸、N-シクロヘキシル-3-アミノプロパンスルホン酸、ベンゼンスルホン酸、アルキルベンゼンスルホン酸、p-トルエンスルホン酸、キシレンスルホン酸、エチルベンゼンスルホン酸、プロピルベンゼンスルホン酸、ブチルベンゼンスルホン酸、ペンチルベンゼンスルホン酸、ヘキシルベンゼンスルホン酸、ヘプチルベンゼンスルホン酸、オクチルベンゼンスルホン酸、ノニルベンゼンスルホン酸、デシルベンゼンスルホン酸、ヘキサデシルベンゼンスルホン酸、2,4-ジメチルベンゼンスルホン酸、ジプロピルベンゼンスルホン酸、4-アミノベンゼンスルホン酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、4-アミノ-2-クロロトルエン-5-スルホン酸、4-アミノ-3-メチルベンゼン-1-スルホン酸、4-アミノ-5-メトキシ-2-メチルベンゼンスルホン酸、2-アミノ-5-メチルベンゼン-1-スルホン酸、4-アミノ-2-メチルベンゼン-1-スルホン酸、5-アミノ-2-メチルベンゼン-1-スルホン酸、4-アミノ-3-メチルベンゼン-1-スルホン酸、4-アセトアミド-3-クロロベンゼンスルホン酸、4-クロロ-3-ニトロベンゼンスルホン酸、p-クロロベンゼンスルホン酸、ナフタレンスルホン酸、メチルナフタレンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸、ペンチルナフタレンスルホン酸、4-アミノ-1-ナフタレンスルホン酸、8-クロロナフタレン-1-スルホン酸、ナフタレンスルホン酸ホルマリン重縮合物、メラミンスルホン酸ホルマリン重縮合物、アントラキノンスルホン酸、ピレンスルホン酸等が挙げられる。また、これらの金属塩も使用できる。
 スルホ基を2つ以上含むものとしては、例えば、エタンジスルホン酸、ブタンジスルホン酸、ペンタンジスルホン酸、デカンジスルホン酸、o-ベンゼンジスルホン酸、m-ベンゼンジスルホン酸、p-ベンゼンジスルホン酸、トルエンジスルホン酸、キシレンジスルホン酸、クロロベンゼンジスルホン酸、フルオロベンゼンジスルホン酸、ジメチルベンゼンジスルホン酸、ジエチルベンゼンジスルホン酸、アニリン-2,4-ジスルホン酸、アニリン-2,5-ジスルホン酸、3,4-ジヒドロキシ-1,3-ベンゼンジスルホン酸、ナフタレンジスルホン酸、メチルナフタレンジスルホン酸、エチルナフタレンジスルホン酸、ペンタデシルナフタレンジスルホン酸、3-アミノ-5-ヒドロキシ-2,7-ナフタレンジスルホン酸、1-アセトアミド-8-ヒドロキシ-3,6-ナフタレンジスルホン酸、2-アミノ-1,4-ベンゼンジスルホン酸、1-アミノ-3,8-ナフタレンジスルホン酸、3-アミノ-1,5-ナフタレンジスルホン酸、8-アミノ-1-ナフトール-3,6-ジスルホン酸、4-アミノ-5-ナフトール-2,7-ジスルホン酸、4-アセトアミド-4’-イソチオシアノトスチルベン-2,2’-ジスルホン酸、4-アセトアミド-4’-マレイミジルスチルベン-2,2’-ジスルホン酸、ナフタレントリスルホン酸、ジナフチルメタンジスルホン酸、アントラキノンジスルホン酸、アントラセンスルホン酸等が挙げられる。また、これらの金属塩も使用できる。上記した導電性化合物は後述するバインダーとして用いられる樹脂100質量部に対して、0.01質量部~300質量部が好ましく、更に好ましくは0.1質量部~100質量部である。
 〈イオン性化合物〉
 イオン性化合物としては、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系の陽イオンとBF4 -、PF6 -等の無機イオン系、CF3SO2 -、(CF3SO22-、CF3CO2 -等のフッ素系の陰イオンとからなる化合物等が挙げられる。
 また、イオン性化合物としては、特公昭49-23828号、同49-23827号、同47-28937号にみられるようなアニオン性高分子化合物、特公昭55-734号、特開昭50-54672号、特公昭59-14735号、同57-18175号、同57-18176号、同57-56059号などにみられるような、主鎖中に解離基を持つアイオネン型ポリマー、特公昭53-13223号、同57-15376号、特公昭53-45231号、同55-145783号、同55-65950号、同55-67746号、同57-11342号、同57-19735号、特公昭58-56858号、特開昭61-27853号、同62-9346号にみられるような、側鎖中にカチオン性解離基を持つカチオン性ペンダント型ポリマー等を挙げることができる。また、特開平9-203810号に記載されているアイオネン導電性ポリマー或いは分子間架橋を有する第4級アンモニウムカチオン導電性ポリマー(例えば、以下に示すP-1)などを含有することも望ましい。上記したポリマー化合物は、一般に、約0.05μm~0.5μmの粒子サイズ範囲にあり、好ましくは0.05μm~0.2μmの範囲の粒子サイズである。該ポリマーと後述するバインダーとの比率は、ポリマー100質量部に対して、バインダーが10~400質量部であることが、フィルム基材との密着性の点で好ましく、特に好ましくは、ポリマー100質量部に対して、バインダーが100~200質量部である。
Figure JPOXMLDOC01-appb-C000016
 その他、アニオン性帯電防止剤、非イオン性帯電防止剤、両性イオン性帯電防止剤等も挙げられる。
 アニオン性帯電防止剤としては、例えば、脂肪酸塩類、高級アルコール硫酸エステル塩類、液体脂肪油硫酸エステル塩類、脂肪族アミンおよび脂肪属アマイドの硫酸塩類、脂肪属アルコールリン酸エステル塩類、二塩基性脂肪酸エステルのスルホン酸塩類、脂肪族アミドスルホン酸塩類、アルキルアリルスルホン酸塩類、ホルマリン縮合のナフタリンスルホン酸塩類等が挙げられ、カチオン性帯電防止剤としては、例えば、脂肪族アミン塩類、第4級アンモニウム塩類、アルキルピリジニウム塩等が挙げられる。
 非イオン性帯電防止剤としては、例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェノールエーテル類、ポリオキシエチレンアルキルエステル類、ソルビタンアルキルエステル類、ポリオキシエチレンソルビタンアルキルエステル類等が挙げられる。
 両性イオン性帯電防止剤としては、例えば、イミダゾリン誘導体、ベタイン型高級アルキルアミノ誘導体、硫酸エステル誘導体、リン酸エステル誘導体等が挙げられる。
 具体的な化合物は、丸茂秀雄著「帯電防止剤 高分子の表面改質」幸書房、増補「プラスチックおよびゴム用添加剤実用便覧 p333~p455」化学工業社刊、特開平11-256143号、特公昭52-32572号、特開平10-158484号等に記載されている。
 帯電防止層の表面比抵抗は、1013Ω/sq(25℃、55%RH)以下に調整された層であることが好ましい。更に好ましくは、1010Ω/sq(25℃、55%RH)以下であり、特に好ましくは、109Ω/sq(25℃、55%RH)以下である。また、帯電防止層の表面比抵抗は、103Ω/sq(25℃、55%RH)以上に調整された層であることが好ましい。更に好ましくは、107Ω/sq(25℃、55%RH)以上である。
 ここで、表面比抵抗の測定は、試料を25℃、55%RHの条件にて24時間調湿し、抵抗率計を用いて測定した値である。また、抵抗率計装置としては、例えば三菱化学株式会社製ハイレスタUP MCP-HT450を用いることができる。
 次に帯電防止層に含まれても良いバインダーについて説明する。帯電防止層の樹脂バインダーは硬化性樹脂であることが好ましい。中でも、塗膜の製膜性や物理的特性、及び積層膜との密着性に優れる点から、活性エネルギー線硬化樹脂が好ましい。活性エネルギー線硬化樹脂とは、紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化して活性エネルギー線硬化樹脂層が形成される。活性エネルギー線硬化樹脂としては、紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、特に、紫外線硬化樹脂が好ましい。
 紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも、紫外線硬化型アクリレート系樹脂が好ましい。
 紫外線硬化型ウレタンアクリレート系樹脂は、一般に、ポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物に、更に、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば特開昭59-151110号公報に記載のもの、ユニディック17-806(大日本インキ化学工業株式会社製)100部とコロネートL(日本ポリウレタン株式会社製)1部との混合物等が好ましく用いられる。
 紫外線硬化型ポリエステルアクリレート系樹脂としては、一般に、ポリエステルポリオールに2-ヒドロキシエチルアクリレート、2-ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、特開昭59-151112号公報に記載のものを用いることができる。
 紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光重合開始剤を添加し、反応させて生成するものを挙げることができ、特開平1-105738号に記載のものを用いることができる。
 紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
 これら紫外線硬化性樹脂は、反応促進の点から、光重合開始剤と合わせて用いることが好ましい。
 光重合開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等、及びこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。上記光重合開始剤も光増感剤として使用できる。
 また、エポキシアクリレート系の光重合開始剤の使用の際、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。紫外線硬化樹脂組成物に用いられる光重合開始剤または光増感剤は、硬化性樹脂100質量部に対して0.1~20質量部であり、好ましくは1~15質量部である。
 その他モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4-シクロヘキサンジアクリレート、1,4-シクロヘキシルジメチルアジアクリレート、イソボルニルアクリレート等を挙げることができる。また、特開2006-3647号公報記載のモノマー等も好ましく用いることができる。
 紫外線硬化樹脂の市販品としては、アデカオプトマーKR・BYシリーズ:KR-400、KR-410、KR-550、KR-566、KR-567、BY-320B(旭電化株式会社製);コーエイハードA-101-KK、A-101-WS、C-302、C-401-N、C-501、M-101、M-102、T-102、D-102、NS-101、FT-102Q8、MAG-1-P20、AG-106、M-101-C(広栄化学株式会社製);セイカビームPHC2210(S)、PHCX-9(K-3)、PHC2213、DP-10、DP-20、DP-30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業株式会社製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー株式会社製);RC-5015、RC-5016、RC-5020、RC-5031、RC-5100、RC-5102、RC-5120、RC-5122、RC-5152、RC-5171、RC-5180、RC-5181(大日本インキ化学工業株式会社製);オーレックスNo.340クリヤ(中国塗料株式会社製);サンラッドH-601、RC-750、RC-700、RC-600、RC-500、RC-611、RC-612(三洋化成工業株式会社製);SP-1509、SP-1507(昭和高分子株式会社製);RCC-15C(グレース・ジャパン株式会社製)、アロニックスM-6100、M-8030、M-8060(東亞合成株式会社製);NKハードB-420、NKエステルA-IB、B-500(新中村化学工業株式会社製)等を適宜選択して利用できる。
 また、硬化性樹脂には、熱硬化性樹脂も含まれる。熱硬化性樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、熱硬化性ポリイミド樹脂、熱硬化性ポリアミドイミドなどを挙げることができる。
 不飽和ポリエステル樹脂としては、例えばオルソフタル酸系樹脂、イソフタル酸系樹脂、テレフタル酸系樹脂、ビスフェノール系樹脂、プロピレングリコール-マレイン酸系樹脂、ジシクロペンタジエンないしその誘導体を不飽和ポリエステル組成に導入して低分子量化した、或いは被膜形成性のワックスコンパウンドを添加した低スチレン揮発性樹脂、熱可塑性樹脂(ポリ酢酸ビニル樹脂、スチレン・ブタジエン共重合体、ポリスチレン、飽和ポリエステルなど)を添加した低収縮性樹脂、不飽和ポリエステルを直接Br2でブロム化する、或いはヘット酸、ジブロムネオペンチルグリコールを共重合するなどした反応性タイプ、塩素化パラフィン、テトラブロムビスフェノール等のハロゲン化物と三酸化アンチモン、燐化合物の組み合わせや水酸化アルミニウムなどを添加剤として用いる添加タイプの難燃性樹脂、ポリウレタンやシリコーンとハイブリッド化、またはIPN(Interpenetrating Polymer Networks)化した強靭性(高強度、高弾性率、高伸び率)の強靭性樹脂等がある。
 エポキシ樹脂としては、例えばビスフェノールA型、ノボラックフェノール型、ビスフェノールF型、臭素化ビスフェノールA型を含むグリシジルエーテル系エポキシ樹脂、グリシジルアミン系、グリシジルエステル系、環式脂肪系、複素環式エポキシ系を含む特殊エポキシ樹脂等を挙げることができる。ビニルエステル樹脂としては、例えば普通エポキシ樹脂とメタクリル酸等の不飽和一塩基酸とを開環付加反応して得られるオリゴマーを、スチレン等のモノマーに溶解した物がある。また分子末端や側鎖にビニル基を持ちビニルモノマーを含有する等の特殊タイプもある。
 グリシジルエーテル系エポキシ樹脂のビニルエステル樹脂としては、例えばビスフェノール系、ノボラック系、臭素化ビスフェノール系等があり、特殊ビニルエステル樹脂としては、ビニルエステルウレタン系、イソシアヌル酸ビニル系、側鎖ビニルエステル系等がある。フェノール樹脂は、フェノール類とホルムアルデヒド類を原料として重縮合して得られ、レゾール型とノボラック型がある。
 熱硬化性ポリイミド樹脂としては、例えばマレイン酸系ポリイミド、例えばポリマレイミドアミン、ポリアミノビスマレイミド、ビスマレイミド、ジアリルビスフェノール-A樹脂、ビスマレイミド・トリアジン樹脂等、またナジック酸変性ポリイミド、及びアセチレン末端ポリイミド等がある。
 帯電防止層は、無機粒子や有機粒子を含有しても良い。これら粒子の平均粒径は、0.01~5μmであることが好ましく、0.1~5.0μmであることがさらに好ましく、0.1~4.0μmであることが特に好ましい。また、帯電防止層は、粒径の異なる2種以上の粒子を含有しても良い。粒子は、硬化性樹脂100質量部に対して、0.1~30質量部となるように配合することが望ましい。
 また、帯電防止層には、硬化助剤として、ポリウレタン樹脂の側鎖にビニル基とカルボキシル基を有し、重量平均分子量が10000以上30000以下であり、且つ、二重結合当量が500以上2000以下であるポリマーや、ポリマーの側鎖にビニル基を有し、重量平均分子量(Mw)が10000以上100000以下であり、二重結合当量が1000以下であり、ポリマーTg(ガラス転移温度)が-50℃以上120℃以下であるアクリルポリマー、他官能チオール化合物等を含有させてもよい。他官能チオール化合物としては、例えば1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカブトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン等が挙げられる。市販品としては、昭和電工社製、商品名カレンズMTシリーズ等が挙げられる。
 また、帯電防止層は、フッ素-アクリル共重合体樹脂を含有しても良い。フッ素-アクリル共重合体樹脂とは、フッ素単量体とアクリル単量体とからなる共重合体樹脂である。特に、フッ素単量体セグメントとアクリル単量体セグメントとから成るブロック共重合体が好ましい。フッ素-アクリル共重合体樹脂の分子量は、数平均分子量で5000~1000000であることが好ましく、10000~300000であることがより好ましく、10000~100000であることがさらに好ましい。フッ素-アクリル共重合体樹脂の製造は、ポリメリックペルオキシドを重合開始剤とした公知の製造プロセス(例えば特公平5-41668号公報、特公平5-59942号公報参照)により製造できる。
 ポリメリックペルオキシドとは、1分子中に2個以上のペルオキシ結合を持つ化合物である。ポリメリックペルオキシドとしては、特公平5-59942号公報に記載されている各種ポリメリックペルオキシドの一種または二種以上を使用することができる。
 フッ素-アクリル共重合体樹脂の市販品としては、日本油脂株式会社の商品名、モディパーF-200、モディパーF-600、モディパーF-2020等が挙げられる。
 更に、帯電防止層には、シリコーン系界面活性剤、フッ素系化合物を含有させることが、面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高められる点で好ましい。また、フッ素系化合物としては、フッ素-シロキサングラフトポリマー等を挙げることができる。
 帯電防止層は、種々の表示素子に対する色補正用フィルターとして、色調調整機能を有する色調調整剤(染料もしくは顔料等)、電磁波遮断剤、または赤外線吸収剤等を含有してもよい。
 更に、オーバーコート層との易接着性を保持するため、帯電防止層は、セルロースエステル系樹脂またはアクリル系樹脂を含有しても良い。
 帯電防止層を塗設するための塗布組成物には、次の溶剤が好ましく用いられる。溶剤としては、炭化水素、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒を適宜混合して使用することができるが、特にこれらに限定されるものではない。
 上記炭化水素類としては、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン等が挙げられる。アルコール類としては、メタノール、エタノール、n-プロピルアルコール、iso-プロピルアルコール、n-ブタノール、2-ブタノール、tert-ブタノール、ペンタノール、2-メチル-2-ブタノール、シクロヘキサノール等が挙げられる。ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。エステル類としては、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、乳酸エチル、乳酸メチル等が挙げられる。グリコールエーテル(C1~C4)類としては、メチルセルソルブ、エチルセルソルブ、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル、またはプロピレングリコールモノ(C1~C4)アルキルエーテルエステル類(プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等)が挙げられる。その他の溶媒としては、メチレンクロライド、N-メチルピロリドン等が挙げられる。特にこれらに限定されるものではないが、これらを適宜混合した溶媒も好ましく用いられる。
 帯電防止層塗布組成物の塗布方法としては、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、またはスプレー塗布、インクジェット塗布等を用いて、フィルム基材の一方の面にウェット膜厚0.1~100μm、好ましくは、0.5~30μm、ドライ膜厚としては平均膜厚0.1~30μm、好ましくは1~20μmで塗布し、塗布後、加熱乾燥し、必要に応じて硬化して形成される。硬化工程は、加熱処理或いはUV硬化処理によって行われる。
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件は、それぞれのランプによって異なるが、活性線の照射量は、通常5~500mJ/cm2、好ましくは5~200mJ/cm2である。また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30~500N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、または2軸方向に張力を付与してもよい。これによって更に平面性優れたフィルムを得ることができる。帯電防止層は、1層でも2層以上の多層構造でも良い。
 帯電防止層は、前述の塗布によって設けられてもよいし、蒸着のような方法によって設けてもよい。なお、帯電防止層の厚さは、0.1μm以上20μm以下であることが好ましい。更に好ましくは、0.1μm以上10μm以下である。
 <偏光板>
 次に、本実施形態の光学フィルムを用いた偏光板について述べる。偏光板は一般的な方法で作製することができる。例えば、活性エネルギー線硬化性接着剤等を用いて貼り合わせることもできるが、光学フィルムをアルカリ鹸化処理し、処理した光学フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜(偏光子)の一方の面に、完全鹸化型ポリビニルアルコール水溶液(水糊、水系の接着剤)を用いて貼り合わせることが好ましい。
 偏光子のもう一方の面には、該光学フィルムを貼り合わせてもよいし、前記したフィルム基材などを貼り合わせてもよい。もう一方の面に貼り合わせるフィルム基材の膜厚は、平滑性やカールバランスを整え、巻きズレ防止効果をより高める観点から、5~100μmの範囲が好ましく、5~34μmの範囲がより好ましい。
 偏光板の主たる構成要素である偏光膜は、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムである。上記偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものとがあるが、これらに限定されるものではない。
 偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられる。偏光膜の膜厚は5~30μm、好ましくは8~15μmである。
 <円偏光板>
 光学フィルムを用いて円偏光板を構成することもできる。つまり、偏光板保護フィルム、偏光子、λ/4フィルムをこの順で積層して円偏光板を構成することができる。この場合、λ/4フィルムの遅相軸と偏光膜の吸収軸(または透過軸)とのなす角度は45°である。長尺状偏光板保護フィルム、長尺状偏光子、長尺状λ/4フィルム(長尺斜め延伸フィルム)がこの順で積層して形成されることが好ましい。
 円偏光板は、偏光子として、ヨウ素または二色性染料をドープしたポリビニルアルコールを延伸したものを使用し、λ/4フィルム/偏光子の構成で貼合して製造することができる。偏光子の膜厚は、5~40μm、好ましくは5~30μmであり、特に好ましくは5~20μmである。
 円偏光板は、一般的な方法で作製することができる。つまり、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬延伸して作製した偏光子の一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて、アルカリ鹸化処理したλ/4フィルムを貼り合わせることが好ましい。
 <粘着層>
 液晶セルの基板と偏光板とを貼り合わせるために、偏光板のフィルム片面に用いられる粘着層は、光学的に透明であることはもとより、適度な粘弾性や粘着特性を示すものが好ましい。
 具体的な粘着層としては、例えばアクリル系共重合体やエポキシ系樹脂、ポリウレタン、シリコーン系ポリマー、ポリエーテル、ブチラール系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、合成ゴムなどの接着剤もしくは粘着剤等のポリマーを用いて、乾燥法、化学硬化法、熱硬化法、熱熔融法、光硬化法等により膜形成させ、硬化させることができる。なかでも、アクリル系共重合体は、最も粘着物性を制御しやすく、かつ透明性や耐候性、耐久性などに優れていて好ましく用いることができる。
 <画像表示装置>
 本実施形態の光学フィルムは、画像表示装置に使用することで、視認性に優れた性能が発揮される点で好ましい。画像表示装置としては、反射型、透過型、半透過型液晶表示装置又は、TN型、STN型、OCB型、VA型、IPS型、ECB型等の各種駆動方式の液晶表示装置、有機EL表示装置やプラズマディスプレイ等が挙げられる。これら画像表示装置の中でも液晶表示装置が、高い視認性に優れる点で好ましい。
 視認側偏光板の光学フィルムの硬化層のさらに視認側に、保護部が配置されていてもよい。この保護部は、前面板やタッチパネルで構成することができる。上記保護部は、硬化層との間の空隙を埋めるための充填剤(光硬化型樹脂)を介して、上記硬化層に貼り合わされる。保護部の前面板は特に制限されず、アクリル板やガラス板等の従来公知のものを使用できる。また、前面板の材質、厚み等は、画像表示装置の用途に応じて、適宜選択できる。
 充填剤としては、無溶剤充填剤が好ましく、市販品としては例えばSVR1120、SVR1150、SVR1320、SVR1241H(以上,デクセリアルズ株式会社製)、或いはHRJ-60、HRJ-302、HRJ-53(以上、協立化学産業株式会社製)等を挙げることができる。充填剤を用いる場合、一種類を単独で使用してもよいし、複数種類を併用してもよい。
 光学フィルムと前面板との貼り合わせは、例えば以下のようにして行うことができる。まず、充填剤を準備する。そして、光学フィルムの硬化層の表面に充填剤を塗工し、充填剤の塗膜上に前面板を重ね合わせる。この状態で、充填剤を光照射などにより硬化させ、光学フィルムと前面板とを貼り合わせる。硬化層の表面に充填剤を塗工する際に、硬化層の表面自由エネルギーを30mN/m以上とすることで、充填剤が硬化層の端部ではじかれることなく、均一に広がった状態を維持し、視認性に優れた画像表示装置を得ることができる。
 〔実施例〕
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 <光学フィルム1の作製>
 [セルロースエステルフィルム1の作製]
 〈二酸化珪素分散液の調製〉
 アエロジルR812(日本アエロジル(株)製、一次粒子の平均径7nm)
                             10質量部
 エタノール                       90質量部
 以上をディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。二酸化珪素分散液に88質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液を作製した。微粒子分散希釈液濾過器(アドバンテック東洋(株):ポリプロピレンワインドカートリッジフィルターTCW-PPS-1N)で濾過した。
 〈ドープ組成物1の調製〉
 (セルロースエステル樹脂)
 セルロースアセテートA(リンター綿から合成されたセルロースアセテート、アセチル基置換度2.45、Mw=200000)
                             90質量部
 (添加剤)
 一般式(X)で表されるエステル(例示化合物X-1)    5質量部
 一般式(X)で表されるエステル(例示化合物X-12)   4質量部
 (紫外線吸収剤)
 TINUVIN 928(BASFジャパン(株)製)    3質量部
 (微粒子)
 二酸化珪素分散希釈液                   4質量部
 (溶媒)
 メチレンクロライド                  432質量部
 エタノール                       38質量部
 以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ(ドープ組成物1)を調製した。
 次に、ベルト流延装置を用い、ステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶媒量が100質量%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。セルロースエステルフィルムのウェブを35℃で溶剤を蒸発させ、1.15m幅にスリットし、斜め延伸テンターで延伸温度175℃、延伸倍率1.5倍で斜め延伸を行い、テンター出口における引取張力200N/m、配向角θ(フィルム幅手方向と遅相軸とのなす角度)が45°となるように斜め方向に延伸を行った。その後、120℃の乾燥装置内を多数のローラーで搬送させながら15分間乾燥させた後、1.3m幅にスリットし、フィルム両端に幅10mm、高さ5μmのナーリング加工を施し、巻芯に巻き取り、λ/4フィルムとしてのセルロースエステルフィルム1を得た。セルロースエステルフィルム1の膜厚は30μm、巻長は3900m、面内リタデーションRoは135nm、厚み方向リタデーションRtは140nm、配向角θは45°であった。
 [ポリマーシランカップリング剤被覆微粒子の調製]
 容器に、メタクリル酸メチル(共栄社化学(株)製:ライトエステルM)30ml、3-メルカプトプロピルトリメトキシシラン(信越化学(株)製:KBM-803)1mlと、溶媒としてテトラヒドロフラン100ml、重合開始剤としてアゾイソブチロニトリル(関東化学(株)製:AIBN)50mgを添加し、N2ガスで置換した後、80℃で3時間加熱してポリマーシランカップリング剤を調製した。得られたポリマーシランカップリング剤の分子量は16,000であった。なお、分子量の測定は、ゲルパーミエーションクロマトグラフィー装置で測定した。
 次に、シリカゾル(日揮触媒化成工業(株)製:Si-45P、SiO2濃度30重量%、平均粒子径45nm、分散媒:水)をイオン交換樹脂にてイオン交換し、限外濾過膜法で水をエタノールに溶媒置換してシリカ微粒子のエタノール分散液100g(SiO2濃度30重量%)を調製した。
 このシリカ微粒子エタノール分散液100gとポリマーシランカップリング剤1.5gとをアセトン20g(25ml)に分散し、これに濃度29.8重量%のアンモニア水20mgを添加し、室温で30時間攪拌してポリマーシランカップリング剤をシリカ微粒子に吸着させた。
 その後、平均粒子径5μmのシリカ粒子を添加し、2時間攪拌して溶液中の未吸着のポリマーシランカップリング剤をシリカ粒子に吸着させ、ついで、遠心分離により未吸着であったポリマーシランカップリング剤を吸着した平均粒子径5μmのシリカ粒子を除去した。ポリマーシランカップリング剤を吸着したシリカ微粒子分散液にエタノール1000g加え、シリカ微粒子を沈降させ、これを分離、減圧乾燥し、ついで、25℃で8時間乾燥してポリマーシランカップリング剤被覆シリカ(1)を得た。得られたポリマーシランカップリング剤被覆シリカ(1)の平均粒子径は57nmであった。平均粒子径はレーザー粒子径測定装置により測定した。
 [第1硬化層形成用組成物の調製]
 上記で作製したポリマーシランカップリング剤被覆シリカ(1)と、下記の化合物とを攪拌混合して、第1硬化層形成用組成物を調整した。
 (微粒子)
 ポリマーシランカップリング剤被覆シリカ(1)      10質量部
 (活性線硬化樹脂)
 ウレタンアクリレート(U-4H、新中村化学工業(株)製)
                             35質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン(株)製)      5質量部
 (添加剤)
 KF-642(ポリエーテル変性シリコーンオイル、信越化学工業株式会社製)
                              2質量部
 (溶剤)
 プロピレングリコールモノメチルエーテル         80質量部
 酢酸メチル                       20質量部
 [第2硬化層形成用組成物の調製]
 上記で作製したポリマーシランカップリング剤被覆シリカ(1)と、下記の化合物とを攪拌混合して、第2硬化層形成用組成物を調整した。
 (微粒子)
 ポリマーシランカップリング剤被覆シリカ(1)      50質量部
 (活性線硬化樹脂)
 NKエステルA-DCP(トリシクロデカンジメタノールジアクリレート、新中村化学工業社製)
                             35質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン(株)製)      5質量部
 (添加剤)
 KF-642(ポリエーテル変性シリコーンオイル、信越化学工業株式会社製)
                              2質量部
 (溶剤)
 プロピレングリコールモノメチルエーテル         80質量部
 酢酸メチル                       20質量部
 [帯電防止層形成用組成物の作製]
 〈粒子分散液の調製〉
 メタノール分散アンチモン複酸化物コロイド(固形分60%、日産化学工業株式会社製、アンチモン酸亜鉛ゾル、商品名:セルナックスCX-Z610M-F2)6.0kgに、イソプロピルアルコール6.0kgを攪拌しながら徐々に添加し、粒子分散液を調製した。
 〈帯電防止層形成用組成物の調製〉
 上記粒子分散液と下記の化合物とを攪拌混合して、帯電防止層形成用組成物を調製した。
 粒子分散液                       60質量部
 ジオキサングリコールジアクリレート(NKエステルA-DOG、新中村化学工業株式会社製)
                              3質量部
 ウレタン(メタ)アクリレート(UA-1100H、新中村化学工業株式会社製)
                             15質量部
 2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(イルガキュア907、チバ・ジャパン(株)製)
                              2質量部
 メチルエチルケトン                   22質量部
 KF-354L(ポリエーテル変性シリコーン、信越化学工業社製)
                            0.5質量部
 [光学フィルム1の作製]
 上記作製したセルロースエステルフィルム1のA面(流延ベルトに接していない面)上に、上記第1硬化層形成用組成物を、押し出しコーターを用いて塗布し、恒率乾燥区間温度50℃、減率乾燥区間温度50℃で乾燥の後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cm2で、照射量を0.25J/cm2として塗布層を硬化させ、ドライ膜厚0.5μmの第1硬化層を形成した。
 続いて、第1硬化層上に、上記で作製した第2硬化層形成用組成物を、マイクログラビアコーターを用いて塗布し、恒率乾燥区間温度50℃、減率乾燥区間温度50℃で乾燥の後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cm2で、照射量を0.3J/cm2として塗布層を硬化させ、ドライ膜厚2μmの第2硬化層を形成した。
 次に、上記帯電層形成用組成物を超音波ホモジナイザーで5分間処理した後、孔径30μmのポリプロピレン製フィルターで濾過後、押出しコーターで塗布し、80℃で乾燥後、紫外線ランプを用い、照射部の照度が100mW/cm2、照射量を0.2J/cm2として塗布層を硬化させ、ドライ膜厚1.0μmの帯電防止層を作製し、光学フィルム1を作製した。作製した光学フィルム1は、ロール状に巻き取った。
 <光学フィルム2~10、12、13の作製>
 第1硬化層を構成する樹脂、第1硬化層の膜厚、第2硬化層におけるシリカ微粒子の有無、第2硬化層の膜厚、帯電防止層の有無を、表1のように変更した以外は、光学フィルム1の作製と同様にして光学フィルム2~10、12、13を作製した。なお、光学フィルム1~3、5~8、12においては、フィルム基材の片面(第2硬化層上)にのみ帯電防止層を形成し、光学フィルム10においては、フィルム基材の両面に帯電防止層を形成した。
 <光学フィルム11の作製>
 ドープ組成物1のセルロースアセテートA(90質量部)を、シクロオレフィン樹脂(JSR(株)アートンG7810 Mw=140000)100質量部に置き換えた以外は、光学フィルム1の作製と同様にして、光学フィルム11を作製した。
 <偏光板101の作製>
 光学フィルム1を偏光膜の一方の面に貼り付け、市販品の光学フィルムであるKC4UZ(コニカミノルタ社製)を偏光膜の他方の面に貼り付けて、偏光板101を作製した。より詳しくは、以下の通りである。
 (a)偏光膜の作製
 けん化度99.95モル%、重合度2400のポリビニルアルコール(以下、PVAと略記する)100質量部に、グリセリン10質量部、及び水170質量部を含浸させたものを溶融混練し、脱泡後、Tダイから金属ロール上に溶融押出し、製膜した。その後、乾燥・熱処理してPVAフィルムを得た。得られたPVAフィルムは、平均厚みが15μm、水分率が2.4%、フィルム幅が3mであった。
 次に、得られたPVAフィルムを、予備膨潤、染色、湿式法による一軸延伸、固定処理、乾燥、熱処理の順番で、連続的に処理して、偏光膜を作製した。すなわち、PVAフィルムを温度30℃の水中に30秒間浸して予備膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウム濃度40g/リットルの温度35℃の水溶液中に3分間浸した。続いて、ホウ酸濃度4%の50℃の水溶液中でフィルムにかかる張力が700N/mの条件下で、6倍に一軸延伸を行い、ヨウ化カリウム濃度40g/リットル、ホウ酸濃度40g/リットル、塩化亜鉛濃度10g/リットルの温度30℃の水溶液中に5分間浸漬して固定処理を行った。その後、PVAフィルムを取り出し、温度40℃で熱風乾燥し、更に温度100℃で5分間熱処理を行った。得られた偏光膜は、平均厚みが5μm、偏光性能は透過率が43.0%、偏光度が99.5%、2色性比が40.1であった。
 (b)偏光板の作製
 下記工程1~5に従って偏光板を作製した。
 工程1:前述の偏光膜を、固形分2質量%のポリビニルアルコール接着剤溶液の貯留槽中に1~2秒間浸漬した。
 工程2:光学フィルム1及びKC4UZに対して、下記条件でアルカリ鹸化処理を実施した。次いで、工程1でポリビニルアルコール接着剤溶液に浸漬した偏光膜に付着した過剰の接着剤を軽く取り除き、この偏光膜を光学フィルム1の硬化層とは反対面とKC4UZとで挟み込んで積層配置した。
 (アルカリ鹸化処理)
  ケン化工程  4M-KOH     50℃  45秒
  水洗工程   水          30℃  60秒
  中和工程   10質量部HCl   30℃  45秒
  水洗工程   水          30℃  60秒
  ケン化処理後、水洗、中和、水洗の順に行い、次いで100℃で乾燥する。
 工程3:上記の積層物を、2つの回転するローラにて挟み込み、20~30N/cm2の圧力で約2m/minの速度で貼り合わせた。このとき、気泡が入らないように注意して実施した。
 工程4:工程3で作製した試料を、温度100℃の乾燥機中にて5分間乾燥処理し、偏光板を作製した。
 工程5:工程4で作製した偏光板の保護フィルム(KC4UZ)側に市販のアクリル系粘着剤を乾燥後の厚みが5μmとなるように塗布し、110℃のオーブンで5分間乾燥して粘着層を形成し、粘着層に剥離性の保護フィルムを貼り付けた。この偏光板を裁断(打ち抜き)し、偏光板101を作製した。
 <液晶表示装置201の作製>
 市販の液晶表示装置(SONY製60型ディスプレイ BRAVIA LX900)の上側偏光板を剥し、上記偏光板101を上側偏光板として液晶セルに貼り合わせた。つまり、偏光板101のKC4UZが液晶セル側になるようにして、偏光板101の粘着層と液晶セルのガラスとを貼り合わせた。このとき、上側偏光板(偏光板101)の透過軸が上下方向に、そして下側偏光板の透過軸が左右方向になるように、クロスニコル配置した。
 <偏光板102~113の作製>
 偏光板101の光学フィルム1を光学フィルム2~13にそれぞれ変更した以外は、偏光板101の作製と同様にして偏光板102~113を作製した。
 <液晶表示装置202~213の作製>
 偏光板101を偏光板102~113に変更した以外は、液晶表示装置101の作製と同様にして液晶表示装置202~213を作製した。
 <評価>
 (コントラストムラ評価)
 通常の実験室内の蛍光灯点灯下で、所定の台上に液晶表示装置を置くとともに、この液晶表示装置の斜め上約50cmの距離に白熱電球(100W)を配置した。そして、白熱電球を点灯しながら、液晶表示装置のバックライトを点灯させて白表示にしたときの輝度と、バックライトを消灯させて黒表示にしたときの輝度とを、色彩色差計(コニカミノルタオプティクス社製CS-100)により測定し、次式により、液晶表示装置の定点(10点)の正面コントラストを算出した。
 正面コントラスト(%)={(白表示のときの輝度)/(黒表示のときの輝度)}×100
 なお、輝度測定時の光学的環境は、液晶表示装置が実際に使用される際の代表的な光学的環境を模したものである。
 このような正面コントラストの算出を、液晶表示装置201~213の各々について行った。そして、以下の基準に基づいて、コントラストムラについて評価した。
 《評価基準》
 ◎◎:正面コントラストのばらつきが1%未満であり、コントラストムラが全くない。
 ◎ :正面コントラストのばらつきが1%以上3%未満であり、コントラストムラが非常に小さい。
 ○ :正面コントラストのばらつきが3%以上5%未満であり、コントラストムラが小さい。
 △ :正面コントラストのばらつきが5%以上10%未満であり、コントラストムラがややあるが、実害性はない。
 × :正面コントラストのばらつきが10%以上であり、コントラストムラが大きく、実害性がある。
 (ブロッキング評価)
 作製した光学フィルム1~13をそれぞれ2600m巻き取り、高温高湿条件下(40℃90%RH)で200時間静置した後、巻き状態からブロッキングの発生を目視で判断し、以下の基準に基づいて評価した。
 《評価基準》
 ◎ :ブロッキングの発生はない。
 ○ :ハンドランプで照らしてようやくブロッキングがわかるが、実害性はない。
 ○△:ハンドランプ無しでもブロッキングがわかるが、実害性はない。
 △ :ブロッキングが弱く発生しているが、実害性はない。
 × :ブロッキングが強く発生しており、実害性がある。
 (ブラックバンド評価)
 作製した光学フィルム1~13をそれぞれ2600m巻き取り、高温高湿条件下(40℃90%RH)で200時間静置した後、巻き状態からブラックバンドの発生を目視で判断し、以下の基準に基づいて評価した。
 《評価基準》
 ◎ :ブラックバンドの発生はない。
 ○ :ハンドランプで照らしてようやくブラックバンドがわかるが、実害性はない。
 ○△:ハンドランプ無しでもブラックバンドがわかるが、実害性はない。
 △ :ブラックバンドが弱く発生しているが、実害性はない。
 × :ブラックバンドが強く発生しており、実害性がある。
 各光学フィルム1~13の主要な組成、パラメータ、および各評価の結果を表1に示す。なお、表1中、CEは、セルロースエステルを指し、COPは、シクロオレフィン樹脂を指し、UAは、ウレタンアクリレートを指し、PETAは、ペンタエリスリトールトリ/テトラアクリレートを指す。
Figure JPOXMLDOC01-appb-T000017
 表1より、光学フィルム1~11では、コントラストムラ、ブロッキング、ブラックバンドのいずれの評価においても、良好な結果(△以上)が得られている。これは、第1硬化層が第2硬化層よりも薄いため、第1硬化層形成時の溶剤がフィルム基材に浸透することで形成される機械的強度の弱い領域が薄くなり、高温高湿環境下でフィルム基材が配向方向に収縮しようとしても、第1硬化層および第2硬化層によってフィルム基材の寸法変化および光学フィルムの巻状変形が抑えられ、これによって光学フィルムを平面に繰り出したときの平面性が確保されているためと考えられる。
 また、光学フィルム1~7と光学フィルム8~9の結果より、第2硬化層が脂環構造を有する樹脂(例えばA-DCP)と、シリカ微粒子とを含み、第1硬化層が上記樹脂とは異なる樹脂(例えばウレタンアクリレート樹脂、PETA)と、シリカ微粒子とを含むことで、特にコントラストムラを抑える効果が高くなると言える。これは、第1硬化層および第2硬化層を上記構成とすることで、フィルム基材の含水による寸法変形を抑えることができるため、光学フィルムの巻状変形をより抑えることができているためと考えられる。
 また、光学フィルム2および7の結果より、第1硬化層がウレタン系の樹脂を含む場合は、非ウレタン系の樹脂を含む場合に比べて、コントラストムラ、ブロッキング、ブラックバンドを抑える効果が高い。これは、第1硬化層が、ウレタン系樹脂と、シリカ微粒子とを含むことで、比較的硬い第1硬化層が形成され、このような第1硬化層上に第2硬化層を形成することにより、硬化層全体の硬度が上がる結果、高温高湿環境下でのフィルム基材の寸法変化および光学フィルムの巻状変形をより抑えることができているためと考えられる。
 また、光学フィルム5のように、第1硬化層の膜厚L1が0.3μmである場合、コントラストムラを抑える効果が小さい。これは、第1硬化層が薄すぎると、第1硬化層の硬化不良が生じやすくなって、その上の第2硬化層に所定の硬度を付与することが困難となり、第1硬化層および第2硬化層の硬度不足によって、高温高湿環境下でのフィルム基材の寸法変形を抑える効果が小さくなり、光学フィルムの巻状変形を抑えてコントラストムラを抑える効果が小さくなるためと考えられる。したがって、第1硬化層の膜厚L1は、光学フィルム1~3のように、0.5μm以上確保することが望ましいと言える。
 また、光学フィルム6のように、第1硬化層の膜厚L1が3.2μmである場合も、コントラストムラを抑える効果が小さい。これは、第1硬化層が厚くなりすぎると、第1硬化層形成時の溶剤がフィルム基材に浸透することによって形成される機械的強度の弱い領域が厚くなりすぎて、高温高湿環境下でのフィルム基材の寸法変化を抑える効果が小さくなるためと考えられる。したがって、第1硬化層の膜厚L1は、光学フィルム3における2.8μmと、光学フィルム6における3.2μmとの間の値である3.0μm以下であることが望ましいと言える。
 また、光学フィルム2および4の結果より、光学フィルムが帯電防止層を含む構成では、帯電防止層を含まない構成よりも、コントラストムラ、ブロッキング、ブラックバンドを抑える効果が高い。これは、帯電防止層を設けることによってフィルムの帯電が防止され、フィルム巻き取り時のブロッキングを抑制することができ、光学フィルムの巻状変形をより抑えることができているためと考えられる。
 なお、フィルム基材上に硬化層を3層以上設けて光学フィルムを構成した場合でも、フィルム基材に最も近い硬化層の膜厚を、次にフィルム基材に近い硬化層の膜厚よりも薄くすることにより、高温高湿環境下でのフィルム基材の寸法変化および光学フィルムの巻状変形を抑えることができることが確認された。また、セルロースエステル樹脂およびシクロオレフィン樹脂以外の樹脂(アクリル、ポリカーボネート、ポリエステルなど)でフィルム基材を構成した場合でも、フィルム基材上の2つの硬化層の膜厚を上記と同様に設定することにより、光学フィルムの巻状変形を抑えることができることが確認された。
 以上で説明した本実施形態の光学フィルム、偏光板および液晶表示装置は、以下のように表現することができる。
 1. 1/4波長位相差フィルムとしてのフィルム基材と、
 前記フィルム基材の一方の面側に位置する、少なくとも2層の硬化層とを有する光学フィルムであって、
 前記少なくとも2層の硬化層のうち、前記フィルム基材に最も近い硬化層を第1硬化層とし、前記第1硬化層の次に前記フィルム基材に近い硬化層を第2硬化層とし、前記第1硬化層の厚みをL1(μm)とし、前記第2硬化層の厚みをL2(μm)としたとき、
    L1<L2
であることを特徴とする光学フィルム。
 2.前記第2硬化層は、
 脂環構造を有する樹脂と、ポリマーシランカップリング剤で被覆されてなる微粒子とを含み、
 前記第1硬化層は、
 前記第2硬化層の前記脂環構造を有する樹脂とは異なる樹脂と、ポリマーシランカップリング剤で被覆されてなる微粒子とを含むことを特徴とする前記1に記載の光学フィルム。
 3.前記第1硬化層が含む前記樹脂は、ウレタンアクリレート樹脂であることを特徴とする前記2に記載の光学フィルム。
 4.前記第1硬化層の厚みL1が、0.5μm以上3μm以下であることを特徴とする前記1から3のいずれかに記載の光学フィルム。
 5.前記フィルム基材の少なくとも一方の面側に、帯電防止層をさらに有していることを特徴とする前記1から4のいずれかに記載の光学フィルム。
 6.前記1から5のいずれかに記載の光学フィルムが、偏光子の一方の面側に位置していることを特徴とする偏光板。
 7.前記6に記載の偏光板が、表示セルの少なくとも一方の面側に位置していることを特徴とする画像表示装置。
 本発明の光学フィルムは、偏光板や、液晶表示装置などの画像表示装置に利用可能である。
   1   画像表示装置
   4   液晶セル(表示セル)
   5   偏光板
  11   偏光子
  12   フィルム基材(1/4波長位相差フィルム)
  13   第1硬化層
  14   第2硬化層
  16   光学フィルム
  17   帯電防止層

Claims (7)

  1.  1/4波長位相差フィルムとしてのフィルム基材と、
     前記フィルム基材の一方の面側に位置する、少なくとも2層の硬化層とを有する光学フィルムであって、
     前記少なくとも2層の硬化層のうち、前記フィルム基材に最も近い硬化層を第1硬化層とし、前記第1硬化層の次に前記フィルム基材に近い硬化層を第2硬化層とし、前記第1硬化層の厚みをL1(μm)とし、前記第2硬化層の厚みをL2(μm)としたとき、
        L1<L2
    である、光学フィルム。
  2.  前記第2硬化層は、
     脂環構造を有する樹脂と、ポリマーシランカップリング剤で被覆されてなる微粒子とを含み、
     前記第1硬化層は、
     前記第2硬化層の前記脂環構造を有する樹脂とは異なる樹脂と、ポリマーシランカップリング剤で被覆されてなる微粒子とを含む、請求項1に記載の光学フィルム。
  3.  前記第1硬化層が含む前記樹脂は、ウレタンアクリレート樹脂である、請求項2に記載の光学フィルム。
  4.  前記第1硬化層の厚みL1が、0.5μm以上3μm以下である、請求項1から3のいずれかに記載の光学フィルム。
  5.  前記フィルム基材の少なくとも一方の面側に、帯電防止層をさらに有している、請求項1から4のいずれかに記載の光学フィルム。
  6.  請求項1から5のいずれかに記載の光学フィルムが、偏光子の一方の面側に位置している、偏光板。
  7.  請求項6に記載の偏光板が、表示セルの少なくとも一方の面側に位置している、画像表示装置。
PCT/JP2016/070960 2015-11-05 2016-07-15 光学フィルム、偏光板および画像表示装置 WO2017077740A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187010906A KR102041740B1 (ko) 2015-11-05 2016-07-15 광학 필름, 편광판 및 화상 표시 장치
CN201680064172.2A CN108351458B (zh) 2015-11-05 2016-07-15 光学膜、偏振片及图像显示装置
JP2017548652A JP6673363B2 (ja) 2015-11-05 2016-07-15 光学フィルム、偏光板および画像表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-217481 2015-11-05
JP2015217481 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017077740A1 true WO2017077740A1 (ja) 2017-05-11

Family

ID=58661790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070960 WO2017077740A1 (ja) 2015-11-05 2016-07-15 光学フィルム、偏光板および画像表示装置

Country Status (5)

Country Link
JP (1) JP6673363B2 (ja)
KR (1) KR102041740B1 (ja)
CN (1) CN108351458B (ja)
TW (1) TWI600919B (ja)
WO (1) WO2017077740A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015928A (zh) * 2018-11-16 2021-06-22 住友化学株式会社 光学层叠体和具备该光学层叠体的图像显示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108943933B (zh) * 2017-05-26 2022-11-22 张家港康得新光电材料有限公司 光学膜、窗膜和抬头显示设备
CN112162344B (zh) * 2020-09-04 2022-05-17 中国科学技术大学 用于偏振片保护膜的聚合物膜及其制备方法、显示装置
CN112162430A (zh) * 2020-09-04 2021-01-01 中国科学技术大学 实现非线偏振出射光的液晶显示装置
CN112747565A (zh) * 2021-01-26 2021-05-04 昆山聚创新能源科技有限公司 一种电极卷的真空烘烤方法
CN113568198A (zh) * 2021-07-08 2021-10-29 业成科技(成都)有限公司 偏光片的贴合方法及其显示器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203009A (ja) * 2002-10-31 2004-07-22 Konica Minolta Holdings Inc 光学フィルム、その製造方法、それを用いた偏光板及び表示装置
JP2010082859A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd ハードコートフィルム
WO2014112575A1 (ja) * 2013-01-18 2014-07-24 富士フイルム株式会社 光学フィルム、偏光板、及び画像表示装置
WO2014185389A1 (ja) * 2013-05-17 2014-11-20 コニカミノルタ株式会社 偏光板およびそれを備えた表示装置
JP2015102813A (ja) * 2013-11-27 2015-06-04 富士フイルム株式会社 偏光板保護フィルム、偏光板保護フィルムの製造方法、偏光板、及び画像表示装置
JP2015179204A (ja) * 2014-03-19 2015-10-08 コニカミノルタ株式会社 ハードコートフィルム、偏光板および画像表示装置
WO2015151795A1 (ja) * 2014-04-03 2015-10-08 コニカミノルタ株式会社 光学フィルム、偏光板、偏光板の製造方法、画像表示装置および画像表示装置の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4447472B2 (ja) * 2005-01-13 2010-04-07 チッソ株式会社 位相差フィルム、光学フィルムおよび画像表示装置
CN101432643A (zh) * 2006-04-28 2009-05-13 住友化学株式会社 复合偏振片及使用该复合偏振片的液晶显示装置
JP5252811B2 (ja) * 2006-05-16 2013-07-31 日東電工株式会社 防眩性ハードコートフィルム、偏光板および画像表示装置
JP2009098648A (ja) * 2007-09-27 2009-05-07 Toray Ind Inc 位相差フィルム、円偏光板、およびこれを用いた表示装置
JP2011132496A (ja) * 2009-11-25 2011-07-07 Fujifilm Corp プラスチックフィルム、その製造方法、偏光板および液晶表示装置
JP2012093723A (ja) * 2010-09-30 2012-05-17 Fujifilm Corp 光学フィルム、偏光板、画像表示装置、及び光学フィルムの製造方法
JP2012159691A (ja) * 2011-01-31 2012-08-23 Fujifilm Corp 防眩フィルム、偏光板、画像表示装置、及び防眩フィルムの製造方法
JP6079008B2 (ja) * 2012-07-04 2017-02-15 コニカミノルタ株式会社 偏光板及び液晶表示装置
JP2014038180A (ja) * 2012-08-15 2014-02-27 Konica Minolta Inc 光学フィルム、光学フィルムの製造方法、偏光板及び液晶表示装置
KR101515527B1 (ko) * 2012-08-21 2015-04-27 주식회사 엘지화학 광학 이방성 필름
JP2014133408A (ja) * 2012-12-10 2014-07-24 Sumitomo Chemical Co Ltd 表面処理積層フィルム及びそれを用いた偏光板
JP2014170130A (ja) * 2013-03-04 2014-09-18 Fujifilm Corp 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置
JP2014209162A (ja) * 2013-03-28 2014-11-06 富士フイルム株式会社 偏光板及び画像表示装置
JP5971198B2 (ja) * 2013-06-12 2016-08-17 コニカミノルタ株式会社 偏光板とその製造方法、及びそれを具備した有機エレクトロルミネッセンス表示装置
JP2015043073A (ja) * 2013-07-25 2015-03-05 富士フイルム株式会社 位相差フィルム、偏光板および液晶表示装置
WO2015060167A1 (ja) * 2013-10-24 2015-04-30 コニカミノルタ株式会社 位相差フィルム、偏光板及び液晶表示装置
WO2015098685A1 (ja) * 2013-12-27 2015-07-02 コニカミノルタ株式会社 光学フィルム、偏光板および画像表示装置
KR20160111453A (ko) * 2014-03-03 2016-09-26 코니카 미놀타 가부시키가이샤 기능성 필름, 편광판 및 표시 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203009A (ja) * 2002-10-31 2004-07-22 Konica Minolta Holdings Inc 光学フィルム、その製造方法、それを用いた偏光板及び表示装置
JP2010082859A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd ハードコートフィルム
WO2014112575A1 (ja) * 2013-01-18 2014-07-24 富士フイルム株式会社 光学フィルム、偏光板、及び画像表示装置
WO2014185389A1 (ja) * 2013-05-17 2014-11-20 コニカミノルタ株式会社 偏光板およびそれを備えた表示装置
JP2015102813A (ja) * 2013-11-27 2015-06-04 富士フイルム株式会社 偏光板保護フィルム、偏光板保護フィルムの製造方法、偏光板、及び画像表示装置
JP2015179204A (ja) * 2014-03-19 2015-10-08 コニカミノルタ株式会社 ハードコートフィルム、偏光板および画像表示装置
WO2015151795A1 (ja) * 2014-04-03 2015-10-08 コニカミノルタ株式会社 光学フィルム、偏光板、偏光板の製造方法、画像表示装置および画像表示装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015928A (zh) * 2018-11-16 2021-06-22 住友化学株式会社 光学层叠体和具备该光学层叠体的图像显示装置
CN113015928B (zh) * 2018-11-16 2023-02-28 住友化学株式会社 光学层叠体和具备该光学层叠体的图像显示装置

Also Published As

Publication number Publication date
TW201716802A (zh) 2017-05-16
TWI600919B (zh) 2017-10-01
CN108351458A (zh) 2018-07-31
KR102041740B1 (ko) 2019-11-06
JPWO2017077740A1 (ja) 2018-08-23
JP6673363B2 (ja) 2020-03-25
KR20180056700A (ko) 2018-05-29
CN108351458B (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
JP6673363B2 (ja) 光学フィルム、偏光板および画像表示装置
JP2010078642A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP5479258B2 (ja) セルロースアシレートフィルム及びその製造方法、並びにそれを用いた偏光板及び液晶表示装置
WO2013118641A1 (ja) ハードコートフィルム、偏光板、画像表示装置用ガラス飛散防止フィルム、タッチパネル及び液晶表示装置
JP5182521B2 (ja) 反射防止層用組成物、反射防止フィルム、偏光板、及び画像表示装置
JP2009196202A (ja) ハードコートフィルム、これを用いた反射防止フィルム、偏光板、及び表示装置
JPWO2009075201A1 (ja) 防眩性フィルム、偏光板及び液晶表示装置
JP2009186760A (ja) ハードコートフィルム、これを用いた偏光板、及び表示装置
TWI599485B (zh) Optical film, polarizer and image display device
JP5994746B2 (ja) ハードコートフィルム、偏光板およびタッチパネル付き液晶表示装置
JP2015179204A (ja) ハードコートフィルム、偏光板および画像表示装置
JP2009288413A (ja) ハードコートフィルムの製造方法、ハードコートフィルム、反射防止フィルム、偏光板、及び画像表示装置
JP2009186651A (ja) 反射防止フィルムの製造方法、反射防止フィルム、偏光板及び画像表示装置
JP2010085894A (ja) 反射防止層用組成物、反射防止フィルム、偏光板、及び画像表示装置
JP2010191023A (ja) 反射防止フィルム、偏光板及び画像表示装置
WO2013161582A1 (ja) ハードコートフィルムおよびそれを備えたタッチパネル表示装置
JP2009210876A (ja) 反射防止フィルムの製造方法、反射防止フィルム、偏光板及び画像表示装置
JP6164050B2 (ja) 光学フィルム、偏光板及びそれらの製造方法、並びに画像表示装置
JP2010139823A (ja) 光学補償フィルム、偏光板、液晶表示装置、ips(インプレーンスイッチング)モード型液晶表示装置
JP2009036817A (ja) 反射防止フィルム、それを用いた偏光板、及び画像表示装置
WO2013161580A1 (ja) ハードコートフィルムの製造方法
JP2010134034A (ja) 反射防止フィルム、偏光板及び画像表示装置
WO2015151795A1 (ja) 光学フィルム、偏光板、偏光板の製造方法、画像表示装置および画像表示装置の製造方法
WO2010095325A1 (ja) 低反射部材、反射防止フィルム、偏光板及び画像表示装置
WO2016035404A1 (ja) 光学フィルム、偏光板および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548652

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187010906

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861809

Country of ref document: EP

Kind code of ref document: A1