WO2017077713A1 - ゴム組成物の製造方法およびタイヤ - Google Patents
ゴム組成物の製造方法およびタイヤ Download PDFInfo
- Publication number
- WO2017077713A1 WO2017077713A1 PCT/JP2016/004804 JP2016004804W WO2017077713A1 WO 2017077713 A1 WO2017077713 A1 WO 2017077713A1 JP 2016004804 W JP2016004804 W JP 2016004804W WO 2017077713 A1 WO2017077713 A1 WO 2017077713A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- rubber
- mass
- kneading
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/22—Incorporating nitrogen atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/25—Incorporating silicon atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/30—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
- C08C19/42—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
- C08C19/44—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/10—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/011—Crosslinking or vulcanising agents, e.g. accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/06—Sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/29—Compounds containing one or more carbon-to-nitrogen double bonds
- C08K5/31—Guanidine; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/39—Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
- C08K5/405—Thioureas; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/43—Compounds containing sulfur bound to nitrogen
- C08K5/44—Sulfenamides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/45—Heterocyclic compounds having sulfur in the ring
- C08K5/46—Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
- C08K5/47—Thiazoles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/548—Silicon-containing compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2309/00—Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
- C08J2309/06—Copolymers with styrene
Definitions
- the present invention relates to a method for producing a rubber composition and a tire.
- silica as a filler as a technique that achieves both low rolling resistance and wet grip.
- silica when a silane coupling agent is used in combination with silica, there is an advantage that tan ⁇ can be further reduced.
- a rubber component (A) composed of at least one selected from natural rubber and synthetic diene rubber, a filler containing an inorganic filler (B), and a rubber containing a silane coupling agent (C)
- a method for producing a rubber composition in which thiourea is blended in the composition has been proposed (for example, Patent Document 1).
- an object of the present invention is to provide a method for producing a rubber composition that can achieve both low loss and wet grip properties. Another object of the present invention is to provide a tire that achieves both low loss and wet grip.
- the method for producing a rubber composition according to the present invention is a method for producing a rubber composition comprising a kneading step of kneading the rubber composition, wherein the rubber composition has a glass transition temperature (Tg) of ⁇ 50 ° C. or less.
- Tg glass transition temperature
- the glass transition temperature (Tg) of a polymer such as modified SBR and the second polymer in the rubber component can be measured by a temperature dispersion curve of tan ⁇ , for example, using a differential scanning calorimeter manufactured by TA Instruments. Thus, it can be measured under conditions of a sweep rate of 5 to 10 ° C./min.
- means the absolute value of the difference between Tg 1 and Tg 2 .
- the fact that two or more kinds of polymers are phase-separated can be rephrased as two or more kinds of polymers being incompatible.
- the phase separation on the submicron order means that, for example, a 4 ⁇ m ⁇ 4 ⁇ m region of the rubber composition is observed using FIB / SEM, and there is a difference in the degree of dyeing. In this case, it is sufficient that the phases are separated on the submicron order, and they may be dissolved by observation with the naked eye.
- the abundance of the filler present in the phase of the modified SBR is, for example, a measurement range of 2 ⁇ m ⁇ 2 ⁇ m using an atomic force microscope (AFM), for example, MFP-3D manufactured by ASYLUM RESEARCH, on a smooth surface of a sample cut by a microtome. Can be measured.
- AFM atomic force microscope
- the obtained AFM image is obtained by converting the obtained AFM image into a ternary image into two types of polymers and filler parts.
- the filler area contained in the phase of each of the two polymer components is obtained, and the ratio of the filler present in the phase of the modified SBR is calculated from the total amount of filler within the measurement area.
- the filler is at the boundary surface between the two types of polymers, two points where each polymer and three of the fillers are in contact are connected to divide the area of the filler.
- the domain width (region width) of the phase of the modified SBR means the diameter of the circle when the image obtained from AFM is ternarized and the part corresponding to the filler is extracted and the domain is circular. If the domain is irregular, such as a mottled pattern, it means the maximum length of the domain in the direction orthogonal to the longitudinal direction of each domain (the direction in which the linear distance between the ends in one domain is the longest). .
- the filler is contained in one polymer phase, the missing part is filled, and when the filler is on the boundary between the two polymer domains, it is calculated in the missing state.
- the average aggregate area of the filler is obtained by, for example, obtaining the aggregate area of the filler portion from an image obtained in a measurement range of 4 ⁇ m ⁇ 4 ⁇ m from FIB / SEM, and calculating the total aggregate surface area of the filler portion and the number of aggregates. From this, the average aggregate area can be calculated by number average (arithmetic average). In the calculation, particles in contact with the edge (side) of the image are not counted, and particles of 20 pixels or less are regarded as noise and are not counted.
- the submicron order means a range of 100 nm or more and less than 1000 nm.
- the (co) polymer means a polymer or a copolymer.
- the (co) polymer before modification (unmodified) is sometimes referred to as a base polymer.
- the modification rate in the modified polymer such as modified SBR can be measured by the following method. After the modified polymer is dissolved in toluene, the amino group-containing compound not bonded to the modified polymer is separated from the rubber by precipitation in a large amount of methanol, and then dried. Using this treated polymer as a sample, the total amino group content is quantified by the “total amine number test method” described in JIS K7237.
- the contents of the secondary amino group and the tertiary amino group are quantified with respect to the sample by the “acetylacetone blocked method”.
- O-Nitrotoluene is used as a solvent for dissolving the sample, acetylacetone is added, and potentiometric titration is performed with a perchloric acid acetic acid solution.
- the first amino group content bound to the polymer by subtracting the content of the second amino group and the third amino group from the total amino group content to obtain the first amino group content and dividing the polymer mass used in the analysis Ask for.
- the third amino group content is obtained by dissolving the polymer in toluene and then precipitating it in a large amount of methanol to separate the amino group-containing compound not bound to the modified polymer from the rubber and then drying.
- the tertiary amino group content is quantified by the “acetylation method”.
- the tertiary amino group content bound to the polymer is determined by reverting the polymer mass used in the analysis for the tertiary amino group content.
- the “modified functional group having interaction with the filler” means, for example, a covalent bond between the modified functional group and the surface of the filler (for example, silica); intermolecular force (ion ⁇ It means a functional group capable of forming dipole interactions, dipole-dipole interactions, hydrogen bonds, van der Waals forces and other intermolecular forces.
- the weight average molecular weight of the polymer component can be calculated as a standard polystyrene conversion value by, for example, gel permeation chromatography (GPC).
- the hydrolyzable group is, for example, a trialkylsilyl group such as a trimethylsilyl group or a tert-butyldimethylsilyl group; an —O (trialkylsilyl) group; an —S (trialkylsilyl) group; Alkylsilyl) group; -N (trialkylsilyl) group and the like.
- the (thio) isocyanate group means an isocyanate group or a thioisocyanate group.
- the (thio) epoxy group means an epoxy group or a thioepoxy group.
- the (thio) ketone group means a ketone group or a thioketone group.
- the (thio) aldehyde group means an aldehyde group or a thioaldehyde group.
- the (thio) carboxylic acid ester group means a carboxylic acid ester group or a thiocarboxylic acid ester group.
- a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms means “a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or one having 3 to 20 carbon atoms”.
- Valent alicyclic hydrocarbon group ". The same applies to a divalent hydrocarbon group.
- the halogen atom is, for example, fluorine, chlorine, bromine or iodine.
- TMS means a trimethylsilyl group.
- the present invention it is possible to provide a method for producing a rubber composition that can achieve both low loss and wet grip properties. Moreover, according to the present invention, it is possible to provide a tire that achieves both low loss and wet grip properties.
- the method for producing a rubber composition according to the present invention is a method for producing a rubber composition comprising a kneading step of kneading the rubber composition, wherein the rubber composition has a glass transition temperature (Tg) of ⁇ 50 ° C. or less.
- Tg glass transition temperature
- the kneading step comprises a rubber component (A), a filler ( C), a first kneading step for kneading part or all of the compound (D), 2 parts by mass or more of the silane coupling agent (E) with respect to 100 parts by mass of the rubber component, and a first kneading step Later, the first blend Characterized in that it comprises a second kneading step of kneading the kneaded product prepared by kneading and vulcanizing agent (F) in step.
- the rubber composition which can make low loss property and wet grip property compatible can be manufactured.
- the kneading step includes at least a first kneading stage and a second kneading stage, and further includes a third kneading stage between the first kneading stage and the second kneading stage as necessary. That is, when the third kneading step is performed, the order of the kneading steps is the order of the first, third, and second kneading steps.
- First kneading stage> the rubber component (A), the filler (C), a part or all of the compound (D), and 2 parts by mass or more of the silane coupling agent (E) with respect to 100 parts by mass of the rubber component.
- the mixture is kneaded.
- a kneaded product (preliminary composition) is prepared by this kneading.
- the kneaded material (preliminary composition) prepared in the first kneading step does not contain the vulcanizing agent (F).
- the maximum temperature of the mixture is preferably 120 to 190 ° C., more preferably 130 to 175 ° C., from the viewpoint of more suitably increasing the activity of the coupling function of the silane coupling agent (E). More preferably, the temperature is 140 to 170 ° C.
- first kneading step it is preferable to first knead the rubber component (A), the filler (C) and the silane coupling agent (E), add the compound (D) to this, and further knead.
- thermoplastic resin (B) selected from dicyclopentadiene resins and alkylphenol resins.
- the second kneading step is a step of kneading the kneaded material (preliminary composition) prepared by kneading in the first kneading step and the vulcanizing agent (F) after the first kneading step.
- a rubber composition is prepared by this kneading.
- compound (D) may be further added.
- the maximum temperature of the mixture is preferably 60 to 140 ° C, more preferably 80 to 120 ° C, and particularly preferably 100 to 120 ° C.
- the kneaded product (preliminary composition) It is preferable to shift to the second kneading stage after lowering the temperature by 10 ° C. or more from the temperature immediately after completion of the kneading in the first kneading stage or the third kneading stage.
- a third kneading step may be further included between the first kneading step and the second kneading step.
- the kneaded material (preliminary composition) prepared in the first kneading stage is further kneaded.
- the third kneading step may be performed a plurality of times.
- the vulcanizing agent (F) is not added in the third kneading stage.
- the maximum temperature of the mixture is preferably 120 to 190 ° C., more preferably 130 to 175 ° C. from the viewpoint of more suitably enhancing the activity of the coupling function of the silane coupling agent (E). More preferably, the temperature is 140 to 170 ° C.
- the kneading device used for kneading is not particularly limited, and can be appropriately selected from known kneading devices according to the purpose.
- a kneading apparatus for example, a single-screw kneading extruder; a multi-screw kneading extruder (continuous kneading apparatus); a kneading machine having a meshing type or non-meshing type rotary rotor such as a Banbury mixer, an intermix, a kneader; a roll (Batch type kneader); and the like.
- Conditions such as the rotational speed of the rotor, the ram pressure, the kneading temperature, the type of the kneading apparatus, and the like in kneading can be appropriately selected.
- the rubber composition produced by the method for producing a rubber composition according to the present invention contains 20% by mass or more of modified SBR having a glass transition temperature (Tg) of ⁇ 50 ° C. or less, and contains a rubber component (A); silica. 20 to 120 parts by mass of filler (C) with respect to 100 parts by mass of rubber component; at least one compound (D) selected from guanidines, sulfenamides, thiazoles, thiourea and diethylthiourea; silane A coupling agent (E); and a vulcanizing agent (F).
- Tg glass transition temperature
- A silica. 20 to 120 parts by mass of filler (C) with respect to 100 parts by mass of rubber component
- silane A coupling agent (E) silane A coupling agent
- F a vulcanizing agent
- the rubber component (A) contained in the rubber composition contains 20% by mass or more of modified SBR having a glass transition temperature (Tg) of ⁇ 50 ° C. or less with respect to the total amount of the rubber component (A).
- Tg glass transition temperature
- Other rubber components such as a second polymer are included.
- ⁇ Modified styrene-butadiene copolymer rubber> By using the modified SBR, a rubber composition capable of suppressing the decrease in tan ⁇ at 0 ° C. of the rubber composition and achieving both low loss and wet grip properties even when the compound (D) described later is used. can do.
- modified functional group there is no restriction
- Suitable examples of the modified functional group include a modified functional group having an interaction property with a filler described later. The interaction with the filler can be enhanced, and low loss and wet grip can be highly compatible.
- a modified functional group with high interaction property with a filler for example, silica
- a nitrogen-containing functional group, a silicon-containing functional group, an oxygen-containing functional group etc. are mentioned suitably.
- the base polymer of the modified SBR is a copolymer obtained by polymerizing 50 to 80% by mass of 1,3-butadiene and 20 to 50% by mass of styrene with respect to all monomer components of the modified SBR. Is preferred. This is because the rubber composition can achieve a high degree of compatibility between the low loss property and the wet grip property.
- the polymerization method for obtaining the base polymer is not particularly limited, and a known method can be used. Examples of such polymerization methods include anionic polymerization, coordination polymerization, and emulsion polymerization.
- the modifier for obtaining the modified SBR can be appropriately selected from known modifiers.
- the modifier may be, for example, a modifier that reacts with a polymerization active terminal of anionic polymerization or coordination polymerization, or an amide portion of a lithium amide compound used as a polymerization initiator.
- the modifier can be appropriately selected from known modifiers having the above-described modifying functional group.
- the modifying agent is preferably a modifying agent having at least one atom selected from a silicon atom, a nitrogen atom and an oxygen atom.
- the modifying agent is at least one selected from the group consisting of an alkoxysilane compound, a hydrocarbyloxysilane compound, and a combination thereof because of high interaction with a filler (for example, silica).
- the alkoxysilane compound is not particularly limited, but is more preferably an alkoxysilane compound represented by the following general formula (I).
- R 1 a -Si- (OR 2 ) 4-a (I)
- R 1 and R 2 each independently represents a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, Is an integer of 0 to 2, and when there are a plurality of OR 2 , each OR 2 may be the same as or different from each other, and no active proton is contained in the molecule.
- alkoxysilane compound represented by the general formula (I) include N- (1,3-dimethylbutylidene) -3-triethoxysilyl-1-propanamine, tetramethoxysilane, tetraethoxysilane, tetra -N-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraisobutoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxy Silane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltriisopropoxysilane, propyltrimethoxysilane, propyltrime
- N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, tetraethoxysilane, methyltriethoxysilane, and dimethyldiethoxysilane are preferable.
- An alkoxysilane compound may be used individually by 1 type, and may be used in combination of 2 or more type.
- the hydrocarbyloxysilane compound is preferably a hydrocarbyloxysilane compound represented by the following general formula (II).
- n1 + n2 + n3 + n4 4 (where n2 is an integer of 1 to 4, n1, n3 and n4 are integers of 0 to 3), and A 1 is a saturated cyclic tertiary amine compound Residue, unsaturated cyclic tertiary amine compound residue, ketimine residue, nitrile group, (thio) isocyanate group, (thio) epoxy group, isocyanuric acid trihydrocarbyl ester group, carbonic acid dihydrocarbyl ester group, nitrile group, pyridine Group, (thio) ketone group, (thio) aldehyde group, amide group, (thio) carboxylic acid ester group, metal salt of (thio) carboxylic acid ester, carboxylic acid anhydride residue, carboxylic acid halogen compound residue, and It is at least one functional group selected from a primary or secondary amino group having a hydroly
- a 1 may be a divalent group that forms a cyclic structure by bonding to Si
- R 21 is a monovalent group having 1 to 20 carbon atoms.
- an aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms may be the same or different when n1 is 2 or more
- R 23 is C 1 -C
- R 22 is preferably a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, both of which are a nitrogen atom and / or silicon.
- n2 May contain atoms, and when n2 is 2 or more, They may be different from each other, or together form a ring, and R 24 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent group having 6 to 18 carbon atoms. And when n4 is 2 or more, they may be the same or different.
- the hydrolyzable group in the primary or secondary amino group having a hydrolyzable group or the mercapto group having a hydrolyzable group is preferably a trimethylsilyl group or a tert-butyldimethylsilyl group, particularly preferably a trimethylsilyl group.
- the hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound represented by the following general formula (III).
- p1 + p2 + p3 2 (wherein p2 is an integer of 1 to 2 and p1 and p3 are integers of 0 to 1),
- a 2 is NRa (Ra is a monovalent A hydrocarbon group, a hydrolyzable group or a nitrogen-containing organic group), or sulfur
- R 25 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or 6 to 6 carbon atoms.
- R 18 is a monovalent aromatic hydrocarbon group
- R 27 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 26 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, or a nitrogen-containing organic group. Any of them may contain a nitrogen atom and / or a silicon atom, and p2 is 2.
- R 28 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a carbon It is a divalent aromatic hydrocarbon group of formula 6-18.
- the hydrolyzable group a trimethylsilyl group or a tert-butyldimethylsilyl group is preferable, and a trimethylsilyl group is particularly preferable.
- the hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound represented by the following general formula (IV) or (V).
- R 32 and R 33 are each independently a hydrolyzable group, a monovalent fatty acid having 1 to 20 carbon atoms.
- R 34 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a carbon number
- R 35 is a monovalent aliphatic or alicyclic hydrocarbon having 1 to 20 carbon atoms Group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and the same when q2 is 2 or more It may be different also.
- R 36 is a divalent aliphatic having 1 to 20 carbon atoms. or a divalent aromatic hydrocarbon group having an alicyclic hydrocarbon group or a C 6 ⁇ 18,
- R 37 is a dimethylaminomethyl group, dimethylaminoethyl group, diethylaminomethyl group, diethylaminoethyl group, methylsilyl (methyl) Aminomethyl group, methylsilyl (methyl) aminoethyl group, methylsilyl (ethyl) aminomethyl group, methylsilyl (ethyl) aminoethyl group, dimethylsilylaminomethyl group, dimethylsilylaminoethyl group, monovalent fat having 1 to 20 carbon atoms
- R 38 is a hydrocarbyloxy group having 1 to 20 carbon atoms, monovalent 1-20 carbon atoms aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon having 6 to 18 carbon atoms And when r2 is 2, they may be the same or different.
- the hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound having two or more nitrogen atoms represented by the following general formula (VI) or (VII).
- VI general formula
- VII general formula konvenously atoms
- both low loss and wet grip properties can be achieved at a higher level.
- R 40 represents a trimethylsilyl group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms; 41 is a hydrocarbyloxy group, a monovalent aromatic hydrocarbon group of monovalent aliphatic or cycloaliphatic hydrocarbon group or a C 6-18 having 1 to 20 carbon atoms having 1 to 20 carbon atoms, R 42 Is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 43 and R 44 are each independently a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 45 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and each R 45 is the same or different. It may be.
- the hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound represented by the following general formula (VIII).
- r1 + r2 3 (wherein r1 is an integer of 0 to 2 and r2 is an integer of 1 to 3), and R 46 is a divalent aliphatic having 1 to 20 carbon atoms. or a divalent aromatic hydrocarbon group having an alicyclic hydrocarbon group or a C 6 ⁇ 18, R 47 and R 48 are each independently aliphatic monovalent having 1 to 20 carbon atoms or cycloaliphatic It is a hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- a plurality of R 47 or R 48 may be the same or different.
- the hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound represented by the following general formula (IX).
- X is a halogen atom
- R 49 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 50 and R 51 are each independently a hydrolyzable group, monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or an aromatic monovalent having 6 to 18 carbon atoms
- R 50 and R 51 are bonded to form a divalent organic group
- R 52 and R 53 are each independently a halogen atom, a hydrocarbyloxy group, a carbon number of 1 to 20 monovalent aliphatic or alicyclic hydrocarbon groups or monovalent aromatic hydrocarbon groups having 6 to 18 carbon atoms.
- R 50 and R 51 are preferably hydrolyzable groups, and the hydrolyzable group is preferably a trimethylsilyl group or a tert-butyldimethylsilyl group, and particularly preferably a trimethylsilyl group.
- the hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound having a structure represented by the following general formulas (X) to (XIII).
- R 54 to 92 in the general formulas (X) to (XIII) may be the same or different and are each a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aliphatic group having 6 to 18 carbon atoms. Valent aromatic hydrocarbon group.
- ⁇ and ⁇ are integers of 0 to 5.
- N1, N1, N7-tetramethyl-4-((trimethoxysilyl) methyl) -1,7heptane 2-((hexyl-dimethoxysilyl) methyl ) -N1, N1, N3, N3-2-pentamethylpropane-1,3-diamine, N1- (3- (dimethylamino) propyl-N3, N3-dimethyl-N1- (3- (trimethoxysilyl) propyl ) Propane-1,3-diamine, 4- (3- (dimethylamino) propyl) -N1, N1, N7, N7-tetramethyl-4-((trimethoxysilyl) methyl) heptane-1,7-diamine Is preferred.
- hydrocarbyloxysilane compounds represented by the general formulas (II) to (XIII) are preferably used as modifiers for the modified SBR, but may be used as modifiers for the second polymer and any other rubber component. .
- hydrocarbyloxysilane compounds represented by the general formulas (II) to (XIII) are preferably alkoxysilane compounds.
- Suitable modifiers for obtaining the modified copolymer by anionic polymerization include, for example, 3,4-bis (trimethylsilyloxy) -1-vinylbenzene, 3,4-bis (trimethylsilyloxy) benzaldehyde, 3,4- Examples thereof include at least one compound selected from bis (tert-butyldimethylsilyloxy) benzaldehyde, 2-cyanopyridine, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidone.
- the modifier is preferably an amide portion of a lithium amide compound used as a polymerization initiator in anionic polymerization.
- lithium amide compounds include lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, lithium heptamethylene imide, lithium dodecamethylene imide, lithium dimethylamide, lithium diethylamide, lithium dibutylamide, and lithium dipropyl.
- the modifying agent that becomes the amide portion of lithium hexamethyleneimide is hexamethyleneimine
- the modifying agent that becomes the amide portion of lithium pyrrolidide is pyrrolidine
- the modifying agent that becomes the amide portion of lithium piperidide is piperidine.
- Suitable modifiers for obtaining the modified copolymer by coordination polymerization include, for example, at least one compound selected from 2-cyanopyridine and 3,4-ditrimethylsilyloxybenzaldehyde.
- Suitable modifiers for obtaining the modified copolymer by emulsion polymerization include, for example, at least one compound selected from 3,4-ditrimethylsilyloxybenzaldehyde and 4-hexamethyleneiminoalkylstyrene. These modifiers preferably used in emulsion polymerization are preferably copolymerized at the time of emulsion polymerization as monomers containing nitrogen atoms and / or silicon atoms.
- the modification rate is preferably 30% or more, more preferably 35% or more, and particularly preferably 70% or more.
- the filler containing silica is selectively present in the phase of the modified SBR, so that both low loss and wet grip properties can be achieved at a higher level.
- the glass transition temperature (Tg 1 ) of the modified SBR may be ⁇ 50 ° C. or lower, and is preferably ⁇ 60 ° C. or lower.
- satisfy the relationship of ⁇ 20, modified
- the SBR and the second polymer are preferably phase-separated from each other on the order of submicrons. Thereby, low loss property and wet grip property can be highly compatible.
- filler present in the phase of the modified SBR is an average aggregate area of (C), is preferably 2100 nm 2 or less. Thereby, low loss property and wet grip property can be highly compatible.
- modified SBR An example of modified SBR will be described.
- a copolymer of styrene and 1,3-butadiene (microstructure: 10% by mass of styrene / 40% by mass of vinyl bonds derived from 1,3-butadiene, base molecular weight (polystyrene conversion): 180,000).
- a base polymer was prepared and modified with N, N-bis (trimethylsilyl) -3- [diethoxy (methyl) silyl] propylamine in a state where the terminal was an anion, and modified SBR (modification rate: 70%, A weight average molecular weight (Mw): 200,000) is obtained.
- the value (SP 1 ) and the SP value (SP 2 ) of the second polymer are different and 0.15 ⁇
- the rubber component (A) may contain 20% by mass or more of the modified SBR with respect to the total amount of the rubber component (A), and the content of the modified SBR can be appropriately adjusted according to the purpose.
- the rubber component (A) preferably contains 30% by mass or more of modified SBR with respect to the total amount of the rubber component (A).
- the domain width of the phase of the modified SBR is not particularly limited, but is preferably 200 nm or less. This increases the wear resistance and fracture resistance.
- the second polymer is not particularly limited and can be appropriately selected from known rubber polymers.
- the second polymer may be a diene copolymer, for example.
- a copolymer of a diene monomer and an aromatic vinyl compound is preferable, and 50 to 80% by mass of a diene monomer and 20 to 50% by mass with respect to all monomer components of the second polymer.
- a copolymer with a mass% aromatic vinyl compound is more preferred.
- diene monomer examples include conjugated dienes such as 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, and 1,3-hexadiene.
- conjugated dienes such as 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, and 1,3-hexadiene.
- 1,3-butadiene is preferable because the glass transition temperature (Tg 2 ) of the second polymer can be easily adjusted.
- a conjugated diene compound may be used independently and may be used in combination of 2 or more type.
- aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, 2,4,6-trimethylstyrene, and the like. .
- Tg 2 glass transition temperature
- An aromatic vinyl compound may be used independently and may be used in combination of 2 or more type.
- Examples of the second polymer include natural rubber, isoprene rubber, styrene-butadiene copolymer rubber (SBR), butadiene rubber (BR), acrylonitrile-butadiene copolymer rubber, and chloroprene rubber.
- the polymerization method for obtaining the second polymer is not particularly limited, and a known method can be used. Examples of such polymerization methods include anionic polymerization, coordination polymerization, and emulsion polymerization.
- the molecular weight of the second polymer is not particularly limited, and good fracture resistance and wear resistance can be obtained by setting the peak molecular weight to 50,000 or more, and good workability by setting the molecular weight to 700,000 or less. Is obtained. Furthermore, a peak molecular weight of 100,000 to 350,000 is preferable in order to achieve both high fracture resistance and wear resistance and workability.
- the rubber component (A) may further contain other rubber components different from the modified SBR and the second polymer, in addition to the modified SBR and the second polymer.
- As another rubber component what was mentioned by the 2nd polymer can be used, for example.
- Other rubber component polymers may be unmodified (co) polymers or modified (co) polymers.
- the glass transition temperature of all the components contained in the rubber component (A) is ⁇ 50 ° C. or lower. Thereby, low loss property and wet grip property can be made compatible more highly.
- the rubber composition contains a certain amount of the thermoplastic resin (B)
- the Tg of the rubber is increased and the loss tangent (tan ⁇ ) at 0 ° C. is improved, so that the wet grip property of the tire can be improved.
- thermoplastic resin (B) is highly compatible with natural rubber, when natural rubber is used as the second polymer or the like, it is advantageous in that the compatibility of the thermoplastic resin (B) is increased.
- the blending amount of the thermoplastic resin (B) is not particularly limited and can be appropriately adjusted.
- the blending amount of the thermoplastic resin (B) is, for example, preferably 5 to 50 parts by mass and more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the rubber component (A).
- the blending amount of the thermoplastic resin (B) is 5 to 50 parts by mass, both low loss and wet grip properties can be achieved at a higher level.
- C 5 resins refers to C 5 type synthetic petroleum resins and C 5 fraction, it means a resin obtained by polymerization using a Friedel-Crafts catalyst such as AlCl 3 or BF 3.
- a copolymer mainly composed of isoprene, cyclopentadiene, 1,3-pentadiene and 1-pentene a copolymer of 2-pentene and dicyclopentadiene, and a polymer mainly composed of 1,3-pentadiene Etc.
- C 5 -C 9 resin refers to C 5 -C 9 synthetic petroleum resin, and is obtained by polymerizing C 5 -C 11 fraction using Friedel-Crafts type catalyst such as AlCl 3 and BF 3. It means resin.
- a copolymer mainly composed of styrene, vinyl toluene, ⁇ -methyl styrene, indene and the like can be mentioned.
- a C 5 to C 9 resin having a small component of C 9 or more is preferable in view of excellent compatibility with the rubber component (A).
- a resin in which the ratio of C 9 or more components in the C 5 to C 9 resin is less than 50% by mass is preferable, and a resin having 40% by mass or less is more preferable.
- C 9 resins refers to C 9 based synthetic petroleum resins, it means a resin obtained a C 9 fraction was polymerized using a Friedel-Crafts catalyst such as AlCl 3 or BF 3.
- a copolymer mainly composed of indene, methylindene, ⁇ -methylstyrene, vinyltoluene and the like can be mentioned.
- the terpene resin can be obtained by blending turpentine oil obtained at the same time when rosin is obtained from a pine tree or a polymerization component separated therefrom and polymerizing using a Friedel-Crafts catalyst. Examples thereof include ⁇ -pinene resin and ⁇ -pinene resin.
- the terpene-aromatic compound-based resin can be obtained by reacting a terpene with various phenols using a Friedel-Crafts catalyst, or further condensing with formalin.
- a terpene-phenol resin examples thereof include terpene-phenol resins.
- a resin having a phenol component in the terpene-phenol resin of less than 50% by mass is preferable, and a resin of 40% by mass or less is more preferable.
- the starting terpenes are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include monoterpene hydrocarbons such as ⁇ -pinene and limonene. Among these, those containing ⁇ -pinene are preferable, and ⁇ -pinene is more preferable.
- the rosin resin is not particularly limited and can be appropriately selected depending on the purpose.
- the rosin resin include natural resin rosins such as gum rosin, tall oil resin, and wood rosin contained in raw pine crabs and tall oil; modified rosins; rosin derivatives and the like.
- modified rosin derivatives include polymerized rosin, partially hydrogenated rosin; glycerin ester rosin, partially hydrogenated rosin and fully hydrogenated rosin; pentaerythritol ester rosin, partially hydrogenated rosin and fully hydrogenated rosin. .
- the dicyclopentadiene resin can be obtained by polymerizing dicyclopentadiene using a Friedel-Crafts type catalyst such as AlCl 3 or BF 3 .
- a Friedel-Crafts type catalyst such as AlCl 3 or BF 3 .
- Specific examples of commercially available dicyclopentadiene resins include quinton 1920 (manufactured by Nippon Zeon Co., Ltd.), quinton 1105 (manufactured by Nippon Zeon Co., Ltd.), Marcaretz M-890A (manufactured by Maruzen Petrochemical Co., Ltd.), and the like.
- alkylphenol-based resin there is no restriction
- alkylphenol-based resin include alkylphenol-acetylene resins such as p-tert-butylphenol-acetylene resin and low-polymerization alkylphenol-formaldehyde resins.
- the filler (C) contains at least silica, and if necessary, carbon black, aluminum oxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, water Including components such as magnesium oxide, calcium carbonate, magnesium oxide, titanium oxide, potassium titanate, and barium sulfate.
- silica is contained in the filler (C)
- reinforcement and low loss can be imparted.
- the compounding amount of the filler (C) is not particularly limited as long as it is 20 to 120 parts by mass with respect to 100 parts by mass of the rubber component (A), and can be appropriately adjusted according to the purpose.
- the blending amount of the filler (C) is 20 to 120 parts by mass, the reinforcing effect can be exhibited without impairing the properties such as flexibility of the rubber component.
- the blending amount of the filler (C) is preferably 50 to 100 parts by mass with respect to 100 parts by mass of the rubber component (A). Within this range, it is advantageous in that the flexibility of the rubber component can be maintained in addition to low loss and wet grip properties.
- silica contained in a filler (C), According to the objective, it can select suitably.
- silica include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, and aluminum silicate. These may be used individually by 1 type and may use 2 or more types together. Among these, wet silica is advantageous in that wet grip performance can be improved.
- the compounding amount of silica may be within the range of the compounding amount of the filler (C), and can be appropriately adjusted according to the purpose.
- the total amount of the filler (C) is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, and particularly preferably 90 to 100% by mass.
- silica is preferably 90% by mass or more based on the total of carbon black and silica.
- Compound (D) is at least one compound selected from guanidines, sulfenamides, thiazoles, thiourea and diethylthiourea.
- the compounding amount of the compound (D) is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component (A), for example. By being in this range, vulcanization becomes appropriate.
- guanidines Use of guanidines as the compound (D) is advantageous in that the activity of the silane coupling agent (E) can be increased.
- Guanidines are not particularly limited and may be appropriately selected depending on the purpose. Examples of guanidines include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3-di- o-Cumenylguanidine, 1,3-di-o-biphenylguanidine, 1,3-di-o-cumenyl-2-propionylguanidine and the like can be mentioned.
- 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, and 1-o-tolylbiguanide are preferable, and 1,3-diphenylguanidine is more preferable because of high reactivity.
- sulfenamides Use of sulfenamides as the compound (D) is advantageous in that the activity of the silane coupling agent (E) can be increased. There is no restriction
- sulfenamides include N-cyclohexyl-2-benzothiazolylsulfenamide, N, N-dicyclohexyl-2-benzothiazolylsulfenamide, N-tert-butyl-2-benzothiazolylsulfen Amides, N-oxydiethylene-2-benzothiazolylsulfenamide, N-methyl-2-benzothiazolylsulfenamide, N-ethyl-2-benzothiazolylsulfenamide, N-propyl-2-benzothia Zolylsulfenamide, N-butyl-2-benzothiazolylsulfenamide, N-pentyl-2-benzothiazolylsulfenamide, N-hexyl-2-benzothiazolylsulfenamide, N-octyl-2- Benzothiazolylsulfenamide, N-2-ethylhexyl-2-be Zothi
- N- distearyl-2-benzothiazolyl sulfenamide and the like may be used alone or in combination of two or more.
- N-cyclohexyl-2-benzothiazolylsulfenamide and N-tert-butyl-2-benzothiazolylsulfenamide are preferable because of high reactivity.
- thiazoles Use of thiazoles as the compound (D) is advantageous in that the activity of the silane coupling agent (E) can be increased. There is no restriction
- thiazoles examples include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, zinc salt of 2-mercaptobenzothiazole, cyclohexylamine salt of 2-mercaptobenzothiazole, 2- (N, N-diethyl) Thiocarbamoylthio) benzothiazole, 2- ( 4′ -morpholinodithio) benzothiazole, 4-methyl-2-mercaptobenzothiazole, di- (4-methyl-2-benzothiazolyl) disulfide, 5-chloro-2-mercaptobenzo Thiazole, 2-mercaptobenzothiazole sodium, 2-mercapto-6-nitrobenzothiazole, 2-mercapto-naphtho [1,2-d] thiazole, 2-mercapto-5-methoxybenzothiazole, 6-amino-2-mercapto Benzothiazo And the like. These may be used alone or in combination of two or more. Among these, 2-
- Thiourea is a compound represented by NH 2 CSNH 2 .
- Use of thiourea as the compound (D) is advantageous in that the dispersibility of the filler (C) can be improved.
- Diethylthiourea is a compound represented by C 2 H 5 NHCSNHC 2 H 5 .
- Use of diethylthiourea as the compound (D) is advantageous in that the dispersibility of the filler (C) can be improved.
- silane coupling agent (E) There is no restriction
- the silane coupling agent (E) include a compound represented by the following general formula (E1) and a compound represented by the following general formula (E2).
- a silane coupling agent (E) may be used individually by 1 type, and may use 2 or more types together. By using the silane coupling agent (E), it is possible to obtain a pneumatic tire with further improved workability during rubber processing and better wear resistance.
- R 101 O 3-p (R 102 ) p Si—R 103 —S a —R 103 —Si (OR 101 ) 3-r (R 102 ) r (E1)
- R 101 O 3-p (R 102 ) p Si—R 103 —S a —R 103 —Si
- OR 101 3-r (R 102 ) r (E1)
- R 101 O when there are a plurality of R 101 s , they may be the same or different, and each of them is a straight chain having 1 to 8 carbon atoms, a cyclic or branched alkyl group, and a straight chain having 2 to 8 carbon atoms.
- a branched alkoxyalkyl group or a hydrogen atom when there are a plurality of R 102 s , they may be the same or different and each is a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms; 103 may be the same or different when there are a plurality, and each is a linear or branched alkylene group having 1 to 8 carbon atoms, a is an average value of 2 to 6, and p and r may be the same They may be different, each having an average value of 0 to 3, provided that both p and r are not 3) (R 104 O) 3-s (R 105) s Si-R 106 -S k -R 107 -S k -R 106 -Si (OR 104) 3-t (R 105) t ⁇ (E2) (In the general formula (E2), when there are a plurality of R 104 s , they may be the same or different, each having a straight chain of
- R 105 a branched alkoxyalkyl group or a hydrogen atom
- R 105 when there are a plurality of R 105 s , they may be the same or different and each is a straight-chain, cyclic or branched alkyl group having 1 to 8 carbon atoms;
- R 107 is a group represented by the general formula (—S—R 108 —S—), ( -R 109 -S m1 -R 110 -) and (-R 111 -S m2 -R 112 -S m3 -R 113 - divalent radical) is selected from the group consisting of (R 108 ⁇ R 113 are each carbon A divalent hydrocarbon group of 1 to 20 , A divalent aromatic group, or a divalent organic group containing a heteroatom other than sulfur and oxygen, and m1,
- Examples of the compound of the general formula (E1) include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (3-methyldimethoxysilylpropyl) tetrasulfide, bis ( 2-triethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (3-methyldimethoxysilylpropyl) disulfide, bis (2-triethoxysilyl) Ethyl) disulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-methyldimethoxysilylpropyl) trisulfide, bis (2-triethoxy) Ry
- Examples of the compound of the general formula (E2) include an average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 10 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 3 — (CH 2 ) 6 —S 3 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 4 — (CH 2 ) 6 —S 4 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , CH 3 CH 2 O) 3 Si-
- the amount of the silane coupling agent (E) is not particularly limited as long as it is 2 parts by mass or more with respect to 100 parts by mass of the rubber component (A), and can be appropriately adjusted according to the purpose.
- the compounding amount of the silane coupling agent (E) is preferably 2 to 20 parts by mass and more preferably 4 to 12 parts by mass with respect to 100 parts by mass of the rubber component (A). This range is advantageous in that the reactivity with silica is improved.
- the blending amount of the silane coupling agent (E) / the blending amount of the filler (C) is preferably 0.01 to 0.20, more preferably 0.03 to 0.20, and 0.04 to 0.10. Is particularly preferred. Within this range, the production cost of the rubber composition can be reduced while improving the low loss property.
- vulcanizing agent (F) There is no restriction
- the vulcanizing agent (F) include sulfur.
- the compounding amount of the vulcanizing agent (F) is preferably 0.1 to 2.0 parts by mass, more preferably 1.0 to 2.0 parts by mass with respect to 100 parts by mass of the rubber component (A). 2 to 1.8 parts by mass are particularly preferred.
- the tire according to the present invention is characterized in that the rubber composition obtained by the above-described manufacturing method is used for a tread rubber.
- the tire of the present invention is a tire that achieves both low loss and wet grip properties.
- the tire manufacturing method according to the present invention is not particularly limited except that the rubber composition obtained by the above-described manufacturing method is used for the tread rubber, and a known tire manufacturing method can be used. For example, it can be produced by molding a green tire using the rubber composition obtained by the above-described production method as a tread rubber and vulcanizing the green tire.
- Examples 1 to 13 and Comparative Examples 1 and 2 A rubber composition was prepared by the blending and kneading methods shown in Table 1. The maximum temperature of the mixture in the first kneading stage was adjusted to 150 ° C. in all cases. A second kneading stage was performed after the first kneading stage. Kneading was carried out using a Banbury mixer.
- the present invention it is possible to provide a method for producing a rubber composition that can achieve both low loss and wet grip properties. Moreover, according to the present invention, it is possible to provide a tire that achieves both low loss and wet grip properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本発明に係るゴム組成物の製造方法は、ゴム組成物を混練する混練工程を含む、ゴム組成物の製造方法であって、ゴム組成物が、ガラス転移温度(Tg)が-50℃以下である変性SBRを20質量%以上含む、ゴム成分(A);シリカを含む充填剤(C)をゴム成分100質量部に対して20~120質量部;グアニジン類、スルフェンアミド類、チアゾール類、チオウレアおよびジエチルチオウレアの中から選ばれる少なくとも1種の化合物(D);シランカップリング剤(E);ならびに加硫剤(F);を含み、混練工程が、ゴム成分(A)、充填剤(C)、化合物(D)の一部または全部、ゴム成分100質量部に対して2質量部以上のシランカップリング剤(E)、を混練する第1の混練段階と、第1の混練段階の後に、第1の混練段階における混練によって調製された混練物と加硫剤(F)とを混練する第2の混練段階を含むことを特徴とする。これにより、低ロス性およびウェットグリップ性を両立することができるゴム組成物を製造することができる。
混練工程は、少なくとも、第1の混練段階と、第2の混練段階とを含み、さらに必要に応じて第3の混練段階を第1の混練段階と第2の混練段階との間に含む。すなわち、第3の混練段階を行う場合、混練段階の順序は、第1、第3、第2の混練段階の順である。
第1の混練段階では、ゴム成分(A)、充填剤(C)、化合物(D)の一部または全部、ゴム成分100質量部に対して2質量部以上のシランカップリング剤(E)を含む混合物を混練する。この混練により、混練物(予備組成物)を調製する。第1の混練段階で調製される混練物(予備組成物)は、加硫剤(F)を含まない。
第2の混練段階は、第1の混練段階の後に、第1の混練段階における混練によって調製された混練物(予備組成物)と加硫剤(F)とを混練する段階である。この混練により、ゴム組成物を調製する。前記第2の混練段階において、化合物(D)をさらに添加してもよい。
第1の混練段階と、第2の混練段階との間に、必要に応じて、第3の混練段階を更に含んでもよい。第3の混練段階では、第1の混練段階で調製された混練物(予備組成物)を更に混練する段階である。第3の混練段階は、複数回行ってもよい。ただし、第3の混練段階では、加硫剤(F)を添加しない。
本発明に係るゴム組成物の製造方法によって製造されるゴム組成物は、ガラス転移温度(Tg)が-50℃以下である変性SBRを20質量%以上含む、ゴム成分(A);シリカを含む充填剤(C)をゴム成分100質量部に対して20~120質量部;グアニジン類、スルフェンアミド類、チアゾール類、チオウレアおよびジエチルチオウレアの中から選ばれる少なくとも1種の化合物(D);シランカップリング剤(E);ならびに加硫剤(F);を含む。
ゴム組成物に含まれるゴム成分(A)は、ガラス転移温度(Tg)が-50℃以下である変性SBRをゴム成分(A)の総量に対して20質量%以上含み、必要に応じて、第2のポリマーなどその他のゴム成分を含む。
変性SBRを用いることにより、後述する化合物(D)を使用してもゴム組成物の0℃のtanδの低下を抑制し、低ロス性およびウェットグリップ性を両立することができるゴム組成物を製造することができる。
R1 a-Si-(OR2)4-a ・・・ (I)
一般式(I)中、R1およびR2は、それぞれ独立に炭素数1~20の一価の脂肪族炭化水素基または炭素数6~18の一価の芳香族炭化水素基を示し、aは0~2の整数であり、OR2が複数ある場合、各OR2は互いに同一でも異なっていてもよく、また分子中には活性プロトンは含まれない。
第2のポリマーは、特に限定されず、公知のゴムポリマーから適宜選択することができる。
ゴム成分(A)は、変性SBR、第2のポリマーの他、さらに変性SBRおよび第2のポリマーとは異なるその他のゴム成分を含んでいてもよい。その他のゴム成分としては、例えば、第2のポリマーで挙げたものを用いることができる。その他のゴム成分のポリマーは、未変性(共)重合体でもよいし、変性(共)重合体でもよい。
熱可塑性樹脂(B)は、C5系樹脂、C5~C9系樹脂、C9系樹脂、テルペン系樹脂、テルペン-芳香族化合物系樹脂、ロジン系樹脂、ジシクロペンタジエン樹脂およびアルキルフェノール系樹脂の中から選ばれる少なくとも1種である。ゴム組成物が一定量の熱可塑性樹脂(B)を含むことで、ゴムのTgが高くなり、0℃での損失正接(tanδ)が向上するため、タイヤのウェットグリップ性を向上させることができる。
C5系樹脂は、C5系合成石油樹脂を指し、C5留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。例えば、イソプレン、シクロペンタジエン、1,3-ペンタジエンおよび1-ペンテンなどを主成分とする共重合体、2-ペンテンとジシクロペンタジエンとの共重合体、1,3-ペンタジエンを主体とする重合体などが挙げられる。
C5~C9系樹脂は、C5~C9系合成石油樹脂を指し、C5~C11留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。例えば、スチレン、ビニルトルエン、α-メチルスチレン、インデン等を主成分とする共重合体などが挙げられる。これらの中でも、C9以上の成分の少ないC5~C9系樹脂は、ゴム成分(A)との相溶性が優れる点で好ましい。具体的には、C5~C9系樹脂におけるC9以上の成分の割合が50質量%未満の樹脂が好ましく、40質量%以下の樹脂がより好ましい。
C9系樹脂は、C9系合成石油樹脂を指し、C9留分をAlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。例えば、インデン、メチルインデン、α-メチルスチレン、ビニルトルエン等を主成分とする共重合体などが挙げられる。
テルペン系樹脂は、松属の木からロジンを得る際に同時に得られるテレビン油またはこれから分離した重合成分を配合し、フリーデルクラフツ型触媒を用いて重合して得ることができる。例えば、β-ピネン樹脂、α-ピネン樹脂などが挙げられる。
テルペン-芳香族化合物系樹脂は、テルペン類と種々のフェノール類とを、フリーデルクラフツ型触媒を用いて反応させる、あるいはさらにホルマリンで縮合することで得ることができる。例えば、テルペン-フェノール樹脂などが挙げられる。テルペン-フェノール樹脂のなかでも、テルペン-フェノール樹脂中のフェノール成分が50質量%未満の樹脂が好ましく、40質量%以下の樹脂がより好ましい。原料のテルペン類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、α-ピネン、リモネン等のモノテルペン炭化水素などが挙げられる。これらの中でも、α-ピネンを含むものが好ましく、α-ピネンがより好ましい。
ロジン系樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。ロジン系樹脂としては、例えば、生松ヤニやトール油に含まれるガムロジン、トール油レジン、ウッドロジン等の天然樹脂ロジン;変性ロジン;ロジン誘導体などが挙げられる。変性ロジン誘導体は、例えば、重合ロジン、その部分水添ロジン;グリセリンエステルロジン、その部分水添ロジンや完全水添ロジン;ペンタエリスリトールエステルロジン、その部分水添ロジンや完全水添ロジンなどが挙げられる。
ジシクロペンタジエン樹脂は、ジシクロペンタジエンを、AlCl3やBF3などのフリーデルクラフツ型触媒等を用いて重合して得ることができる。ジシクロペンタジエン樹脂の市販品の具体例としては、クイントン1920(日本ゼオン株式会社製)、クイントン1105(日本ゼオン株式会社製)、マルカレッツM-890A(丸善石油化学社製)などが挙げられる。
アルキルフェノール系樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。アルキルフェノール系樹脂としては、例えば、p-tert-ブチルフェノール-アセチレン樹脂等のアルキルフェノール-アセチレン樹脂、低重合度のアルキルフェノール-ホルムアルデヒド樹脂などが挙げられる。
本発明において、充填剤(C)は、少なくともシリカを含み、必要に応じて、カーボンブラック、酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム等の成分を含む。充填剤(C)にシリカが含まれると、補強性と低ロス性とを付与することができる。
充填剤(C)に含まれるシリカとしては、特に制限はなく、目的に応じて適宜選択することができる。シリカとしては、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウムなどが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、湿式シリカは、ウェットグリップ性能を向上させることができる点で有利である。
化合物(D)は、グアニジン類、スルフェンアミド類、チアゾール類、チオウレアおよびジエチルチオウレアの中から選ばれる少なくとも1種の化合物である。
化合物(D)としてグアニジン類を用いると、シランカップリング剤(E)の活性を高めることができる点で有利である。グアニジン類としては、特に制限はなく、目的に応じて適宜選択することができる。グアニジン類としては、例えば、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。これらの中でも、反応性が高い点で、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニドが好ましく、1,3-ジフェニルグアニジンがより好ましい。
化合物(D)としてスルフェンアミド類を用いると、シランカップリング剤(E)の活性を高めることができる点で有利である。スルフェンアミド類としては、特に制限はなく、目的に応じて適宜選択することができる。スルフェンアミド類としては、例えば、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド、N-メチル-2-ベンゾチアゾリルスルフェンアミド、N-エチル-2-ベンゾチアゾリルスルフェンアミド、N-プロピル-2-ベンゾチアゾリルスルフェンアミド、N-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-ペンチル-2-ベンゾチアゾリルスルフェンアミド、N-ヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-オクチル-2-ベンゾチアゾリルスルフェンアミド、N-2-エチルヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-デシル-2-ベンゾチアゾリルスルフェンアミド、N-ドデシル-2-ベンゾチアゾリルスルフェンアミド、N-ステアリル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジメチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジエチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジプロピル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジブチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジペンチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジヘキシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジオクチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジ-2-エチルヘキシルベンゾチアゾリルスルフェンアミド、N,N-ジドデシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジステアリル-2-ベンゾチアゾリルスルフェンアミドなどが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。これらの中でも、反応性が高い点で、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミドが好ましい。
化合物(D)としてチアゾール類を用いると、シランカップリング剤(E)の活性を高めることができる点で有利である。チアゾール類としては、特に制限はなく、目的に応じて適宜選択することができる。チアゾール類としては、例えば、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾールの亜鉛塩、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩、2-(N,N-ジエチルチオカルバモイルチオ)ベンゾチアゾール、2-(4´-モルホリノジチオ)ベンゾチアゾール、4-メチル-2-メルカプトベンゾチアゾール、ジ-(4-メチル-2-ベンゾチアゾリル)ジスルフィド、5-クロロ-2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾールナトリウム、2-メルカプト-6-ニトロベンゾチアゾール、2-メルカプト-ナフト[1,2-d]チアゾール、2-メルカプト-5-メトキシベンゾチアゾール、6-アミノ-2-メルカプトベンゾチアゾールなどが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。これらの中でも、反応性が高い点で、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィドが好ましい。
チオウレアは、NH2CSNH2で表される化合物である。化合物(D)としてチオウレアを用いると、充填剤(C)の分散性を高めることができる点で有利である。
ジエチルチオウレアは、C2H5NHCSNHC2H5で表される化合物である。化合物(D)としてジエチルチオウレアを用いると、充填剤(C)の分散性を高めることができる点で有利である。
シランカップリング剤(E)としては、特に制限はなく、目的に応じて適宜選択することができる。シランカップリング剤(E)としては、例えば、下記の一般式(E1)で表わされる化合物、下記の一般式(E2)で表わされる化合物などが挙げられる。シランカップリング剤(E)は1種単独で用いてもよく、2種以上を併用してもよい。シランカップリング剤(E)を用いることによって、ゴム加工時の作業性が更に優れると共に、耐摩耗性がより良好な空気入りタイヤを得ることができる。
(R101O)3-p(R102)pSi-R103-Sa-R103-Si(OR101)3-r(R102)r ・・・(E1)
(一般式(E1)中、R101は複数ある場合には同一でも異なっていてもよく、各々炭素数1~8の直鎖、環状もしくは分枝のアルキル基、炭素数2~8の直鎖もしくは分枝のアルコキシアルキル基または水素原子であり、R102は複数ある場合には同一でも異なっていてもよく、各々炭素数1~8の直鎖、環状もしくは分枝のアルキル基であり、R103は複数ある場合には同一でも異なっていてもよく、各々炭素数1~8の直鎖もしくは分枝のアルキレン基である。aは平均値として2~6であり、pおよびrは同一でも異なっていてもよく、各々平均値として0~3である。但し、pおよびrの両方が3であることはない)
(R104O)3-s(R105)sSi-R106-Sk-R107-Sk-R106-Si(OR104)3-t(R105)t ・・・(E2)
(一般式(E2)中、R104は複数ある場合には同一でも異なっていてもよく、各々炭素数1~8の直鎖、環状もしくは分枝のアルキル基、炭素数2~8の直鎖もしくは分枝のアルコキシアルキル基または水素原子であり、R105は複数ある場合には同一でも異なっていてもよく、各々炭素数1~8の直鎖、環状もしくは分枝のアルキル基であり、R106は複数ある場合には同一でも異なっていてもよく、各々炭素数1~8の直鎖もしくは分枝のアルキレン基である。R107は一般式(-S-R108-S-)、(-R109-Sm1-R110-)および(-R111-Sm2-R112-Sm3-R113-)からなる群より選択される二価の基(R108~R113は各々炭素数1~20の二価の炭化水素基、二価の芳香族基、または硫黄および酸素以外のヘテロ原子を含む二価の有機基であり、m1、m2およびm3は同一でも異なっていてもよく、各々平均値として1以上4未満である)であり、複数あるkは同一でも異なっていてもよく、各々平均値として1~6であり、sおよびtは各々平均値として0~3である。但し、sおよびtの両方が3であることはない)
加硫剤(F)としては、特に制限はなく、公知の加硫剤から目的に応じて適宜選択することができる。加硫剤(F)としては、例えば、硫黄などが挙げられる。
ゴム組成物に含まれるその他の成分としては、上述した成分の他に、ゴム工業界で通常使用される配合剤、例えば、老化防止剤、加硫促進助剤、有機酸化合物等を適宜選択して配合することができる。これら配合剤としては、市販品を好適に使用することができる。
本発明に係るタイヤは、上述した製造方法によって得られたゴム組成物をトレッドゴムに用いたことを特徴とする。本発明のタイヤは、低ロス性およびウェットグリップ性を両立させたタイヤである。
(ゴム成分A)
第2のポリマー:天然ゴム(NR)、RSS#3、Tg2=-73℃
変性剤:N,N-ビス(トリメチルシリル)-3-[ジエトキシ(メチル)シリル]プロピルアミン、一般式(IV)のヒドロカルビルオキシシラン化合物に相当
(熱可塑性樹脂B)
C9系樹脂:JX日鉱日石エネルギー株式会社製の商品名日石ネオポリマー140
ジシクロペンタジエン樹脂(DCPD):日本ゼオン株式会社製の商品名クイントン1105
C5~C9系樹脂:エクソンモービルケミカル社製の商品名ECR213
C5系樹脂:エクソンモービルケミカル社製の商品名エスコレッツ(登録商標)1102B
(充填剤C)
シリカ:東ソー・シリカ株式会社製の商品名NipSil AQ
(化合物D)
グアニジン:1,3-ジフェニルグアニジン(DPG)、三新化学工業株式会社製の商品名サンセラーD
スルフェンアミド:N-(tert-ブチル)-2-ベンゾチアゾールスルフェンアミド、三新化学工業株式会社製の商品名サンセラーNS-G
チアゾール:ジ-2-ベンゾチアゾリルジスルフィド、大内新興化学工業株式会社製の商品名ノクセラーDM
(シランカップリング剤E)
シランカップリング剤:ビス(3-トリエトキシシリルプロピル)ジスルフィド、エボニックデグッサ社製の商品名Si75
乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液およびスチレンのシクロヘキサン溶液を、1,3-ブタジエン67.5gおよびスチレン7.5gになるように加え、2,2-ジテトラヒドロフリルプロパン0.6mmolを加え、0.8mmolのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率がほぼ100%となった重合反応系に対し、変性剤を0.72mmol添加し、50℃で30分間変性反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液2mLを加えて反応を停止させ、常法に従い乾燥して変性SBRを得た。得られた変性SBRのミクロ構造を測定した結果、結合スチレン量が10質量%、ブタジエン部分のビニル結合量が40%、ピーク分子量が200,000であった。
重合反応までを行い、変性反応を行わなかったこと以外は、変性SBRの重合反応と同様にして、未変性SBRを得た。得られた未変性SBRのミクロ構造を測定した結果、結合スチレン量が10質量%、ブタジエン部分のビニル結合量が40%、ピーク分子量が200,000であった。
表1に示す配合および混練方法により、ゴム組成物を調製した。第1の混練段階における混合物の最高温度は、いずれも150℃となるように調整した。第1の混練段階の後に第2の混練段階を行った。混練りは、バンバリミキサーを用いて混練した。
(1)低ロス性(tanδ)
(2)ウェットグリップ性
(1)低ロス性(60℃tanδ指数)
各ゴム組成物について、損失正接(tanδ)を、粘弾性測定装置(レオメトリックス社製)を用いて、温度50℃、歪み5%、周波数15Hzの条件で測定した。得られたtanδの値は、比較例1の値を100として、指数表示した。指数値が大きいほど低ロス性に優れる。
得られたゴム組成物を145℃で33分間加硫して得られた加硫ゴムを用いて、ブリティッシュ・ポータブル・スキッド・テスターを用いて、湿潤コンクリート路面に対する試験片(加硫ゴム)の抵抗値を測定した。評価結果は、比較例1の値を100として、指数表示した。数値が大きいほど、ウェットグリップ性に優れる。
Claims (10)
- ゴム組成物を混練する混練工程を含む、ゴム組成物の製造方法であって、
前記ゴム組成物が、ガラス転移温度(Tg)が-50℃以下である変性スチレン-ブタジエン共重合体ゴムを20質量%以上含む、ゴム成分(A);シリカを含む充填剤(C)を前記ゴム成分100質量部に対して20~120質量部;グアニジン類、スルフェンアミド類、チアゾール類、チオウレアおよびジエチルチオウレアの中から選ばれる少なくとも1種の化合物(D);シランカップリング剤(E);ならびに加硫剤(F);を含み、
前記混練工程が、
前記ゴム成分(A)、前記充填剤(C)、前記化合物(D)の一部または全部、前記ゴム成分100質量部に対して2質量部以上の前記シランカップリング剤(E)、を混練する第1の混練段階と、
前記第1の混練段階の後に、前記第1の混練段階における混練によって調製された混練物と前記加硫剤(F)とを混練する第2の混練段階を含むことを特徴とする、ゴム組成物の製造方法。 - 前記ゴム成分(A)に含まれる全ての成分のガラス転移温度が、-50℃以下である、請求項1に記載のゴム組成物の製造方法。
- 前記第1の混練段階において、前記ゴム成分100質量部に対して、C5系樹脂、C5~C9系樹脂、C9系樹脂、テルペン系樹脂、テルペン-芳香族化合物系樹脂、ロジン系樹脂、ジシクロペンタジエン樹脂およびアルキルフェノール系樹脂の中から選ばれる少なくとも1種の熱可塑性樹脂(B)を5~50質量部含む、請求項1または2に記載のゴム組成物の製造方法。
- 前記ゴム成分が、前記変性スチレン-ブタジエン共重合体ゴムと異なる第2のポリマーをさらに含み、変性スチレン-ブタジエン共重合体ゴムのガラス転移温度Tg1と、第2のポリマーのガラス転移温度Tg2が、0<|Tg1-Tg2|≦20の関係を満たし、前記変性スチレン-ブタジエン共重合体ゴムと第2のポリマーは、互いにサブミクロンオーダーで相分離している、請求項1~3のいずれか1項に記載のゴム組成物の製造方法。
- 前記変性スチレン-ブタジエン共重合体ゴムの相のドメイン幅が、200nm以下である、請求項4に記載のゴム組成物の製造方法。
- 前記変性スチレン-ブタジエン共重合体ゴムの相に存在する充填剤(C)の平均凝集塊面積が、2100nm2以下である、請求項4または5に記載のゴム組成物の製造方法。
- 前記変性スチレン-ブタジエン共重合体ゴムが、下記一般式(IV):
下記一般式(V):
- 前記充填剤(C)中のシリカの含有量が50~100質量%である、請求項1~7のいずれか1項に記載のゴム組成物の製造方法。
- 前記充填剤(C)中のシリカの含有量が90質量%以上である、請求項8に記載のゴム組成物の製造方法。
- 請求項1~9のいずれか1項に記載の製造方法によって得られたゴム組成物をトレッドゴムに用いたことを特徴とする、タイヤ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017548643A JP6802179B2 (ja) | 2015-11-05 | 2016-11-02 | ゴム組成物の製造方法およびタイヤ |
US15/770,867 US20180304685A1 (en) | 2015-11-05 | 2016-11-02 | Method for producing rubber composition and tire |
EP16861785.0A EP3372629A4 (en) | 2015-11-05 | 2016-11-02 | Rubber composition production method and tire |
CN201680064669.4A CN108350184A (zh) | 2015-11-05 | 2016-11-02 | 橡胶组合物的制造方法和轮胎 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015217925 | 2015-11-05 | ||
JP2015-217925 | 2015-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017077713A1 true WO2017077713A1 (ja) | 2017-05-11 |
Family
ID=58661769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004804 WO2017077713A1 (ja) | 2015-11-05 | 2016-11-02 | ゴム組成物の製造方法およびタイヤ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180304685A1 (ja) |
EP (1) | EP3372629A4 (ja) |
JP (1) | JP6802179B2 (ja) |
CN (1) | CN108350184A (ja) |
WO (1) | WO2017077713A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019088210A1 (ja) * | 2017-10-31 | 2020-11-19 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
JP2021523959A (ja) * | 2018-05-04 | 2021-09-09 | ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー | タイヤトレッドゴム組成物 |
JP7168029B1 (ja) | 2021-05-12 | 2022-11-09 | 横浜ゴム株式会社 | タイヤ用ゴム組成物 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109790331A (zh) * | 2016-09-26 | 2019-05-21 | 株式会社普利司通 | 橡胶组合物和轮胎 |
CN113748027B (zh) * | 2019-04-18 | 2023-06-09 | 米其林集团总公司 | 具有改进的滚动阻力和磨损的轮胎胎面 |
JP7453877B2 (ja) * | 2020-08-07 | 2024-03-21 | 旭化成株式会社 | 共役ジエン系重合体組成物 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6250349A (ja) * | 1985-08-30 | 1987-03-05 | Nippon Erasutomaa Kk | 改善されたタイヤ用共役ジエン系ゴム組成物 |
JPH10237224A (ja) * | 1996-12-21 | 1998-09-08 | Continental Ag | 自動車用タイヤトレッドのためのゴム混合物 |
JP2001131343A (ja) * | 1999-11-08 | 2001-05-15 | Bridgestone Corp | ゴム組成物及びそれを用いた空気入りタイヤ |
JP2002146101A (ja) * | 2000-11-16 | 2002-05-22 | Bridgestone Corp | ゴム組成物およびこれをトレッドに使用した重荷重用タイヤ |
JP2005171034A (ja) * | 2003-12-10 | 2005-06-30 | Bridgestone Corp | ゴム組成物及びそれを用いた乗用車用タイヤ |
JP2010254740A (ja) * | 2009-04-21 | 2010-11-11 | Bridgestone Corp | ゴム組成物及びそれを用いた空気入りタイヤ |
WO2012043855A1 (ja) * | 2010-10-01 | 2012-04-05 | 株式会社ブリヂストン | ゴム組成物の製造方法 |
WO2013077018A1 (ja) * | 2011-11-24 | 2013-05-30 | 住友ゴム工業株式会社 | ゴム組成物及び空気入りタイヤ |
WO2013099822A1 (ja) | 2011-12-26 | 2013-07-04 | 株式会社ブリヂストン | ゴム組成物の製造方法 |
JP2013536268A (ja) * | 2010-07-07 | 2013-09-19 | コンティネンタル・ライフェン・ドイチュラント・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | ゴム混合物 |
JP2014196407A (ja) * | 2013-03-29 | 2014-10-16 | 株式会社ブリヂストン | ゴム組成物及びゴム組成物の製造方法 |
JP2014205842A (ja) * | 2014-05-29 | 2014-10-30 | 株式会社ブリヂストン | タイヤ |
JP2014210901A (ja) * | 2013-04-22 | 2014-11-13 | 株式会社ブリヂストン | ゴム組成物の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4883172B2 (ja) * | 2009-12-10 | 2012-02-22 | 横浜ゴム株式会社 | タイヤ用ゴム組成物 |
RU2630800C2 (ru) * | 2012-06-30 | 2017-09-13 | Бриджстоун Корпорейшн | Резиновая смесь для протекторов шин |
JP6018207B2 (ja) * | 2012-08-03 | 2016-11-02 | 住友ゴム工業株式会社 | トレッド用ゴム組成物及び空気入りタイヤ |
JP2016169268A (ja) * | 2015-03-11 | 2016-09-23 | 株式会社ブリヂストン | タイヤ用ゴム組成物の製造方法 |
-
2016
- 2016-11-02 WO PCT/JP2016/004804 patent/WO2017077713A1/ja active Application Filing
- 2016-11-02 US US15/770,867 patent/US20180304685A1/en not_active Abandoned
- 2016-11-02 JP JP2017548643A patent/JP6802179B2/ja active Active
- 2016-11-02 CN CN201680064669.4A patent/CN108350184A/zh active Pending
- 2016-11-02 EP EP16861785.0A patent/EP3372629A4/en not_active Withdrawn
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6250349A (ja) * | 1985-08-30 | 1987-03-05 | Nippon Erasutomaa Kk | 改善されたタイヤ用共役ジエン系ゴム組成物 |
JPH10237224A (ja) * | 1996-12-21 | 1998-09-08 | Continental Ag | 自動車用タイヤトレッドのためのゴム混合物 |
JP2001131343A (ja) * | 1999-11-08 | 2001-05-15 | Bridgestone Corp | ゴム組成物及びそれを用いた空気入りタイヤ |
JP2002146101A (ja) * | 2000-11-16 | 2002-05-22 | Bridgestone Corp | ゴム組成物およびこれをトレッドに使用した重荷重用タイヤ |
JP2005171034A (ja) * | 2003-12-10 | 2005-06-30 | Bridgestone Corp | ゴム組成物及びそれを用いた乗用車用タイヤ |
JP2010254740A (ja) * | 2009-04-21 | 2010-11-11 | Bridgestone Corp | ゴム組成物及びそれを用いた空気入りタイヤ |
JP2013536268A (ja) * | 2010-07-07 | 2013-09-19 | コンティネンタル・ライフェン・ドイチュラント・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | ゴム混合物 |
WO2012043855A1 (ja) * | 2010-10-01 | 2012-04-05 | 株式会社ブリヂストン | ゴム組成物の製造方法 |
WO2013077018A1 (ja) * | 2011-11-24 | 2013-05-30 | 住友ゴム工業株式会社 | ゴム組成物及び空気入りタイヤ |
WO2013099822A1 (ja) | 2011-12-26 | 2013-07-04 | 株式会社ブリヂストン | ゴム組成物の製造方法 |
JP2014196407A (ja) * | 2013-03-29 | 2014-10-16 | 株式会社ブリヂストン | ゴム組成物及びゴム組成物の製造方法 |
JP2014210901A (ja) * | 2013-04-22 | 2014-11-13 | 株式会社ブリヂストン | ゴム組成物の製造方法 |
JP2014205842A (ja) * | 2014-05-29 | 2014-10-30 | 株式会社ブリヂストン | タイヤ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3372629A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019088210A1 (ja) * | 2017-10-31 | 2020-11-19 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
JP7125413B2 (ja) | 2017-10-31 | 2022-08-24 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
JP2021523959A (ja) * | 2018-05-04 | 2021-09-09 | ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー | タイヤトレッドゴム組成物 |
JP7168029B1 (ja) | 2021-05-12 | 2022-11-09 | 横浜ゴム株式会社 | タイヤ用ゴム組成物 |
WO2022239491A1 (ja) * | 2021-05-12 | 2022-11-17 | 横浜ゴム株式会社 | タイヤ用ゴム組成物 |
JP2022174896A (ja) * | 2021-05-12 | 2022-11-25 | 横浜ゴム株式会社 | タイヤ用ゴム組成物 |
Also Published As
Publication number | Publication date |
---|---|
JP6802179B2 (ja) | 2020-12-16 |
EP3372629A4 (en) | 2018-12-05 |
JPWO2017077713A1 (ja) | 2018-08-23 |
CN108350184A (zh) | 2018-07-31 |
US20180304685A1 (en) | 2018-10-25 |
EP3372629A1 (en) | 2018-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6934423B2 (ja) | ゴム組成物およびタイヤ | |
JP7055857B2 (ja) | ゴム組成物およびタイヤ | |
JP6802179B2 (ja) | ゴム組成物の製造方法およびタイヤ | |
JP5644838B2 (ja) | タイヤトレッド用ゴム組成物 | |
JP2019089911A (ja) | タイヤ用ゴム組成物およびタイヤ | |
JP6716497B2 (ja) | ゴム組成物及びタイヤ | |
JP2009191270A (ja) | シロキシ−イミン官能化ゴム重合体の製造方法およびタイヤ用ゴム組成物中でのその使用 | |
JP5831300B2 (ja) | タイヤトレッド用ゴム組成物 | |
JP6835401B2 (ja) | ゴム組成物及びタイヤ | |
WO2018186458A1 (ja) | ゴム組成物、ゴム組成物の製造方法及びタイヤ | |
US7572851B2 (en) | Process for preparing a silica rubber blend | |
JP7235747B2 (ja) | 硫黄架橋性ゴム混合物、ゴム混合物の加硫物、及び車両用タイヤ | |
JP2020094112A (ja) | ゴム組成物およびタイヤ | |
JP2016035053A (ja) | タイヤ用ゴム組成物 | |
JP2016030789A (ja) | 空気入りタイヤ | |
JP2019006845A (ja) | ゴム組成物およびこれを用いたタイヤ | |
JP2019006846A (ja) | ゴム組成物およびこれを用いたタイヤ | |
CN116209712A (zh) | 可交联橡胶混合物及充气车辆轮胎 | |
JP7103574B2 (ja) | ゴム組成物及びタイヤ | |
JP2011079997A (ja) | タイヤ用ゴム組成物及びスタッドレスタイヤ | |
JP6835400B2 (ja) | ゴム組成物及びタイヤ | |
WO2022124147A1 (ja) | ゴム組成物、ゴム組成物の製造方法及びタイヤ | |
WO2022249767A1 (ja) | タイヤ用ゴム組成物、トレッドゴム及びタイヤ | |
WO2024111599A1 (ja) | タイヤ用ゴム組成物、トレッドゴム及びタイヤ | |
WO2022249765A1 (ja) | タイヤ用ゴム組成物、トレッドゴム及びタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16861785 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017548643 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15770867 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016861785 Country of ref document: EP |