WO2017077662A1 - 感光性樹脂組成物、ドライフィルム、プリント配線板 - Google Patents

感光性樹脂組成物、ドライフィルム、プリント配線板 Download PDF

Info

Publication number
WO2017077662A1
WO2017077662A1 PCT/JP2016/000429 JP2016000429W WO2017077662A1 WO 2017077662 A1 WO2017077662 A1 WO 2017077662A1 JP 2016000429 W JP2016000429 W JP 2016000429W WO 2017077662 A1 WO2017077662 A1 WO 2017077662A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
carboxyl group
epoxy
group
Prior art date
Application number
PCT/JP2016/000429
Other languages
English (en)
French (fr)
Inventor
倫也 樋口
橋本 壯一
貴 荒井
浩信 川里
真司 稲葉
Original Assignee
互応化学工業株式会社
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015215708A external-priority patent/JP6172816B2/ja
Priority claimed from JP2015215709A external-priority patent/JP6140246B2/ja
Priority claimed from JP2015215706A external-priority patent/JP6082083B1/ja
Application filed by 互応化学工業株式会社, 新日鉄住金化学株式会社 filed Critical 互応化学工業株式会社
Priority to KR1020167030261A priority Critical patent/KR101799845B1/ko
Priority to CN201680001165.8A priority patent/CN106796396B/zh
Publication of WO2017077662A1 publication Critical patent/WO2017077662A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0385Macromolecular compounds which are rendered insoluble or differentially wettable using epoxidised novolak resin
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Definitions

  • the present invention relates to a photosensitive resin composition, a dry film, and a printed wiring board, and more specifically, for forming an electrically insulating layer such as a solder resist layer, a plating resist layer, an etching resist layer, and an interlayer insulating layer on the printed wiring board.
  • the present invention relates to a photosensitive resin composition suitable for the above.
  • an electrically insulating resin composition has been used to form electrically insulating layers such as a solder resist layer, a plating resist layer, an etching resist layer, and an interlayer insulating layer of a printed wiring board.
  • a resin composition is, for example, a photosensitive resin composition.
  • Japanese Patent No. 4508929 discloses the use of a carboxyl group-containing resin having a fluorene skeleton obtained by reacting fluorene epoxy (meth) acrylate with a polyvalent carboxylic acid or an anhydride thereof.
  • the developability of a photosensitive resin composition containing a carboxyl group-containing resin having a bisphenolfluorene skeleton is low, and using such a photosensitive resin composition, an electrical insulating property such as a solder resist layer or an interlayer insulating layer can be used. It was difficult to produce a layer with a sufficient thickness by a photolithography method. In addition, even if the heat resistance of the layer formed from the above-described photosensitive resin composition can be improved, cracks are generated in such a layer while the temperature change including the temperature increase and the temperature decrease is repeated. There was a case.
  • the object of the present invention is that, even when the photosensitive resin composition contains a carboxyl group-containing resin having a bisphenolfluorene skeleton, excellent developability can be obtained, and the temperature change is repeated in the cured product.
  • Photosensitive resin composition that can hardly cause cracks, dry film that is a dried product of the photosensitive resin composition, printed wiring board including a solder resist layer containing a cured product of the photosensitive resin composition, the photosensitive resin It is providing the printed wiring board provided with the interlayer insulation layer containing the hardened
  • a photosensitive resin composition includes a carboxyl group-containing resin (A), an unsaturated compound (B) having at least one ethylenically unsaturated bond in one molecule, a photopolymerization initiator ( C) and an epoxy compound (D), and the carboxyl group-containing resin (A) is represented by the following formula (1), in which R 1 to R 8 are each independently hydrogen, Reaction product of an acid anhydride and an intermediate that is a reaction product of an epoxy compound (a1) having an alkyl group having 1 to 5 carbon atoms or a halogenated bisphenolfluorene skeleton and an unsaturated group-containing carboxylic acid (a2) Containing a carboxyl group-containing resin (A1),
  • the epoxy compound (D) contains a crystalline epoxy resin and an amorphous epoxy resin, and the crystalline epoxy resin and the amorphous epoxy resin with respect to 1 equivalent of a carboxyl group contained in the carboxyl group-containing resin (A).
  • the dry film according to one embodiment of the present invention contains the photosensitive resin composition.
  • a printed wiring board according to an aspect of the present invention includes an interlayer insulating layer containing a cured product of the photosensitive resin composition.
  • a printed wiring board according to an aspect of the present invention includes a solder resist layer containing a cured product of the photosensitive resin composition.
  • FIGS. 1A to 1E are cross-sectional views illustrating steps of manufacturing a multilayer printed wiring board according to an embodiment of the present invention.
  • (meth) acryl means at least one of “acryl” and “methacryl”.
  • (meth) acrylate means at least one of acrylate and methacrylate.
  • the photosensitive resin composition according to this embodiment includes a carboxyl group-containing resin (A), an unsaturated compound (B) having at least one ethylenically unsaturated bond in one molecule, and a photopolymerization initiator (C). And an epoxy compound (D).
  • the carboxyl group-containing resin (A) contains a carboxyl group-containing resin (A1) having a bisphenolfluorene skeleton.
  • the carboxyl group-containing resin (A1) is, for example, a reaction product of an intermediate that is a reaction product of the epoxy compound (a1) and the unsaturated group-containing carboxylic acid (a2) and an acid anhydride.
  • Epoxy compound (a1) is represented by the following formula (1) wherein (1), R 1 ⁇ R 8 is independently hydrogen, alkyl or halogen having 1 to 5 carbon atoms, a bisphenol fluorene skeleton Have.
  • the carboxyl group-containing resin (A1) is synthesized by reacting the epoxy compound (a1) with the unsaturated group-containing carboxylic acid (a2), and reacting the resulting intermediate with an acid anhydride. .
  • Each of R 1 to R 8 in Formula (1) may be hydrogen, but may be an alkyl group having 1 to 5 carbon atoms or halogen. This is because even if hydrogen in the aromatic ring is substituted with a low molecular weight alkyl group or halogen, the physical properties of the carboxyl group-containing resin (A1) are not adversely affected, but rather the photosensitive resin composition containing the carboxyl group-containing resin (A1). This is because the heat resistance or flame retardancy of the cured product may be improved.
  • the carboxyl group-containing resin (A1) will be described more specifically.
  • the carboxyl group-containing resin (A1) first, at least a part of the epoxy group (see formula (2)) of the epoxy compound (a1) is reacted with the unsaturated group-containing carboxylic acid (a2).
  • the intermediate is then synthesized.
  • the intermediate has a structure (S3) represented by the following formula (3) generated by a ring-opening addition reaction between an epoxy group and an unsaturated group-containing carboxylic acid (a2). That is, the intermediate has a secondary hydroxyl group generated by a ring-opening addition reaction between an epoxy group and an unsaturated group-containing carboxylic acid (a2) in the structure (S3).
  • A is an unsaturated group-containing carboxylic acid residue.
  • carboxyl group-containing resin (A1) can be synthesized.
  • the acid anhydride may contain at least one of acid dianhydride (a3) and acid monoanhydride (a4).
  • the carboxyl group-containing resin (A1) has a bisphenolfluorene skeleton (S1) represented by the formula (1) and a structure (S4) represented by the following formula (4). And have.
  • the structure (S4) is generated by the reaction between the secondary hydroxyl group in the intermediate structure (S3) and the acid anhydride group in the acid monoanhydride (a4).
  • A is an unsaturated group-containing carboxylic acid residue
  • B is an acid monoanhydride residue.
  • the carboxyl group-containing resin (A1) has a bisphenolfluorene skeleton (S1) and a structure (S5) represented by the following formula (5).
  • Structure (S5) is generated by the reaction between two acid anhydride groups in acid dianhydride (a3) and two secondary hydroxyl groups in the intermediate. That is, the structure (S5) is generated by crosslinking the two secondary hydroxyl groups with the acid dianhydride (a3).
  • the case where two secondary hydroxyl groups present in one molecule of the intermediate are crosslinked and the case where two secondary hydroxyl groups present in each of the two molecules of the intermediate are crosslinked It is possible.
  • the two secondary hydroxyl groups present in the two molecules of the intermediate are cross-linked, the molecular weight increases.
  • A is an unsaturated group-containing carboxylic acid residue
  • D is an acid dianhydride residue.
  • a secondary hydroxyl group in the intermediate and an acid anhydride can be reacted to obtain a carboxyl group-containing resin (A1).
  • the acid anhydride contains an acid dianhydride (a3) and an acid monoanhydride (a4)
  • a part of the secondary hydroxyl group in the intermediate is reacted with the acid dianhydride (a3)
  • Another part of the secondary hydroxyl groups in the intermediate is reacted with acid monoanhydride (a4).
  • carboxyl group-containing resin (A1) can be synthesized.
  • the carboxyl group-containing resin (A1) has a bisphenolfluorene skeleton (S1), a structure (S4), and a structure (S5).
  • the carboxyl group-containing resin (A1) may further have a structure (S6) represented by the following formula (6).
  • the structure (S6) occurs when only one of the two acid anhydride groups in the acid dianhydride (a3) reacts with the secondary hydroxyl group in the intermediate.
  • A is an unsaturated group-containing carboxylic acid residue
  • D is an acid dianhydride residue.
  • the carboxyl group-containing resin (A1) has a structure (S2) represented by the formula (2), that is, an epoxy group It is possible. Further, when a part of the structure (S3) in the intermediate remains unreacted, the carboxyl group-containing resin (A1) may have the structure (S3).
  • the structure (S2) in the carboxyl group-containing resin (A1) is optimized by optimizing the reaction conditions during the synthesis of the carboxyl group-containing resin (A1).
  • the number of the structures (S6) is reduced, or the structure (S2) and the structure (S6) are almost eliminated from the carboxyl group-containing resin (A1).
  • the carboxyl group-containing resin (A1) has a bisphenolfluorene skeleton (S1), and has a structure (S4) when the acid anhydride contains acid monoanhydride (a4).
  • S1 bisphenolfluorene skeleton
  • S4 structure when the acid anhydride contains acid monoanhydride (a4).
  • the carboxyl group-containing resin (A1) may have at least one of the structure (S2) and the structure (S3).
  • carboxyl group-containing resin (A1) may have at least 1 type in a structure (S2) and a structure (S6).
  • the carboxyl group-containing resin (A1) has a structure (S2), a structure (S3), a structure ( And at least one of S6).
  • the carboxyl group-containing resin (A1) is an epoxy compound (a1). It may have a structure produced by the reaction of the secondary secondary hydroxyl group and the acid anhydride.
  • the structure of the above-mentioned carboxyl group-containing resin (A1) is reasonably inferred based on the common general technical knowledge, and the structure of the carboxyl group-containing resin (A1) cannot be specified by analysis.
  • the reason is as follows.
  • the epoxy compound (a1) itself has a secondary hydroxyl group for example, when n is 1 or more in the formula (7)
  • the carboxyl group-containing resin depends on the number of secondary hydroxyl groups in the epoxy compound (a1).
  • the structure of (A1) changes greatly.
  • the intermediate and the acid dianhydride (a3) react, as described above, two secondary hydroxyl groups present in one molecule of the intermediate are acid dianhydrides (a3).
  • the carboxyl group-containing resin (A1) finally obtained contains a plurality of molecules having different structures, and even when the carboxyl group-containing resin (A1) is analyzed, the structure cannot be specified.
  • the carboxyl group-containing resin (A1) Since the carboxyl group-containing resin (A1) has an ethylenically unsaturated group derived from the unsaturated group-containing carboxylic acid (a2), it has photoreactivity. For this reason, carboxyl group-containing resin (A1) can impart photosensitivity (specifically, ultraviolet curable) to the photosensitive resin composition. Moreover, since the carboxyl group-containing resin (A1) has a carboxyl group derived from an acid anhydride, the photosensitive resin composition contains at least one of an alkali metal salt and an alkali metal hydroxide. It is possible to impart developability with an aqueous solution.
  • the acid anhydride contains an acid dianhydride (a3)
  • the molecular weight of the carboxyl group-containing resin (A1) depends on the number of crosslinks by the acid dianhydride (a3). For this reason, the carboxyl group-containing resin (A1) in which the acid value and the molecular weight are appropriately adjusted is obtained.
  • the acid anhydride contains acid dianhydride (a3) and acid dianhydride (a4)
  • a carboxyl group-containing resin (A1) having a desired molecular weight and acid value can be easily obtained.
  • the weight average molecular weight of the carboxyl group-containing resin (A1) is preferably in the range of 1000 to 5000.
  • the weight average molecular weight is 1000 or more, tackiness of a film formed from the photosensitive resin composition is further suppressed, and insulation reliability and plating resistance of the cured product are further improved.
  • the developability by the alkaline aqueous solution of the photosensitive resin composition improves especially that a weight average molecular weight is 5000 or less.
  • the solid content acid value of the carboxyl group-containing resin (A1) is preferably in the range of 60 to 140 mgKOH / g. In this case, the developability of the photosensitive resin composition is particularly improved.
  • the solid content acid value is more preferably in the range of 80 to 135 mgKOH / g, and still more preferably in the range of 90 to 130 mgKOH / g.
  • the weight average molecular weight (Mw) of the carboxyl group-containing resin (A1) is calculated from the molecular weight measurement result by gel permeation chromatography.
  • the molecular weight measurement by gel permeation chromatography can be performed, for example, under the following conditions.
  • GPC device SHODEX SYSTEM 11, manufactured by Showa Denko KK
  • the epoxy compound (a1) has a structure (S7) represented by the following formula (7), for example.
  • N in the formula (7) is a number in the range of 0 to 20, for example.
  • the average of n is particularly preferably in the range of 0-1. If the average of n is in the range of 0 to 1, particularly when the acid anhydride contains acid dianhydride (a3), an excessive increase in molecular weight due to addition of acid dianhydride (a3) is likely to be suppressed. Become.
  • the unsaturated group-containing carboxylic acid (a2) can contain, for example, a compound having only one ethylenically unsaturated group in one molecule. More specifically, unsaturated group-containing carboxylic acid (a2) is, for example, acrylic acid, methacrylic acid, ⁇ -carboxy-polycaprolactone (n ⁇ 2) monoacrylate, crotonic acid, cinnamic acid, 2-acryloyloxyethyl succinate.
  • the reactive solution is obtained by adding the unsaturated group-containing carboxylic acid (a2) to the solvent solution of the epoxy compound (a1), further adding a thermal polymerization inhibitor and a catalyst as necessary, and stirring and mixing.
  • An intermediate can be obtained by reacting this reactive solution at a temperature of preferably 60 to 150 ° C., particularly preferably 80 to 120 ° C., by a conventional method.
  • Solvents include, for example, ketones such as methyl ethyl ketone and cyclohexanone, and aromatic hydrocarbons such as toluene and xylene, and ethyl acetate, butyl acetate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether It can contain at least one component selected from the group consisting of acetates such as acetate and dialkyl glycol ethers.
  • the thermal polymerization inhibitor contains, for example, at least one of hydroquinone and hydroquinone monomethyl ether.
  • the catalyst is at least selected from the group consisting of tertiary amines such as benzyldimethylamine and triethylamine, quaternary ammonium salts such as trimethylbenzylammonium chloride and methyltriethylammonium chloride, triphenylphosphine, and triphenylstibine.
  • tertiary amines such as benzyldimethylamine and triethylamine
  • quaternary ammonium salts such as trimethylbenzylammonium chloride and methyltriethylammonium chloride
  • triphenylphosphine triphenylstibine.
  • a kind of component can be contained.
  • the catalyst contains triphenylphosphine. That is, it is preferable to react the epoxy compound (a1) with the unsaturated group-containing carboxylic acid (a2) in the presence of triphenylphosphine. In this case, the ring-opening addition reaction between the epoxy group and the unsaturated group-containing carboxylic acid (a2) in the epoxy compound (a1) is particularly accelerated, and the reaction rate (conversion) is 95% or more, 97% or more, or almost 100%. Rate). For this reason, the intermediate body which has a structure (S3) is obtained with a high yield. Moreover, generation
  • the amount of the unsaturated group-containing carboxylic acid (a2) relative to 1 mol of the epoxy group of the epoxy compound (a1) is 0.8 to 1. It is preferably within a range of 2 moles. In this case, a photosensitive resin composition having excellent photosensitivity and storage stability can be obtained.
  • the intermediate thus obtained comprises a hydroxyl group generated by a reaction between the epoxy group of the epoxy compound (a1) and the carboxyl group of the unsaturated group-containing carboxylic acid (a2).
  • Acid dianhydride (a3) is a compound having two acid anhydride groups.
  • the acid dianhydride (a3) can contain an anhydride of tetracarboxylic acid.
  • Acid dianhydride (a3) is, for example, 1,2,4,5-benzenetetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, methylcyclohexene tetracarboxylic dianhydride, tetracarboxylic dianhydride, Naphthalene-1,4,5,8-tetracarboxylic dianhydride, ethylenetetracarboxylic dianhydride, 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride, glycerin bisanhydrotri Melitate monoacetate, ethylene glycol bisanhydro trimellitate, 3,3 ', 4,4'-diphenylsulfone tetracarboxylic dianhydride, 1,3,
  • the acid dianhydride (a3) preferably contains 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride. That is, it is preferable that D in Formula (5) and Formula (6) includes a 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue. In this case, while ensuring good developability of the photosensitive resin composition, it is possible to further suppress the tackiness of a film formed from the photosensitive resin composition and further improve the insulation reliability and plating resistance of the cured product. .
  • the amount of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride relative to the total amount of acid dianhydride (a3) is preferably in the range of 20 to 100 mol%, and in the range of 40 to 100 mol%. Although it is more preferable to be within, it is not restricted to these ranges.
  • Acid monoanhydride (a4) is a compound having one acid anhydride group.
  • the acid monoanhydride (a4) can contain an anhydride of a dicarboxylic acid.
  • Examples of the acid monoanhydride (a4) include phthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic acid anhydride, hexahydrophthalic anhydride, methylhexa Hydrophthalic anhydride, succinic anhydride, methyl succinic anhydride, maleic anhydride, citraconic anhydride, glutaric anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, and It can contain at least one compound selected from the group consisting of itaconic anhydride.
  • the acid monoanhydride (a4) contains 1,2,3,6-tetrahydrophthalic anhydride. That is, the acid anhydride preferably contains 1,2,3,6-tetrahydrophthalic anhydride. That is, it is preferable that the carboxyl group-containing resin (A1) has the structure (S4), and B in the formula (4) includes a 1,2,3,6-tetrahydrophthalic anhydride residue.
  • the acid monoanhydride (a4) contains 1,2,3,6-tetrahydrophthalic anhydride. That is, the acid anhydride preferably contains 1,2,3,6-tetrahydrophthalic anhydride. That is, it is preferable that the carboxyl group-containing resin (A1) has the structure (S4), and B in the formula (4) includes a 1,2,3,6-tetrahydrophthalic anhydride residue.
  • the amount of 1,2,3,6-tetrahydrophthalic anhydride relative to the entire acid monoanhydride (a4) is preferably in the range of 20 to 100 mol%, and in the range of 40 to 100 mol%. Is more preferable, but is not limited to these ranges.
  • a known method can be employed. For example, an acid anhydride is added to the solvent solution of the intermediate, and a thermal polymerization inhibitor and a catalyst are further added as necessary, followed by stirring and mixing to obtain a reactive solution. By reacting this reactive solution at a temperature of preferably 60 to 150 ° C., particularly preferably 80 to 120 ° C., a carboxyl group-containing resin (A1) can be obtained by a conventional method.
  • a solvent, catalyst and polymerization inhibitor appropriate ones can be used, and the solvent, catalyst and polymerization inhibitor used in the synthesis of the intermediate can also be used as they are.
  • the catalyst contains triphenylphosphine. That is, it is preferable to react an intermediate with an acid anhydride in the presence of triphenylphosphine. In this case, the reaction between the secondary hydroxyl group and the acid anhydride in the intermediate is particularly accelerated, and a reaction rate (conversion rate) of 90%, 95%, 97%, or almost 100% can be achieved. For this reason, the carboxyl group-containing resin (A1) having at least one of the structure (S4) and the structure (S5) is obtained in a high yield. Moreover, generation
  • the amount of the acid dianhydride (a3) is 1 mol of the epoxy group of the epoxy compound (a1), A range of 0.05 to 0.24 mol is preferred.
  • the amount of acid monoanhydride (a4) is preferably in the range of 0.3 to 0.7 mol with respect to 1 mol of the epoxy group of the epoxy compound (a1). In this case, the carboxyl group-containing resin (A1) in which the acid value and the molecular weight are appropriately adjusted can be easily obtained.
  • the carboxyl group-containing resin (A) may contain only the carboxyl group-containing resin (A1), or a carboxyl group-containing resin other than the carboxyl group-containing resin (A1) (hereinafter also referred to as carboxyl group-containing resin (F)). May further be contained.
  • the carboxyl group-containing resin (F) can contain, for example, a compound having a carboxyl group and not having photopolymerizability (hereinafter referred to as (F1) component).
  • (F1) A component contains the polymer of the ethylenically unsaturated monomer containing the ethylenically unsaturated compound which has a carboxyl group, for example.
  • the ethylenically unsaturated compound having a carboxyl group can contain compounds such as acrylic acid, methacrylic acid, and ⁇ -carboxy-polycaprolactone (n ⁇ 2) monoacrylate.
  • the ethylenically unsaturated compound having a carboxyl group can also contain a reaction product of pentaerythritol triacrylate, pentaerythritol trimethacrylate and the like with a dibasic acid anhydride.
  • Ethylenically unsaturated monomers include 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, linear or branched aliphatic or alicyclic (provided that It may further contain an ethylenically unsaturated compound having no carboxyl group, such as (meth) acrylic acid ester (which may partially have an unsaturated bond in the ring).
  • the carboxyl group-containing resin (F) may contain a compound having a carboxyl group and an ethylenically unsaturated group (hereinafter referred to as (F2) component). Moreover, carboxyl group-containing resin (F) may contain only the (F2) component.
  • the component (F2) includes, for example, an intermediate that is a reaction product of an epoxy compound (g1) having two or more epoxy groups in one molecule and an ethylenically unsaturated compound (g2), a polyvalent carboxylic acid and its anhydride.
  • a resin (referred to as a first resin (g)) that is a reaction product with at least one compound (g3) selected from the group of substances.
  • the first resin (g) is obtained by adding the compound (g3) to an intermediate obtained by reacting the epoxy group in the epoxy compound (g1) with the carboxyl group in the ethylenically unsaturated compound (g2).
  • the epoxy compound (g1) can contain an appropriate epoxy resin such as a cresol novolac epoxy resin or a phenol novolac epoxy resin.
  • the epoxy compound (g1) may contain a polymer of the ethylenically unsaturated compound (h).
  • the ethylenically unsaturated compound (h) contains a compound (h1) having an epoxy group such as glycidyl (meth) acrylate, or further has no epoxy group such as 2- (meth) acryloyloxyethyl phthalate.
  • the ethylenically unsaturated compound (g2) preferably contains at least one of acrylic acid and methacrylic acid.
  • the compound (g3) contains one or more compounds selected from the group consisting of polyvalent carboxylic acids such as phthalic acid, tetrahydrophthalic acid, and methyltetrahydrophthalic acid, and anhydrides of these polyvalent carboxylic acids. .
  • the component (F2) is a resin (second resin) that is a reaction product of a polymer of an ethylenically unsaturated monomer containing an ethylenically unsaturated compound having a carboxyl group and an ethylenically unsaturated compound having an epoxy group. (I)) may be contained.
  • the ethylenically unsaturated monomer may further contain an ethylenically unsaturated compound having no carboxyl group.
  • the second resin (i) can be obtained by reacting an ethylenically unsaturated compound having an epoxy group with a part of the carboxyl group in the polymer.
  • the ethylenically unsaturated monomer may further contain an ethylenically unsaturated compound having no carboxyl group.
  • the ethylenically unsaturated compound having a carboxyl group include compounds such as acrylic acid, methacrylic acid, ⁇ -carboxy-polycaprolactone (n ⁇ 2) monoacrylate, pentaerythritol triacrylate, and pentaerythritol trimethacrylate.
  • Examples of the ethylenically unsaturated compound having no carboxyl group include 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, linear or branched aliphatic or fatty acid It contains a compound such as a (meth) acrylic acid ester of a cyclic group (however, it may have a partially unsaturated bond in the ring).
  • the ethylenically unsaturated compound having an epoxy group preferably contains glycidyl (meth) acrylate.
  • the carboxyl group-containing resin (A) contains only the carboxyl group-containing resin (A1) or the carboxyl group-containing resin (A1) and the carboxyl group-containing resin (F).
  • the carboxyl group-containing resin (A) preferably contains 30% by mass or more of the carboxyl group-containing resin (A1), more preferably 50% by mass or more, and still more preferably 100% by mass.
  • the heat resistance and insulation reliability of the cured product of the photosensitive resin composition can be particularly improved.
  • membrane formed from the photosensitive resin composition can fully be reduced.
  • the developability of the photosensitive resin composition with an alkaline aqueous solution can be secured.
  • the photosensitive resin composition includes a carboxyl group-containing resin (A), an unsaturated compound (B) having at least one ethylenically unsaturated bond in one molecule, and a photopolymerization initiator (C). And an epoxy compound (D).
  • the unsaturated compound (B) can impart photocurability to the photosensitive resin composition.
  • the unsaturated compound (B) is, for example, a monofunctional (meth) acrylate such as 2-hydroxyethyl (meth) acrylate; and diethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) Acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ⁇ -caprolactone modified pentaerythritol hexaacrylate, tricyclodecandi
  • At least one compound selected from the group consisting of polyfunctional (meth) acrylates such as methanol di (meth) acrylate
  • the unsaturated compound (B) preferably contains a trifunctional compound, that is, a compound having three unsaturated bonds in one molecule.
  • a trifunctional compound that is, a compound having three unsaturated bonds in one molecule.
  • Trifunctional compounds include, for example, trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate and ⁇ -caprolactone modified It can contain at least one compound selected from the group consisting of tris- (2-acryloxyethyl) isocyanurate and ethoxylated glycerin tri (meth) acrylate.
  • the unsaturated compound (B) contains a phosphorus-containing compound (phosphorus-containing unsaturated compound).
  • Phosphorus-containing unsaturated compounds include, for example, 2-methacryloyloxyethyl acid phosphate (specific examples: product number light ester P-1M and light ester P-2M manufactured by Kyoeisha Chemical Co., Ltd.), 2-acryloyloxyethyl acid phosphate (Specific examples are product number light acrylate P-1A manufactured by Kyoeisha Chemical Co., Ltd.), diphenyl-2-methacryloyloxyethyl phosphate (specific examples are product number MR-260 manufactured by Daihachi Industry Co., Ltd.), and Showa Polymer Co., Ltd.
  • HFA series (part number HFA-6003, which is an addition reaction product of dipentaerystol hexaacrylate and HCA (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) as a specific example, and HFA-6007, caprolactone Product No. HFA-3003, HFA-6127, etc., which are addition reaction products of modified dipentaerystol hexaacrylate and HCA (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) It can contain at least one compound selected from the group.
  • the unsaturated compound (B) may contain a prepolymer.
  • the prepolymer is at least one selected from the group consisting of, for example, a prepolymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and then adding an ethylenically unsaturated group, and oligo (meth) acrylate prepolymers These compounds can be contained.
  • Oligo (meth) acrylate prepolymers include, for example, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) acrylate, alkyd resin (meth) acrylate, silicone resin (meth) acrylate, and spirane resin (meth) acrylate At least one component selected from the group consisting of:
  • the photopolymerization initiator (C) contains, for example, an acyl phosphine oxide photopolymerization initiator (C1). That is, the photosensitive resin composition contains, for example, an acyl phosphine oxide photopolymerization initiator (C1).
  • the photosensitive resin composition contains the carboxyl group-containing resin (A1), high sensitivity to ultraviolet rays can be imparted to the photosensitive resin composition.
  • cured material of the photosensitive resin composition is suppressed, and the insulation reliability of the same layer improves further.
  • the acylphosphine oxide photopolymerization initiator (C1) is unlikely to hinder the electrical insulation of the cured product. For this reason, by curing the photosensitive resin composition by exposure, a cured product having excellent electrical insulation can be obtained.
  • This cured product can be used as, for example, a solder resist layer, a plating resist layer, an etching resist layer, or an interlayer insulating layer. Is preferred.
  • Acylphosphine oxide photopolymerization initiators (C1) include monoacyl such as 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 2,4,6-trimethylbenzoyl-ethyl-phenyl-phosphinate, etc.
  • Phosphine oxide photopolymerization initiator and bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2 , 6-Dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- (2,6-dimethoxybe Zoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6-trimethylbenzoyl) phenylphosphine Contains at least one component selected from the group consist
  • the acylphosphine oxide photopolymerization initiator (C1) preferably contains 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and the acylphosphine oxide photopolymerization initiator (C1) contains 2, It is also preferred to contain only 4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • the photopolymerization initiator (C) preferably contains a hydroxyketone photopolymerization initiator (C2) in addition to the acylphosphine oxide photopolymerization initiator (C1). That is, the photosensitive resin composition preferably contains a hydroxyketone photopolymerization initiator (C2). In this case, higher photosensitivity can be imparted to the photosensitive resin composition as compared with the case where the hydroxyketone photopolymerization initiator (C2) is not contained. Thereby, when irradiating and hardening an ultraviolet-ray to the coating film formed from the photosensitive resin composition, it becomes possible to fully harden a coating film over the deep part from the surface.
  • Examples of the hydroxyketone photopolymerization initiator (C2) include 1-hydroxy-cyclohexyl-phenyl-ketone, phenylglyoxyc acid methyl ester, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy -2-Methyl-1-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propane-1- On and 2-hydroxy-2-methyl-1-phenyl-propan-1-one.
  • the mass ratio of the acylphosphine oxide photopolymerization initiator (C1) and the hydroxyketone photopolymerization initiator (C2) is preferably in the range of 1: 0.01 to 1:10. In this case, the curability in the vicinity of the surface of the coating film formed from the photosensitive resin composition and the curability in the deep portion can be improved in a well-balanced manner.
  • the photopolymerization initiator (C) preferably contains bis (diethylamino) benzophenone (C3). That is, the photosensitive resin composition contains an acyl phosphine oxide photopolymerization initiator (C1) and bis (diethylamino) benzophenone (C3), or an acyl phosphine oxide photopolymerization initiator (C1), a hydroxyketone type. It is also preferable to contain a photopolymerization initiator (C2) and bis (diethylamino) benzophenone (C3). In this case, when developing after partially exposing the coating film formed from the photosensitive resin composition, since the hardening of the part which is not exposed is suppressed, resolution becomes especially high.
  • cured material of the photosensitive resin composition of a very fine pattern can be formed.
  • an interlayer insulating layer of a multilayer printed wiring board is prepared from a photosensitive resin composition and a small-diameter hole for a through hole is provided in the interlayer insulating layer by a photolithography method (see FIG. 1), the small-diameter hole is formed. Precise and easy to form.
  • the amount of bis (diethylamino) benzophenone (C3) relative to the acylphosphine oxide photopolymerization initiator (C1) is preferably in the range of 0.5 to 20% by mass.
  • the amount of bis (diethylamino) benzophenone (C3) with respect to the acylphosphine oxide photopolymerization initiator (C1) is 0.5% by mass or more, the resolution is particularly high.
  • the amount of bis (diethylamino) benzophenone (C3) relative to the acylphosphine oxide-based photopolymerization initiator (C1) is 20% by mass or less, the electrical insulation of the cured product of the photosensitive resin composition is increased to bis (diethylamino). ) Benzophenone (C3) is difficult to inhibit.
  • the photosensitive resin composition may further contain a known photopolymerization accelerator, sensitizer and the like.
  • the photosensitive resin composition includes benzoin and its alkyl ethers; acetophenones such as acetophenone and benzyldimethyl ketal; anthraquinones such as 2-methylanthraquinone; 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2- Thioxanthones such as isopropylthioxanthone, 4-isopropylthioxanthone and 2,4-diisopropylthioxanthone; benzophenones such as benzophenone and 4-benzoyl-4′-methyldiphenyl sulfide; xanthones such as 2,4-diisopropylxanthone; ⁇ -hydroxyketones such as hydroxy-2-methyl-1-phenyl-propan-1-one; 2-methyl-1- [4-
  • the photosensitive resin composition includes known photopolymerization initiators (C) and tertiary amines such as p-dimethylbenzoic acid ethyl ester, p-dimethylaminobenzoic acid isoamyl ester, and 2-dimethylaminoethylbenzoate. You may contain a photoinitiator, a sensitizer, etc.
  • the photosensitive resin composition may contain at least one of a photopolymerization initiator for visible light exposure and a photopolymerization initiator for near infrared exposure, if necessary.
  • the photosensitive resin composition contains a photopolymerization initiator (C) and a coumarin derivative such as 7-diethylamino-4-methylcoumarin, which is a sensitizer for laser exposure, a carbocyanine dye system, a xanthene dye system, and the like. May be.
  • the epoxy compound (D) can impart thermosetting properties to the photosensitive resin composition.
  • the epoxy compound (D) contains a crystalline epoxy resin and an amorphous epoxy resin.
  • the “crystalline epoxy resin” is an epoxy resin having a melting point
  • the “amorphous epoxy resin” is an epoxy resin having no melting point.
  • Examples of crystalline epoxy resins include 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, hydroquinone type crystals Epoxy resin (specifically, product name YDC-1312 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), biphenyl type crystalline epoxy resin (specifically, product name YX-4000 manufactured by Mitsubishi Chemical Corporation), diphenyl ether type crystalline epoxy resin (specifically For example, Nippon Steel & Sumikin Chemical Co., Ltd., product number YSLV-80DE), bisphenol type crystalline epoxy resin (specifically, Nippon Steel & Sumikin Chemical Co., Ltd.
  • product name YSLV-80XY tetrakisphenol ethane type crystalline epoxy resin (specific example) Nippon Kayaku Co., Ltd. product number GTR-1800), bisphenolfluorene type
  • the crystalline epoxy resin preferably has two epoxy groups in one molecule. In this case, it is possible to further prevent cracks in the cured product while the temperature change is repeated.
  • the crystalline epoxy resin preferably has an epoxy equivalent of 150 to 300 g / eq. This epoxy equivalent is the gram weight of a crystalline epoxy resin containing 1 gram equivalent of epoxy groups.
  • the crystalline epoxy resin has a melting point. Examples of the melting point of the crystalline epoxy resin include 70 to 180 ° C.
  • the epoxy compound (D) preferably contains a crystalline epoxy resin having a melting point of 110 ° C. or lower.
  • the developability of the photosensitive resin composition with an alkaline aqueous solution is particularly improved.
  • biphenyl type epoxy resins specifically, product number YX-4000 manufactured by Mitsubishi Chemical Corporation
  • biphenyl ether type epoxy resins specifically, product number YSLV manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • a bisphenol-type epoxy resin specifically, product number YSLV-80XY manufactured by Nippon Steel & Sumikin Chemical
  • a bisphenolfluorene-type crystalline epoxy resin specifically, an epoxy resin having the structure (S7). At least one component.
  • Amorphous epoxy resins include, for example, phenol novolac type epoxy resins (specifically, product number EPICLON N-775 manufactured by DIC Corporation) and cresol novolac type epoxy resins (specific examples, product number EPICLON N-695 manufactured by DIC Corporation).
  • Bisphenol A novolac type epoxy resin (specific example, product number EPICLON N-865 manufactured by DIC Corporation), bisphenol A type epoxy resin (specific example, product number jER1001 manufactured by Mitsubishi Chemical Corporation), bisphenol F type epoxy resin (specific example As product number jER4004P manufactured by Mitsubishi Chemical Co., Ltd.), bisphenol S type epoxy resin (specifically, product number EPICLON EXA-1514 manufactured by DIC Corporation), bisphenol AD type epoxy resin, biphenyl novolac Type epoxy resin (part number NC-3000 manufactured by Nippon Kayaku Co., Ltd.), hydrogenated bisphenol A type epoxy resin (part number ST-4000D manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), naphthalene type epoxy resin (particular Examples include DIC Corporation part numbers EPICLON HP-4032, EPICLON HP-4700, EPICLON HP-4770), tertiary butyl catechol type epoxy resin (specific examples DIC Corporation part number EPICLON HP-820), dicyclopentad
  • Type epoxy resin (specifically, product number EPICLON HP-7200 manufactured by DIC), adamantane type epoxy resin (specific example, product number ADAMANTATE X-E-201 manufactured by Idemitsu Kosan Co., Ltd.), special bifunctional epoxy resin (tool)
  • product numbers YL7175-500 and YL7175-1000 manufactured by Mitsubishi Chemical Corporation product numbers EPICLON TSR-960, EPICLON TER-601, EPICLON TSR-250-80BX, EPICLON 1650-75MPX, EPICLON EXA- manufactured by DIC Corporation 4850, EPICLON EXA-4816, EPICLON EXA-4822, and EPICLON EXA-9726
  • product number YSLV-120TE manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. rubber core-shell polymer modified bisphenol A type epoxy resin (specifically, manufactured by Kaneka Corporation) Product number MX-156), rubber-like core-shell polymer modified
  • the epoxy compound (D) may contain a phosphorus-containing epoxy resin.
  • the phosphorus-containing epoxy resin may be contained in the crystalline epoxy resin or may be contained in the amorphous epoxy resin.
  • Examples of the phosphorus-containing epoxy resin include phosphoric acid-modified bisphenol F type epoxy resin (specific examples, product numbers EPICLON EXA-9726 and EPICLON EXA-9710 manufactured by DIC Corporation), and product number Epototo FX-305 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. Etc.
  • the amorphous epoxy resin preferably contains an epoxy resin (da) having a bisphenol type structural unit (d1) and a structural unit (d2).
  • an epoxy resin (da) having a bisphenol type structural unit (d1) and a structural unit (d2).
  • the thermal shock resistance of the cured product of the photosensitive resin composition can be improved.
  • Examples of the structural unit (d1) include structural units derived from bisphenol A, bisphenol F, and bisphenol S. Specific examples of the structural unit (d1) include units excluding these terminal OH groups and units represented by the following formula (8). Moreover, a part of phenylene group and phenyl group in the unit represented by the formula (8) may be hydrogenated. Furthermore, the phenylene group and the phenyl group in the unit represented by the formula (8) may have a substituent such as a hydrocarbon group, an alkoxyl group, an aryl group, an aryloxy group, or a hydroxyl group.
  • the structural unit (d2) is selected from the group consisting of a linear hydrocarbon structural unit (d21) having 4 to 20 carbon atoms and a polyalkylene ether structural unit (d22) having 3 to 20 ether oxygen atoms. It consists of at least one kind.
  • the linear hydrocarbon structural unit (d21) is a structural unit in which y of — (CH 2 ) y — is 4 or more and 20 or less. y is preferably 4 to 10. Note that a substituent such as a hydroxyl group may be substituted for a hydrogen atom in a structural unit in which y of — (CH 2 ) y — is 4 or more and 20 or less. Furthermore, - (CH 2) y- y although at least one hydrogen atom in the structural unit is 4 or more 20 or less, a hydrocarbon group, an alkoxyl group, an aryl group, may be substituted with an aryloxy group .
  • the hydrocarbon and alkoxyl groups as the substituent preferably have 4 or less carbon atoms.
  • the aryl group in the aryl group and aryloxy group is preferably a phenyl group.
  • the linear hydrocarbon structural unit (d21) may have these substituents as long as the flexibility of the structural unit (d2) is not impaired
  • the number of ether oxygen atoms is 3 or more and 20 or less, preferably 3 to 10.
  • the polyalkylene ether structural unit (d22) is derived from a polymer of one or more alkylene oxides selected from ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, neopentylene oxide, tetramethylene oxide, and the like. These structural units are exemplified.
  • One or more hydrogen atoms of the alkylene oxide may be substituted with, for example, a hydroxyl group, an alkoxyl group, an aryl group, an aryloxy group, a hydrocarbon group, or the like.
  • the hydrocarbon and alkoxyl groups as the substituent preferably have 4 or less carbon atoms.
  • the aryl group in the aryl group and aryloxy group is preferably a phenyl group.
  • the polyalkylene ether structural unit (d22) may have these substituents as long as the flexibility of the structural unit (d2) is not impaired.
  • the molar ratio of the structural unit (d1) to the structural unit (d2) is preferably 10: 1 to 1: 5, and more preferably 5: 1 to 1: 3.
  • the amorphous epoxy resin does not have sufficient flexibility and the cured product of the photosensitive resin composition may be easily cracked.
  • the Tg of the amorphous epoxy resin is too low, and the heat resistance of the cured product of the photosensitive resin composition may be reduced.
  • the epoxy resin (da) preferably has one or more structures represented by the following structural formulas (9-i) to (9-iv). Further, a plurality of hydroxyl groups in the structural formula shown below may undergo a crosslinking reaction, and the oxygen atom of the hydroxyl group may knot an unspecified structure.
  • Ar 1 and Ar 2 are hydrogenated or may have a substituent (d1). Ar 1 and Ar 2 may be the same or different.
  • X is at least one selected from the group consisting of a linear hydrocarbon group having 4 to 20 carbon atoms and a polyalkylene ether structure having 1 to 18 ether oxygen atoms. When X is a linear hydrocarbon group having 4 to 20 carbon atoms, X constitutes the structural unit (d2). In the case where X is a polyalkylene ether structure having 1 to 18 ether oxygen atoms, —O—X—O— constitutes the structural unit (d2). N is an average value of repeating units and is 1 to 30.
  • this predetermined epoxy resin a method using an epoxy compound having structural units (d1) and (d2) as described above; an epoxy compound having structural unit (d1) and an epoxy compound having structural unit (d2) And an epoxy compound having the structural unit (d1) and a chain extender that can impart the structural unit (d2) to the epoxy compound by a reaction.
  • epoxy compound (da) examples include product numbers EPICLON EXA4816 and EPICLON EXA4822 manufactured by DIC Corporation, and product numbers YL7175-500 and YL7175-1000 manufactured by Mitsubishi Chemical Corporation.
  • the epoxy equivalent of the epoxy compound having the structural unit (d1) and the structural unit (d2) is preferably 200 to 800 g / eq, and more preferably 350 to 650 g / eq.
  • the amorphous epoxy resin preferably contains an epoxy resin (db) having a novolak structure and a biphenyl skeleton.
  • the photosensitive resin composition containing the epoxy resin (db) has high electrical insulation performance of the cured product. For this reason, the photosensitive resin composition is particularly suitable as an insulating material for a printed wiring board that requires high reliability such as line insulation and interlayer migration resistance.
  • the epoxy resin (db) is an amorphous biphenyl novolac type epoxy resin (specific examples: product number NC-3000, product number NC-3000-L, product number NC-3000-H, product number NC-3000 manufactured by Nippon Kayaku Co., Ltd.) -FH-75M, CER-3000-L) and the like.
  • the photosensitive resin composition according to the present embodiment may contain melamine (E).
  • E melamine
  • the adhesion between the cured product of the photosensitive resin composition and a metal such as copper is increased.
  • the photosensitive resin composition is particularly suitable as an insulating material for a printed wiring board.
  • the plating resistance of the cured product of the photosensitive resin composition that is, the whitening resistance during the electroless nickel / gold plating process is improved.
  • the photosensitive resin composition according to this embodiment may contain an organic solvent.
  • the organic solvent is used for the purpose of liquefaction or varnishing of the photosensitive resin composition, viscosity adjustment, application property adjustment, film formation property adjustment, and the like.
  • Organic solvents include, for example, linear, branched, secondary or polyhydric alcohols such as ethanol, propyl alcohol, isopropyl alcohol, hexanol and ethylene glycol; ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene and xylene Petroleum aromatic mixed solvents such as Swazol series (manufactured by Maruzen Petrochemical Co., Ltd.), Solvesso series (manufactured by Exxon Chemical Co., Ltd.), cellosolves such as cellosolve and butylcellosolve, and carbitols such as carbitol and butylcarbitol Tolls; propylene glycol alkyl ethers such as propylene glycol methyl ether; polypropylene glycol alkyl ethers such as dipropylene glycol methyl ether; ethyl acetate, butyl acetate, cellosolve acetate
  • the amount of the component in the photosensitive resin composition is appropriately adjusted so that the photosensitive resin composition has photocurability and can be developed with an alkaline solution.
  • the amount of the carboxyl group-containing resin (A) relative to the solid content of the photosensitive resin composition is preferably within the range of 5 to 85% by mass, more preferably within the range of 10 to 75% by mass, and 30 to 60%. If it is in the range of mass%, it is still more preferable.
  • the amount of the unsaturated compound (B) relative to the carboxyl group-containing resin (A) is preferably in the range of 1 to 50% by mass, more preferably in the range of 10 to 45% by mass, and 21 to 40% by mass. If it is in the range, it is more preferable.
  • the amount of the photopolymerization initiator (C) relative to the carboxyl group-containing resin (A) is preferably in the range of 0.1 to 30% by mass, and more preferably in the range of 1 to 25% by mass.
  • the total of the equivalents of epoxy groups contained in the epoxy compound (D) is 0.7 to 2.5 with respect to 1 equivalent of carboxyl groups contained in the carboxyl group-containing resin (A). Is preferably in the range of 0.7 to 2.3, more preferably in the range of 0.7 to 2.0.
  • the total of the equivalents of the epoxy groups contained in the crystalline epoxy resin and the amorphous epoxy resin with respect to 1 equivalent of the carboxyl group contained in the carboxyl group-containing resin (A) is 2.5 or less, so that developability is improved. Can be improved. More preferably, the total of the equivalents of the epoxy groups contained in the crystalline epoxy resin and the amorphous epoxy resin with respect to 1 equivalent of the carboxyl group contained in the carboxyl group-containing resin (A) is 0.7 to 2.3. 0.7 to 2.0 is more preferable.
  • the equivalent of the epoxy group of the crystalline epoxy resin to one equivalent of the carboxyl group contained in the carboxyl group-containing resin (A) is preferably in the range of 0.2 to 1.9. In this case, the developability of the photosensitive resin composition can be particularly improved.
  • the equivalent of the epoxy group of the crystalline epoxy resin to one equivalent of the carboxyl group contained in the carboxyl group-containing resin (A) is more preferably within the range of 0.3 to 1.7.
  • the equivalent of the epoxy group contained in the amorphous epoxy resin with respect to one equivalent of the carboxyl group contained in the carboxyl group-containing resin (A) is preferably in the range of 0.05 to 1.5. In this case, the developability of the photosensitive resin composition can be improved, and the crack resistance of the cured product can be particularly improved while the temperature change is repeated.
  • the equivalent of the epoxy group contained in the amorphous epoxy resin with respect to 1 equivalent of the carboxyl group contained in the carboxyl group-containing resin (A) is more preferably 0.1 to 1.2.
  • the amount of melamine (E) with respect to the carboxyl group-containing resin (A) is preferably in the range of 0.1 to 10% by mass, More preferably, it is in the range of ⁇ 5% by mass.
  • the amount of the organic solvent is such that when the coating film formed from the photosensitive resin composition is dried, the organic solvent is quickly volatilized and eliminated, that is, the organic solvent. Is preferably adjusted so as not to remain in the dry film.
  • the amount of the organic solvent relative to the entire photosensitive resin composition is preferably in the range of 0 to 99.5% by mass, and more preferably in the range of 15 to 60% by mass.
  • the suitable ratio of an organic solvent changes with application methods etc., it is preferable to adjust a ratio suitably according to the application method.
  • solid content is a total amount of all the components remove
  • the photosensitive resin composition may further contain components other than the above components.
  • the photosensitive resin composition may contain an inorganic filler.
  • the inorganic filler can contain, for example, one or more materials selected from the group consisting of barium sulfate, crystalline silica, nano silica, carbon nanotubes, talc, bentonite, aluminum hydroxide, magnesium hydroxide, and titanium oxide. You may whiten the photosensitive resin composition and its hardened
  • the proportion of the inorganic filler in the photosensitive resin composition is appropriately set, but the amount of the inorganic filler with respect to the carboxyl group-containing resin (A) is preferably in the range of 0 to 300% by mass.
  • Photosensitive resin composition comprising tolylene diisocyanate, morpholine diisocyanate, isophorone diisocyanate and hexamethylene diisocyanate blocked isocyanates blocked with caprolactam, oxime, malonic acid ester, etc .; melamine resin, n-butylated melamine resin , Amino resins such as isobutylated melamine resin, butylated urea resin, butylated melamine urea cocondensation resin, benzoguanamine cocondensation resin; various other thermosetting resins; ultraviolet curable epoxy (meth) acrylate; bisphenol A type , Phenol novolak type, cresol novolak type, alicyclic type and other epoxy resins obtained by adding (meth) acrylic acid; and diallyl phthalate resin, phenoxy resin, urethane resin, fluorine resin At least one resin selected from the group consisting of polymer compounds may be contained.
  • the photosensitive resin composition may contain a curing agent for curing the epoxy compound (D).
  • the curing agent include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- (2 Imidazole derivatives such as -cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, Amine compounds such as 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic hydrazide and sebacic acid hydrazide; phosphorus compounds such as triphenylphosphine; acid anhydr
  • the photosensitive resin composition may contain an adhesion-imparting agent other than melamine (E).
  • adhesion-imparting agent include guanamine, acetoguanamine, benzoguanamine, and 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-4,6-diamino-S-triazine, 2-vinyl- S-triazine derivatives such as 4,6-diamino-S-triazine / isocyanuric acid adduct and 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adduct.
  • Photosensitive resin composition includes curing accelerator; colorant; copolymer such as silicone and acrylate; leveling agent; adhesion imparting agent such as silane coupling agent; thixotropic agent; polymerization inhibitor; antihalation agent; An antifoaming agent; an antioxidant; a surfactant; and at least one component selected from the group consisting of polymer dispersants.
  • the content of the amine compound in the photosensitive resin composition is preferably as small as possible. If it does in this way, the electrical insulation of the layer which consists of hardened
  • the amount of the amine compound relative to the carboxyl group-containing resin (A) is preferably 6% by mass or less, and more preferably 4% by mass or less.
  • the photosensitive resin composition can be prepared by blending the raw materials of the photosensitive resin composition as described above and kneading by a known kneading method using, for example, a three-roll, ball mill, sand mill or the like.
  • the raw material of the photosensitive resin composition contains a liquid component, a low viscosity component, etc.
  • the part of the raw material excluding the liquid component, the low viscosity component, etc. is first kneaded, and the resulting mixture is
  • the photosensitive resin composition may be prepared by adding and mixing a liquid component, a component having a low viscosity, and the like.
  • the first agent may be prepared by mixing a part of the components of the photosensitive resin composition
  • the second agent may be prepared by mixing the rest of the components.
  • the photosensitive resin composition may include a first agent and a second agent.
  • the first agent is prepared by previously mixing and dispersing the unsaturated compound (B), a part of the organic solvent, and the thermosetting component among the components of the photosensitive resin composition.
  • You may prepare a 2nd agent by mixing and disperse
  • the photosensitive resin composition according to this embodiment is suitable for an electrically insulating material for a printed wiring board.
  • the photosensitive resin composition is suitable for materials for electrically insulating layers such as a solder resist layer, a plating resist layer, an etching resist layer, and an interlayer insulating layer.
  • the photosensitive resin composition according to the present embodiment preferably has such a property that even a 25 ⁇ m thick film can be developed with an aqueous sodium carbonate solution.
  • the photosensitive resin composition since it is possible to produce a sufficiently thick electrically insulating layer from the photosensitive resin composition by a photolithography method, the photosensitive resin composition is used as an interlayer insulating layer, a solder resist layer, etc. in a printed wiring board. It can be widely applied to fabricate. Of course, it is also possible to produce an electrically insulating layer having a thickness of less than 25 ⁇ m from the photosensitive resin composition.
  • a wet paint film is formed by applying the photosensitive resin composition on a suitable substrate, and this wet paint film is heated at 80 ° C. for 40 minutes to form a film having a thickness of 25 ⁇ m.
  • the film is exposed by irradiating the film with ultraviolet light under the condition of 500 mJ / cm 2 with a negative mask having an exposed part that transmits ultraviolet light and a non-exposed part that blocks ultraviolet light directly applied. After the exposure, a 1% Na 2 CO 3 aqueous solution at 30 ° C.
  • the film having a thickness of 25 ⁇ m can be developed with an aqueous sodium carbonate solution when a portion corresponding to the non-exposed portion of the film is removed and no residue is observed.
  • FIGS. 1A to 1E an example of a method for producing a printed wiring board including an interlayer insulating layer formed from the photosensitive resin composition according to the present embodiment will be described with reference to FIGS. 1A to 1E.
  • a through hole is formed in the interlayer insulating layer by photolithography.
  • a core material 1 is prepared as shown in FIG. 1A.
  • the core material 1 includes, for example, at least one insulating layer 2 and at least one conductor wiring 3.
  • the conductor wiring 3 provided on one surface of the core material 1 is hereinafter referred to as a first conductor wiring 3.
  • a film 4 is formed on one surface of the core material 1 from a photosensitive resin composition. Examples of the method for forming the film 4 include a coating method and a dry film method.
  • a photosensitive resin composition is applied on the core material 1 to form a wet paint film.
  • the method for applying the photosensitive resin composition is selected from the group consisting of known methods such as dipping, spraying, spin coating, roll coating, curtain coating, and screen printing.
  • the wet coating film is dried at a temperature in the range of 60 to 120 ° C., for example, whereby the coating film 4 can be obtained.
  • a photosensitive resin composition is first applied on an appropriate support made of polyester or the like and then dried to form a dry film that is a dried product of the photosensitive resin composition on the support. To do. Thereby, a laminated body provided with a dry film and the support body which supports a dry film is obtained. After the dry film in this laminate is overlaid on the core material 1, pressure is applied to the dry film and the core material 1, and then the support is peeled from the dry film, so that the dry film is placed on the core material 1 from the support. Transfer to Thereby, the coating 4 made of a dry film is provided on the core material 1.
  • the coating 4 is partially cured by exposing the coating 4 as shown in FIG. 1C.
  • a negative mask is applied to the film 4 and then the film 4 is irradiated with ultraviolet rays.
  • the negative mask includes an exposure part that transmits ultraviolet light and a non-exposure part that blocks ultraviolet light, and the non-exposure part is provided at a position that matches the position of the through hole 10.
  • the negative mask is a photo tool such as a mask film or a dry plate.
  • the ultraviolet light source is selected from the group consisting of chemical lamps, low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, and metal halide lamps, for example.
  • the exposure method may be a method other than a method using a negative mask.
  • the film 4 may be exposed by a direct drawing method in which only the portion of the film 4 to be exposed is irradiated with ultraviolet rays emitted from a light source.
  • the light source applied to the direct drawing method is, for example, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, g-line (436 nm), h-line (405 nm), i-line (365 nm), and g-line, h-line, and i-line. It is selected from the group consisting of two or more kinds of combinations.
  • the film 4 is exposed by irradiating the film 4 made of the dry film with ultraviolet rays through the support without peeling the support after the dry film in the laminate is stacked on the core material 1. Subsequently, the support may be peeled off from the film 4 before development processing.
  • the coating 4 is developed to remove the unexposed portion 5 of the coating 4 shown in FIG. 1C, whereby the hole 6 is formed at the position where the through hole 10 is formed as shown in FIG. 1D.
  • an appropriate developer according to the composition of the photosensitive resin composition can be used.
  • the developer is, for example, an alkaline aqueous solution containing at least one of an alkali metal salt and an alkali metal hydroxide, or an organic amine.
  • the alkaline aqueous solution is, for example, sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate, sodium hydroxide, potassium hydroxide, ammonium hydroxide, tetramethyl ammonium hydroxide and water. It contains at least one component selected from the group consisting of lithium oxide.
  • the solvent in the alkaline aqueous solution may be water alone or a mixture of water and a hydrophilic organic solvent such as lower alcohols.
  • the organic amine contains, for example, at least one component selected from the group consisting of monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine and triisopropanolamine.
  • the developer is preferably an alkaline aqueous solution containing at least one of an alkali metal salt and an alkali metal hydroxide, and particularly preferably an aqueous sodium carbonate solution. In this case, it is possible to improve the work environment and reduce the burden of waste disposal.
  • the coating 4 is cured by heating.
  • the heating conditions are, for example, a heating temperature range of 120 to 200 ° C. and a heating time range of 30 to 120 minutes.
  • the coating film 4 may be further irradiated with ultraviolet rays before or after heating. In this case, photocuring of the film 4 can be further advanced.
  • the interlayer insulating layer 7 made of a cured product of the photosensitive resin composition is provided on the core material 1.
  • the second conductor wiring 8 and the hole plating 9 can be provided on the interlayer insulating layer 7 by a known method such as an additive method.
  • a printed wiring board 11 having a through hole 10 for electrically connecting the first conductor wiring 3 and the second conductor wiring 8 is obtained.
  • the hole plating 9 has a cylindrical shape that covers the inner surface of the hole 6, but the entire inner side of the hole 6 may be filled with the hole plating 9.
  • the core material includes, for example, at least one insulating layer and at least one conductor wiring.
  • a film is formed from the photosensitive resin composition on the surface of the core material where the conductor wiring is provided.
  • Examples of the method for forming the film include a coating method and a dry film method.
  • the coating method and the dry film method the same method as that for forming the interlayer insulating layer can be employed.
  • the film is partially cured by exposure. The exposure method can be the same as the method for forming the interlayer insulating layer.
  • the film is subjected to a development process to remove the unexposed part of the film, whereby the exposed part of the film remains on the core material.
  • the coating on the core material is heated and cured.
  • the developing method and the heating method can be the same as the method for forming the interlayer insulating layer.
  • the film may be further irradiated with ultraviolet rays before or after heating. In this case, photocuring of the film can be further advanced.
  • a solderless resist layer made of a cured product of the photosensitive resin composition is provided on the core material.
  • a printed wiring board provided with the core material provided with an insulating layer and the conductor wiring on it, and the soldering resist layer which partially covers the surface in which the conductor wiring in a core material is provided is obtained.
  • Epoxy compound 1 a bisphenolfluorene type epoxy compound represented by the formula (7) and having an epoxy equivalent of 250 g / eq, wherein R 1 to R 8 in the formula (7) are all hydrogen.
  • Epoxy compound 2 epoxy equivalent 279 g represented by the formula (7), wherein R 1 and R 5 in the formula (7) are all methyl groups, and R 2 to R 4 and R 6 to R 8 are all hydrogen / Eq bisphenolfluorene type epoxy compound.
  • Unsaturated compound B ⁇ -caprolactone-modified dipentaerystol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., product number DPCA-60).
  • Unsaturated compound C Tricyclodecane dimethanol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product number A-DCP).
  • Unsaturated compound D ⁇ -caprolactone-modified dipentaerystol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd., product number KAYARAD DPCA-20.
  • Photopolymerization initiator A 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (product number Irgacure TPO, manufactured by BASF).
  • Photopolymerization initiator B 1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by BASF, product number Irgacure 184).
  • Photopolymerization initiator C 4,4′-bis (diethylamino) benzophenone
  • Crystalline epoxy resin A 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione (high melting type, Melting point 150-158 ° C., epoxy equivalent 99 g / eq).
  • Crystalline epoxy resin B Hydroquinone type crystalline epoxy resin (product name YDC-1312 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., melting point 138 to 145 ° C., epoxy equivalent 176 g / eq).
  • Crystalline epoxy resin C Biphenyl type crystalline epoxy resin (product name YX-4000 manufactured by Mitsubishi Chemical Corporation, melting point 105 ° C., epoxy equivalent 187 g / eq).
  • Crystalline epoxy resin D Diphenyl ether type crystalline epoxy resin (product number YSLV-80DE manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., melting point 80 to 90 ° C., epoxy equivalent 163 g / eq).
  • Crystalline epoxy resin E Bisphenol type crystalline epoxy resin (product name YSLV-80XY manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., melting point 75 to 85 ° C., 192 g / eq).
  • Amorphous epoxy resin B solution long-chain carbon chain-containing bisphenol A type epoxy resin (manufactured by DIC, product number EPICLON EXA-4816, liquid resin, epoxy equivalent 410 g / eq, structural unit (d1): bisphenol A skeleton, structure A solution of unit (d2): containing a straight-chain hydrocarbon having 6 carbon atoms dissolved in diethylene glycol monoethyl ether acetate at a solid content of 90% (epoxy equivalent in terms of solid content of 90% is 455.56 g / eq) .
  • Amorphous epoxy resin C rubbery core-shell polymer-modified bisphenol F type epoxy resin (manufactured by Kaneka Corporation, product number MX-136, liquid resin, epoxy equivalent 220 g / eq).
  • Amorphous epoxy resin D solution Cresol novolak type epoxy resin, manufactured by DIC, product number EPICLON N-695, softening point 90-100 ° C., epoxy equivalent 214 g / eq dissolved in diethylene glycol monoethyl ether acetate at a solid content of 75% Solution (epoxy equivalent of 75% solid content is 285 g / eq)
  • Amorphous epoxy resin E solution long-chain carbon chain-containing bisphenol A type epoxy resin (manufactured by DIC, product number EPICLON EXA-4822, liquid resin, epoxy equivalent 389 g / eq, structural unit (d1): bisphenol A skeleton, structure Unit (d2): polyethylene glycol, ether oxygen atoms: 4) dissolved
  • Epoxy equivalent in terms of solid content of 80% is 362.5 g / eq.
  • Melamine manufactured by Nissan Chemical Industries, Ltd., fine melamine.
  • Antioxidant A hindered phenol-based antioxidant (manufactured by BASF, product number IRGANOX 1010).
  • Blue pigment phthalocyanine blue.
  • Yellow pigment 1,1 ′-[(6-phenyl-1,3,5-triazine-2,4-diyl) bis (imino)] bis (9,10-anthracenedione).
  • Barium sulfate manufactured by Sakai Chemical Industry Co., Ltd., product number Variace B31.
  • -Talc Product number SG-2000, manufactured by Nippon Talc.
  • Bentonite manufactured by Leox, part number Benton SD-2.
  • Antifoaming agent Product number KS-66 manufactured by Shin-Etsu Silicone Co., Ltd.
  • Surfactant manufactured by DIC, product number MegaFuck F-477.
  • -Rheology control agent manufactured by Big Chemy Japan, product number BYK-430.
  • Solvent A diethylene glycol monoethyl ether acetate.
  • Solvent B methyl ethyl ketone.
  • test pieces were produced as follows.
  • a glass epoxy copper clad laminate (FR-4 type) provided with a 35 ⁇ m thick copper foil was prepared.
  • a comb-shaped electrode having a line width / space width of 50 ⁇ m / 50 ⁇ m was formed as a conductor wiring on this glass epoxy copper clad laminate by a subtractive method, thereby obtaining a core material.
  • a wet paint film was formed by applying the photosensitive resin composition to the entire surface of the core material by screen printing. This wet coating film was heated at 80 ° C. for 40 minutes and preliminarily dried to form a film having a thickness of 25 ⁇ m.
  • Example X17 a test piece was produced as follows.
  • the photosensitive resin composition was applied onto a polyethylene terephthalate film with an applicator and then dried by heating at 95 ° C. for 25 minutes, thereby forming a dry film having a thickness of 25 ⁇ m on the film. Further, a dry film was laminated by heating with a vacuum laminator over the entire surface of the same core material as in Examples X1 to X16, Examples X18 to X22, and Comparative Examples X1 to X11. The conditions for heat lamination are 0.5 MPa, 80 ° C., and 1 minute. As a result, a 25 ⁇ m-thick film made of a dry film was formed on the core material. The film was exposed, developed and irradiated with ultraviolet light under the same conditions as described above.
  • the film made from a polyethylene terephthalate was peeled from the dry film (coating) after exposure and before development.
  • cured material of the photosensitive resin composition (it can also be said to be hardened
  • a test piece was obtained.
  • test pieces were produced as follows.
  • Core materials were obtained in the same manner as in Examples X1 to X22 and Comparative Examples X1 to X11.
  • the conductor layer was roughened by dissolving and removing the surface layer portion of the core member having a thickness of about 1 ⁇ m with a product number CZ-8100 manufactured by MEC Co., Ltd. Thereafter, in the same manner as in Examples X1 to X22 and Comparative Examples X1 to X11, a layer made of a cured product of the photosensitive resin composition was formed on the core material. As a result, a test piece was obtained.
  • test pieces were produced as follows.
  • a dry film was formed in the same manner as in Example X17. Further, a dry film was laminated by heating with a vacuum laminator over the entire surface of the same core material as in Examples Y1 to Y18 and Comparative Examples Y1 to Y5, Examples Z1 to Z20 and Comparative Examples Z1 to Z7. The conditions for heating lamination are the same as in Example X17. Thereafter, the same process as in Example X17 was performed to obtain a test piece.
  • Example X17, Example Y19, and Example Z21 a wet coating film was obtained by applying a photosensitive resin composition to the entire surface of the printed wiring board by screen printing. Formed. The wet coating film was heated at 80 ° C. for 40 minutes and 60 minutes to form a 25 ⁇ m thick film. This film was developed without exposure. In the development process, a 1% Na 2 CO 3 aqueous solution at 30 ° C. was jetted for 90 seconds at a jet pressure of 0.2 MPa, and then pure water was jetted for 90 seconds at a jet pressure of 0.2 MPa. The printed wiring board after the treatment was observed, and the result was evaluated as follows.
  • A The film was completely removed regardless of whether the heating time of the wet coating film was 40 minutes or 60 minutes.
  • B When the heating time of the wet coating film was 40 minutes, all the coating film was removed, but at 60 minutes, a part of the coating film remained on the printed wiring board.
  • C A part of the film remained on the printed wiring board regardless of whether the heating time of the wet coating film was 40 minutes or 60 minutes.
  • Example X17, Example Y19, and Example Z21 since the membrane
  • Example X17, Example Y19, and Example Z21 development was possible without problems in the development process after exposure.
  • A No abnormality was observed in the appearance of the layer made of the cured product and the metal layer, and peeling of the layer made of the cured product by the cellophane adhesive tape peeling test did not occur.
  • B Although discoloration was recognized in the layer which consists of hardened
  • C Lifting of the layer made of the cured product was observed, and peeling of the layer made of the cured product by the cellophane adhesive tape peeling test occurred.
  • PCT pressure cooker test
  • the test pieces of Examples X1 to X22, Comparative Examples X1 to X11, Examples Y1 to Y19, Comparative Examples Y1 to Y5, Examples Z1 to Z21, and Comparative Examples Z1 to Z7 were 100 in an environment of 121 ° C. and 100% RH.
  • the appearance of the cured layer was evaluated according to the following evaluation criteria. A: No abnormality was found in the layer made of the cured product.
  • C A large discoloration was observed in the layer made of the cured product, and partial swelling occurred.
  • the photosensitive resin composition according to the first aspect is A carboxyl group-containing resin (A); An unsaturated compound (B) having at least one ethylenically unsaturated bond in one molecule; A photopolymerization initiator (C); An epoxy compound (D); Containing
  • the carboxyl group-containing resin (A) is a carboxyl group-containing resin (A1) that is a reaction product of an intermediate that is a reaction product of an epoxy compound (a1) and an unsaturated group-containing carboxylic acid (a2) and an acid anhydride.
  • the epoxy compound (a1) has a bisphenolfluorene skeleton represented by the above formula (1).
  • R 1 to R 8 are each independently hydrogen, alkyl having 1 to 5 carbon atoms.
  • a group or halogen The epoxy compound (D) contains a crystalline epoxy resin and an amorphous epoxy resin, The total of the equivalents of the epoxy groups of the crystalline epoxy resin and the amorphous epoxy resin with respect to 1 equivalent of the carboxyl group of the carboxyl group-containing resin (A) is in the range of 0.7 to 2.5.
  • This photosensitive resin composition contains a carboxyl group-containing resin (A1) because the carboxyl group-containing resin (A1) has a bisphenolfluorene skeleton represented by the formula (1) derived from the epoxy compound (a1). High heat resistance and insulation reliability can be imparted to the cured product of the photosensitive resin composition.
  • the epoxy compound (D) contains a crystalline epoxy resin, the developability of the photosensitive resin composition can be improved.
  • the epoxy compound (D) contains only the crystalline epoxy resin, cracks are likely to occur in the cured product of the photosensitive resin composition while the temperature change including the temperature increase and the temperature decrease is repeated.
  • the epoxy compound (D) contains the crystalline epoxy resin and the amorphous epoxy resin at the predetermined ratio, so that the temperature change is repeated, so that the photosensitive resin composition It can be made hard to produce a crack in hardened
  • the equivalent of the epoxy group of the crystalline epoxy resin is within the range of 0.2 to 1.9 with respect to 1 equivalent of the carboxyl group of the carboxyl group-containing resin (A). It is preferable that
  • This photosensitive resin composition can improve developability as compared with a resin having an epoxy group equivalent in the crystalline epoxy resin outside the range of 0.2 to 1.9.
  • the crystalline epoxy resin preferably has two epoxy groups in one molecule.
  • This photosensitive resin composition can make it harder to generate cracks in the cured product of the photosensitive resin composition while the temperature change is repeated.
  • the amorphous epoxy resin comprises a bisphenol type structural unit (d1), a linear hydrocarbon structural unit having 4 to 20 carbon atoms, and an ether oxygen atom. It is preferable to contain an epoxy resin (da) having a structural unit (d2) which is at least one of polyalkylene ether structural units of several 3 or more and 20 or less.
  • This photosensitive resin composition can improve the thermal shock resistance of the cured product as compared with the case where no epoxy resin (da) is contained.
  • the amorphous epoxy resin preferably contains an epoxy resin (db) having a novolak structure and a biphenyl skeleton.
  • This photosensitive resin composition is particularly suitable as an insulating material for printed wiring boards that require high reliability such as line insulation and interlayer migration resistance because the electrical insulation performance of the cured product is enhanced.
  • the acid anhydride preferably contains an acid dianhydride.
  • the molecular weight is adjusted by crosslinking the carboxyl group-containing resin (A1) with the acid dianhydride (a3). For this reason, the carboxyl group-containing resin (A1) in which the acid value and the molecular weight are appropriately adjusted is obtained. And the molecular weight and acid value of carboxyl group-containing resin (A1) are easily adjusted by controlling the quantity of acid dianhydride (a3).
  • the acid dianhydride preferably contains 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
  • This photosensitive resin composition makes it easy to obtain a film with suppressed tackiness while ensuring good developability, and a cured product with improved insulation reliability and plating resistance.
  • the carboxyl group-containing resin (A1) preferably has a weight average molecular weight in the range of 1,000 to 5,000.
  • the tackiness of the film formed from the photosensitive resin composition is easily suppressed, and the insulation reliability and plating resistance of the cured product formed from the photosensitive resin composition are easily improved.
  • the developability of the resin composition with an alkaline aqueous solution is likely to be improved.
  • the solid content acid value of the carboxyl group-containing resin (A1) is preferably in the range of 60 to 140 mgKOH / g.
  • the developability of the photosensitive resin composition is likely to be improved.
  • the acid anhydride preferably contains 1,2,3,6-tetrahydrophthalic anhydride.
  • the tackiness of the film formed from the photosensitive resin composition is easily suppressed and the insulation reliability and plating resistance of the cured product formed from the photosensitive resin composition are easily improved.
  • the dry film according to the eleventh aspect is a dried product of the photosensitive resin composition.
  • the dry film contains a carboxyl group-containing resin having a bisphenolfluorene skeleton, it has excellent developability, and cracks are hardly generated while the cured product is repeatedly changed in temperature.
  • a printed wiring board includes a solder resist layer containing a cured product of the photosensitive resin composition.
  • a printed wiring board according to a thirteenth aspect includes an interlayer insulating layer containing a cured product of the photosensitive resin composition.
  • the method for producing a photosensitive resin composition according to the fourteenth aspect is represented by the above formula (1), wherein R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms.
  • R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms.
  • an epoxy compound (a1) having a bisphenolfluorene skeleton that is a halogen is reacted with an unsaturated group-containing carboxylic acid (a2), and an intermediate obtained thereby is reacted with an acid anhydride to produce a carboxyl.
  • the epoxy compound (D) contains a crystalline epoxy resin and an amorphous epoxy resin, and the carboxy
  • the total of the equivalents of the epoxy groups contained in the crystalline epoxy resin and the amorphous epoxy resin with respect to 1 equivalent of the carboxyl group contained in the group-containing resin (A) is within the range of 0.7 to 2.5. It is characterized by being.
  • the carboxyl group-containing resin (A1) has a bisphenolfluorene skeleton represented by the formula (1) derived from the epoxy compound (a1). High heat resistance and insulation reliability can be imparted to the cured product of the photosensitive resin composition containing A1).
  • the epoxy compound (D) contains a crystalline epoxy resin, the developability of the photosensitive resin composition can be improved.
  • the epoxy compound (D) contains only the crystalline epoxy resin, cracks are likely to occur in the cured product of the photosensitive resin composition while the temperature change including the temperature increase and the temperature decrease is repeated.
  • the epoxy compound (D) contains the crystalline epoxy resin and the amorphous epoxy resin at the predetermined ratio, so that the temperature change is repeated, so that the photosensitive resin composition It can be made hard to produce a crack in hardened

Abstract

本発明の課題は、感光性樹脂組成物がビスフェノールフルオレン骨格を有するカルボキシル基含有樹脂を含有していても、優れた現像性を得、その硬化物に温度変化が繰り返される中でクラックを生じ難くさせることである。本発明に係る感光性樹脂組成物は、カルボキシル基含有樹脂(A)と、不飽和化合物と、光重合開始剤と、エポキシ化合物とを含有する。カルボキシル基含有樹脂(A)が、下記式(1)で示されるビスフェノールフルオレン骨格を有するエポキシ化合物と、不飽和基含有カルボン酸との反応物である中間体と、酸無水物との反応物であるカルボキシル基含有樹脂(A1)を含有する。エポキシ化合物は結晶性エポキシ樹脂と非晶性エポキシ樹脂を含有する。

Description

感光性樹脂組成物、ドライフィルム、プリント配線板
 本発明は、感光性樹脂組成物、ドライフィルム、プリント配線板に関し、詳しくはプリント配線板にソルダーレジスト層、メッキレジスト層、エッチングレジスト層、層間絶縁層等の電気絶縁性の層を形成するために適した感光性樹脂組成物等に関する。
 従来、プリント配線板の、ソルダーレジスト層、メッキレジスト層、エッチングレジスト層、層間絶縁層等の電気絶縁性の層を形成するために電気絶縁性の樹脂組成物が使用されている。このような樹脂組成物は、例えば感光性樹脂組成物である。
 感光性樹脂組成物から形成される層に高い耐熱性を付与するために、感光性樹脂組成物にビスフェノールフルオレン骨格を有するカルボキシル基含有樹脂を配合することが提案されている。例えば特許第4508929号には、フルオレンエポキシ(メタ)アクリレートを多価カルボン酸又はその無水物と反応させて得られるフルオレン骨格を備えるカルボキシル基含有樹脂を用いることが開示されている。
 しかし、ビスフェノールフルオレン骨格を有するカルボキシル基含有樹脂を含有する感光性樹脂組成物の現像性は低く、このような感光性樹脂組成物を用いて、ソルダーレジスト層や層間絶縁層等の電気絶縁性の層を、フォトリソグラフィー法で、十分な厚みに作製することは困難であった。また、上述の感光性樹脂組成物から形成された層の耐熱性を向上させることができても、温度上昇と温度低下とを含む温度変化が繰り返される中で、このような層にクラックが生じてしまうことがあった。
 本発明の目的は、感光性樹脂組成物がビスフェノールフルオレン骨格を有するカルボキシル基含有樹脂を含有していても、優れた現像性を得ることができ、しかもその硬化物に温度変化が繰り返される中でクラックを生じ難くさせることができる感光性樹脂組成物、前記感光性樹脂組成物の乾燥物であるドライフィルム、前記感光性樹脂組成物の硬化物を含むソルダーレジスト層を備えるプリント配線板、前記感光性樹脂組成物の硬化物を含む層間絶縁層を備えるプリント配線板、及び前記感光性樹脂組成物の製造方法を提供することである。
 本発明の一態様に係る感光性樹脂組成物は、カルボキシル基含有樹脂(A)と、エチレン性不飽和結合を一分子中に少なくとも一つ有する不飽和化合物(B)と、光重合開始剤(C)と、エポキシ化合物(D)とを含有し、前記カルボキシル基含有樹脂(A)が、下記式(1)で示され、式(1)中、R1~Rは各々独立に水素、炭素数1~5のアルキル基又はハロゲンであるビスフェノールフルオレン骨格を有するエポキシ化合物(a1)と、不飽和基含有カルボン酸(a2)との反応物である中間体と、酸無水物との反応物であるカルボキシル基含有樹脂(A1)を含有し、
 前記エポキシ化合物(D)は結晶性エポキシ樹脂と非晶性エポキシ樹脂を含有し、前記カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対する、前記結晶性エポキシ樹脂と前記非晶性エポキシ樹脂とに含まれるエポキシ基の当量の合計が、0.7~2.5の範囲内である。
Figure JPOXMLDOC01-appb-C000001
 本発明の一態様に係るドライフィルムは、前記感光性樹脂組成物を含有する。
 本発明の一態様に係るプリント配線板は、前記感光性樹脂組成物の硬化物を含む層間絶縁層を備える。
 本発明の一態様に係るプリント配線板は、前記感光性樹脂組成物の硬化物を含むソルダーレジスト層を備える。
図1A乃至図1Eは、本発明の一実施形態に係る多層プリント配線板を製造する工程を示す断面図である。
 以下、本発明の一実施形態について説明する。尚、以下の説明において、「(メタ)アクリル」とは、「アクリル」と「メタクリル」のうち少なくとも一方を意味する。例えば、(メタ)アクリレートは、アクリレートとメタクリレートとのうち少なくとも一方を意味する。
 本実施形態に係る感光性樹脂組成物は、カルボキシル基含有樹脂(A)と、エチレン性不飽和結合を一分子中に少なくとも一つ有する不飽和化合物(B)と、光重合開始剤(C)と、エポキシ化合物(D)とを含有する。
 カルボキシル基含有樹脂(A)は、ビスフェノールフルオレン骨格を有するカルボキシル基含有樹脂(A1)を含有する。
 カルボキシル基含有樹脂(A1)は、例えばエポキシ化合物(a1)と不飽和基含有カルボン酸(a2)との反応物である中間体と、酸無水物と、の反応物である。エポキシ化合物(a1)は、下記式(1)で示され、式(1)中、R~Rは各々独立に水素、炭素数1~5のアルキル基又はハロゲンである、ビスフェノールフルオレン骨格を有する。
 カルボキシル基含有樹脂(A1)は、エポキシ化合物(a1)と不飽和基含有カルボン酸(a2)とを反応させ、それにより得られた中間体と、酸無水物とを反応させることで合成される。
Figure JPOXMLDOC01-appb-C000002
 式(1)におけるR~Rの各々は、水素でもよいが、炭素数1~5のアルキル基又はハロゲンでもよい。なぜなら、芳香環における水素が低分子量のアルキル基又はハロゲンで置換されても、カルボキシル基含有樹脂(A1)の物性に悪影響はなく、むしろカルボキシル基含有樹脂(A1)を含む感光性樹脂組成物の硬化物の耐熱性或いは難燃性が向上する場合もあるからである。
 カルボキシル基含有樹脂(A1)について、より具体的に説明する。カルボキシル基含有樹脂(A1)を合成するためには、まずエポキシ化合物(a1)のエポキシ基(式(2)参照)の少なくとも一部と、不飽和基含有カルボン酸(a2)とを反応させることで、中間体を合成する。中間体は、エポキシ基と不飽和基含有カルボン酸(a2)との開環付加反応により生じた下記式(3)に示す構造(S3)を有する。すなわち、中間体は、構造(S3)中に、エポキシ基と不飽和基含有カルボン酸(a2)との開環付加反応により生じた二級の水酸基を有する。式(3)において、Aは不飽和基含有カルボン酸残基である。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 次に、中間体中の二級の水酸基と酸無水物とを反応させる。これにより、カルボキシル基含有樹脂(A1)を合成できる。
 酸無水物は、酸二無水物(a3)及び酸一無水物(a4)のうち少なくとも1つを含有してもよい。酸無水物が酸一無水物(a4)を含有する場合、カルボキシル基含有樹脂(A1)は式(1)で示されるビスフェノールフルオレン骨格(S1)と、下記式(4)に示す構造(S4)とを有する。
 構造(S4)は、中間体の構造(S3)中の二級の水酸基と、酸一無水物(a4)における酸無水物基とが反応することで生じる。式(4)において、Aは不飽和基含有カルボン酸残基であり、Bは酸一無水物残基である。
Figure JPOXMLDOC01-appb-C000005
 酸無水物が酸二無水物(a3)を含有する場合、カルボキシル基含有樹脂(A1)は、ビスフェノールフルオレン骨格(S1)と、下記式(5)に示す構造(S5)とを有する。
 構造(S5)は、酸二無水物(a3)中の二つの酸無水物基と、中間体における二つの二級の水酸基とが、それぞれ反応することで生じる。すなわち、構造(S5)は、二つの二級の水酸基同士を酸二無水物(a3)が架橋することで生成する。なお、中間体の一つの分子中に存在する二つの二級の水酸基同士が架橋される場合と、中間体の二つの分子中にそれぞれ存在する二つの二級の水酸基同士が架橋される場合とが、ありうる。中間体の二つの分子中にそれぞれ存在する二つの二級の水酸基同士が架橋されると、分子量が増大する。式(5)において、Aは不飽和基含有カルボン酸残基であり、Dは酸二無水物残基である。
Figure JPOXMLDOC01-appb-C000006
 中間体中の二級の水酸基と酸無水物とを反応させてカルボキシル基含有樹脂(A1)を得ることができる。酸無水物が酸二無水物(a3)及び酸一無水物(a4)を含有する場合、中間体中の二級の水酸基のうちの一部と酸二無水物(a3)とを反応させ、中間体中の二級の水酸基のうちの別の一部と酸一無水物(a4)とを反応させる。これにより、カルボキシル基含有樹脂(A1)を合成できる。この場合、カルボキシル基含有樹脂(A1)は、ビスフェノールフルオレン骨格(S1)と、構造(S4)と、構造(S5)とを有する。
 カルボキシル基含有樹脂(A1)が、更に下記式(6)で示す構造(S6)を有することもありうる。構造(S6)は、酸二無水物(a3)中の二つの酸無水物基のうち、一つのみが、中間体における二級の水酸基と反応することで生じる。式(6)において、Aは不飽和基含有カルボン酸残基であり、Dは酸二無水物残基である。
Figure JPOXMLDOC01-appb-C000007
 中間体の合成時にエポキシ化合物(a1)中のエポキシ基の一部が未反応のまま残存する場合、カルボキシル基含有樹脂(A1)は式(2)に示す構造(S2)、すなわちエポキシ基を有することがありうる。また、中間体における構造(S3)の一部が未反応のまま残存する場合に、カルボキシル基含有樹脂(A1)は構造(S3)を有することもありうる。
 酸無水物が酸二無水物(a3)を含有する場合、カルボキシル基含有樹脂(A1)の合成時の反応条件を最適化することで、カルボキシル基含有樹脂(A1)中の構造(S2)、及び構造(S6)の数を低減し、或いは、カルボキシル基含有樹脂(A1)から構造(S2)及び構造(S6)を殆どなくしている。
 上記のように、カルボキシル基含有樹脂(A1)は、ビスフェノールフルオレン骨格(S1)を有し、酸無水物が酸一無水物(a4)を含有する場合は構造(S4)を有し、酸無水物が酸二無水物(a3)を含有する場合は構造(S5)を有することができる。さらに、酸無水物が酸一無水物(a4)を含有する場合、カルボキシル基含有樹脂(A1)は、構造(S2)と構造(S3)とのうち少なくとも一種を有することがある。また、酸無水物が酸二無水物(a3)を含有する場合、カルボキシル基含有樹脂(A1)は、構造(S2)と、構造(S6)とのうち少なくとも一種を有することがある。また更に、酸無水物が酸一無水物(a4)と酸二無水物(a3)を含有する場合、カルボキシル基含有樹脂(A1)は、構造(S2)と、構造(S3)と、構造(S6)とのうち少なくとも一種を有することがある。
 また、エポキシ化合物(a1)自体が二級の水酸基を有する場合、すなわち例えば後述する式(7)においてn=1以上である場合には、カルボキシル基含有樹脂(A1)は、エポキシ化合物(a1)中の二級の水酸基と酸無水物が反応することで生じる構造を有することもある。
 なお、上述のカルボキシル基含有樹脂(A1)の構造は技術常識に基づいて合理的に類推されており、カルボキシル基含有樹脂(A1)の構造を分析によって特定することは現実にはできない。その理由は次の通りである。エポキシ化合物(a1)自体が二級の水酸基を有する場合(例えば式(7)においてnが1以上である場合)には、エポキシ化合物(a1)中の二級の水酸基の数によってカルボキシル基含有樹脂(A1)の構造が大きく変化してしまう。また、中間体と酸二無水物(a3)とが反応する際には、上述の通り、中間体の一つの分子中に存在する二つの二級の水酸基同士が酸二無水物(a3)で架橋される場合と、中間体の二つの分子中にそれぞれ存在する二つの二級の水酸基同士が酸二無水物(a3)で架橋される場合とが、ありうる。このため、最終的に得られるカルボキシル基含有樹脂(A1)は、互いに構造の異なる複数の分子を含み、カルボキシル基含有樹脂(A1)を分析してもその構造を特定できない。
 カルボキシル基含有樹脂(A1)は、不飽和基含有カルボン酸(a2)に由来するエチレン性不飽和基を有しているから、光反応性を有する。このため、カルボキシル基含有樹脂(A1)は、感光性樹脂組成物に、感光性(具体的には紫外線硬化性)を付与できる。また、カルボキシル基含有樹脂(A1)は、酸無水物に由来するカルボキシル基を有しているから、感光性樹脂組成物に、アルカリ金属塩及びアルカリ金属水酸化物のうち少なくとも一方を含有するアルカリ性水溶液による現像性を付与できる。さらに、酸無水物が酸二無水物(a3)を含有する場合、カルボキシル基含有樹脂(A1)の分子量は、酸二無水物(a3)による架橋の数に依存する。このため、酸価と分子量とが適度に調整されたカルボキシル基含有樹脂(A1)が得られる。酸無水物が酸二無水物(a3)及び酸一無水物(a4)を含有する場合、酸二無水物(a3)及び酸一無水物(a4)の量、並びに酸二無水物(a3)に対する酸一無水物(a4)の量を制御することで、所望の分子量及び酸価のカルボキシル基含有樹脂(A1)が容易に得られる。
 カルボキシル基含有樹脂(A1)の重量平均分子量は1000~5000の範囲内であることが好ましい。重量平均分子量が1000以上であると、感光性樹脂組成物から形成される皮膜のタック性が更に抑制されると共に硬化物の絶縁信頼性及び耐メッキ性が更に向上する。また、重量平均分子量が5000以下であると、感光性樹脂組成物のアルカリ性水溶液による現像性が特に向上する。
 カルボキシル基含有樹脂(A1)の固形分酸価は60~140mgKOH/gの範囲内であることが好ましい。この場合、感光性樹脂組成物の現像性が特に向上する。固形分酸価は、より好ましくは80~135mgKOH/gの範囲内であり、更に好ましくは90~130mgKOH/gの範囲内である。
 カルボキシル基含有樹脂(A1)の重量平均分子量(Mw)は、ゲル・パーミエーション・クロマトグラフィによる分子量測定結果から算出される。ゲル・パーミエーション・クロマトグラフィでの分子量測定は、例えば、次の条件の下で行うことができる。
 GPC装置:昭和電工社製 SHODEX SYSTEM 11、
 カラム:SHODEX KF-800P,KF-005,KF-003,KF-001の4本直列、
 移動相:THF、
 流量:1ml/分、
 カラム温度:45℃、
 検出器:RI、
 換算:ポリスチレン。
 カルボキシル基含有樹脂(A1)の原料、並びにカルボキシル基含有樹脂(A1)の合成時の反応条件について詳しく説明する。
 エポキシ化合物(a1)は、例えば下記式(7)に示す構造(S7)を有する。式(7)中のnは、例えば0~20の範囲内の数である。カルボキシル基含有樹脂(A1)の分子量を適切な値にするためには、nの平均は0~1の範囲内であることが特に好ましい。nの平均が0~1の範囲内であれば、特に酸無水物が酸二無水物(a3)を含有する場合、酸二無水物(a3)の付加による過剰な分子量の増大が抑制されやすくなる。
Figure JPOXMLDOC01-appb-C000008
 不飽和基含有カルボン酸(a2)は、例えば一分子中にエチレン性不飽和基を1個のみ有する化合物を含有できる。より具体的には、不飽和基含有カルボン酸(a2)は、例えばアクリル酸、メタクリル酸、ω-カルボキシ-ポリカプロラクトン(n≒2)モノアクリレート、クロトン酸、桂皮酸、2-アクリロイルオキシエチルコハク酸、2-メタクリロイルオキシエチルコハク酸、2-アクリロイルオキシエチルフタル酸、2-メタクリロイルオキシエチルフタル酸、2-アクリロイルオキシプロピルフタル酸、2-メタクリロイルオキシプロピルフタル酸、2-アクリロイルオキシエチルマレイン酸、2-メタクリロイルオキシエチルマレイン酸、β-カルボキシエチルアクリレート、2-アクリロイルオキシエチルテトラヒドロフタル酸、2-メタクリロイルオキシエチルテトラヒドロフタル酸、2-アクリロイルオキシエチルヘキサヒドロフタル酸、及び2-メタクリロイルオキシエチルヘキサヒドロフタル酸からなる群から選択される少なくとも一種の化合物を含有できる。好ましくは、不飽和基含有カルボン酸(a2)はアクリル酸を含有する。
 エポキシ化合物(a1)と不飽和基含有カルボン酸(a2)とを反応させるに当たっては、公知の方法が採用され得る。例えば、エポキシ化合物(a1)の溶剤溶液に不飽和基含有カルボン酸(a2)を加え、更に必要に応じて熱重合禁止剤及び触媒を加えて攪拌混合することで、反応性溶液を得る。この反応性溶液を常法により好ましくは60~150℃、特に好ましくは80~120℃の温度で反応させることで、中間体を得ることができる。溶剤は、例えばメチルエチルケトン、シクロヘキサノン等のケトン類、及びトルエン、キシレン等の芳香族炭化水素類、及び酢酸エチル、酢酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート等の酢酸エステル類、及びジアルキルグリコールエーテル類からなる群から選択される少なくとも一種の成分を含有できる。熱重合禁止剤は例えばハイドロキノン及びハイドロキノンモノメチルエーテルのうち少なくとも一方を含有する。触媒は例えばベンジルジメチルアミン、トリエチルアミン等の第3級アミン類、トリメチルベンジルアンモニウムクロライド、メチルトリエチルアンモニウムクロライド等の第4級アンモニウム塩類、トリフェニルフォスフィン、及びトリフェニルスチビンからなる群から選択される少なくとも一種の成分を含有できる。
 触媒が特にトリフェニルフォスフィンを含有することが好ましい。すなわち、トリフェニルフォスフィンの存在下で、エポキシ化合物(a1)と不飽和基含有カルボン酸(a2)とを反応させることが好ましい。この場合、エポキシ化合物(a1)におけるエポキシ基と不飽和基含有カルボン酸(a2)との開環付加反応が特に促進され、95%以上、或いは97%以上、或いはほぼ100%の反応率(転化率)を達成できる。このため、構造(S3)を有する中間体が高い収率で得られる。また、感光性樹脂組成物の硬化物を含む層におけるイオンマイグレーションの発生が抑制され、同層の絶縁信頼性が更に向上する。
 エポキシ化合物(a1)と不飽和基含有カルボン酸(a2)とを反応させる際のエポキシ化合物(a1)のエポキシ基1モルに対する不飽和基含有カルボン酸(a2)の量は0.8~1.2モルの範囲内であることが好ましい。この場合、優れた感光性と保存安定性とを有する感光性樹脂組成物が得られる。
 エポキシ化合物(a1)と不飽和基含有カルボン酸(a2)とを、エアバブリング下で反応させることも好ましい。この場合、不飽和基の付加重合反応が抑制されるから、中間体の分子量の増大及び中間体の溶液のゲル化を抑制できる。また、最終生成物であるカルボキシル基含有樹脂(A1)の過度な着色を抑制できる。
 このようにして得られる中間体は、エポキシ化合物(a1)のエポキシ基と不飽和基含有カルボン酸(a2)のカルボキシル基との反応で生成された水酸基を備える。
 酸二無水物(a3)は、酸無水物基を二つ有する化合物である。酸二無水物(a3)は、テトラカルボン酸の無水物を含有できる。酸二無水物(a3)は、例えば1,2,4,5-ベンゼンテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、メチルシクロヘキセンテトラカルボン酸二無水物、テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、グリセリンビスアンヒドロトリメリテートモノアセテート、エチレングリコールビスアンヒドロトリメリテート、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト〔1,2-c〕フラン-1,3-ジオン、1,2,3,4-ブタンテトラカルボン酸二無水物、及び3,3’,4,4’-ビフェニルテトラカルボン酸二無水物からなる群から選択される少なくとも一種の化合物を含有できる。特に酸二無水物(a3)が3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を含有することが好ましい。すなわち、式(5)及び式(6)におけるDが3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基を含むことが好ましい。この場合、感光性樹脂組成物の良好な現像性を確保しながら、感光性樹脂組成物から形成される皮膜のタック性を更に抑制すると共に硬化物の絶縁信頼性及び耐メッキ性を更に向上できる。酸二無水物(a3)全体に対する3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の量は20~100モル%の範囲内であることが好ましく、40~100モル%の範囲内であることがより好ましいが、これらの範囲に限られない。
 酸一無水物(a4)は、酸無水物基を一つ有する化合物である。酸一無水物(a4)は、ジカルボン酸の無水物を含有できる。酸一無水物(a4)は、例えばフタル酸無水物、1,2,3,6-テトラヒドロ無水フタル酸、メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、コハク酸無水物、メチルコハク酸無水物、マレイン酸無水物、シトラコン酸無水物、グルタル酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、及びイタコン酸無水物からなる群から選択される少なくとも一種の化合物を含有できる。特に酸一無水物(a4)が1,2,3,6-テトラヒドロ無水フタル酸を含有することが好ましい。すなわち、酸無水物が1,2,3,6-テトラヒドロ無水フタル酸を含有することが好ましい。すなわち、カルボキシル基含有樹脂(A1)が構造(S4)を有し、式(4)におけるBが1,2,3,6-テトラヒドロ無水フタル酸残基を含むことが好ましい。この場合、感光性樹脂組成物の良好な現像性を確保しながら、感光性樹脂組成物から形成される皮膜のタック性を更に抑制すると共に硬化物の絶縁信頼性及び耐メッキ性を更に向上できる。酸一無水物(a4)全体に対する、1,2,3,6-テトラヒドロ無水フタル酸の量は20~100モル%の範囲内であることが好ましく、40~100モル%の範囲内であることがより好ましいが、これらの範囲に限られない。
 中間体と酸無水物とを反応させるに当たっては、公知の方法が採用され得る。例えば中間体の溶剤溶液に酸無水物を加え、更に必要に応じて熱重合禁止剤及び触媒を加えて攪拌混合することで、反応性溶液を得る。この反応性溶液を常法により好ましくは60~150℃、特に好ましくは80~120℃の温度で反応させることで、カルボキシル基含有樹脂(A1)が得られる。溶剤、触媒及び重合禁止剤としては、適宜のものが使用でき、中間体の合成時に使用した溶剤、触媒及び重合禁止剤をそのまま使用することもできる。
 触媒が特にトリフェニルフォスフィンを含有することが好ましい。すなわち、トリフェニルフォスフィンの存在下で、中間体と、酸無水物とを反応させることが好ましい。この場合、中間体における二級の水酸基と酸無水物との反応が特に促進され、90%以上、95%以上、97%以上、或いはほぼ100%の反応率(転化率)を達成できる。このため、構造(S4)及び構造(S5)のうち少なくとも一方の構造を有するカルボキシル基含有樹脂(A1)が高い収率で得られる。また、感光性樹脂組成物の硬化物を含む層におけるイオンマイグレーションの発生が抑制され、同層の絶縁信頼性が更に向上する。
 酸無水物が酸二無水物(a3)と酸一無水物(a4)とを含有する場合、エポキシ化合物(a1)のエポキシ基1モルに対して、酸二無水物(a3)の量は、0.05~0.24モルの範囲内であることが好ましい。また、エポキシ化合物(a1)のエポキシ基1モルに対して、酸一無水物(a4)の量は0.3~0.7モルの範囲内であることが好ましい。この場合、酸価と分子量とが適度に調整されたカルボキシル基含有樹脂(A1)が容易に得られる。
 カルボキシル基含有樹脂(A)は、カルボキシル基含有樹脂(A1)のみを含有してもよく、カルボキシル基含有樹脂(A1)以外のカルボキシル基含有樹脂(以下、カルボキシル基含有樹脂(F)ともいう)を更に含有してもよい。
 カルボキシル基含有樹脂(F)は、例えば、カルボキシル基を有し光重合性を有さない化合物(以下、(F1)成分という)を含有できる。(F1)成分は、例えばカルボキシル基を有するエチレン性不飽和化合物を含むエチレン性不飽和単量体の重合体を含有する。カルボキシル基を有するエチレン性不飽和化合物は、アクリル酸、メタクリル酸、ω-カルボキシ-ポリカプロラクトン(n≒2)モノアクリレート等の化合物を含有できる。カルボキシル基を有するエチレン性不飽和化合物は、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート等と二塩基酸無水物との反応物も含有できる。エチレン性不飽和単量体は、2-(メタ)アクリロイロキシエチルフタレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタレート、直鎖又は分岐の脂肪族或いは脂環族(但し、環中に一部不飽和結合を有してもよい)の(メタ)アクリル酸エステル等の、カルボキシル基を有さないエチレン性不飽和化合物を更に含有してもよい。
 カルボキシル基含有樹脂(F)は、カルボキシル基及びエチレン性不飽和基を有する化合物(以下、(F2)成分という)を含有してもよい。またカルボキシル基含有樹脂(F)は、(F2)成分のみを含有してもよい。(F2)成分は、例えば一分子中に二個以上のエポキシ基を有するエポキシ化合物(g1)とエチレン性不飽和化合物(g2)との反応物である中間体と、多価カルボン酸及びその無水物の群から選択される少なくとも一種の化合物(g3)との反応物である樹脂(第一の樹脂(g)という)を含有する。第一の樹脂(g)は、例えばエポキシ化合物(g1)中のエポキシ基と、エチレン性不飽和化合物(g2)中のカルボキシル基とを反応させて得られた中間体に化合物(g3)を付加させて得られる。エポキシ化合物(g1)は、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂等の適宜のエポキシ樹脂を含有できる。エポキシ化合物(g1)は、エチレン性不飽和化合物(h)の重合体を含有してもよい。エチレン性不飽和化合物(h)は、例えばグリシジル(メタ)アクリレート等のエポキシ基を有する化合物(h1)を含有し、或いは更に2-(メタ)アクリロイロキシエチルフタレート等のエポキシ基を有さない化合物(h2)を含有する。エチレン性不飽和化合物(g2)は、アクリル酸及びメタクリル酸のうち少なくとも一方を含有することが好ましい。化合物(g3)は、例えばフタル酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸等の多価カルボン酸と、これらの多価カルボン酸の無水物とからなる群から選択される一種以上の化合物を含有する。
 (F2)成分は、カルボキシル基を有するエチレン性不飽和化合物を含有するエチレン性不飽和単量体の重合体とエポキシ基を有するエチレン性不飽和化合物との反応物である樹脂(第二の樹脂(i)という)を含有してもよい。エチレン性不飽和単量体はカルボキシル基を有さないエチレン性不飽和化合物を更に含有してもよい。第二の樹脂(i)は、重合体におけるカルボキシル基の一部にエポキシ基を有するエチレン性不飽和化合物を反応させることで得られる。エチレン性不飽和単量体は、カルボキシル基を有さないエチレン性不飽和化合物を更に含有してもよい。カルボキシル基を有するエチレン性不飽和化合物は、例えばアクリル酸、メタクリル酸、ω-カルボキシ-ポリカプロラクトン(n≒2)モノアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート等の化合物を含有する。カルボキシル基を有さないエチレン性不飽和化合物は、例えば2-(メタ)アクリロイロキシエチルフタレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタレート、直鎖又は分岐の脂肪族或いは脂環族(但し、環中に一部不飽和結合を有してもよい)の(メタ)アクリル酸エステル等の化合物を含有する。エポキシ基を有するエチレン性不飽和化合物は、グリシジル(メタ)アクリレートを含有することが好ましい。
 カルボキシル基含有樹脂(A)は、カルボキシル基含有樹脂(A1)のみ、又はカルボキシル基含有樹脂(A1)とカルボキシル基含有樹脂(F)とを含有する。カルボキシル基含有樹脂(A)は、カルボキシル基含有樹脂(A1)を30質量%以上含有することが好ましく、50質量%以上含有することがより好ましく、100質量%含有することが更に好ましい。この場合、感光性樹脂組成物の硬化物の耐熱性及び絶縁信頼性を特に向上させることができる。また、感光性樹脂組成物から形成される皮膜のタック性を十分に低減できる。更に、感光性樹脂組成物の、アルカリ性水溶液による現像性を確保できる。
 次に、本実施形態に係る感光性樹脂組成物が含有するカルボキシル基含有樹脂(A)以外の成分について説明する。
 上述の通り、感光性樹脂組成物は、カルボキシル基含有樹脂(A)と、エチレン性不飽和結合を一分子中に少なくとも一つ有する不飽和化合物(B)と、光重合開始剤(C)と、エポキシ化合物(D)とを含有する。
 不飽和化合物(B)は、感光性樹脂組成物に光硬化性を付与できる。不飽和化合物(B)は、例えば2-ヒドロキシエチル(メタ)アクリレート等の単官能(メタ)アクリレート;並びにジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ε―カプロラクトン変性ペンタエリストールヘキサアクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の多官能(メタ)アクリレートからなる群から選択される少なくとも一種の化合物を含有できる。
 特に不飽和化合物(B)は、三官能の化合物、すなわち一分子中に不飽和結合を3つ有する化合物を含有することが好ましい。この場合、感光性樹脂組成物から形成される皮膜を露光・現像する場合の解像性が向上すると共に、感光性樹脂組成物のアルカリ性水溶液による現像性が特に向上する。三官能の化合物は、例えばトリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート及びε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート及びエトキシ化グリセリントリ(メタ)アクリレートからなる群から選択される少なくとも一種の化合物を含有できる。
 不飽和化合物(B)は、リン含有化合物(リン含有不飽和化合物)を含有することも好ましい。この場合、感光性樹脂組成物の硬化物の難燃性が向上する。リン含有不飽和化合物は、例えば2-メタクリロイロキシエチルアシッドフォスフェート(具体例として共栄社化学株式会社製の品番ライトエステルP-1M、及びライトエステルP-2M)、2-アクリロイルオキシエチルアシッドフォスフェート(具体例として共栄社化学株式会社製の品番ライトアクリレートP-1A)、ジフェニル-2-メタクリロイルオキシエチルフォスフェート(具体例として大八工業株式会社製の品番MR-260)、並びに昭和高分子株式会社製のHFAシリーズ(具体例としてジペンタエリストールヘキサアクリレートとHCA(9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイド)との付加反応物である品番HFA-6003、及びHFA-6007、カプロラクトン変性ジペンタエリストールヘキサアクリレートとHCA(9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイド)との付加反応物である品番HFA-3003、及びHFA-6127等)からなる群から選択される少なくとも一種の化合物を含有できる。
 不飽和化合物(B)は、プレポリマーを含有してもよい。プレポリマーは、例えばエチレン性不飽和結合を有するモノマーを重合させてからエチレン性不飽和基を付加して得られるプレポリマー、並びにオリゴ(メタ)アクリレートプレポリマー類からなる群から選択される少なくとも一種の化合物を含有できる。オリゴ(メタ)アクリレートプレポリマー類は、例えばエポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、アルキド樹脂(メタ)アクリレート、シリコーン樹脂(メタ)アクリレート、及びスピラン樹脂(メタ)アクリレートからなる群から選択される少なくとも一種の成分を含有できる。
 光重合開始剤(C)は、例えばアシルフォスフィンオキサイド系光重合開始剤(C1)を含有する。すなわち、感光性樹脂組成物は例えばアシルフォスフィンオキサイド系光重合開始剤(C1)を含有する。この場合、感光性樹脂組成物がカルボキシル基含有樹脂(A1)を含有するにもかかわらず、感光性樹脂組成物に、紫外線に対する高い感光性を付与できる。また、感光性樹脂組成物の硬化物を含む層におけるイオンマイグレーションの発生が抑制され、同層の絶縁信頼性が更に向上する。
 また、アシルフォスフィンオキサイド系光重合開始剤(C1)は硬化物の電気絶縁性を阻害しにくい。このため、感光性樹脂組成物を露光硬化することで、電気的絶縁性に優れた硬化物が得られ、この硬化物は、例えばソルダーレジスト層、メッキレジスト層、エッチングレジスト層、層間絶縁層として好適である。
 アシルフォスフィンオキサイド系光重合開始剤(C1)は、例えば2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、2,4,6-トリメチルベンゾイル-エチル-フェニル-フォスフィネート等のモノアシルフォスフィンオキサイド系光重合開始剤、並びにビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、(2,5,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド系光重合開始剤からなる群から選択される少なくとも一種の成分を含有できる。特にアシルフォスフィンオキサイド系光重合開始剤(C1)が2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイドを含有することが好ましく、アシルフォスフィンオキサイド系光重合開始剤(C1)が2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイドのみを含有することも好ましい。
 光重合開始剤(C)はアシルフォスフィンオキサイド系光重合開始剤(C1)に加えてヒドロキシケトン系光重合開始剤(C2)を含有することが好ましい。すなわち感光性樹脂組成物はヒドロキシケトン系光重合開始剤(C2)を含有することが好ましい。この場合、ヒドロキシケトン系光重合開始剤(C2)を含有しない場合と比べて、感光性樹脂組成物に更に高い感光性を付与できる。これにより、感光性樹脂組成物から形成される塗膜に紫外線を照射して硬化させる場合、塗膜をその表面から深部に亘って十分に硬化させることが可能となる。ヒドロキシケトン系光重合開始剤(C2)としては、例えば1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、フェニルグリオキシックアシッドメチルエステル、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン及び2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オンが挙げられる。
 アシルフォスフィンオキサイド系光重合開始剤(C1)とヒドロキシケトン系光重合開始剤(C2)との質量比は、1:0.01~1:10の範囲内であることが好ましい。この場合、感光性樹脂組成物から形成される塗膜の表面付近における硬化性と深部における硬化性とを、バランス良く向上させることができる。
 光重合開始剤(C)は、ビス(ジエチルアミノ)ベンゾフェノン(C3)を含有することも好ましい。すなわち、感光性樹脂組成物がアシルフォスフィンオキサイド系光重合開始剤(C1)及びビス(ジエチルアミノ)ベンゾフェノン(C3)を含有し、或いはアシルフォスフィンオキサイド系光重合開始剤(C1)、ヒドロキシケトン系光重合開始剤(C2)及びビス(ジエチルアミノ)ベンゾフェノン(C3)を含有することも好ましい。この場合、感光性樹脂組成物から形成される塗膜を部分的に露光してから現像する場合、露光されない部分の硬化が抑制されるから、解像性が特に高くなる。このため、非常に微細なパターンの感光性樹脂組成物の硬化物を形成できる。特に、感光性樹脂組成物から多層プリント配線板の層間絶縁層を作製すると共にこの層間絶縁層にスルーホールのための小径の穴をフォトリソグラフィー法で設ける場合(図1参照)、小径の穴を精密且つ容易に形成できる。
 アシルフォスフィンオキサイド系光重合開始剤(C1)に対するビス(ジエチルアミノ)ベンゾフェノン(C3)の量は、0.5~20質量%の範囲内であることが好ましい。アシルフォスフィンオキサイド系光重合開始剤(C1)に対するビス(ジエチルアミノ)ベンゾフェノン(C3)の量が0.5質量%以上であると、解像性が特に高くなる。また、アシルフォスフィンオキサイド系光重合開始剤(C1)に対するビス(ジエチルアミノ)ベンゾフェノン(C3)の量が20質量%以下であると、感光性樹脂組成物の硬化物の電気絶縁性をビス(ジエチルアミノ)ベンゾフェノン(C3)が阻害しにくい。
 感光性樹脂組成物は、更に公知の光重合促進剤、増感剤等を含有してもよい。例えば感光性樹脂組成物は、ベンゾインとそのアルキルエーテル類;アセトフェノン、ベンジルジメチルケタール等のアセトフェノン類;2-メチルアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルスルフィド等のベンゾフェノン類;2,4-ジイソプロピルキサントン等のキサントン類;並びに2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン等のα-ヒドロキシケトン類;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン等の窒素原子を含む化合物からなる群から選択される少なくとも一種の成分を含有できる。感光性樹脂組成物は、光重合開始剤(C)と共に、p-ジメチル安息香酸エチルエステル、p-ジメチルアミノ安息香酸イソアミルエステル、2-ジメチルアミノエチルベンゾエート等の第三級アミン系等の公知の光重合促進剤や増感剤等を含有してもよい。感光性樹脂組成物は、必要に応じて、可視光露光用の光重合開始剤及び近赤外線露光用の光重合開始剤のうちの少なくとも一種を含有してもよい。感光性樹脂組成物は、光重合開始剤(C)と共に、レーザ露光法用増感剤である7-ジエチルアミノ-4-メチルクマリン等のクマリン誘導体、カルボシアニン色素系、キサンテン色素系等を含有してもよい。
 エポキシ化合物(D)は、感光性樹脂組成物に熱硬化性を付与できる。上記の通り、エポキシ化合物(D)は、結晶性エポキシ樹脂と非晶性エポキシ樹脂とを含有する。ここで「結晶性エポキシ樹脂」は融点を有するエポキシ樹脂であり、「非晶性エポキシ樹脂」は融点を有さないエポキシ樹脂である。
 結晶性エポキシ樹脂は、例えば、1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、ハイドロキノン型結晶性エポキシ樹脂(具体例として新日鉄住金化学株式会社製の品名YDC-1312)、ビフェニル型結晶性エポキシ樹脂(具体例として三菱化学株式会社製の品名YX-4000)、ジフェニルエーテル型結晶性エポキシ樹脂(具体例として新日鉄住金化学株式会社製の品番YSLV-80DE)、ビスフェノール型結晶性エポキシ樹脂(具体例として新日鉄住金化学株式会社製の品名YSLV-80XY)、テトラキスフェノールエタン型結晶性エポキシ樹脂(具体例として日本化薬株式会社製の品番GTR-1800)、ビスフェノールフルオレン型結晶性エポキシ樹脂(具体例として構造(S7)を有するエポキシ樹脂)からなる群から選択される一種以上の成分を含有することが好ましい。
 結晶性エポキシ樹脂は、1分子中に2個のエポキシ基を有することが好ましい。この場合、温度変化が繰り返される中で、硬化物にクラックを更に生じ難くさせることができる。
 結晶性エポキシ樹脂は150~300g/eqのエポキシ当量を有することが好ましい。このエポキシ当量は、1グラム当量のエポキシ基を含有する結晶性エポキシ樹脂のグラム重量である。結晶性エポキシ樹脂は融点を有する。結晶性エポキシ樹脂の融点としては、例えば70~180℃が挙げられる。
 特にエポキシ化合物(D)は、融点110℃以下の結晶性エポキシ樹脂を含有することが好ましい。この場合、感光性樹脂組成物のアルカリ性水溶液による現像性が特に向上する。融点110℃以下の結晶性エポキシ樹脂は、例えばビフェニル型エポキシ樹脂(具体例として三菱化学株式会社製の品番YX-4000)、ビフェニルエーテル型エポキシ樹脂(具体例として新日鉄住金化学株式会社製の品番YSLV-80DE)、及びビスフェノール型エポキシ樹脂(具体例として新日鉄住金化学製の品番YSLV-80XY)、ビスフェノールフルオレン型結晶性エポキシ樹脂(具体例として構造(S7)を有するエポキシ樹脂)からなる群から選択される少なくとも一種の成分を含有できる。
 非晶性エポキシ樹脂は、例えば、フェノールノボラック型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON N-775)、クレゾールノボラック型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON N-695)、ビスフェノールAノボラック型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON N-865)、ビスフェノールA型エポキシ樹脂(具体例として三菱化学株式会社製の品番jER1001)、ビスフェノールF型エポキシ樹脂(具体例として三菱化学株式会社製の品番jER4004P)、ビスフェノールS型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON EXA-1514)、ビスフェノールAD型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂(具体例として日本化薬株式会社製の品番NC-3000)、水添ビスフェノールA型エポキシ樹脂(具体例として新日鉄住金化学株式会社製の品番ST-4000D)、ナフタレン型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON HP-4032、EPICLON HP-4700、EPICLON HP-4770)、ターシャリーブチルカテコール型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON HP-820)、ジシクロペンタジエン型エポキシ樹脂(具体例としてDIC製の品番EPICLON HP-7200)、アダマンタン型エポキシ樹脂(具体例として出光興産株式会社製の品番ADAMANTATE X-E-201)、特殊二官能型エポキシ樹脂(具体例として、三菱化学株式会社製の品番YL7175-500、及びYL7175-1000;DIC株式会社製の品番EPICLON TSR-960、EPICLON TER-601、EPICLON TSR-250-80BX、EPICLON 1650-75MPX、EPICLON EXA-4850、EPICLON EXA-4816、EPICLON EXA-4822、及びEPICLON EXA-9726;新日鉄住金化学株式会社製の品番YSLV-120TE)、ゴム状コアシェルポリマー変性ビスフェノールA型エポキシ樹脂(具体例として株式会社カネカ製の品番MX-156)、ゴム状コアシェルポリマー変性ビスフェノールF型エポキシ樹脂(具体例として株式会社カネカ製の品番MX-136)、並びにゴム粒子含有ビスフェノールF型エポキシ樹脂(具体例として株式会社カネカ製の品番カネエースMX-130)からなる群から選択される少なくとも一種の成分を含有することが好ましい。
 エポキシ化合物(D)はリン含有エポキシ樹脂を含有してもよい。この場合、感光性樹脂組成物の硬化物の難燃性が向上する。リン含有エポキシ樹脂は結晶性エポキシ樹脂に含有されてもよいし、或いは非晶性エポキシ樹脂に含有されてもよい。リン含有エポキシ樹脂は、例えば、リン酸変性ビスフェノールF型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON EXA-9726、及びEPICLON EXA-9710)、新日鉄住金化学株式会社製の品番エポトートFX-305等である。
 非晶性エポキシ樹脂は、ビスフェノール型構造単位(d1)及び構造単位(d2)を有するエポキシ樹脂(da)を含有することが好ましい。非晶性エポキシ樹脂がエポキシ樹脂(da)を含有することで、感光性樹脂組成物の硬化物の耐熱衝撃性を向上させることができる。
 構造単位(d1)としては、ビスフェノールA、ビスフェノールF、ビスフェノールS由来の構造単位が挙げられる。構造単位(d1)としては、具体的には、これらの末端のOH基を除いた単位および以下の式(8)で表される単位が挙げられる。また、式(8)で表される単位中のフェニレン基及びフェニル基の一部が水素添加されていてもよい。更に、式(8)で表される単位中のフェニレン基及フェニル基は、炭化水素基、アルコキシル基、アリール基、アリールオキシ基、ヒドロキシル基などの置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000009
 構造単位(d2)は、炭素原子数4以上20以下の直鎖状炭化水素構造単位(d21)、及びエーテル酸素原子数3以上20以下のポリアルキレンエーテル構造単位(d22)からなる群より選ばれる少なくとも1種からなる。
 直鎖状炭化水素構造単位(d21)としては、-(CH)y-のyが4以上20以下である構造単位である。yは、4~10であるのが好ましい。なお、-(CH)y-のyが4以上20以下である構造単位中の水素原子の代わりにヒドロキシル基などの置換基を有していてもよい。更に、-(CH)y-のyが4以上20以下である構造単位中の水素原子の少なくとも1つが、炭化水素基、アルコキシル基、アリール基、アリールオキシ基などで置換されていてもよい。該置換基としての炭化水素及びアルコキシル基は炭素原子数が4以下であるのが好ましい。アリール基及びアリールオキシ基中のアリール基は、フェニル基であるのが好ましい。直鎖状炭化水素構造単位(d21)は、これらの置換基を、構造単位(d2)の可撓性を損なわない範囲で有していてもよい。
 ポリアルキレンエーテル構造単位(d22)としては、エーテル酸素原子数が3以上20以下、好ましくは3~10である。ポリアルキレンエーテル構造単位(d22)としては、具体的にはエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、イソブチレンオキサイド、ネオペンチレンオキサイド、テトラメチレンオキサイド等から選ばれる1種または複数のアルキレンオキサイドの重合体由来の構造単位が挙げられる。また、このアルキレンオキサイドの1つ以上の水素原子が例えばヒドロキシル基、アルコキシル基、アリール基、アリールオキシ基、炭化水素基などで置換されていてもよい。該置換基としての炭化水素及びアルコキシル基は炭素原子数が4以下であるのが好ましい。アリール基及びアリールオキシ基中のアリール基は、フェニル基であるのが好ましい。ポリアルキレンエーテル構造単位(d22)は、これらの置換基を、構造単位(d2)の可撓性を損なわない範囲で有していてもよい。
 構造単位(d1)と構造単位(d2)とのモル比率は10:1~1:5が好ましく、5:1~1:3がより好ましい。構造単位(d1)のモル比率が上記範囲より高いと、非晶性エポキシ樹脂が十分な柔軟性を有さなくなり、感光性樹脂組成物の硬化物にクラックが発生しやすくなるおそれがある。また、構造単位(d1)のモル比率が上記範囲より低いと、非晶性エポキシ樹脂のTgが低すぎ、感光性樹脂組成物の硬化物の耐熱性が低下するおそれがある。
 エポキシ樹脂(da)は、具体的には、以下の構造式(9-i)~(9-iv)に示す何れかの1つ以上の構造を有することが好ましい。また、以下に示す構造式の複数の水酸基が架橋反応し、水酸基の酸素原子が不特定の構造を結節していてもよい。
Figure JPOXMLDOC01-appb-C000010
 構造式(9-i)~(9-iv)中、Ar、Arは、水素添加されていてもよい、置換基を有していてもよい構造単位(d1)である。Ar、Arは同一でも異なっていてもよい。Xは炭素原子数4以上20以下の直鎖状炭化水素基、及びエーテル酸素原子数1以上18以下のポリアルキレンエーテル構造からなる群より選ばれる少なくとも1種である。Xが炭素原子数4以上20以下の直鎖状炭化水素基の場合、Xが構造単位(d2)を構成する。Xがエーテル酸素原子数1以上18以下のポリアルキレンエーテル構造の場合は、-O-X-O-が構造単位(d2)を構成する。また、nは繰り返し単位の平均値で1~30である。
 このようなエポキシ化合物(da)を得る方法としては、所定のエポキシ樹脂に硬化剤を用いて硬化させる方法が挙げられる。
 この所定のエポキシ樹脂としては、上記のように構造単位(d1)及び(d2)を有するエポキシ化合物を使用する方法;構造単位(d1)を有するエポキシ化合物と、構造単位(d2)を有するエポキシ化合物とを組み合わせて使用する方法;構造単位(d1)を有するエポキシ化合物と、該エポキシ化合物に反応により構造単位(d2)を付与しうる鎖延長剤とを組み合わせて使用する方法などが挙げられる。
 エポキシ化合物(da)の具体例は、DIC株式会社製の品番EPICLON EXA4816、EPICLON EXA4822、三菱化学株式会社製の品番YL7175-500、YL7175-1000等が挙げられる。
 構造単位(d1)及び構造単位(d2)を有するエポキシ化合物のエポキシ当量は、200~800g/eqであることが好ましく、350~650g/eqであることがより好ましい。
 非晶性エポキシ樹脂は、ノボラック構造とビフェニル骨格とを有するエポキシ樹脂(db)を含有することが好ましい。エポキシ樹脂(db)を含有している感光性樹脂組成物は、その硬化物の電気的な絶縁性能が高くなる。このため、感光性樹脂組成物が線間絶縁性や層間マイグレーション耐性などの高信頼性が必要なプリント配線板用の絶縁材料として特に適する。エポキシ樹脂(db)は、非晶性のビフェニルノボラック型エポキシ樹脂(具体例として日本化薬株式会社製の品番NC-3000、品番NC-3000-L、品番NC-3000-H、品番NC-3000-FH-75M、CER-3000-L)などを含有している。
 本実施形態に係る感光性樹脂組成物は、メラミン(E)を含有してもよい。この場合、感光性樹脂組成物の硬化物と銅などの金属との間の密着性が高くなる。このため、感光性樹脂組成物が、プリント配線板用の絶縁材料として特に適する。また、感光性樹脂組成物の硬化物の耐メッキ性、すなわち無電解ニッケル/金メッキ処理時の白化耐性が向上する。
 本実施形態に係る感光性樹脂組成物は、有機溶剤を含有してもよい。有機溶剤は、感光性樹脂組成物の液状化又はワニス化、粘度調整、塗布性の調整、造膜性の調整などの目的で使用される。
 有機溶剤は、例えばエタノール、プロピルアルコール、イソプロピルアルコール、ヘキサノール、エチレングリコール等の直鎖、分岐、2級或いは多価のアルコール類;メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;スワゾールシリーズ(丸善石油化学社製)、ソルベッソシリーズ(エクソン・ケミカル社製)等の石油系芳香族系混合溶剤;セロソルブ、ブチルセロソルブ等のセロソルブ類;カルビトール、ブチルカルビトール等のカルビトール類;プロピレングリコールメチルエーテル等のプロピレングリコールアルキルエーテル類;ジプロピレングリコールメチルエーテル等のポリプロピレングリコールアルキルエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート、カルビトールアセテート等の酢酸エステル類;並びにジアルキルグリコールエーテル類からなる群から選択される少なくとも一種の化合物を含有できる。
 感光性樹脂組成物中の成分の量は、感光性樹脂組成物が光硬化性を有しアルカリ性溶液で現像可能であるように、適宜調整される。
 感光性樹脂組成物の固形分量に対するカルボキシル基含有樹脂(A)の量は、5~85質量%の範囲内であれば好ましく、10~75質量%の範囲内であればより好ましく、30~60質量%の範囲内であれば更に好ましい。
 カルボキシル基含有樹脂(A)に対する不飽和化合物(B)の量は、1~50質量%の範囲内であれば好ましく、10~45質量%の範囲内であればより好ましく、21~40質量%の範囲内であれば更に好ましい。
 カルボキシル基含有樹脂(A)に対する光重合開始剤(C)の量は、0.1~30質量%の範囲内であることが好ましく、1~25質量%の範囲内であれば更に好ましい。
 エポキシ化合物(D)の量に関しては、エポキシ化合物(D)に含まれるエポキシ基の当量の合計が、カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対して0.7~2.5の範囲内であることが好ましく、0.7~2.3の範囲内であることがより好ましく、0.7~2.0の範囲内であれば更に好ましい。
 カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対する、結晶性エポキシ樹脂と非晶性エポキシ樹脂とに含まれるエポキシ基の当量の合計は、2.5以下であることで、現像性を向上させることができる。カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対する、結晶性エポキシ樹脂と非晶性エポキシ樹脂とに含まれるエポキシ基の当量の合計は、0.7~2.3であればより好ましく、0.7~2.0であれば更に好ましい。
 カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対する、結晶性エポキシ樹脂のエポキシ基の当量は、0.2~1.9の範囲内であることが好ましい。この場合、感光性樹脂組成物の現像性を特に向上させることができる。カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対する、結晶性エポキシ樹脂のエポキシ基の当量は、0.3~1.7の範囲内であることがより好ましい。
 カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対する、非晶性エポキシ樹脂に含まれるエポキシ基の当量は、0.05~1.5の範囲内であることが好ましい。この場合、感光性樹脂組成物の現像性を向上させると共に、温度変化が繰り返される中での硬化物のクラック耐性を特に向上させることができる。カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対する、非晶性エポキシ樹脂に含まれるエポキシ基の当量は、0.1~1.2であることがより好ましい。
 感光性樹脂組成物がメラミン(E)を含有する場合、カルボキシル基含有樹脂(A)に対するメラミン(E)の量は、0.1~10質量%の範囲内であることが好ましく、0.5~5質量%の範囲内であれば更に好ましい。
 感光性樹脂組成物が有機溶剤を含有する場合、有機溶剤の量は、感光性樹脂組成物から形成される塗膜を乾燥させる際に速やかに有機溶剤が揮散して無くなるように、すなわち有機溶剤が乾燥膜に残存しないように、調整されることが好ましい。特に、感光性樹脂組成物全体に対する有機溶剤の量は、0~99.5質量%の範囲内であることが好ましく、15~60質量%の範囲内であれば更に好ましい。なお、有機溶剤の好適な割合は塗布方法などにより異なるので、塗布方法に応じて割合が適宜調節されることが好ましい。
 なお、固形分量とは、感光性樹脂組成物から溶剤などの揮発性成分を除いた、全成分の合計量のことである。
 本実施形態の効果を阻害しない限りにおいて、感光性樹脂組成物は、上記成分以外の成分を更に含有してもよい。
 例えば、感光性樹脂組成物は無機充填材を含有してもよい。この場合、感光性樹脂組成物から形成される膜の硬化収縮が低減される。無機充填材は、例えば、硫酸バリウム、結晶性シリカ、ナノシリカ、カーボンナノチューブ、タルク、ベントナイト、水酸化アルミニウム、水酸化マグネシウム、及び酸化チタンからなる群から選択される一種以上の材料を含有できる。無機充填材に酸化チタン、酸化亜鉛等の白色の材料を含有させることで、感光性樹脂組成物及びその硬化物を白色化してもよい。感光性樹脂組成物中の無機充填材の割合は適宜設定されるが、カルボキシル基含有樹脂(A)に対する無機充填材の量は0~300質量%の範囲内であることが好ましい。
 感光性樹脂組成物は、カプロラクタム、オキシム、マロン酸エステル等でブロックされたトリレンジイソシアネート系、モルホリンジイソシアネート系、イソホロンジイソシアネート系及びヘキサメチレンジイソシアネート系のブロックドイソシアネート;メラミン樹脂、n-ブチル化メラミン樹脂、イソブチル化メラミン樹脂、ブチル化尿素樹脂、ブチル化メラミン尿素共縮合樹脂、ベンゾグアナミン系共縮合樹脂等のアミノ樹脂;前記以外の各種熱硬化性樹脂;紫外線硬化性エポキシ(メタ)アクリレート;ビスフェノールA型、フェノールノボラック型、クレゾールノボラック型、脂環型等のエポキシ樹脂に(メタ)アクリル酸を付加して得られる樹脂;並びにジアリルフタレート樹脂、フェノキシ樹脂、ウレタン樹脂、フッ素樹脂等の高分子化合物からなる群から選択される少なくとも一種の樹脂を含有してもよい。
 感光性樹脂組成物は、エポキシ化合物(D)を硬化させるための硬化剤を含有してもよい。硬化剤は、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物;アジピン酸ヒドラジド、セバシン酸ヒドラジド等のヒドラジン化合物;トリフェニルフォスフィン等のリン化合物;酸無水物;フェノール;メルカプタン;ルイス酸アミン錯体;及びオニウム塩からなる群から選択される少なくとも一種の成分を含有できる。これらの成分の市販品は、例えば、四国化成株式会社製の2MZ-A、2MZ-OK、2PHZ、2P4BHZ、2P4MHZ(いずれもイミダゾール系化合物の商品名)、サンアプロ株式会社製のU-CAT3503N、U-CAT3502T(いずれもジメチルアミンのブロックイソシアネート化合物の商品名)、DBU、DBN、U-CATSA102、U-CAT5002(いずれも二環式アミジン化合物及びその塩)である。
 感光性樹脂組成物は、メラミン(E)以外の密着性付与剤を含有してもよい。密着性付与剤は、例えば、グアナミン、アセトグアナミン、ベンゾグアナミン、並びに2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体である。
 感光性樹脂組成物は、硬化促進剤;着色剤;シリコーン、アクリレート等の共重合体;レベリング剤;シランカップリング剤等の密着性付与剤;チクソトロピー剤;重合禁止剤;ハレーション防止剤;難燃剤;消泡剤;酸化防止剤;界面活性剤;並びに高分子分散剤からなる群から選択される少なくとも一種の成分を含有してもよい。
 感光性樹脂組成物中のアミン化合物の含有量はできるだけ少ないことが好ましい。このようにすれば、感光性樹脂組成物の硬化物からなる層の電気絶縁性が損なわれにくい。特にカルボキシル基含有樹脂(A)に対するアミン化合物の量は6質量%以下であることが好ましく、4質量%以下であれば更に好ましい。
 上記のような感光性樹脂組成物の原料が配合され、例えば三本ロール、ボールミル、サンドミル等を用いる公知の混練方法によって混練されることにより、感光性樹脂組成物が調製され得る。感光性樹脂組成物の原料に液状の成分、粘度の低い成分等が含まれる場合には、原料のうち液状の成分、粘度の低い成分等を除く部分をまず混練し、得られた混合物に、液状の成分、粘度の低い成分等を加えて混合することで、感光性樹脂組成物を調製してもよい。
 保存安定性等を考慮して、感光性樹脂組成物の成分の一部を混合することで第一剤を調製し、成分の残部を混合することで第二剤を調製してもよい。すなわち、感光性樹脂組成物は、第一剤と第二剤とを備えてもよい。この場合、例えば、感光性樹脂組成物の成分のうち不飽和化合物(B)、有機溶剤の一部、及び熱硬化性成分を予め混合して分散させることで第一剤を調製し、感光性樹脂組成物の成分のうち、残部を混合して分散させることで第二剤を調製してもよい。この場合、適時必要量の第一剤と第二剤とを混合して混合液を調製し、この混合液を硬化させて硬化物を得ることができる。
 本実施形態に係る感光性樹脂組成物は、プリント配線板用の電気絶縁性材料に適している。特に感光性樹脂組成物は、ソルダーレジスト層、メッキレジスト層、エッチングレジスト層、層間絶縁層等の、電気絶縁性の層の材料に適している。
 本実施形態に係る感光性樹脂組成物は、厚み25μmの皮膜であっても炭酸ナトリウム水溶液で現像可能であるような性質を有することが好ましい。この場合、十分に厚い電気絶縁性の層を感光性樹脂組成物からフォトリソグラフィー法で作製することが可能であるため、感光性樹脂組成物を、プリント配線板における層間絶縁層、ソルダーレジスト層等を作製するために広く適用可能である。勿論、感光性樹脂組成物から厚み25μmより薄い電気絶縁性の層を作製することも可能である。
 厚み25μmの皮膜が炭酸ナトリウム水溶液で現像可能であるかどうかは、次の方法で確認できる。適当な基材上に感光性樹脂組成物を塗布することで湿潤塗膜を形成し、この湿潤塗膜を80℃で40分加熱することで、厚み25μmの皮膜を形成する。この皮膜に紫外線を透過する露光部と紫外線を遮蔽する非露光部とを有するネガマスクを直接当てた状態で、皮膜に500mJ/cmの条件で紫外線を照射して露光を行う。露光後に、皮膜に30℃の1%NaCO水溶液を0.2MPaの噴射圧で90秒間噴射してから、純水を0.2MPaの噴射圧で90秒間噴射する処理を行う。この処理後に皮膜を観察した結果、皮膜における非露光部に対応する部分が除去されて残渣が認められない場合に、厚み25μmの皮膜が炭酸ナトリウム水溶液で現像可能であると判断できる。
 以下に、本実施形態による感光性樹脂組成物から形成された層間絶縁層を備えるプリント配線板を製造する方法の一例を、図1Aから図1Eを参照して説明する。本方法では、層間絶縁層にフォトリソグラフィー法でスルーホールを形成する。
 まず、図1Aに示すようにコア材1を用意する。コア材1は、例えば少なくとも一つの絶縁層2と少なくとも一つの導体配線3とを備える。コア材1の一面上に設けられている導体配線3を、以下、第一の導体配線3という。図1Bに示すように、コア材1の一面上に、感光性樹脂組成物から皮膜4を形成する。皮膜4の形成方法は、例えば、塗布法とドライフィルム法とがある。
 塗布法では、例えばコア材1上に感光性樹脂組成物を塗布して湿潤塗膜を形成する。感光性樹脂組成物の塗布方法は、公知の方法、例えば浸漬法、スプレー法、スピンコート法、ロールコート法、カーテンコート法、及びスクリーン印刷法からなる群から選択される。続いて、感光性樹脂組成物中の有機溶剤を揮発させるために、例えば60~120℃の範囲内の温度下で湿潤塗膜を乾燥させ、これによって、皮膜4を得ることができる。
 ドライフィルム法では、まずポリエステルなどでできた適宜の支持体上に感光性樹脂組成物を塗布してから乾燥することで、支持体上に感光性樹脂組成物の乾燥物であるドライフィルムを形成する。これにより、ドライフィルムと、ドライフィルムを支持する支持体とを備える積層体が得られる。この積層体におけるドライフィルムをコア材1に重ねてから、ドライフィルムとコア材1に圧力をかけ、続いて支持体をドライフィルムから剥離することで、ドライフィルムを支持体上からコア材1上へ転写する。これにより、コア材1上に、ドライフィルムからなる皮膜4が設けられる。
 皮膜4を露光することで図1Cに示すように皮膜4を部分的に硬化させる。そのために、例えばネガマスクを皮膜4に当ててから、皮膜4に紫外線を照射する。ネガマスクは、紫外線を透過させる露光部と紫外線を遮蔽する非露光部とを備え、非露光部はスルーホール10の位置と合致する位置に設けられる。ネガマスクは、例えばマスクフィルム、乾板等のフォトツールである。紫外線の光源は、例えばケミカルランプ、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ及びメタルハライドランプからなる群から選択される。
 なお、露光方法は、ネガマスクを用いる方法以外の方法であってもよい。例えば光源から発せられる紫外線を皮膜4の露光すべき部分のみに照射する直接描画法で皮膜4を露光してもよい。直接描画法に適用される光源は、例えば高圧水銀灯、超高圧水銀灯、メタルハライドランプ、g線(436nm)、h線(405nm)、i線(365nm)、並びにg線、h線及びi線のうちの二種以上の組み合わせからなる群から選択される。
 また、ドライフィルム法では、積層体におけるドライフィルムをコア材1に重ねてから、支持体を剥離することなく、支持体を通して紫外線をドライフィルムからなる皮膜4に照射することで皮膜4を露光し、続いて現像処理前に皮膜4から支持体を剥離してもよい。
 続いて、皮膜4に現像処理を施すことで、図1Cに示す皮膜4の露光されていない部分5を除去し、これにより、図1Dに示すようにスルーホール10が形成される位置に穴6を設ける。現像処理では、感光性樹脂組成物の組成に応じた適宜の現像液を使用できる。現像液は、例えばアルカリ金属塩及びアルカリ金属水酸化物のうち少なくとも一方を含有するアルカリ性水溶液、又は有機アミンである。アルカリ性水溶液は、より具体的には例えば炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、水酸化テトラメチルアンモニウム及び水酸化リチウムからなる群から選択される少なくとも一種の成分を含有する。アルカリ性水溶液中の溶媒は、水のみであっても、水と低級アルコール類等の親水性有機溶媒との混合物であってもよい。有機アミンは、例えばモノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン及びトリイソプロパノールアミンからなる群から選択される少なくとも一種の成分を含有する。
 現像液は、アルカリ金属塩及びアルカリ金属水酸化物のうち少なくとも一方を含有するアルカリ性水溶液であることが好ましく、炭酸ナトリウム水溶液であることが特に好ましい。この場合、作業環境の向上及び廃棄物処理の負担軽減を達成できる。
 続いて、皮膜4を加熱することで硬化させる。加熱の条件は、例えば加熱温度120~200℃の範囲内、加熱時間30~120分間の範囲内である。このようにして皮膜4を熱硬化させると、層間絶縁層7の強度、硬度、耐薬品性等の性能が向上する。
 必要により、加熱前と加熱後のうちの一方又は両方で、皮膜4に更に紫外線を照射してもよい。この場合、皮膜4の光硬化を更に進行させることができる。
 以上により、コア材1上に、感光性樹脂組成物の硬化物からなる層間絶縁層7が設けられる。この層間絶縁層7上に、アディティブ法などの公知の方法で、第二の導体配線8及びホールめっき9を設けることができる。これにより、図1Eに示すように、第一の導体配線3、第二の導体配線8、第一の導体配線3と第二の導体配線8との間に介在する層間絶縁層7、並びに第一の導体配線3と第二の導体配線8とを電気的に接続するスルーホール10を備えるプリント配線板11が得られる。なお、図1Eにおいて、ホールめっき9は穴6の内面を覆う筒状の形状を有するが、穴6の内側全体にホールめっき9が充填されていてもよい。
 本実施形態による感光性樹脂組成物から形成されたソルダーレジスト層を備えるプリント配線板を製造する方法の一例を説明する。
 まず、コア材を用意する。コア材は、例えば少なくとも一つの絶縁層と少なくとも一つの導体配線とを備える。コア材の導体配線が設けられている面上に、感光性樹脂組成物から皮膜を形成する。皮膜の形成方法として、塗布法とドライフィルム法が挙げられる。塗布法とドライフィルム法としては、上記の層間絶縁層を形成する場合と同じ方法を採用できる。皮膜を露光することで部分的に硬化させる。露光方法も、上記の層間絶縁層を形成する場合と同じ方法を採用できる。続いて、皮膜に現像処理を施すことで、皮膜の露光されていない部分を除去し、これにより、コア材上に、皮膜の露光された部分が残存する。続いて、コア材上の皮膜を加熱することで熱硬化させる。現像方法及び加熱方法も、上記の層間絶縁層を形成する場合と同じ方法を採用できる。必要により、加熱前と加熱後のうちの一方又は両方で、皮膜に更に紫外線を照射してもよい。この場合、皮膜の光硬化を更に進行させることができる。
 以上により、コア材上に、感光性樹脂組成物の硬化物からなるソルダーレレジスト層が設けられる。これにより、絶縁層とその上の導体配線とを備えるコア材、並びにコア材における導体配線が設けられている面を部分的に覆うソルダーレジスト層を備える、プリント配線板が得られる。
 以下、本発明を実施例によって具体的に説明する。
 [合成例A-1~A-10及びB-1~B-2の合成]
 (1)合成例A-1~A-10及びB-2
 還流冷却器、温度計、空気吹き込み管及び攪拌機を取付けた四つ口フラスコ内に、表1~2中の「第一反応」欄に示す原料成分を加えて、これらをエアバブリング下で攪拌することで混合物を調製した。この混合物を四つ口フラスコ内でエアバブリング下で攪拌しながら、「反応条件」欄に示す反応温度及び反応時間で加熱した。これにより、中間体の溶液を調製した。
 続いて、四つ口フラスコ内の中間体の溶液に表1~2の「第二反応」欄に示す原料成分を投入し、エアバブリング下で四つ口フラスコ内の溶液を攪拌しながら「反応条件(1)」欄に示す反応温度及び反応時間で加熱した。続いて、合成例B-2を除き、エアバブリング下で四つ口フラスコ内の溶液を攪拌しながら「反応条件(2)」欄に示す反応温度及び反応時間で加熱した。これにより、カルボキシル基含有樹脂の65質量%溶液を得た。カルボキシル基含有樹脂の重量平均分子量、及び酸価は表1~2中に示す通りである。成分間のモル比も表1~2に示している。
 なお、表1~2中の(a1)欄に示す成分の詳細は次の通りである。
・エポキシ化合物1:式(7)で示され、式(7)中のR~Rがすべて水素であるエポキシ当量250g/eqのビスフェノールフルオレン型エポキシ化合物。
・エポキシ化合物2:式(7)で示され、式(7)中のR及びRがいずれもメチル基、R~R及びR~Rがいずれも水素であるエポキシ当量279g/eqのビスフェノールフルオレン型エポキシ化合物。
 (2)合成例B-1
 還流冷却器、温度計、窒素置換基用ガラス管及び攪拌機を取り付けた四つ口フラスコ中に、メタクリル酸48質量部、ω-カルボキシ-ポリカプロラクトン(n≒2)モノアクリレート(東亞合成株式会社製のアロニックスM-5300)50質量部、メチルメタクリレート92質量部、スチレン10質量部、ジプロピレングリコールモノメチルエーテル430質量部、及びアゾビスイソブチロニトリル3.5質量部を加えた。この四つ口フラスコ内の液を窒素気流下で75℃で5時間加熱して重合反応を進行させることで、濃度32%の共重合体溶液を得た。
 続いて、この共重合体溶液に、ハイドロキノン0.1質量部、グリシジルメタクリレート64質量部、及びジメチルベンジルアミン0.8質量部を加え、80℃で24時間加熱することで付加反応を進行させた。これによりカルボキシル基含有樹脂(B-1)の38質量%溶液を得た。カルボキシル基含有樹脂(B-1)の酸価は67mgKOH/gであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [実施例X1~X22、実施例Y1~Y19、実施例Z1~Z21、比較例X1~X11、比較例Y1~Y5、比較例Z1~Z7の調製]
 後掲の表3~13の「組成」の欄に示す成分を3本ロールで混練してから、これらの成分をフラスコ内で撹拌混合することで、感光性樹脂組成物を得た。なお、成分の詳細は次の通りである。下記結晶性エポキシ樹脂を、予めジェットミル或いは乳鉢で、それぞれ粉砕し、これらの平均粒径を20μm以下にした。
・不飽和化合物A:トリメチロールプロパントリアクリレート。
・不飽和化合物B:ε―カプロラクトン変性ジペンタエリストールヘキサアクリレート(日本化薬株式会社製、品番DPCA-60)。
・不飽和化合物C: トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社製、品番A-DCP)。
・不飽和化合物D:ε―カプロラクトン変性ジペンタエリストールヘキサアクリレート、日本化薬株式会社製、品番KAYARAD DPCA-20。
・光重合開始剤A:2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(BASF社製、品番Irgacure TPO)。
・光重合開始剤B:1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製、品番Irgacure 184)。
・光重合開始剤C:4,4’-ビス(ジエチルアミノ)ベンゾフェノン。
・結晶性エポキシ樹脂A:1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(高融点タイプ、融点150~158℃、エポキシ当量99g/eq)。
・結晶性エポキシ樹脂B:ハイドロキノン型結晶性エポキシ樹脂(新日鉄住金化学株式会社製の品名YDC-1312、融点138~145℃、エポキシ当量176g/eq)。・結晶性エポキシ樹脂C:ビフェニル型結晶性エポキシ樹脂(三菱化学株式会社製の品名YX-4000、融点105℃、エポキシ当量187g/eq)。
・結晶性エポキシ樹脂D:ジフェニルエーテル型結晶性エポキシ樹脂(新日鉄住金化学株式会社製の品番YSLV-80DE、融点80~90℃、エポキシ当量163g/eq)。
・結晶性エポキシ樹脂E:ビスフェノール型結晶性エポキシ樹脂(新日鉄住金化学株式会社製の品名YSLV-80XY、融点75~85℃、192g/eq)。
・非晶性エポキシ樹脂Aの溶液:非晶性のビフェニルノボラック型エポキシ樹脂(日本化薬株式会社製の品名NC-3000、軟化点53~63℃、エポキシ当量280g/eq、ノボラック構造とビフェニル骨格を有するエポキシ樹脂)を固形分80%でジエチレングリコールモノエチルエーテルアセテートに溶解した溶液(固形分80%換算のエポキシ当量は、350g/eq)。
・非晶性エポキシ樹脂Bの溶液:長鎖炭素鎖含有ビスフェノールA型エポキシ樹脂(DIC製、品番EPICLON EXA-4816、液状樹脂、エポキシ当量410g/eq、構造単位(d1):ビスフェノールA骨格、構造単位(d2):炭素原子数6の直鎖状炭化水素を含む)を固形分90%でジエチレングリコールモノエチルエーテルアセテートに溶解した溶液(固形分90%換算のエポキシ当量は、455.56g/eq)。
・非晶性エポキシ樹脂C:ゴム状コアシェルポリマー変性ビスフェノールF型エポキシ樹脂(株式会社カネカ製、品番MX-136、液状樹脂、エポキシ当量220g/eq)。
・非晶性エポキシ樹脂Dの溶液:クレゾールノボラック型エポキシ樹脂、DIC製、品番EPICLON N-695、軟化点90~100℃、エポキシ当量214g/eqを固形分75%でジエチレングリコールモノエチルエーテルアセテートに溶解した溶液(固形分75%換算のエポキシ当量は、285g/eq)
・非晶性エポキシ樹脂Eの溶液:長鎖炭素鎖含有ビスフェノールA型エポキシ樹脂(DIC製、品番EPICLON EXA-4822、液状樹脂、エポキシ当量389g/eq、構造単位(d1):ビスフェノールA骨格、構造単位(d2):ポリエチレングリコール、エーテル酸素原子数:4)を固形分85%ジエチレングリコールモノエチルエーテルアセテートに溶解した溶液(固形分85%換算のエポキシ当量は、457.65g/eq)
・非晶性エポキシ樹脂Fの溶液:非晶性のビフェニルノボラック型エポキシ樹脂(ノボラック構造とビフェニル骨格を有するエポキシ樹脂)、日本化薬株式会社製の品名NC-3000H、軟化点65~75℃、エポキシ当量290g/eqを固形分80%でジエチレングリコールモノエチルエーテルアセテートに溶解した溶液。固形分80%換算のエポキシ当量は、362.5g/eq。
・メラミン:日産化学工業株式会社製、微粉メラミン。
・酸化防止剤:ヒンダードフェノール系酸化防止剤(BASF社製、品番IRGANOX 1010)。
・青色顔料:フタロシアニンブルー。
・黄色顔料:1,1’-[(6-フェニル-1,3,5-トリアジン-2,4-ジイル)ビス(イミノ)]ビス(9,10-アントラセンジオン)。
・硫酸バリウム:堺化学工業株式会社製、品番バリエースB31。
・タルク:日本タルク社製、品番SG-2000。
・ベントナイト:レオックス社製、品番ベントンSD-2。
・消泡剤:信越シリコーン株式会社製、品番KS-66。
・界面活性剤:DIC製、品番メガファックF-477。
・レオロジーコントロール剤:ビッグケミー・ジャパン株式会社製、品番BYK-430。
・溶剤A:ジエチレングリコールモノエチルエーテルアセテート。
・溶剤B:メチルエチルケトン。
 [実施例X1~X22及び比較例X1~X11を用いたテストピースの作製]
 実施例X1~X16、実施例X18~X22、比較例X1~X11については、次のようにしてテストピースを作製した。
 厚み35μmの銅箔を備えるガラスエポキシ銅張積層板(FR-4タイプ)を用意した。このガラスエポキシ銅張積層板にサブトラクティブ法で導体配線としてライン幅/スペース幅が50μm/50μmであるくし型電極を形成し、これによりコア材を得た。このコア材の一面全面に感光性樹脂組成物をスクリーン印刷法で塗布することで、湿潤塗膜を形成した。この湿潤塗膜を80℃で40分加熱して予備乾燥することで、膜厚25μmの皮膜を形成した。この皮膜に、直径50μmの円形形状を含むパターンを有する非露光部を有するネガマスクを直接当てた状態で、皮膜に500mJ/cmの条件で紫外線を照射した。露光後の皮膜に現像処理を施した。現像処理に当たっては、皮膜に30℃の1%NaCO水溶液を0.2MPaの噴射圧で90秒間噴射した。続いて皮膜に純水を0.2MPaの噴射圧で90秒間噴射することで皮膜を洗浄した。これにより、皮膜における露光されていない部分を除去して、穴を形成した。続いて、皮膜に1000mJ/cmの条件で紫外線を照射してから、160℃で60分間加熱した。これにより、コア材上に感光性樹脂組成物の硬化物からなる層を形成した。これによりテストピースを得た。
 実施例X17については、次のようにしてテストピースを作製した。
 感光性樹脂組成物を、ポリエチレンテレフタレート製のフィルム上にアプリケータで塗布してから、95℃で25分加熱することで乾燥させることにより、フィルム上に厚み25μmのドライフィルムを形成した。また実施例X1~X16、実施例X18~X22、比較例X1~X11の場合と同様のコア材の一面全面にドライフィルムを真空ラミネーターで加熱ラミネートした。加熱ラミネートの条件は、0.5MPa、80℃、1分間である。これにより、コア材上にドライフィルムからなる膜厚25μmの皮膜を形成した。この皮膜に対し、上記の場合と同じ条件で露光、現像及び紫外線照射の処理を施した。なお、露光後、現像前に、ドライフィルム(皮膜)からポリエチレンテレフタレート製のフィルムを剥離した。これにより、コア材上に感光性樹脂組成物の硬化物(ドライフィルムの硬化物ともいえる)からなる層を形成した。これによりテストピースを得た。
 [実施例Y1~Y19及び比較例Y1~Y5、並びに実施例Z1~Z21及び比較例Z1~Z7を用いたテストピースの作製]
 実施例Y1~Y18及び比較例Y1~Y5、並びに実施例Z1~Z20及び比較例Z1~Z7については、次のようにしてテストピースを作製した。
 実施例X1~X22及び比較例X1~X11の場合と同様にしてコア材を得た。このコア材の導体配線における厚み1μm程度の表層部分を、メック株式会社製の品番CZ-8100で溶解除去することにより、導体配線を粗化した。この後、実施例X1~X22及び比較例X1~X11の場合と同様にして、コア材上に感光性樹脂組成物の硬化物からなる層を形成した。これによりテストピースを得た。
 実施例Y19及び実施例Z21の感光性樹脂組成物を用いる場合は、次のようにしてテストピースを作製した。実施例X17の場合と同様にしてドライフィルムを形成した。また実施例Y1~Y18及び比較例Y1~Y5並びに実施例Z1~Z20及び比較例Z1~Z7の場合と同様のコア材の一面全面にドライフィルムを真空ラミネーターで加熱ラミネートした。加熱ラミネートの条件は、実施例X17の場合と同様である。この後、実施例X17の場合と同様の処理をにしてテストピースを得た。
 [評価試験]
 (1)タック性
 実施例X17、実施例Y19、実施例Z21を除く実施例及び比較例について、テストピースの作製時に、皮膜の露光後に皮膜からネガマスクを取り外す際の皮膜のタック性の程度を、次に示すように評価した。
A:皮膜からネガマスクを取り外す際に抵抗が感じられず、ネガマスクを取り外した後の皮膜には貼付痕が認められない。
B:皮膜からネガマスクを取り外す際に抵抗が感じられ、ネガマスクを取り外した後の皮膜には貼付痕が認められた。
C:皮膜からネガマスクを取り外すことが困難であり、無理にネガマスクを取り外すと皮膜が破損した。
 なお、タック性評価がCである比較例X5、比較例X9及び比較例X11については、(2)~(8)の評価を行っていない。また、タック性評価がCである比較例Y4及び比較例Y5、比較例Z6については、(3)~(8)の評価を行っていない。また、実施例X17、実施例Y19、実施例Z21については、ドライフィルムから皮膜を形成したため、タック性の評価を行っていない。
 (2)現像性
 実施例X17、実施例Y19、実施例Z21を除く実施例及び比較例について、プリント配線板の一面全面に感光性樹脂組成物をスクリーン印刷法で塗布することで、湿潤塗膜を形成した。この湿潤塗膜を80℃で40分、60分加熱することで、厚み25μmの皮膜を形成した。この皮膜に、露光することなく現像処理を施した。現像処理に当たっては、皮膜に30℃の1%NaCO水溶液を0.2MPaの噴射圧で90秒間噴射してから、純水を0.2MPaの噴射圧で90秒間噴射した。処理後のプリント配線板を観察し、その結果を次のように評価した。
A:湿潤塗膜の加熱時間が40分、60分のいずれの場合でも、皮膜が全て除去されている。
B:湿潤塗膜の加熱時間が40分である場合には皮膜が全て除去されたが、60分では皮膜の一部がプリント配線板上に残存した。
C:湿潤塗膜の加熱時間が40分、60分のいずれの場合でも、皮膜の一部がプリント配線板上に残存した。
 なお、現像性評価がCである比較例X4及び比較例X7、比較例Y4、比較例Y5については、(3)~(8)の評価を行っていない。
また、実施例X17、実施例Y19、実施例Z21については、ドライフィルムから皮膜を形成したため、現像性の評価を行っていない。実施例X17、実施例Y19、実施例Z21においては、露光後の現像工程において、問題なく現像できている。
 (3)解像性
 実施例及び比較例のテストピースにおける硬化物からなる層に形成された穴を観察し、その結果を次のように評価した。
A:穴の底の直径が40μm以上である。
B:穴の底の直径が25μm以上40μm未満である。
C:穴の底の直径が25μm未満であり、或いは明確な穴が形成されない。
 (4)耐メッキ性
 実施例及び比較例のテストピースの導体配線における外部に露出する部分の上に、市販の無電解ニッケルメッキ浴を用いてニッケルメッキ層を形成してから、市販の無電解金メッキ浴を用いて金メッキ層を形成した。これにより、ニッケルメッキ層及び金メッキ層からなる金属層を形成した。硬化物からなる層及び金属層を目視で観察した。また、硬化物からなる層に対してセロハン粘着テープ剥離試験をおこなった。その結果を次のように評価した。
A:硬化物からなる層及び金属層の外観に異常は認められず、セロハン粘着テープ剥離試験による硬化物からなる層の剥離は生じなかった。
B:硬化物からなる層に変色が認められるが、セロハン粘着テープ剥離試験による硬化物からなる層の剥離は生じなかった。
C:硬化物からなる層の浮き上がりが認められ、セロハン粘着テープ剥離試験による硬化物からなる層の剥離が生じた。
 (5)線間絶縁性
 実施例X1~X22、比較例X1~X11、実施例Y1~Y19、比較例Y1~Y5、実施例Z1~Z21、比較例Z1~Z7のテストピースにおける導体配線(くし型電極)にDC30Vのバイアス電圧を印加しながら、プリント配線板を121℃、97%R.H.の試験環境下に150時間(実施例Z1~Z21、比較例Z1~Z7のテストピースについては200時間)曝露した。この試験環境下における硬化物からなる層のくし型電極間の電気抵抗値を常時測定し、その結果を次の評価基準により評価した。
A:試験開始時から150時間(実施例Z1~Z21、比較例Z1~Z7のテストピースについては200時間)経過するまでの間、電気抵抗値が常に10Ω以上を維持した。
B:試験開始時から100時間(実施例Z1~Z21、比較例Z1~Z7のテストピースについては180時間)経過するまでは電気抵抗値が常に10Ω以上を維持したが、試験開始時から150時間(実施例Z1~Z21、比較例Z1~Z7のテストピースについては200時間)経過する前に電気抵抗値が10Ω未満となった。
C:試験開始時から100時間(実施例Z1~Z21、比較例Z1~Z7のテストピースについては180時間)経過する前に電気抵抗値が10Ω未満となった。
 (6)層間絶縁性
 実施例X1~X22、比較例X1~X11、実施例Y1~Y19、比較例Y1~Y5、実施例Z1~Z21、比較例Z1~Z7のテストピースにおける硬化物からなる層の上に導電テープを貼り付けた。この導電テープにDC100Vのバイアス電圧を印加しながら、テストピースを121℃、97%R.H.の試験環境下に60時間(実施例Z1~Z21、比較例Z1~Z7のテストピースについては80時間)曝露した。この試験環境下における硬化物からなる層の導体配線と導電テープとの間の電気抵抗値を常時測定し、その結果を次の評価基準により評価した。
A:試験開始時から60時間(実施例Z1~Z21、比較例Z1~Z7のテストピースについては80時間)経過するまでの間、電気抵抗値が常に10Ω以上を維持した。
B:試験開始時から50時間(実施例Z1~Z21、比較例Z1~Z7のテストピースについては70時間)経過するまでは電気抵抗値が常に10Ω以上を維持したが、試験開始時から60時間(実施例Z1~Z21、比較例Z1~Z7のテストピースについては80時間)経過する前に電気抵抗値が10Ω未満となった。
C:試験開始時から50時間(実施例Z1~Z21、比較例Z1~Z7のテストピースについては70時間)経過する前に電気抵抗値が10Ω未満となった。
 (7)PCT(プレッシャクッカ試験)
 実施例X1~X22、比較例X1~X11、実施例Y1~Y19、比較例Y1~Y5、実施例Z1~Z21、比較例Z1~Z7のテストピースを121℃、100%RHの環境下で100時間(実施例Z1~Z21、比較例Z1~Z7のテストピースについては、150時間)放置した後、硬化物からなる層の外観を次の評価基準により評価した。
A:硬化物からなる層に異常は見られなかった。
B:硬化物からなる層に変色が見られた。
C:硬化物からなる層に大きな変色が見られ、一部膨れが発生していた。
 (8)冷熱サイクル
 実施例X1~X22、比較例X1~X11、実施例Y1~Y19、比較例Y1~Y5、実施例Z1~Z21、比較例Z1~Z7のテストピースに対して、-65℃で10分間冷却してから150℃で10分間加熱する処理を1000回繰り返した。処理を500回行った時点と1000回行った時点とでテストピースにおける硬化物からなる層の外観を次の評価基準により評価した。
A:500回処理時及び1000回処理時のどちらでもクラックなし。
B:500回処理時ではクラックはないが、1000回処理時ではクラックあり。
C:500回処理時及び1000回処理時のどちらでもクラックあり。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 以上述べた本実施形態から明らかなように、第1の態様に係る感光性樹脂組成物は、
 カルボキシル基含有樹脂(A)と、
 エチレン性不飽和結合を一分子中に少なくとも一つ有する不飽和化合物(B)と、
 光重合開始剤(C)と、
 エポキシ化合物(D)と、
 を含有し、
 前記カルボキシル基含有樹脂(A)は、エポキシ化合物(a1)と不飽和基含有カルボン酸(a2)との反応物である中間体と、酸無水物との反応物であるカルボキシル基含有樹脂(A1)を含有し、
 前記エポキシ化合物(a1)は、上記式(1)で示されるビスフェノールフルオレン骨格を有し、下記式(1)中、R1~R8は、各々独立に、水素、炭素数1~5のアルキル基又はハロゲンであり、
 前記エポキシ化合物(D)は、結晶性エポキシ樹脂と非晶性エポキシ樹脂とを含有し、
 前記カルボキシル基含有樹脂(A)のカルボキシル基1当量に対する、前記結晶性エポキシ樹脂及び前記非晶性エポキシ樹脂のエポキシ基の当量の合計は、0.7~2.5の範囲内である。
 この感光性樹脂組成物には、カルボキシル基含有樹脂(A1)がエポキシ化合物(a1)に由来する式(1)で示されるビスフェノールフルオレン骨格を有することで、カルボキシル基含有樹脂(A1)を含有する感光性樹脂組成物の硬化物に高い耐熱性及び絶縁信頼性を付与できる。エポキシ化合物(D)が結晶性エポキシ樹脂を含有することにより、感光性樹脂組成物の現像性を向上することができる。エポキシ化合物(D)が結晶性エポキシ樹脂のみを含有する場合、温度上昇と温度低下とを含む温度変化が繰り返される中で、感光性樹脂組成物の硬化物にクラックが生じやすい。しかし本実施形態では、エポキシ化合物(D)が、上記所定の割合で、結晶性エポキシ樹脂と非晶性エポキシ樹脂とを含有することにより、温度変化が繰り返される中で、感光性樹脂組成物の硬化物にクラックを生じさせ難くすることができる。カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対する、結晶性エポキシ樹脂と非晶性エポキシ樹脂とに含まれるエポキシ基の当量の合計が0.7以上であることで、感光性樹脂組成物の硬化物を含む層の絶縁信頼性を向上させると共に、温度変化が繰り返される中での硬化物のクラック耐性を向上させることができる。カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対する、結晶性エポキシ樹脂と非晶性エポキシ樹脂とに含まれるエポキシ基の当量の合計が2.5以下であることで、現像性を向上させることができる。従って、本実施形態の感光性樹脂組成物がビスフェノールフルオレン骨格を有するカルボキシル基含有樹脂を含有していても、優れた現像性を得ることができ、しかも感光性樹脂組成物の硬化物に温度変化が繰り返される中でクラックを生じ難くさせることができる。
 第2の態様に係る感光性樹脂組成物は、前記カルボキシル基含有樹脂(A)のカルボキシル基1当量に対する、前記結晶性エポキシ樹脂のエポキシ基の当量は、0.2~1.9の範囲内であることが好ましい。
 この感光性樹脂組成物は、前記結晶性エポキシ樹脂に含まれるエポキシ基の当量が、0.2~1.9の範囲外のものに比べて、現像性を向上させることができる。
 第3の態様に係る感光性樹脂組成物は、前記結晶性エポキシ樹脂は、一分子中にエポキシ基を2つ有することが好ましい。
 この感光性樹脂組成物は、温度変化が繰り返される中で、感光性樹脂組成物の硬化物にクラックを更に生じ難くさせることができる。
 第4の態様に係る感光性樹脂組成物は、前記非晶性エポキシ樹脂は、ビスフェノール型構造単位(d1)と、炭素原子数4以上20以下の直鎖状炭化水素構造単位、及びエーテル酸素原子数3以上20以下のポリアルキレンエーテル構造単位の少なくとも1方である構造単位(d2)と、を有しているエポキシ樹脂(da)を含有することが好ましい。
 この感光性樹脂組成物は、エポキシ樹脂(da)を含有していない場合に比べて、硬化物の耐熱衝撃性を向上させることができる。
 第5の態様に係る感光性樹脂組成物は、前記非晶性エポキシ樹脂は、ノボラック構造とビフェニル骨格とを有するエポキシ樹脂(db)を含有することが好ましい。
 この感光性樹脂組成物は、その硬化物の電気的な絶縁性能が高くなるため、線間絶縁性や層間マイグレーション耐性などの高信頼性が必要なプリント配線板用の絶縁材料として特に適する。
 第6の態様に係る感光性樹脂組成物は、前記酸無水物は、酸二無水物を含有することが好ましい。
 この場合、カルボキシル基含有樹脂(A1)が酸二無水物(a3)によって架橋されていることで分子量が調整される。このため、酸価と分子量とが適度に調整されたカルボキシル基含有樹脂(A1)が得られる。そして、酸二無水物(a3)の量を制御することで、カルボキシル基含有樹脂(A1)の分子量及び酸価が容易に調整される。
 第7の態様に係る感光性樹脂組成物は、前記酸二無水物は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を含有することが好ましい。
 この感光性樹脂組成物は、良好な現像性を確保しながら、タック性が抑制された皮膜が得やすくなり、また絶縁信頼性及び耐メッキ性が向上された硬化物が得やすくなる。
 第8の態様に係る感光性樹脂組成物は、前記カルボキシル基含有樹脂(A1)の重量平均分子量は、1000~5000の範囲内であることが好ましい。
 この場合、感光性樹脂組成物から形成される皮膜のタック性が抑制しやすくなると共に感光性樹脂組成物から形成される硬化物の絶縁信頼性及び耐メッキ性が向上しやすくなり、また感光性樹脂組成物のアルカリ性水溶液による現像性が向上しやすくなる。
 第9の態様に係る感光性樹脂組成物は、カルボキシル基含有樹脂(A1)の固形分酸価は、60~140mgKOH/gの範囲内であることが好ましい。
 この場合、感光性樹脂組成物の現像性が向上しやすい。
 第10の態様に係る感光性樹脂組成物は、前記酸無水物は、1,2,3,6-テトラヒドロ無水フタル酸を含有することが好ましい。
 この場合、感光性樹脂組成物から形成される皮膜のタック性が抑制しやすくなると共に感光性樹脂組成物から形成される硬化物の絶縁信頼性及び耐メッキ性が向上しやすくなる。
 第11の態様に係るドライフィルムは、上記感光性樹脂組成物の乾燥物であることを特徴とする。
 この場合、ドライフィルムがビスフェノールフルオレン骨格を有するカルボキシル基含有樹脂を含有していても、優れた現像性を有し、しかもその硬化物に温度変化が繰り返される中でクラックが生じ難くい。
 第12の態様に係るプリント配線板は、上記感光性樹脂組成物の硬化物を含むソルダーレジスト層を備えることを特徴とする。
 この場合、ソルダーレジスト層には温度変化が繰り返される中でクラックが生じ難くい。
 第13の態様に係るプリント配線板は、上記感光性樹脂組成物の硬化物を含む層間絶縁層を備えることを特徴とする。
 この場合、層間絶縁層には温度変化が繰り返される中でクラックが生じ難くい。
 第14の態様に係る感光性樹脂組成物の製造方法は、上記式(1)で示され、式(1)中、R~Rは各々独立に水素、炭素数1~5のアルキル基又はハロゲンであるビスフェノールフルオレン骨格を有するエポキシ化合物(a1)と、不飽和基含有カルボン酸(a2)とを反応させ、それにより得られた中間体と、酸無水物とを反応させることにより、カルボキシル基含有樹脂(A1)を合成し、前記カルボキシル基含有樹脂(A1)を含有するカルボキシル基含有樹脂(A)と、エチレン性不飽和結合を一分子中に少なくとも1つ有する不飽和化合物(B)と、光重合開始剤(C)と、エポキシ化合物(D)とを混合することを含み、前記エポキシ化合物(D)は結晶性エポキシ樹脂と非晶性エポキシ樹脂を含有し、前記カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対する、前記結晶性エポキシ樹脂と前記非晶性エポキシ樹脂とに含まれるエポキシ基の当量の合計が、0.7~2.5の範囲内であることを特徴とする。
 この製造方法で得られる感光性樹脂組成物には、カルボキシル基含有樹脂(A1)がエポキシ化合物(a1)に由来する式(1)で示されるビスフェノールフルオレン骨格を有することで、カルボキシル基含有樹脂(A1)を含有する感光性樹脂組成物の硬化物に高い耐熱性及び絶縁信頼性を付与できる。エポキシ化合物(D)が結晶性エポキシ樹脂を含有することにより、感光性樹脂組成物の現像性を向上することができる。エポキシ化合物(D)が結晶性エポキシ樹脂のみを含有する場合、温度上昇と温度低下とを含む温度変化が繰り返される中で、感光性樹脂組成物の硬化物にクラックが生じやすい。しかし本実施形態では、エポキシ化合物(D)が、上記所定の割合で、結晶性エポキシ樹脂と非晶性エポキシ樹脂とを含有することにより、温度変化が繰り返される中で、感光性樹脂組成物の硬化物にクラックを生じさせ難くすることができる。カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対する、結晶性エポキシ樹脂と非晶性エポキシ樹脂とに含まれるエポキシ基の当量の合計が0.7以上であることで、感光性樹脂組成物の硬化物を含む層の絶縁信頼性を向上させると共に、温度変化が繰り返される中での硬化物のクラック耐性を向上させることができる。カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対する、結晶性エポキシ樹脂と非晶性エポキシ樹脂とに含まれるエポキシ基の当量の合計が2.5以下であることで、現像性を向上させることができる。従って、本実施形態の感光性樹脂組成物がビスフェノールフルオレン骨格を有するカルボキシル基含有樹脂を含有していても、優れた現像性を得ることができ、しかも感光性樹脂組成物の硬化物に温度変化が繰り返される中でクラックを生じ難くさせることができる。

Claims (13)

  1.  感光性樹脂組成物であって、
     カルボキシル基含有樹脂(A)と、
     エチレン性不飽和結合を一分子中に少なくとも一つ有する不飽和化合物(B)と、
     光重合開始剤(C)と、
     エポキシ化合物(D)と、
     を含有し、
     前記カルボキシル基含有樹脂(A)は、エポキシ化合物(a1)と不飽和基含有カルボン酸(a2)との反応物である中間体と、酸無水物との反応物であるカルボキシル基含有樹脂(A1)を含有し、
     前記エポキシ化合物(a1)は、下記式(1)で示されるビスフェノールフルオレン骨格を有し、下記式(1)中、R1~R8は、各々独立に、水素、炭素数1~5のアルキル基又はハロゲンであり、
     前記エポキシ化合物(D)は、結晶性エポキシ樹脂と非晶性エポキシ樹脂とを含有し、
     前記カルボキシル基含有樹脂(A)のカルボキシル基1当量に対する、前記結晶性エポキシ樹脂及び前記非晶性エポキシ樹脂のエポキシ基の当量の合計は、0.7~2.5の範囲内である。
    Figure JPOXMLDOC01-appb-C000011
  2.  前記カルボキシル基含有樹脂(A)のカルボキシル基1当量に対する、前記結晶性エポキシ樹脂のエポキシ基の当量は、0.2~1.9の範囲内である、
     請求項1に記載の感光性樹脂組成物。
  3.  前記結晶性エポキシ樹脂は、一分子中にエポキシ基を2つ有する、
     請求項1又は2に記載の感光性樹脂組成物。
  4.  前記非晶性エポキシ樹脂は、ビスフェノール型構造単位(d1)と、炭素原子数4以上20以下の直鎖状炭化水素構造単位及びエーテル酸素原子数3以上20以下のポリアルキレンエーテル構造単位の少なくとも一方である構造単位(d2)と、を有しているエポキシ樹脂(da)を含有する、
     請求項1乃至3のいずれか1項に記載の感光性樹脂組成物。
  5.  前記非晶性エポキシ樹脂は、ノボラック構造とビフェニル骨格とを有するエポキシ樹脂(db)を含有する、
     請求項1乃至4のいずれか1項に記載の感光性樹脂組成物。
  6.  前記酸無水物は、酸二無水物を含有する、
     請求項1乃至5のいずれか1項に記載の感光性樹脂組成物。
  7.  前記酸二無水物は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を含有する、
     請求項6に記載の感光性樹脂組成物。
  8.  前記カルボキシル基含有樹脂(A1)の重量平均分子量は、1000~5000の範囲内である、
     請求項1乃至7のいずれか1項に記載の感光性樹脂組成物。
  9.  前記カルボキシル基含有樹脂(A1)の固形分酸価は、60~140mgKOH/gの範囲内である、
     請求項1乃至8のいずれか1項に記載の感光性樹脂組成物。
  10.  前記酸無水物は、1,2,3,6-テトラヒドロ無水フタル酸を含有する、
     請求項1乃至9のいずれか1項に記載の感光性樹脂組成物。
  11.  請求項1乃至10のいずれか1項に記載の感光性樹脂組成物の乾燥物である、
     ドライフィルム。
  12.  請求項1乃至10のいずれか1項に記載の感光性樹脂組成物の硬化物を含むソルダーレジスト層を備える、
     プリント配線板。
  13.  請求項1乃至10のいずれか1項に記載の感光性樹脂組成物の硬化物を含む層間絶縁層を備える、
     プリント配線板。
PCT/JP2016/000429 2015-11-02 2016-01-28 感光性樹脂組成物、ドライフィルム、プリント配線板 WO2017077662A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167030261A KR101799845B1 (ko) 2015-11-02 2016-01-28 감광성 수지 조성물, 드라이 필름, 프린트 배선판
CN201680001165.8A CN106796396B (zh) 2015-11-02 2016-01-28 感光性树脂组合物、干膜和印刷布线板

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015215708A JP6172816B2 (ja) 2015-11-02 2015-11-02 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP2015-215706 2015-11-02
JP2015-215709 2015-11-02
JP2015215709A JP6140246B2 (ja) 2015-11-02 2015-11-02 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP2015-215708 2015-11-02
JP2015215706A JP6082083B1 (ja) 2015-11-02 2015-11-02 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法

Publications (1)

Publication Number Publication Date
WO2017077662A1 true WO2017077662A1 (ja) 2017-05-11

Family

ID=58663178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000429 WO2017077662A1 (ja) 2015-11-02 2016-01-28 感光性樹脂組成物、ドライフィルム、プリント配線板

Country Status (4)

Country Link
KR (1) KR101799845B1 (ja)
CN (1) CN106796396B (ja)
TW (1) TWI620012B (ja)
WO (1) WO2017077662A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124296A1 (ja) * 2020-12-10 2022-06-16 三菱ケミカル株式会社 感光性樹脂組成物、硬化物、ブラックマトリックス及び画像表示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102208828B1 (ko) * 2017-06-09 2021-01-27 고오 가가쿠고교 가부시키가이샤 감광성 수지 조성물, 드라이 필름, 및 프린트 배선판
KR102312785B1 (ko) * 2017-08-10 2021-10-14 동우 화인켐 주식회사 광중합성 불포화 수지, 이를 포함하는 감광성 수지 조성물 및 이로부터 형성되는 차광성 스페이서와 액정 디스플레이 장치
WO2020066338A1 (ja) * 2018-09-28 2020-04-02 富士フイルム株式会社 転写材料、積層体、及び、積層体の製造方法
JP7202282B2 (ja) * 2019-12-16 2023-01-11 株式会社タムラ製作所 感光性樹脂組成物及び感光性樹脂組成物を有するドライフィルム
CN112940560B (zh) * 2021-02-01 2022-11-29 深圳市容大感光科技股份有限公司 感光阻焊油墨组合物、其用途以及含有其的线路板
CN114437359B (zh) * 2022-03-09 2023-04-18 广州亦盛环保科技有限公司 一种透明光刻胶用感光性树脂组合物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169285A (ja) * 2000-11-30 2002-06-14 Nippon Steel Chem Co Ltd 光又は熱硬化性樹脂組成物及びプリント配線基板
JP2002226529A (ja) * 2001-01-30 2002-08-14 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2002293882A (ja) * 2001-03-30 2002-10-09 Taiyo Ink Mfg Ltd 光硬化性・熱硬化性樹脂組成物及びプリント配線板
JP2003076009A (ja) * 2001-08-27 2003-03-14 Nan Ya Plast Corp 感光性熱硬化性樹脂組成物
JP2006096962A (ja) * 2004-09-28 2006-04-13 Sanei Kagaku Kk 感光性熱硬化性樹脂組成物、並びにレジスト被覆プリント配線板及びその製造法
JP2006259266A (ja) * 2005-03-17 2006-09-28 Tokyo Ohka Kogyo Co Ltd 感光性樹脂組成物およびカラーフィルタ
JP2014206727A (ja) * 2013-03-21 2014-10-30 新日鉄住金化学株式会社 絶縁膜用感光性樹脂組成物及び硬化物
JP2015021997A (ja) * 2013-07-16 2015-02-02 互応化学工業株式会社 感光性樹脂及びソルダーレジスト用樹脂組成物
JP2015121653A (ja) * 2013-12-24 2015-07-02 互応化学工業株式会社 被覆配線板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570528A (ja) * 1991-09-11 1993-03-23 Nippon Steel Corp アルカリ可溶型感光性樹脂及びそれを用いたアルカリ現像型感光性樹脂組成物
KR101411346B1 (ko) * 2004-07-14 2014-06-25 아사히 가세이 이-매터리얼즈 가부시키가이샤 감광성 조성물, 패턴형성재료, 감광성 적층체, 및 패턴형성장치 및 패턴형성방법
CN101044433A (zh) * 2004-10-20 2007-09-26 三菱化学株式会社 感光性组合物、成像材料、成像件以及成像方法
JP5151433B2 (ja) * 2006-12-20 2013-02-27 三菱化学株式会社 オキシムエステル系化合物、光重合開始剤、光重合性組成物、カラーフィルターおよび液晶表示装置
JP5316901B2 (ja) * 2009-12-07 2013-10-16 山栄化学株式会社 プリント配線板及びその製造方法
KR20130008409A (ko) * 2011-07-12 2013-01-22 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 방열회로기판
JP5814691B2 (ja) * 2011-08-11 2015-11-17 互応化学工業株式会社 レジスト用樹脂組成物
TWI463257B (zh) * 2012-11-23 2014-12-01 Chi Mei Corp 彩色濾光片用之感光性樹脂組成物及其應用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169285A (ja) * 2000-11-30 2002-06-14 Nippon Steel Chem Co Ltd 光又は熱硬化性樹脂組成物及びプリント配線基板
JP2002226529A (ja) * 2001-01-30 2002-08-14 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2002293882A (ja) * 2001-03-30 2002-10-09 Taiyo Ink Mfg Ltd 光硬化性・熱硬化性樹脂組成物及びプリント配線板
JP2003076009A (ja) * 2001-08-27 2003-03-14 Nan Ya Plast Corp 感光性熱硬化性樹脂組成物
JP2006096962A (ja) * 2004-09-28 2006-04-13 Sanei Kagaku Kk 感光性熱硬化性樹脂組成物、並びにレジスト被覆プリント配線板及びその製造法
JP2006259266A (ja) * 2005-03-17 2006-09-28 Tokyo Ohka Kogyo Co Ltd 感光性樹脂組成物およびカラーフィルタ
JP2014206727A (ja) * 2013-03-21 2014-10-30 新日鉄住金化学株式会社 絶縁膜用感光性樹脂組成物及び硬化物
JP2015021997A (ja) * 2013-07-16 2015-02-02 互応化学工業株式会社 感光性樹脂及びソルダーレジスト用樹脂組成物
JP2015121653A (ja) * 2013-12-24 2015-07-02 互応化学工業株式会社 被覆配線板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124296A1 (ja) * 2020-12-10 2022-06-16 三菱ケミカル株式会社 感光性樹脂組成物、硬化物、ブラックマトリックス及び画像表示装置

Also Published As

Publication number Publication date
TWI620012B (zh) 2018-04-01
CN106796396A (zh) 2017-05-31
KR101799845B1 (ko) 2017-11-22
KR20170065463A (ko) 2017-06-13
CN106796396B (zh) 2018-12-11
TW201716856A (zh) 2017-05-16

Similar Documents

Publication Publication Date Title
KR102493938B1 (ko) 카르복실기 함유 수지, 감광성 수지 조성물, 드라이 필름, 프린트 배선판, 및 카르복실기 함유 수지의 제조 방법
WO2017077662A1 (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板
KR102497682B1 (ko) 피막의 제조 방법 및 프린트 배선판
JP6391121B2 (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP6096944B1 (ja) ドライフィルム積層体
JP6204518B2 (ja) 感光性樹脂組成物、ドライフィルム、及びプリント配線板
TWI656403B (zh) 感光性樹脂組成物、乾膜及印刷線路板(一)
JP6478351B2 (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板、及びプリント配線板の製造方法
JP6767090B2 (ja) 感光性樹脂組成物、プリント配線板、支持体付きドライフィルム、及び多層プリント配線板
JP6082083B1 (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP2017191204A (ja) 感光性樹脂組成物、ドライフィルム、及びプリント配線板
JP2017129687A (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP6172816B2 (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP7150230B2 (ja) カルボキシル基含有樹脂、感光性樹脂組成物、ドライフィルム、プリント配線板、及びカルボキシル基含有樹脂の製造方法
JP6140246B2 (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP2020144374A (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP6927664B2 (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板及び感光性樹脂組成物の製造方法
JP7428365B2 (ja) 感光性組成物、透明硬化膜、積層体、及び積層体の製造方法
JP7104397B2 (ja) 黒色感光性樹脂組成物、ドライフィルム及びプリント配線板
JP2017090490A (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP2017088640A (ja) カルボキシル基含有樹脂、感光性樹脂組成物、ドライフィルム、プリント配線板、及びカルボキシル基含有樹脂の製造方法
JP2017197663A (ja) カルボキシル基含有樹脂、感光性樹脂組成物、ドライフィルム、プリント配線板、及びカルボキシル基含有樹脂の製造方法
JP2017125163A (ja) カルボキシル基含有樹脂、感光性樹脂組成物、ドライフィルム、プリント配線板、及びカルボキシル基含有樹脂の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167030261

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861740

Country of ref document: EP

Kind code of ref document: A1