WO2017065267A1 - 熱伝導性に優れたクラッド鋼板 - Google Patents

熱伝導性に優れたクラッド鋼板 Download PDF

Info

Publication number
WO2017065267A1
WO2017065267A1 PCT/JP2016/080524 JP2016080524W WO2017065267A1 WO 2017065267 A1 WO2017065267 A1 WO 2017065267A1 JP 2016080524 W JP2016080524 W JP 2016080524W WO 2017065267 A1 WO2017065267 A1 WO 2017065267A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
clad steel
thickness
plate
base material
Prior art date
Application number
PCT/JP2016/080524
Other languages
English (en)
French (fr)
Inventor
榊 正仁
冨村 宏紀
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to JP2016563473A priority Critical patent/JP6173619B1/ja
Priority to CN201680058269.2A priority patent/CN108136456A/zh
Priority to EP16855520.9A priority patent/EP3363550B1/en
Priority to US15/768,310 priority patent/US10562084B2/en
Priority to KR1020187010794A priority patent/KR101907839B1/ko
Publication of WO2017065267A1 publication Critical patent/WO2017065267A1/ja
Priority to HK18113709.5A priority patent/HK1254500A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/06Embossing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/383Cladded or coated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/06Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions for securing layers together; for attaching the product to another member, e.g. to a support, or to another product, e.g. groove/tongue, interlocking
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material

Definitions

  • the present invention relates to a clad steel plate having excellent thermal conductivity used for cooking utensils and the like.
  • the electromagnetic cooker heats the heated object indirectly by electromagnetic induction, and the temperature of the heated object does not rise except for the heated object, so there is a risk of burns and fire. It is small and emits less carbon dioxide, and the number of users is increasing.
  • the material used for electromagnetic cookers is made of stainless steel
  • the base material is a thin stainless clad steel plate made of low-carbon steel. Therefore, clad steel whose base material is made of aluminum or aluminum alloy is often used.
  • An electromagnetic cooker is such a safe and clean heating means, but because the output of the device is limited, the heating rate is slower than the heating by gas, and it takes time to cook, and the broth penetrates into the ingredients There are also disadvantages in that it is difficult to do. Recently, cooking utensils using stainless clad steel plates with improved induction heating characteristics have been proposed.
  • Patent Document 1 discloses a two-layer or three-layer clad steel in which a mild steel having a carbon content of 0.005% or less is used as a base material and stainless steel, nickel, or a nickel alloy is used as a base material.
  • a clad steel sheet is proposed in which the ratio of the amount of nitrogen (Al / N) is 6 or more and the amount of nitrogen contained in the laminated material is 0.01% or less.
  • Patent Document 2 proposes a stainless clad steel plate in which the outer layer material is stainless steel, the base material is low carbon steel, and the base material has an acid-soluble Al content of 0.10 to 1.5% by weight.
  • Patent Document 3 an upper member, an intermediate material, and a lower member are formed, and the upper member is a ferrite type plate having a plate thickness of 0.3 to 3.0 mm containing 10.0 to 30.0% by weight of Cr.
  • a clad steel made of stainless steel, an intermediate material made of aluminum having a thickness of 1.0 to 10.0 mm with a purity of 99% or more, and a lower member made of a steel plate having a thickness of 3.0 to 30.0 mm has been proposed. ing.
  • Patent Document 4 a clad material in which the surface of an inner base material is thinly coated with a softer metal than the base material is cold-rolled or skin-pass-rolled by a rolling roll with a pattern on the surface, or a patterned metal plate or rainbow color A method for manufacturing a metal plate has been proposed.
  • Patent Document 1 defines the components of mild steel as a base material, and by subjecting the clad steel sheet to temper rolling, drawing or severe bending when used as a material for kitchens such as pans and kettles It is intended to improve the occurrence of cracks and wrinkles at the time, and is a proposal mainly aimed at improving workability.
  • Patent Document 1 does not describe the surface shape of the clad steel plate.
  • Patent Document 2 specifies the acid-soluble Al content, the C content, the Ti content, and the N content of the low-carbon steel that is the base material in terms of induction heating characteristics and workability. is suggesting. However, Patent Document 2 does not describe the surface shape and heat conduction characteristics of the steel sheet.
  • the clad steel material of Patent Document 3 is a clad steel material made of ferritic stainless steel and aluminum.
  • the clad steel material of Patent Document 3 has difficulty in corrosion resistance of ferritic stainless steel and wear resistance of aluminum, and may shorten the life as a cooking utensil.
  • Patent Document 3 does not describe the surface shape of the clad steel material.
  • Patent Document 4 In the method for producing a patterned metal plate or rainbow-colored metal plate by rolling in Patent Document 4, attention is focused on improving the design by providing fine irregularities on the surface of the clad material by rolling. However, Patent Document 4 does not describe the heat conduction characteristics of the patterned metal plate and the rainbow metal plate.
  • Patent Document 5 In the metal plate for a cooker and the manufacturing method thereof of Patent Document 5, a large number of independent protrusions are formed on the surface of the metal plate constituting the inner surface of the cooker, and a flat continuous groove is formed between the individual independent protrusions.
  • a steel plate having an oxide film formed on the surface can be used as the metal plate.
  • the said metal plate for cookers is manufactured by rolling a metal plate using an embossing roll.
  • This metal plate for a cooker is a metal plate suitable as a cooker that hardly causes scorching on the cooking surface.
  • Patent Document 5 does not mention thermal conductivity.
  • a material for cooking utensils capable of electromagnetic induction heating that has better thermal conductivity than conventional clad steel plates has been desired.
  • An object of the present invention is to provide a clad steel plate excellent in thermal conductivity that can be suitably used for cooking utensils and the like.
  • the inventors of the present application made extensive studies on a clad steel sheet having good thermal conductivity.
  • a clad steel sheet having excellent thermal conductivity and excellent adhesion between the base material and the laminated material was obtained.
  • the present invention provides the following.
  • the present invention is a three-layer clad steel plate having a carbon steel base material and a stainless steel laminated material respectively disposed on both sides of the base material, and a plate thickness ratio L represented by formula (1) 1.0 or more and 5.0 or less, and a clad steel plate having a plurality of convex portions and concave portions on at least one surface of the clad steel plate.
  • Sheet thickness ratio L sum of base material / thickness of laminated material (1)
  • the thickness of the base material and the thickness of the mating material are the thicknesses of the convex portions.
  • the area of the plurality of convex portions is preferably 20 to 80% with respect to the area of the surface of the clad steel plate on which the convex portions are formed.
  • the plurality of convex portions and concave portions have an unevenness difference in the thickness direction of 0.02 mm or more and 0.2 mm or less.
  • the clad steel sheet according to the present invention is a three-layer clad steel sheet having a low-carbon steel base material and a stainless steel laminated material arranged on both sides of the base material.
  • the thickness ratio is the plate thickness ratio L
  • the plate thickness ratio L by setting the plate thickness ratio L to 1.0 to 5.0, it has good thermal conductivity and excellent adhesion between the base material and the laminated material.
  • a clad steel plate is obtained.
  • the cross-sectional area of the three-layer clad steel plate can be reduced, and as a result, the heat transfer coefficient is further increased. It is done.
  • the ratio of the convex area to the surface area of the laminated material (the convex area ratio) is set to 20 to 80%, or the unevenness difference in the plate thickness direction is further set to 0.02 to 0.2 mm. Maintains good thermal conductivity and enables long-term use.
  • the present invention is a three-layer clad steel plate in which low-carbon steel is used as a base material and stainless steel is provided on both sides as a composite material (hereinafter sometimes referred to as “outer layer”), and the thickness of the base material and the composite material
  • L the plate thickness ratio
  • L the clad steel plate has a plurality of convex portions and concave portions on at least one surface.
  • the three-layer clad steel plate (hereinafter sometimes referred to as “three-layer clad steel plate”) that is the basis of the clad steel plate of the present invention is produced mainly by hot rolling, annealing, and cold rolling. Specifically, after the metal plates that are the materials of each of the three layers are overlapped, a release material such as Ni foil is further stacked on both sides thereof, and these are made of a metal foil having oxidation resistance such as stainless steel or the like. Place it in a thin bag. And after evacuating the inside of a bag, it fills with inert gas, such as nitrogen gas, heats from the exterior of a bag, and carries out the diffusion joining of the metal plates which overlapped.
  • inert gas such as nitrogen gas
  • a flat three-layer clad steel plate can be obtained by adjusting the thickness to be a predetermined thickness by hot rolling, and further repeating annealing and cold rolling.
  • the last process before embossing mentioned later is an annealing process.
  • the type of base material in the three-layer clad steel plate is not particularly limited.
  • a steel plate made of low carbon steel, medium carbon steel, high carbon steel, alloy steel, or the like can be used.
  • a steel sheet for deep drawing made of low carbon Ti-added steel, low carbon Nb-added steel, or the like is preferable as the base steel sheet.
  • SPCC in JIS G 3141 is preferable.
  • a carbon concentration of 0.15% by mass or less, a manganese concentration of 0.60% by mass or less, a phosphorus concentration of 0.10% by mass or less, and a sulfur concentration of 0.05% by mass or less are used. it can.
  • the type of stainless steel that is the laminated material of the three-layer clad steel plate is not particularly limited.
  • a ferritic, austenitic, or two-phase stainless steel plate can be used depending on the usage environment of the clad steel plate.
  • a ferritic stainless steel plate having a low material cost can be used.
  • an austenitic stainless steel sheet may be used as a laminated material.
  • the laminated material may be a duplex stainless steel plate.
  • the surface finish of the stainless steel plate constituting the laminated material of the three-layer clad steel plate is not particularly limited, and known means are applied.
  • the two laminated materials arranged on both sides of the base material may have the same thickness or different thicknesses.
  • stainless steel having different plate thicknesses can be used as a laminated material according to the plastic working method and the shape after processing.
  • the clad steel plate of the present invention has a plurality of convex portions and concave portions on at least one surface thereof.
  • a concavo-convex pattern including convex portions and concave portions on the surface of the clad steel plate, the thermal conductivity from one heated surface side to the other non-heated surface side of the clad steel plate can be further improved.
  • embossing can be applied, and specifically, a rolling method, press working, or the like can be used.
  • a rolling method using an emboss roll is excellent in productivity. Even if the embossing roll used for rolling is worn or chipped, the profile of the embossing roll can be reworked by cutting or etching. Therefore, the rolling method is also preferable in that the cost burden is small.
  • a four-high rolling mill as shown in FIG. 8 can be used.
  • the four-high rolling mill has a structure in which a stepped roll 40 provided with a concavo-convex pattern as an upper work roll and a flat roll 11 having no concavo-convex pattern as a lower work roll are provided, and backup rolls 42 and 43 are provided respectively. have.
  • the stepped roll 40 has a roll shape in which a plurality of large diameter portions and small diameter portions are arranged in the axial direction and the circumferential direction.
  • the clad steel plate 46 fed from the payoff reel 44 to the four-high rolling mill has a predetermined uneven pattern transferred by the roll shape of the stepped roll 40, and a clad steel plate having a plurality of convex portions and concave portions formed on the surface. (Hereafter, it may be called "uneven clad steel plate”.) 47 is obtained. Thereafter, the concavo-convex clad steel plate 47 formed with the plurality of convex portions and concave portions is accommodated in the take-up reel 45.
  • the concavo-convex clad steel plate 47 formed with the plurality of convex portions and concave portions is accommodated in the take-up reel 45.
  • the area of the protrusions in the clad steel plate is preferably 20 to 80% of the ratio of the surface of the clad steel plate on which the protrusions are formed (hereinafter also referred to as “protrusion area ratio”).
  • FIG. 2 is a schematic diagram for explaining the definition of the convex portion area ratio, and shows a shape in which a plurality of convex portions and concave portions are arranged on the steel plate surface.
  • the convex area ratio refers to the ratio of the area that the convex occupies the steel sheet surface. In this specification, as shown in FIG.
  • the convex area ratio can be obtained as follows. First, in a region arbitrarily extracted from the surface of the clad steel plate, a two-dimensional profile with the vertical axis in the plate thickness direction as shown in FIGS. 3 and 4 is acquired. Next, the distance (convex height H) from the top of the convex portion to the bottom of the concave portion is measured for the convex portion represented by the two-dimensional profile. This convex part height H is calculated
  • the convex area ratio is calculated by dividing the total area of the portions included between the reference points for each convex portion by the total area of the extracted regions.
  • W (i) an example of a portion for measuring the area of the convex portion is indicated by W (i).
  • the convex part and the concave part of the clad steel plate specify the reference line M by linearly approximating the data of the above two-dimensional profile and further correcting the inclination of the straight line and making it horizontal.
  • a portion located above the reference line M on the surface is defined as a convex portion to be measured.
  • the convex part area ratio is less than 20%, when the concave / convex pattern is formed by the rolling method, the ratio of forming the concave part by the large diameter part of the stepped roll increases, and the rolling load increases to the rolling roll. Therefore, the life of the rolling roll is reduced, and the manufacturing cost is increased.
  • the convex area ratio exceeds 80%, the effect of improving the thermal conductivity is small.
  • the unevenness difference in the thickness direction of the uneven clad steel plate is preferably 0.02 to 0.2 mm.
  • the unevenness difference corresponds to the convex portion height H as shown in FIG.
  • the unevenness difference was calculated as follows. In an arbitrary area on the surface of the steel plate (for example, within a range of 100 mm 2 ), two two-dimensional contour shapes were measured, and the height of each convex portion was obtained. The unevenness difference was determined by the average value of the heights of the protrusions. If the unevenness difference is less than 0.02 mm, it becomes easy to wear with the use of the clad steel plate, so that long-term use becomes difficult.
  • the clad steel sheet has a convex area ratio of 20 to 80% and an unevenness difference of 0.02 to 0.2 mm, thereby maintaining good thermal conductivity and enabling long-term use. be able to.
  • a clad steel plate having a concavo-convex pattern including convex portions and concave portions formed by embossing can be used.
  • the arrangement of the concavo-convex pattern may be regular, or may be partially or entirely random. For example, a random uneven pattern as shown in FIG. 1 may be formed.
  • FIG. 3 and FIG. 4 show a cross section and a two-dimensional profile of the clad steel plate having the uneven surface.
  • FIG. 3 is a two-dimensional profile of a clad steel plate having a concavo-convex pattern having a convex area ratio of about 80% and a concavo-convex difference of about 0.06 mm.
  • FIG. 4 is a two-dimensional profile of a clad steel plate having a concavo-convex pattern with a convex area ratio of about 55% and a concavo-convex difference of about 0.20 mm.
  • the concavo-convex pattern in FIGS. 3 and 4 is an example in which the convex area ratio is 20 to 80% and the concavo-convex difference is in the range of 0.02 to 0.20 mm.
  • the cross-sectional area of the clad steel plate is reduced, so that the thermal conductivity of the clad steel plate is increased.
  • the uneven pattern on the surface of the clad steel plate is highly disordered in the arrangement direction. It is effective in that the cooking time is shortened because foaming is uniform and heat is uniformly transmitted to the food.
  • a relatively large uneven pattern may be formed on the clad steel plate.
  • this concavo-convex pattern is formed by a rolling method, the mechanical strength is also increased by work hardening, so that it is possible to obtain a clad steel plate that is excellent in wear resistance and can withstand long-term use.
  • the thickness ratio L of the clad steel plate is defined by the following equation (1) with respect to the sum of the thickness of the base material and the thickness of the laminated material.
  • Plate thickness ratio L thickness of base material / sum of thicknesses of laminated materials (1) Since the laminated material is arranged on both sides of the base material, in the formula (1), it is the sum of the thicknesses of the laminated materials provided on both sides.
  • the thickness of the base material and the thickness of the laminated material are the thicknesses at the convex portions.
  • the plate thickness ratio L is less than 1.0, the proportion of the laminated material in the clad steel plate is large. Since the laminated material (stainless steel) is a material having a relatively lower thermal conductivity than the base material (carbon steel), the thermal conductivity of the clad steel plate may be lowered. Further, when the clad steel plate is subjected to processing and compressive stress is applied, since the ductility of both the base material and the laminated material is different, the base material and the laminated material may be separated at the processed portion. On the other hand, when the plate thickness ratio is more than 5.0, the proportion of the laminated material is excessively reduced.
  • the plate thickness ratio L is preferably in the range of 1.0 to 5.0.
  • the lower limit is more preferably 1.5 and even more preferably 2.0.
  • the upper limit is more preferably 4.0, and even more preferably 3.5.
  • a cold rolled steel plate (hereinafter referred to as “SPCC”) made of SPCC (JIS G 3141) having a thickness of 0.64 mm as a base material, and a laminated material made of SUS304 having 0.08 mm on both sides thereof.
  • a three-layer clad steel plate having a thickness ratio of 4.0 (2) A thickness ratio of a base material of SPCC having a thickness of 0.56 mm and a laminated material made of SUS304 having a thickness of 0.12 mm on both sides thereof 2.3 Three-layer clad steel plate (3) Three layers with a thickness ratio of 1.5, in which the base material is SPCC having a thickness of 0.48 mm, and a laminated material made of SUS304 having a thickness of 0.16 mm is arranged on both sides thereof.
  • Clad steel plate (4) Three-layer clad steel plate with a thickness ratio of 9 in which the base material is SPCC having a thickness of 0.72 mm and a laminated material made of 0.04 mm of SUS304 is arranged on both sides thereof.
  • the four-layer rolling mill as shown in FIG. Embossing to form convex portions and concave portions on the surface was performed, and the test pieces of the uneven clad steel plates of Examples 1 to 6 were obtained.
  • the processing conditions for embossing were such that the diameter of the stepped roll in the four-high rolling mill was 110 mm, the rolling load corresponding to the unevenness shown in Table 1 was set, and the rolling speed was 0.5 m / min.
  • Comparative Examples 1 and 2 are three-layer clad steel plates that are not embossed.
  • the plate thickness ratio in the convex part of the uneven clad steel plate was not different from the plate thickness ratio in the three-layer clad steel plate before forming the uneven pattern.
  • Convex area ratio and unevenness difference of the concavo-convex pattern formed on the surface of the manufactured concavo-convex clad steel sheet is a profile enlarged by a shape measuring machine (contractor) for a part with an area of 100 mm 2 arbitrarily extracted from the clad steel sheet Measured from As an example of the two-dimensional profile, the two-dimensional profile of the clad steel plates of Examples 1 and 4 with the thickness direction as the vertical axis is shown in FIGS. Table 1 shows various characteristics of the manufactured uneven clad steel plate.
  • the evaluation test of thermal conductivity was performed according to the following procedure. After preparing a test piece unified with a predetermined surface area (A) and thickness (B), attaching thermocouples to both sides of the front and back, the test piece is heated with a constant output (E) in an electromagnetic cooker, Each temperature was measured on both sides of the test piece. The temperature difference (D) was obtained from the measured temperature, and the thermal conductivity (C) was calculated by the following formula (2). This indicates that the greater the thermal conductivity (C), the greater the amount of heat that moves from the heated surface to the non-heated surface side in the test piece, so that heat is more easily transmitted.
  • C (E ⁇ B) / (A ⁇ D) Equation (2)
  • a square test piece having a side length of 50 mm was cut out from a concavo-convex clad steel plate provided with a concavo-convex pattern, and this was set in an electromagnetic cooker whose output was set to 500 W, and the heating surface of the test piece was targeted. Heated to temperature. Since the thermal conductivity varies depending on the heating temperature, the target temperatures were set to 100 ° C., 300 ° C., and 500 ° C.
  • the thermal conductivity was evaluated based on the calculated thermal conductivity (W / m ⁇ K).
  • the evaluation results are shown in Table 2.
  • the evaluation criteria are “ ⁇ ” when the thermal conductivity is improved by 50% or more and “ ⁇ ” when the thermal conductivity is improved by 25% or more and less than 50%, and 5% or more and less than 25% based on Comparative Example 1. Those that were improved were indicated by “ ⁇ ”, and those that were improved by less than 5% were indicated by “x”.
  • Examples 1 to 6 are concavo-convex clad steel sheets having a concavo-convex pattern on the steel sheet surface, and the plate thickness ratio L is 1.0 to 5.0.
  • the concavo-convex clad steel plates of Examples 1 to 6 were found to have better thermal conductivity than the clad steel plate to which the concavo-convex pattern of Comparative Example 1 was not applied.
  • the concavo-convex clad steel plate is a composite material, it has a heat conduction characteristic in which the temperature gradient ⁇ changes in the thickness direction. Comparing the thermal conductivity of the base material (SPCC) with the thermal conductivity of the laminated material (SUS304), the thermal conductivity of SUS304 is smaller than the thermal conductivity of SPCC, so the temperature gradient ⁇ 1 of the laminated material (stainless steel)> The temperature gradient ⁇ 2 of the base material (carbon steel) is obtained.
  • FIG. 5 and FIG. 6 are schematic diagrams showing how heat is transmitted in a heating test of a clad steel plate having a plate thickness ratio L of 4.0. 5 and 6 show a heating direction Z with respect to the heating surface X from a heat source (not shown). When such heating is performed, as shown in FIG. 5, the difference D between the temperature t1 of the heating surface X of the three-layer clad steel sheet 1 not provided with the uneven pattern and the temperature t0 of the opposite surface is the plate width. It is almost the same at any position in the direction. However, as shown in FIG.
  • the temperature difference D ′ in the portion with the small thickness (concave portion) is compared with the temperature difference D in the portion with the large thickness (convex portion). And since the thickness of the carbon steel in a plate
  • the uneven clad steel plate provided with the uneven pattern has a varying temperature gradient in both the plate thickness direction and the plate width direction.
  • FIG. 7 is a schematic diagram showing how heat is transmitted in a heating test of a three-layer clad steel plate 3 having a plate thickness ratio L of 1.5 and not having an uneven pattern.
  • the thickness B of the three-layer clad steel plate 3 is the same as that of the three-layer clad steel plate 1 shown in FIG. Since the temperature gradient in the plate thickness direction varies depending on the plate thickness ratio, the temperature difference between the temperature of the heating surface X and the opposite surface also varies accordingly. Even if the plate thickness B is the same, if the plate thickness ratio L is smaller than that of the three-layer clad steel in FIG. 5, the ratio of the laminated material (stainless steel) having a low thermal conductivity is increased, so the temperature difference D ′′. Becomes larger than the temperature difference D.
  • the thickness ratio of the base material having a large thermal conductivity such as carbon steel is set. By making it high, an uneven clad steel plate having better thermal conductivity can be obtained.
  • Table 2 shows the results of evaluating workability by close contact bending for the uneven clad steel plate of the example and the clad steel plate of the comparative example.
  • Examples 1 to 6 and Comparative Example 1 cracks did not occur in the stainless steel plate of the laminated material.
  • Comparative Example 2 cracking occurred in the stainless steel outside the bent specimen.
  • the plate thickness ratio carbon steel / stainless steel
  • the thickness of the laminated material stainless steel
  • the thermal conductivity was good, and cracking during processing was not observed, and the value as a product could be increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Cookers (AREA)
  • Metal Rolling (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

調理器具等に好適に用いることが可能な、熱伝導性に優れたクラッド鋼板を提供する。 本発明は、炭素鋼の母材と、前記母材の両面側にそれぞれ配されたステンレス鋼の合わせ材とを有する三層のクラッド鋼板であって、式(1)で示される板厚比Lが1.0以上5.0以下であり、前記クラッド鋼板の少なくとも一方の表面には、複数の凸部及び凹部を有する、クラッド鋼板である。板厚比L=母材の厚さ/合わせ材の厚さの和 ・・・式(1) ここで、前記母材の厚さ及び前記合わせ材の厚さは、前記凸部における厚さである。

Description

熱伝導性に優れたクラッド鋼板
 本発明は、調理器具等に用いられる、熱伝導性に優れたクラッド鋼板に関する。
 電磁調理器は、ガスや電熱線による直接加熱とは異なり、被加熱体を電磁誘導により間接的に加熱するものであり、被加熱体以外は温度が上がらないため、火傷および火災の危険性が小さく、また、二酸化炭素の排出量が少ないことが特長であり、利用者が増加している。
 電磁調理器に用いられる鍋等の素材には、耐食性と誘導加熱特性の観点から、合わせ材がステンレス鋼からなり、母材が低炭素鋼からなる薄板ステンレスクラッド鋼板や、合わせ材がステンレス鋼からなり、母材がアルミニウムやアルミニウム合金からなるクラッド鋼が用いられることが多い。
 電磁調理器は、このように安全でクリーンな加熱手段であるが、装置の出力に限界があるため、ガスによる加熱よりも加熱速度が遅く、調理に時間を要する点や、煮汁が食材へ浸透しにくい点でデメリットもある。最近では、誘導加熱特性を向上させたステンレスクラッド鋼板を用いた調理器具が提案されている。
 ところで、クラッド鋼板は、調理器具以外の用途でも知られている。例えば、特許文献1は、炭素量が0.005%以下の軟鋼を母材とし、これにステンレス鋼またはニッケルまたはニッケル合金を合わせ材とした二層または三層クラッド鋼において、母材におけるアルミニウム量と窒素量の比(Al/N)を6以上とし、合わせ材に含まれる窒素量を0.01%以下としたクラッド鋼板が提案されている。
 特許文献2では、外層材がステンレス鋼、母材が低炭素鋼からなり、母材の酸可溶Al含有量が0.10~1.5重量%であるステンレスクラッド鋼板が提案されている。
 特許文献3では、上部材と、中間材と、下部材とから構成され、上部材が、10.0~30.0重量%のCrを含有する板厚0.3~3.0mmのフェライト系ステンレス鋼からなり、中間材が、純度99%以上の板厚1.0~10.0mmのアルミニウムからなり、下部材が、板厚3.0~30.0mmの鋼板からなるクラッド鋼材が提案されている。
 特許文献4では、内部母材の表面に母材よりも軟質な金属を薄く被覆したクラッド材を、表面に模様をつけた圧延ロールによって冷間圧延またはスキンパス圧延する、模様付き金属板または虹色金属板の製造方法が提案されている。
 また、特許文献5では、調理器の内面となる金属板の表面に多数の独立突起が形成され、個々の独立突起の間に平坦な連続溝部が形成されている調理器具用金属板及びその製造方法が提案されている。
特公平5-14610号公報 特開平11-77888号公報 特開昭64-40188号公報 特開平2-263501号公報 特開2002-65469号公報
 特許文献1のクラッド鋼板は、母材である軟鋼の成分を規定するとともに、クラッド鋼板に調質圧延を施すことにより、鍋、釜等の厨房用素材として使用する場合の絞り加工または厳しい曲げ加工時の割れ及びシワの発生を改善することを目的としたものであり、主に加工性の向上を目的とした提案である。しかしながら、特許文献1には、クラッド鋼板の表面形状に関して記載されていない。
 特許文献2のステンレスクラッド鋼板は、誘導加熱特性及び加工性の面で、母材である低炭素鋼の酸可溶Al含有量、C含有量、Ti含有量及びN含有量を規定することを提案している。しかしながら、特許文献2には、鋼板の表面形状や熱伝導特性については記載されていない。
 特許文献3のクラッド鋼材は、フェライト系ステンレスとアルミニウムとから成るクラッド鋼材である。しかしながら、特許文献3のクラッド鋼材では、フェライト系ステンレスの耐食性及びアルミニウムの耐摩耗性に難があり、調理器具としての寿命が短くなる可能性がある。また、特許文献3には、クラッド鋼材の表面形状に関する記載もない。
 特許文献4の圧延による模様付き金属板又は虹色金属板の製造方法では、クラッド材表面に圧延により微細な凹凸をつけることで、意匠性を向上させることに着目している。しかしながら、特許文献4には、模様付き金属板及び虹色金属板の熱伝導特性については記載されていない。
 特許文献5の調理器用金属板及びその製造方法は、調理器の内面を構成する金属板の表面に多数の独立突起が形成され、個々の独立突起の間に平坦な連続溝部が形成される。この金属板には、表面に酸化皮膜が形成された鋼板を用いることもできる。当該調理器用金属板は、エンボスロールを用いて金属板を圧延することにより製造される。この調理器用金属板は、加熱調理面に焦付きが生じにくい調理器として好適な金属板ではある。しかしながら、特許文献5には、熱伝導性について言及されていない。
 従来のクラッド鋼板よりも熱伝導性に優れた、電磁誘導加熱が可能な調理器具用の材料が望まれていた。
 本発明は、調理器具等に好適に用いることが可能な、熱伝導性に優れたクラッド鋼板を提供することを目的とする。
 本出願の発明者らは、熱伝導性が良好なクラッド鋼板について鋭意検討を重ねた。その過程で、低炭素鋼の母材と、この母材の両面に配されたステンレス鋼の合わせ材とを有する三層のクラッド鋼板について、母材と合わせ材との板厚比に着目した。「板厚比L=母材の厚さ/合わせ材の厚さの和」(式1)と定義するとき、板厚比L=1.0~5.0である三層クラッド鋼板を基材とすることにより、良好な熱伝導性に加え、母材と合わせ材との密着性に優れるクラッド鋼板が得られた。そして、この基材の少なくとも一方の合わせ材の表面に複数の凸部及び凹部を設けることにより、熱伝導性がさらに向上することを見出して、本発明を完成させるに至った。具体的には、本発明は、以下を提供するものである。
 本発明は、炭素鋼の母材と、前記母材の両面側にそれぞれ配されたステンレス鋼の合わせ材とを有する三層のクラッド鋼板であって、式(1)で示される板厚比Lが1.0以上5.0以下であり、前記クラッド鋼板の少なくとも一方の表面には、複数の凸部及び凹部を有する、クラッド鋼板である。
 板厚比L=母材の厚さ/合わせ材の厚さの和 ・・・式(1)
 ここで、前記母材の厚さ及び前記合わせ材の厚さは、前記凸部における厚さである。
 また、前記複数の凸部の面積は、前記凸部が形成された前記クラッド鋼板の表面の面積に対して20~80%であることが好ましい。
 また、前記複数の凸部及び凹部は、板厚方向における凹凸差が0.02mm以上0.2mm以下であることが好ましい。
 本発明に係るクラッド鋼板は、低炭素鋼の母材と、母材の両面側に配されたステンレス鋼の合わせ材を有する三層のクラッド鋼板について、合わせ材の厚さの和に対する母材の厚さの比を板厚比Lとしたときに、板厚比Lを1.0~5.0とすることにより、良好な熱伝導率を備え、母材と合わせ材との密着性に優れるクラッド鋼板が得られる。そして、この三層クラッド鋼板の少なくとも一方の合わせ材の表面に複数の凸部及び凹部を有することにより、三層クラッド鋼板の断面積を小さくすることができ、その結果、さらに熱伝達率を高められる。
 また、合わせ材の表面積に占める凸部の面積の割合(凸部面積率)を20~80%にし、または、板厚方向における凹凸差を0.02~0.2mmにすることにより、さらに良好な熱伝導性を保持して、長期間の使用を可能にする。
実施例で作製されたクラッド鋼板の外観を示す図である。 クラッド鋼板の凸部面積率及び凹凸差を説明するため、クラッド鋼板の断面を示した模式図である。 実施例の凹凸模様を形成したクラッド鋼板における表面の2次元プロフィールを示す図である。 別の実施例の凹凸模様を形成したクラッド鋼板における表面の2次元プロフィールを示す図である。 平板状のクラッド鋼板において、伝熱の状態を説明するための模式図である。 合わせ材の表面に凹凸模様を有するクラッド鋼板において、伝熱の状態を説明するための模式図である。 別の平板状のクラッド鋼板において、伝熱の状態を説明するための模式図である。 クラッド鋼板の表面に凹凸を付与するエンボス加工を、圧延法により行う製造方法を説明するための模式図である。
 以下に本発明の実施形態を説明する。これらの説明は、本発明を限定するものではない。
 本発明は、低炭素鋼を母材として、その両面にステンレス鋼を合わせ材(以下、「外層」という場合がある。)として配した三層クラッド鋼板であり、母材と合わせ材の厚さは、母材の厚さ/外層の厚さの和を板厚比Lとするとき、Lを1.0~5.0とし、クラッド鋼板の少なくとも一方の表面に複数の凸部及び凹部を有する。
(クラッド鋼板)
 本発明のクラッド鋼板の基となる三層のクラッド鋼板(以下、「三層クラッド鋼板」ということもある。)は、主に熱間圧延、焼鈍および冷間圧延により製造される。具体的には、三層それぞれの素材である金属板を重ね合せた後、さらにそれらの両側にNi箔等の剥離材を重ねて、これらをステンレス鋼等の耐酸化性を有する金属の箔又は薄板でできた袋の中に入れる。そして、袋の中を真空排気した後、窒素ガス等の不活性ガスを充填し、袋の外部から加熱し、重ね合せた金属板同士を拡散接合させる。拡散接合させた後、熱間圧延により所定の板厚になるように調整し、さらに焼鈍と冷間圧延を繰り返すことにより、平板状の三層クラッド鋼板を得ることができる。なお、後述するエンボス加工前の最後の工程は、焼鈍工程であることが好ましい。
 三層クラッド鋼板における母材の種類は、特に限定されない。母材として、低炭素鋼、中炭素鋼、高炭素鋼、合金鋼などからなる鋼板を使用することができる。良好なプレス成形性が必要とされる場合は、低炭素Ti添加鋼、低炭素Nb添加鋼などからなる深絞り用鋼板が基材鋼板として好ましい。また、P、Si、Mnなどを添加した高強度鋼板を用いてもよい。
 母材に低炭素鋼を使用する場合は、例えば、JIS G 3141におけるSPCCが好ましい。具体的には、炭素濃度が0.15質量%以下、マンガン濃度が0.60質量%以下、リン濃度が0.10質量%以下、硫黄濃度が0.05質量%以下のものを用いることができる。
 三層クラッド鋼板の合わせ材であるステンレス鋼の種類は、特に限定されない。合わせ材としては、クラッド鋼板の使用環境に応じて、フェライト系、オーステナイト系、または二相系のステンレス鋼板を使用することができる。クラッド鋼板の使用環境が腐食に関して比較的マイルドな条件である場合は、材料費が安価なフェライト系ステンレス鋼板を用いることができる。耐酸性化や加工性が重要とされる使用環境では、オーステナイト系ステンレス鋼板を合わせ材とすることが好ましい。また、高強度および耐孔食性が必要とされる場合は、合わせ材を二相系ステンレス鋼板としてもよい。
 また、三層クラッド鋼板の合わせ材を構成するステンレス鋼板の表面仕上げは、公知の手段が適用され、特に限定されない。母材の両面側に配された2枚の合わせ材の厚さは、同じ厚さであっても、異なる厚さであっても構わない。クラッド鋼板が曲げ加工などの塑性加工を受ける場合には、塑性加工の加工方法や加工後の形状に応じて、板厚が異なるステンレス鋼を合わせ材として用いることもできる。
(エンボス加工)
 本発明のクラッド鋼板は、その少なくとも一方の表面に複数の凸部及び凹部を有している。クラッド鋼板の表面に凸部及び凹部を含む凹凸模様を形成することにより、クラッド鋼板の一方の加熱面側から他方の非加熱面側への熱伝導性を、さらに向上させることができる。このような凹凸模様を付与する手段としては、例えば、エンボス加工を適用することができ、具体的には、圧延法、プレス加工などを用いることができる。
 エンボス加工法としては、エンボスロールを用いた圧延法が生産性に優れている。圧延に用いるエンボスロールが磨耗あるいは欠損をしても、切削加工やエッチング加工により、エンボスロールのプロフィールを再加工することが可能である。そのため、当該圧延法は、コスト負担が小さい点でも好ましい。
 上記の圧延法を用いる場合、例えば、図8に示すような4段圧延機を用いることができる。この4段圧延機は、上側ワークロールとして凹凸模様を付与された段付きロール40と、下側ワークロールとして凹凸模様の無いフラットロール11を配置し、それぞれにバックアップロール42,43を備えた構造を有している。段付きロール40は、軸方向および周方向に、複数の大径部および小径部を配置したロール形状を有している。ペイオフリール44から4段圧延機に送給されたクラッド鋼板46は、段付きロール40の上記ロール形状によって所定の凹凸模様が転写されて、表面に複数の凸部及び凹部が形成されたクラッド鋼板(以下、「凹凸クラッド鋼板」ということもある。)47が得られる。その後、当該複数の凸部及び凹部が形成された凹凸クラッド鋼板47は、巻取りリール45に収納される。なお、クラッド鋼板46の両面に凹凸模様を形成与する場合は、下側ワークロールとして、フラットロール41に代えて段付きロール(図示せず)を配置し、上述のような圧延作業を行えばよい。
(凸部面積率)
 クラッド鋼板における凸部の面積は、凸部が形成されたクラッド鋼板の表面の面積に対する割合(以下、「凸部面積率」ということもある。)が20~80%であることが好ましい。図2は、凸部面積率の定義を説明するための模式図であり、鋼板表面に複数の凸部及び凹部が並んだ形状を示している。一般に、凸部面積率は、凸部が鋼板表面を占有する面積の割合をいう。本明細書においては、図2に示すように、凸部の頂上から凹部の底までの距離を凸部高さHとしたときに、凸部高さHの10%をh(=0.1×H)とすると、凸部高さHから10%低い高さ(H-h=0.9H)において、凸部のそれぞれの面積W(1),W(2),・・・W(n)を総和した面積が表面全体の面積Wに占める割合によって、凸部面積率を定義した。すなわち、凸部面積率は、以下のように表される。
Figure JPOXMLDOC01-appb-M000001
 凸部面積率は、以下のように求めることができる。まず、クラッド鋼板の表面から任意で抽出された領域において、図3及び図4に示すような板厚方向を縦軸にした2次元プロフィールを取得する。次に、当該2次元プロフィールによって表される凸部について、凸部の頂上から凹部の底までの距離(凸部高さH)を測定する。この凸部高さHは、凸部の両側に位置する凹部それぞれとの距離で求める。次に、求めた凸部高さから0.1倍を差し引いて基準点を求める。そして、各凸部について当該基準点の間に含まれる部分の面積の総和を、抽出した領域の全面積で除することにより、凸部面積率を算出する。図3、図4において、凸部における面積を測定する部分の一例を、W(i)で表示した。
 ここで、クラッド鋼板の凸部と凹部は、上記の2次元プロフィールのデータを直線近似し、さらに、その直線の傾斜を補正して水平にすることにより、基準線Mを特定する。表面において、当該基準線Mよりも上に位置する部分を測定対象の凸部とする。
 当該凸部面積率が20%未満であると、凹凸模様を圧延法により形成する際に、段付きロールの大径部によって凹部を形成する割合が高くなり、圧延荷重が増大して圧延ロールへの負荷が増大するため、圧延ロールの寿命が低下し、製造コストの上昇を招く。一方、凸部面積率が80%を超えると、熱伝導性を向上させる効果が小さい。
(凹凸差)
 凹凸クラッド鋼板の板厚方向における凹凸差は、0.02~0.2mmであることが好ましい。当該凹凸差は、図2に示すように、凸部高さHに相当する。本明細書においては、当該凹凸差は、次のように算出された。鋼板の表面における任意の領域面積(例えば、100mmの範囲内)において、2次元の輪郭形状を5箇所測定して、それぞれの凸部高さを求めた。それらの凸部高さの平均値により当該凹凸差とした。この凹凸差が0.02mm未満であると、クラッド鋼板の使用にともなって磨耗し易くなるため、長期間の使用が困難になる。その一方で、この凹凸差が0.2mmを超えると、凹凸模様を圧延法により形成する際に、圧延荷重が増大して圧延ロールへの負荷が増大するため、ロール寿命が低下し、製造コストの上昇を招く。また、クラッド鋼板の加工硬化が著しくなるため、凹凸を付与した後の加工性に大きな影響を及ぼす。
 このように、クラッド鋼板は、凸部面積率を20~80%、凹凸差を0.02~0.2mmとすることにより、良好な熱伝導性を保持して長期間の使用を可能にすることができる。
(凹凸模様)
 上述のように、クラッド鋼板は、エンボス加工によって、凸部及び凹部を含む凹凸模様を形成したものを用いることができる。凹凸模様の配列は、規則的であっても、部分的または全面的にランダムであってもよい。例えば、図1に示すような、ランダムな凹凸模様を形成してもよい。
 凹凸模様の表面を有するクラッド鋼板について、その断面及び2次元プロフィールを、図3、図4に示す。図3は、凸部面積率が約80%、凹凸差が約0.06mmである凹凸模様を有するクラッド鋼板における2次元プロフィールである。図4は、凸部面積率が約55%、凹凸差が約0.20mmの凹凸模様を有するクラッド鋼板の2次元プロフィールである。
 図3および図4における凹凸模様は、凸部面積率が20~80%、凹凸差が0.02~0.20mmの範囲にある例である。クラッド鋼板の表面に複数の凹部を形成したことにより、クラッド鋼板の断面積が減少するため、クラッド鋼板の熱伝導率が高くなる。また、クラッド鋼板表面の凹凸模様は、その配列方向の無秩序性が高いと、例えば、調理器具の素材に凹凸クラッド鋼板が適用された場合は、水の沸騰する起点が分散され、調理器具内で均一に発泡して、食材に均一に熱が伝わるため、調理時間が短縮される点で効果的である。また、本発明は、クラッド鋼板に比較的大きな凹凸模様が形成されてもよい。特に、この凹凸模様を圧延法により形成した場合には、加工硬化によって機械的強度も上昇するので、耐摩耗性に優れており、長期間の使用に耐えるクラッド鋼板を得ることができる。
(板厚比L)
 クラッド鋼板の板厚比Lは、母材の厚さと合わせ材の厚さの和について、次の式(1)で定義されたものである。
  板厚比L=母材の厚さ/合わせ材の厚さの和  ・・・・式(1)
 合わせ材は、母材の両面側に配されているので、式(1)においては、両面側に設けられた合わせ材の厚さの和である。母材の厚さ及び合わせ材の厚さは、凸部における厚さである。
 板厚比Lが1.0未満であると、クラッド鋼板において、合わせ材の占める割合が大きい。合わせ材(ステンレス鋼)が母材(炭素鋼)よりも相対的に熱伝導度が低い素材であるため、クラッド鋼板の熱伝導度が低下することがある。また、クラッド鋼板が加工を受けて圧縮応力が作用するとき、母材及び合わせ材の双方の延性が異なるため、加工部において母材と合わせ材とが剥離するおそれがある。その一方で、板厚比が5.0超であると、合わせ材の占める割合が過度に少なくなる。そのため、クラッド鋼板が曲げ加工などの塑性加工を受けたときに、合わせ材(ステンレス鋼板)の破断を招く可能性がある。よって、板厚比Lは、1.0~5.0の範囲内が好ましい。その下限は、1.5がより好ましく、2.0がさらに好ましい。その上限は、4.0がより好ましく、3.5がさらに好ましい。
 以下、本発明の実施例について説明する。本発明は、以下の実施例に限定されるものではない。
 まず、次の4種類の三層クラッド鋼板を製造した。なお、製造した4種類の三層クラッド鋼板の板厚は、いずれも0.8mmである。以下では、「板厚比L」を「板厚比」と記載することもある。
 (1) 母材が厚さ0.64mmのSPCC(JIS G 3141)からなる冷間圧延鋼板(以下、「SPCC」という。)であり、その両面側に0.08mmのSUS304からなる合わせ材を配した、板厚比4.0の三層クラッド鋼板
 (2) 母材が厚さ0.56mmのSPCCであり、その両面側に0.12mmのSUS304からなる合わせ材を配した、板厚比2.3の三層クラッド鋼板
 (3) 母材が厚さ0.48mmのSPCCであり、その両面側に0.16mmのSUS304からなる合わせ材を配した、板厚比1.5の三層クラッド鋼板
 (4) 母材が厚さ0.72mmのSPCCであり、その両面側に0.04mmのSUS304からなる合わせ材を配した、板厚比9の三層クラッド鋼板
 次に、上記のうち、板厚比が4.0、2.3、1.5の各三層クラッド鋼板を用いて、図8に示すような4段圧延機により、当該三層クラッド鋼板の表面に凸部及び凹部を形成するエンボス加工を施して、実施例1~実施例6の凹凸クラッド鋼板の試験片を得た。エンボス加工の加工条件は、4段圧延機における段付きロールの直径が110mmであり、表1に示す凹凸差に応じた圧延荷重を設定し、圧延速度を0.5m/minで行った。
 比較例1,2は、エンボス加工を施していない三層クラッド鋼板である。
 なお、凹凸クラッド鋼板の凸部における板厚比は、凹凸模様を形成する前の三層クラッド鋼板における板厚比と変わらなかった。
 製造された凹凸クラッド鋼板の表面に形成されている凹凸模様の凸部面積率および凹凸差は、クラッド鋼板から任意で抽出した面積100mmの部分について、形状測定機(コントレーサー)により拡大したプロフィールから測定した。2次元プロフィールの一例として、実施例1及び4のクラッド鋼板について、板厚方向を縦軸にした2次元プロフィールを、図3、図4に示す。表1に、製造した凹凸クラッド鋼板の諸特性を示す。
Figure JPOXMLDOC01-appb-T000002
(熱伝導特性の評価試験)
 熱伝導率の評価試験は、次の手順で行った。所定の表面積(A)と厚み(B)で統一した試験片を作製し、その表裏の両面に熱電対を取付けた後、試験片を電磁調理器にて一定の出力(E)で加熱し、試験片の表裏の両面における各温度を測定した。測定された温度から温度差(D)を得て、下記の式(2)により熱伝導率(C)を算出した。この熱伝導率(C)が大きいほど、試験片内を加熱面から非加熱面側へ移動する熱量が大きいから、熱が伝わりやすいことを示している。
 C=(E×B)/(A×D) ・・・・・式(2)
 加熱試験は、凹凸模様を付与した凹凸クラッド鋼板から一辺の長さが50mmの正方形試験片を切り出し、これを、出力を500Wに設定した電磁調理器にセットし、試験片の加熱面が目標の温度になるまで加熱した。熱伝導率は、加熱温度により変化するため、目標温度は、100℃、300℃および500℃とした。
 算出された熱伝導率(W/m・K)に基づき、熱伝導特性を評価した。評価した結果を表2に示す。評価基準は、比較例1を基準として、熱伝導率が50%以上向上したものを「◎」、25%以上50%未満の向上であったものを「○」、5%以上25%未満の向上であったものを「△」、5%未満の向上であったものを「×」でそれぞれ表示した。
(加工性の評価試験)
 加工性の評価は、次の手順で行った。凹凸模様を付与した凹凸クラッド鋼板から、長辺側の長さが50mm、短辺側の長さが20mmからなる長方形の試験片を切り出した。この長方形試験片を用いて、その長辺側の中央部で密着曲げを行った後、中央部付近の加工部における割れの有無を目視により観察して評価した。表記した結果を表2に示す。割れが観察されなかった試験片を「○」、割れが観察された試験片を「×」で表示した。
Figure JPOXMLDOC01-appb-T000003
(熱伝導性の評価結果)
 表1に示したように、実施例1~実施例6は、鋼板表面に凹凸模様が付与された凹凸クラッド鋼板であって、板厚比Lが1.0~5.0である。表2に示したように、実施例1~実施例6の凹凸クラッド鋼板は、比較例1の凹凸模様が付与されていないクラッド鋼板に比べて、良好な熱伝導性を有することが判明した。
 凹凸クラッド鋼板は、複合材料であるため、板厚方向で温度勾配θが変化する熱伝導特性を有する。母材(SPCC)の熱伝導率と合わせ材(SUS304)の熱伝導率を比較すると、SUS304の熱伝導率がSPCCの熱伝導率よりも小さいので、合わせ材(ステンレス鋼)の温度勾配θ1>母材(炭素鋼)の温度勾配θ2となる。
 図5と図6は、どちらも板厚比Lが4.0のクラッド鋼板の加熱試験における熱の伝わり方を示す模式図である。図5、図6に、熱源(図示せず)から加熱面Xに対する加熱方向Zを示す。このような加熱をした場合、図5に示すように、凹凸模様を付与していない三層クラッド鋼板1の加熱面Xの温度t1と、その反対面の温度t0との差Dは、板幅方向のどの位置でもほぼ同様となる。しかし、図6に示すように、凹凸模様を付与した凹凸クラッド鋼板2では、板厚の小さい部分(凹部)における温度差D’は、板厚の大きい部分(凸部)における温度差Dと比較して、板厚方向における炭素鋼の厚さが小さいため、温度差Dよりも小さくなる。このように、凹凸模様を付与した凹凸クラッド鋼板は、板厚方向および板幅方向のいずれにおいても温度勾配が変動する。
 図7に、板厚比Lが1.5である、凹凸模様を付与していない三層クラッド鋼板3の加熱試験における熱の伝わり方を示す模式図である。三層クラッド鋼板3の板厚Bは、図5の三層クラッド鋼板1と同じである。板厚比によっても板厚方向での温度勾配が異なるため、それにともない加熱面Xの温度とその反対面との温度差も異なってくる。板厚Bが同一であっても、板厚比Lが図5の三層クラッド鋼よりも小さい場合は、熱伝導率が小さい合わせ材(ステンレス鋼)の割合が大きくなるので、温度差D”は温度差Dよりも大きくなる。
 以上のように、クラッド鋼板の表面に、凹凸差が大きく、且つ凸部面積率の小さい凹凸模様を形成することに加えて、炭素鋼のような熱伝導率が大きい母材の板厚比率を高くすることで、より良好な熱伝導性を有する凹凸クラッド鋼板を得ることができる。
(加工性の評価結果)
 表2に、実施例の凹凸クラッド鋼板および比較例のクラッド鋼板について、密着曲げにより加工性を評価した結果を示す。実施例1~6および比較例1は、合わせ材のステンレス鋼板に割れは発生しなかった。それに対し、比較例2では、曲げた試験片の外側のステンレス鋼に割れが発生した。比較例2は、板厚比(炭素鋼/ステンレス鋼)が9.0であり、合わせ材(ステンレス鋼)の厚さが相対的に小さい。試験片に密着曲げ加工が施されると、試験片の表面に作用する引張応力が合わせ材に集中する。そのため、比較例2の試験片では、合わせ材(ステンレス鋼)の機械的強度を超える応力集中が作用し、割れに至ったものと推測される。また、板厚比(炭素鋼/ステンレス鋼)が7.0以下であれば、密着曲げ加工が可能であった。
 このように、本発明の条件を満足することにより、熱伝導性が良好であり、かつ加工時の割れの発生がみられず、製品としての価値を高めることができた。
 1、3  凹凸模様を付与していない三層クラッド鋼板
 2  凹凸クラッド鋼板
 11、21、31  炭素鋼
 12、13、22、23、32、33  ステンレス鋼
 24  凹部
 25、26  凸部
 B  クラッド鋼板の板厚
 SP、SP” 炭素鋼の厚さ
 SU、SU” ステンレス鋼の厚さ
 SP’ 凹部における炭素鋼の厚さ
 SU’ 凹部におけるステンレス鋼の厚さ
 t1、t1’、t1” 加熱面における温度
 t0、t0’、t0” 加熱面と反対側の面における温度
 D、D’、D” 加熱面の温度と、加熱面と反対側の面における温度との差
 X  加熱面
 Z  加熱方向
 θ1 ステンレス鋼の温度勾配
 θ2 炭素鋼の温度勾配
 40 上側ワークロール(段付きロール)
 41 下側ワークロール(フラットロール)
 42 バックアップロール
 43 バックアップロール
 44 ペイオフリール
 45 巻取りロール
 46 凹凸模様を付与していない三層クラッド鋼板
 47 凹凸模様を付与した凹凸クラッド鋼板

 

Claims (3)

  1.  炭素鋼の母材と、前記母材の両面側にそれぞれ配されたステンレス鋼の合わせ材とを有する三層のクラッド鋼板であって、
     式(1)で示される板厚比Lが1.0以上5.0以下であり、
     前記クラッド鋼板の少なくとも一方の表面には、複数の凸部及び凹部を有する、クラッド鋼板。
     板厚比L=母材の厚さ/合わせ材の厚さの和 ・・・式(1)
     ここで、前記母材の厚さ及び前記合わせ材の厚さは、前記凸部における厚さである。
  2.  前記複数の凸部の面積は、前記凸部が形成された前記クラッド鋼板の表面の面積に対して20~80%である、請求項1に記載のクラッド鋼板。
  3.  前記複数の凸部及び凹部は、板厚方向における凹凸差が0.02mm以上0.2mm以下である、請求項1または2に記載のクラッド鋼板。

     
PCT/JP2016/080524 2015-10-14 2016-10-14 熱伝導性に優れたクラッド鋼板 WO2017065267A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016563473A JP6173619B1 (ja) 2015-10-14 2016-10-14 熱伝導性に優れたクラッド鋼板
CN201680058269.2A CN108136456A (zh) 2015-10-14 2016-10-14 热传导性优异的包层钢板
EP16855520.9A EP3363550B1 (en) 2015-10-14 2016-10-14 Cladded steel plate with excellent heat conductivity
US15/768,310 US10562084B2 (en) 2015-10-14 2016-10-14 Clad steel plate with excellent thermal conductivity
KR1020187010794A KR101907839B1 (ko) 2015-10-14 2016-10-14 열전도성이 우수한 클래드 강판
HK18113709.5A HK1254500A1 (zh) 2015-10-14 2018-10-26 熱傳導性優異的包層鋼板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015202564 2015-10-14
JP2015-202564 2015-10-14

Publications (1)

Publication Number Publication Date
WO2017065267A1 true WO2017065267A1 (ja) 2017-04-20

Family

ID=58517341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080524 WO2017065267A1 (ja) 2015-10-14 2016-10-14 熱伝導性に優れたクラッド鋼板

Country Status (8)

Country Link
US (1) US10562084B2 (ja)
EP (1) EP3363550B1 (ja)
JP (1) JP6173619B1 (ja)
KR (1) KR101907839B1 (ja)
CN (1) CN108136456A (ja)
HK (1) HK1254500A1 (ja)
TW (1) TWI690422B (ja)
WO (1) WO2017065267A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020531148A (ja) * 2017-08-24 2020-11-05 セブ ソシエテ アノニム 誘導加熱可能な多層加熱調理支持体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113210419A (zh) * 2021-05-08 2021-08-06 湖南三泰新材料股份有限公司 一种耐腐蚀hrb600e复合抗震钢筋及其制造方法
CN113369308A (zh) * 2021-06-23 2021-09-10 新疆八一钢铁股份有限公司 一种改进的板材轧机用复合衬板
CN114773074A (zh) * 2022-05-19 2022-07-22 江苏中色复合材料有限公司 一种适用于多热源的高温高导精钢炒锅料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177888A (ja) * 1997-09-02 1999-03-23 Nkk Corp ステンレスクラッド鋼板
JP2002065469A (ja) * 2000-08-25 2002-03-05 Nisshin Steel Co Ltd 調理器用金属板及びその製造方法
JP2004098136A (ja) * 2002-09-10 2004-04-02 Sumitomo Electric Fine Polymer Inc クラッド材の製造方法およびクラッド材
JP2009045194A (ja) * 2007-08-20 2009-03-05 Tiger Vacuum Bottle Co Ltd 電気炊飯器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ205964A (en) * 1982-12-14 1986-08-08 Ardal Og Sunndall Verk As Three layer metal laminate for cooking vessels
JPS61157637A (ja) * 1984-12-28 1986-07-17 Sumitomo Metal Ind Ltd 薄板クラツド鋼の製造方法
JPS61154939A (ja) 1984-12-28 1986-07-14 住友金属工業株式会社 クラツド鋼
JPS6440188A (en) 1987-08-07 1989-02-10 Sumitomo Metal Ind Multi-layer clad steel excellent in thermal conductivity
JPH02263501A (ja) 1989-04-04 1990-10-26 Nippon Kinzoku Kogyo Kk 圧延による模様付き金属板又は虹色金属板の製造方法
JP3036988B2 (ja) * 1992-09-03 2000-04-24 株式会社神戸製鋼所 土木建築構造用防錆厚鋼板およびその製造方法
JP3409660B2 (ja) * 1997-09-02 2003-05-26 日本鋼管株式会社 表面性状に優れた薄板ステンレスクラッド鋼板
JPH11152547A (ja) * 1997-11-19 1999-06-08 Nkk Corp 耐二次加工脆性に優れた薄板ステンレスクラッド鋼板
CN1240331C (zh) * 2004-02-02 2006-02-08 吉林大学 不粘炊具
CN2892466Y (zh) * 2006-03-08 2007-04-25 胡志明 网纹金属复合板
CN101676097A (zh) * 2008-09-19 2010-03-24 陈星翰 高性能双金属不锈钢卷带板
JP2015128543A (ja) * 2014-01-09 2015-07-16 潤一 森川 飲食物用断熱用具
CN103736729B (zh) * 2014-01-22 2015-07-29 太原科技大学 一种轧制制备金属复合板带的方法
CN104786582B (zh) * 2015-04-13 2017-10-31 宝山钢铁股份有限公司 一种混凝土预制件生产线模台面用钢板及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177888A (ja) * 1997-09-02 1999-03-23 Nkk Corp ステンレスクラッド鋼板
JP2002065469A (ja) * 2000-08-25 2002-03-05 Nisshin Steel Co Ltd 調理器用金属板及びその製造方法
JP2004098136A (ja) * 2002-09-10 2004-04-02 Sumitomo Electric Fine Polymer Inc クラッド材の製造方法およびクラッド材
JP2009045194A (ja) * 2007-08-20 2009-03-05 Tiger Vacuum Bottle Co Ltd 電気炊飯器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020531148A (ja) * 2017-08-24 2020-11-05 セブ ソシエテ アノニム 誘導加熱可能な多層加熱調理支持体

Also Published As

Publication number Publication date
US10562084B2 (en) 2020-02-18
CN108136456A (zh) 2018-06-08
EP3363550A4 (en) 2018-08-22
EP3363550A1 (en) 2018-08-22
KR101907839B1 (ko) 2018-10-12
KR20180045038A (ko) 2018-05-03
JP6173619B1 (ja) 2017-08-02
TW201726393A (zh) 2017-08-01
US20180304326A1 (en) 2018-10-25
EP3363550B1 (en) 2020-04-08
JPWO2017065267A1 (ja) 2017-10-12
TWI690422B (zh) 2020-04-11
HK1254500A1 (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
JP6173619B1 (ja) 熱伝導性に優れたクラッド鋼板
CN110252806B (zh) 一种提高双金属复合板结合强度的轧制方法
US7353981B2 (en) Method of making a composite metal sheet
KR102428588B1 (ko) 알루미늄계 도금 강판, 알루미늄계 도금 강판의 제조 방법 및 자동차용 부품의 제조 방법
JP2017128750A (ja) クラッド板および誘導加熱調理器用器物
JPH0591950A (ja) 補強された軟質金属製品、及び調理用容器
US2053096A (en) Cladded cooking utensil
WO2009021743A1 (en) Method for producing a coated steel strip for producing taylored blanks suitable for thermomechanical shaping, strip thus produced, and use of such a coated strip
CN113020261B (zh) 一种预制波纹界面的金属复合板轧制方法
JP6347312B1 (ja) クラッド板
JP6683093B2 (ja) 凸条付き溶融亜鉛系めっき鋼板およびその製造方法と、ホットスタンプ成形体
Li et al. Deformation behavior and interface microstructure evolution of Al/Mg/Al multilayer composite sheets during deep drawing
CN105689564A (zh) 板材和制造板材的方法
CN105034526A (zh) 一种金属复合板的制备方法
CN103462513A (zh) 复合铁锅及复合铁锅的制造方法
CN101733274B (zh) 一种提高中高铬铁素体不锈钢综合性能的热轧方法
RU2011117821A (ru) Способ изготовления тонких листов из труднодеформируемых титановых сплавов
CN111331963A (zh) 一种多层复合钢及多层复合钢刀具的制作方法
JP2021154370A (ja) 重ね合わせブランク、および、それを用いたホットスタンプ成形体の製造方法
JP2011110594A (ja) 表面光沢に優れたフェライト系ステンレス冷延鋼帯の製造方法
CN103031472B (zh) 一种空分设备用钎焊板及其制备方法
JP4897897B2 (ja) コアレスクラッド装飾刃物およびその製造方法
SE438818B (sv) Pleterat metallalster
KR20190041996A (ko) 우수한 부식 특성을 가진 니켈 무함유 금속 조리기구 및 그 제조 방법
JP6398790B2 (ja) 圧延クラッド薄板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016563473

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15768310

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187010794

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016855520

Country of ref document: EP