WO2017065141A1 - Lc複合電子部品、およびlc複合電子部品の実装構造 - Google Patents

Lc複合電子部品、およびlc複合電子部品の実装構造 Download PDF

Info

Publication number
WO2017065141A1
WO2017065141A1 PCT/JP2016/080160 JP2016080160W WO2017065141A1 WO 2017065141 A1 WO2017065141 A1 WO 2017065141A1 JP 2016080160 W JP2016080160 W JP 2016080160W WO 2017065141 A1 WO2017065141 A1 WO 2017065141A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
composite electronic
electronic component
capacitor electrode
capacitor
Prior art date
Application number
PCT/JP2016/080160
Other languages
English (en)
French (fr)
Inventor
矢▲崎▼浩和
中磯俊幸
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201690001268.XU priority Critical patent/CN208142032U/zh
Priority to JP2017545202A priority patent/JP6601502B2/ja
Publication of WO2017065141A1 publication Critical patent/WO2017065141A1/ja
Priority to US15/944,938 priority patent/US10320356B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/10Inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/0026Multilayer LC-filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
    • H01L27/016Thin-film circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0057Constructional details comprising magnetic material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1003Non-printed inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1006Non-printed filter

Definitions

  • the present invention relates to an LC composite electronic component, and more particularly to an LC composite electronic component including, for example, a ceramic substrate on which an inductor element is formed and a thin film insulator layer on which a capacitor element is formed.
  • the present invention also particularly relates to a mounting structure of the LC composite electronic component on a mounting board, for example.
  • Patent Document 2 an LC composite electronic component having a structure in which a dielectric ceramic substrate on which a capacitor is formed and a magnetic ceramic substrate on which an inductor is formed is known (Patent Document 2).
  • Patent Document 2 when a capacitor is formed on a dielectric ceramic substrate, it is difficult to shorten the distance between capacitor electrodes, and thus it is difficult to form a capacitor having a large capacity.
  • the LC composite electronic component of the present invention is A ceramic substrate having a magnetic layer; A thin film insulator layer formed on a surface of the ceramic substrate by a thin film process and having a first capacitor electrode, a second capacitor electrode closer to the ceramic substrate than the first capacitor electrode, and a thin film dielectric; A coil-shaped inductor element formed on the ceramic substrate; A capacitor element formed in the thin film insulator layer; An external terminal formed on the surface of the thin film insulator layer and connected to at least one of the inductor element and the capacitor element; With The capacitor element includes the first capacitor electrode, the second capacitor electrode, and the thin-film dielectric disposed at least partially between the first capacitor electrode and the second capacitor electrode. It is characterized by that.
  • the external terminals are formed on the surface of the thin film insulating layer formed by the thin film process, so that the external terminals are not easily peeled off due to the manufacturing process, and a minute gap between the element body and the external terminals Is unlikely to occur. Therefore, compared with the case where external terminals are formed on the surface of the ceramic substrate by co-firing, the adhesion strength between the external terminals and the thin film insulating layer is high, and it is minute along the interface between the external terminals and the thin film insulating layer. Difficult gaps are difficult to form.
  • the thin film dielectric is preferably a sintered body of barium strontium titanate.
  • the ceramic substrate is formed by firing at a temperature of 800 ° C. or more, even if the thin film insulator layer (thin film dielectric) is fired at around 700 ° C., the inductor element formed on the ceramic substrate Characteristic deterioration is suppressed.
  • the inductor element and the capacitor element are magnetically separated by sandwiching a thin-film dielectric having a low permeability between the second capacitor electrode and a magnetic layer having a high permeability. . Therefore, the magnetic field generated in the inductor element is suppressed from being affected by the capacitor element, and a decrease in the Q value of the inductor element can be suppressed.
  • the thin film insulator layer further includes an insulating resin layer
  • the capacitor element is covered with the insulating resin layer
  • the external terminal is the insulating resin layer. It is preferably formed on the surface.
  • the capacitor element can be protected from external force or the like, and a highly robust LC composite electronic component can be realized.
  • the thin film dielectric 11 is a material having low moisture resistance
  • the entire thin film dielectric is covered with an insulating resin layer, thereby suppressing changes in characteristics of the thin film dielectric due to moisture in the atmosphere.
  • the inductor element and the capacitor element may constitute a low-pass filter.
  • the mounting structure of the LC composite electronic component on the mounting board of the present invention is as follows: An LC composite electronic component having an external terminal; A mounting board having mounting terminals; The LC composite electronic component mounting structure comprising: The external terminal is connected to the mounting terminal, The LC composite electronic component is A ceramic substrate having a magnetic layer; A thin film insulator layer formed on a surface of the ceramic substrate by a thin film process and having a first capacitor electrode, a second capacitor electrode closer to the ceramic substrate than the first capacitor electrode, and a thin film dielectric; A coil-shaped inductor element formed on the ceramic substrate; A capacitor element formed in the thin film insulator layer; Further comprising The external terminal is formed on a surface of the thin film insulator layer, and is connected to at least one of the inductor element and the capacitor element.
  • the capacitor element includes at least one of the first capacitor electrode and the second capacitor electrode.
  • the portion is constituted by the thin film dielectric disposed between the first capacitor electrode and the second capacitor electrode.
  • an LC composite electronic component having a highly reliable external terminal and having good high frequency characteristics can be realized.
  • the LC composite electronic component it is possible to realize a mounting structure of the LC composite electronic component with improved connection reliability between the LC composite electronic component and the mounting substrate.
  • FIG. 1 is a cross-sectional view of an LC composite electronic component 101 according to the first embodiment.
  • FIG. 2 is an external perspective view showing a conductor pattern and external terminals P1, P2, and P3 included in the LC composite electronic component 101.
  • FIG. 3 is a circuit diagram of the LC composite electronic component 101.
  • FIG. 4 is a cross-sectional view showing a state where the LC composite electronic component 101 is mounted on the mounting substrate 1.
  • FIG. 1 is a cross-sectional view of an LC composite electronic component 101 according to the first embodiment.
  • FIG. 2 is an external perspective view showing a conductor pattern and external terminals P1, P2, and P3 included in the LC composite electronic component 101.
  • FIG. 1 the thickness of each part is exaggerated. The same applies to the sectional views in the following embodiments.
  • the LC composite electronic component 101 is a surface-mount type electronic component that includes an inductor element and a capacitor element and is mounted on a mounting substrate.
  • the LC composite electronic component 101 includes a ceramic substrate CL having a first main surface S1, an inductor element LE, a thin film insulator layer TL having a second main surface S2, a capacitor element CE, and external terminals P1, P2, and P3.
  • the first main surface S1 corresponds to a “top surface”
  • the second main surface S2 corresponds to a “mounting surface”.
  • the ceramic substrate CL is a rectangular parallelepiped magnetic plate formed by laminating a plurality of magnetic layers, and has coil conductor patterns 21, 22, 23, and 24 and interlayer connection conductors V11, V12, V13, V14, and V15.
  • the magnetic layer is, for example, a magnetic ferrite ceramic layer formed by sintering a ferrite ceramic powder.
  • the inductor element LE is a helical coil-shaped conductor formed inside the ceramic substrate CL, and is composed of coil conductor patterns 21, 22, 23, and 24 and interlayer connection conductors V13, V14, and V15, and is laminated (Z direction). ) Along the winding axis.
  • the coil conductor patterns 21, 22, 23, 24 and the interlayer connection conductors V11, V12, V13, V14, V15 are, for example, sintered films of conductive paste containing a metal powder mainly composed of Ag or the like.
  • the first end of the coil conductor pattern 21 is connected to the first end of the coil conductor pattern 22 via the interlayer connection conductor V13.
  • the second end of the coil conductor pattern 22 is connected to the first end of the coil conductor pattern 23 via the interlayer connection conductor V14.
  • the second end of the coil conductor pattern 23 is connected to the first end of the coil conductor pattern 24 via the interlayer connection conductor V15.
  • the thin film insulator layer TL is a rewiring layer made of a nonmagnetic insulator layer formed by a thin film process on one surface of the ceramic substrate CL (the surface opposite to the first main surface S1). It has a body 11, an insulating resin layer 12, a first capacitor electrode 31, a second capacitor electrode 32, and interlayer connection conductors V21, V22, V23, V32.
  • the thin film dielectric 11 is a high dielectric constant material having a dielectric constant of 30 or more.
  • the thin film dielectric 11 is a strong material made of a sintered body of barium strontium titanate ((Ba x , Sr 1-x ) TiO 3 : hereinafter “BST”). It is a dielectric layer.
  • the thin film dielectric 11 may be a ferroelectric layer made of, for example, strontium titanate (SrTiO 3 : “STO”).
  • the insulating resin layer 12 is, for example, a polyimide resin or an epoxy resin.
  • the interlayer connection conductors V21, V22, V23, V32 are conductors such as Pt and Au.
  • External terminals P1, P2, and P3 are LGA (Land Grid Array) type terminals for mounting on a mounting board, and are formed in an island shape on the second main surface S2 of the thin-film insulator layer TL.
  • the external terminals P1, P2, and P3 are, for example, Cu coated with a plating film such as Ni or Au. In the present embodiment, the external terminal P3 is connected to the ground.
  • the capacitor element CE is formed inside the thin film insulator layer TL, and includes a first capacitor electrode 31, a second capacitor electrode 32 disposed opposite to the first capacitor electrode 31, a first capacitor electrode 31, and a second capacitor electrode 31.
  • the thin film dielectric 11 is disposed between the capacitor electrode 32 and the capacitor electrode 32. As shown in FIG. 1, the capacitor element CE is covered with an insulating resin layer 12.
  • the thin film dielectric 11 is formed on one surface of the ceramic substrate CL, and the first capacitor electrode 31 and the second capacitor electrode 32 are disposed inside the thin film dielectric 11. As shown in FIG. 1, the second capacitor electrode 32 is disposed closer to the ceramic substrate CL than the first capacitor electrode 31. Therefore, a part of the thin film dielectric 11 is disposed between the second capacitor electrode 32 and the ceramic substrate CL (magnetic material). This portion of the thin film dielectric 11 functions as an adhesion layer between the ceramic substrate CL and the second capacitor electrode 32. Since the thin film dielectric 11 according to the present embodiment is a BST sintered body having low moisture resistance, the entire thin film dielectric 11 is covered with the insulating resin layer 12 so as not to be exposed to the atmosphere. External terminals P1, P2, and P3 are formed on the second main surface S2 of the insulating resin layer 12.
  • the external terminal P1 is connected to the second end of the coil conductor pattern 21 via the interlayer connection conductors V11 and V21.
  • the external terminal P2 is connected to the second capacitor electrode 32 via the interlayer connection conductors V22 and V32, and the second capacitor electrode 32 is connected to the second end of the coil conductor pattern 24 via the interlayer connection conductors V12 and V32.
  • the external terminal P3 is connected to the first capacitor electrode 31 through the interlayer connection conductor V23.
  • FIG. 3 is a circuit diagram of the LC composite electronic component 101.
  • the inductor element LE is represented by an inductor L1
  • the capacitor element CE is represented by a capacitor C1.
  • the LC composite electronic component 101 is a circuit in which an inductor L1 is connected between external terminals P1 and P2, and a capacitor C1 is connected between external terminals P2 and P3.
  • the external terminal P1 is connected to the first end of the inductor L1
  • the external terminal P2 is connected to the second end of the inductor L1 and the first end of the capacitor C1
  • the external terminal P3 is connected to the second end of the capacitor C1.
  • the external terminal P3 is connected to the ground. Therefore, in the present embodiment, the inductor element LE and the capacitor element CE constitute a low-pass filter.
  • the LC composite electronic component 101 is manufactured by the materials and processes described in (1) to (7) below, for example.
  • a ceramic substrate CL on which an inductor element LE is formed is prepared.
  • the ceramic substrate CL is obtained by laminating a plurality of magnetic layers formed with a coil conductor pattern or an interlayer connection conductor made of a conductive paste such as Ag, and then firing the laminate at a temperature of 800 ° C. or higher.
  • the magnetic layer is a green sheet such as magnetic ferrite.
  • a first sintered body thin film is formed on the surface.
  • the temperature of the hot plate is not particularly limited as long as desired drying characteristics can be obtained, but it is preferably set within a range of 300 ° C to 400 ° C.
  • the temperature of the heat treatment is not particularly limited as long as desired crystallization is performed, but is preferably set within a range of 600 ° C. to 700 ° C. (around 700 ° C.).
  • the heat treatment time is not particularly limited as long as desired crystallization is performed, but is preferably set within a range of 10 minutes to 60 minutes.
  • the second capacitor electrode 32 and the interlayer connection conductor V32 are formed on the first sintered body thin film.
  • the second capacitor electrode 32 made of Pt or Au, the interlayer connection conductor V32, and the like are formed by RF magnetron sputtering.
  • a BST film as a second sintered body thin film is formed on the surface of the first sintered body thin film and the second capacitor electrode 32.
  • a BST film that is a third sintered body thin film is formed on the surface of the second sintered body thin film and the first capacitor electrode 31.
  • the first sintered body thin film, the second sintered body thin film, and the third sintered body thin film constitute a thin film dielectric 11.
  • the insulating resin layer 12 is, for example, a polyimide resin or an epoxy resin.
  • openings for interlayer connection conductors are formed in the first sintered body thin film, the second sintered body thin film, and the third sintered body thin film, and a conductor pattern made of Cu or the like is formed by RF magnetron sputtering.
  • interlayer connection conductors V21, V22, V23 and external terminals P1, P2, P3 are formed.
  • a Ni / Au plating film may be formed on the surfaces of the external terminals P1, P2, and P3.
  • FIG. 4 is a cross-sectional view showing a state in which the LC composite electronic component 101 is mounted on the mounting substrate 1.
  • a plurality of mounting terminals 41, 42, 43 are formed on the upper surface of the mounting substrate 1.
  • the LC composite electronic component 101 is mounted on the mounting substrate 1 with the thin film insulator layer TL side as a mounting surface.
  • the mounting substrate 1 is, for example, a printed wiring board.
  • the external terminal P1 is connected to the mounting terminal 41 of the mounting board 1 via the conductive bonding material 51
  • the external terminal P2 is connected to the mounting terminal 42 of the mounting board 1 via the conductive bonding material 52
  • the external terminal P2 is
  • the conductive bonding material 53 is connected to the mounting terminal 43 of the mounting substrate 1.
  • the conductive members 51, 52, 53 are, for example, solder.
  • the LC composite electronic component 101 according to this embodiment has the following effects.
  • a coil-shaped inductor element LE is formed on a ceramic substrate CL having a magnetic layer.
  • DCR direct current resistance
  • the input / output terminal external terminals P1, P2, P3 are formed on the surface of the insulating resin layer 12 (thin film insulating layer TL).
  • the external terminals P1, P2, and P3 are formed on the surface of the thin film insulating layer TL formed by the thin film process, the external terminals P1, P2, and P3 due to the manufacturing process are unlikely to be peeled off. Small gaps between the external terminals P1, P2, and P3 are unlikely to occur.
  • the adhesion strength between the external terminals P1, P2, P3 and the thin film insulating layer TL is high. It is difficult to form a minute gap along the interface between the terminals P1, P2, P3 and the thin film insulating layer TL. Therefore, migration due to moisture existing outside (plating solution or the like at the time of barrel plating for plating on the external terminal) entering the LC composite electronic component 101 from the gap is suppressed, and LC Short-circuiting between conductor patterns formed inside the composite electronic component 101 and between the external terminals P1, P2, and P3 is suppressed.
  • the mounting surface (first surface) of the LC composite electronic component 101 is compared with the case where the ceramic substrate CL side is mounted on the mounting substrate 1 as the mounting surface.
  • the difference in coefficient of thermal expansion between the two main surfaces S2) and the mounting substrate 1 is small. Therefore, the LC composite electronic component 101 is prevented from falling off the mounting substrate 1, and disconnection of the connection points between the external terminals P 1, P 2, P 3 of the LC composite electronic component 101 and the mounting terminals 41, 42, 43 of the mounting substrate 1, etc. Is suppressed.
  • the thin film dielectric 11 formed on the surface of the ceramic substrate CL is a BST sintered body.
  • the ceramic substrate CL is formed by firing at a temperature of 800 ° C. or higher, the thin film insulator layer TL (thin film dielectric 11) is formed on the ceramic substrate CL even when fired at around 700 ° C. The characteristic deterioration of the inductor element LE is suppressed.
  • the thin film dielectric 11 is formed between the second capacitor electrode 32 and the ceramic substrate CL. Since each of the thin film dielectric 11 and the ceramic substrate CL is a sintered body, more specifically, a polycrystalline metal oxide, the thin film dielectric material has better adhesion to the ceramic substrate CL than the electrode material. high. Therefore, high adhesion strength can be obtained between the thin film insulator layer TL (thin film dielectric 11) and the ceramic substrate CL. Further, since the sintered body of BST which is the thin film dielectric 11 is compatible with Pt which is the material of the second capacitor electrode 32, high adhesion strength is obtained between the thin film dielectric 11 and the second capacitor electrode 32. be able to.
  • the thin film dielectric 11 is formed between the second capacitor electrode 32 and the magnetic layer of the ceramic substrate CL.
  • a conductor pattern such as an electrode
  • the magnetic field generated in the inductor element is affected by the conductor pattern (vortex The Q value of the inductor element tends to decrease due to the occurrence of current and the conductor pattern contributing to magnetic field radiation.
  • the inductor element LE and the capacitor element CE are magnetically sandwiched by sandwiching the thin-film dielectric 11 having a low permeability between the second capacitor electrode 32 and the magnetic layer having a high permeability. Separated. Therefore, the magnetic field generated in the inductor element LE is suppressed from being affected by the capacitor element CE, and a decrease in the Q value of the inductor element LE can be suppressed.
  • the LC composite electronic component 101 includes the insulating resin layer 12, and the capacitor element CE is covered with the insulating resin layer 12. With this configuration, the capacitor element CE can be protected from external force or the like, and the LC composite electronic component 101 having high robustness can be realized. Further, when the thin film dielectric 11 is a BST sintered body having low moisture resistance as in the present embodiment, the entire thin film dielectric 11 is covered with the insulating resin layer 12 so that moisture in the atmosphere can be obtained. The characteristic change of the thin film dielectric 11 due to is suppressed.
  • the insulating resin layer 12 is not essential, and the external terminals P1, P2, and P3 may be formed on the surface of the thin film dielectric 11. However, as described above, it is preferable that the LC composite electronic component 101 has the insulating resin layer 12 and the capacitor element CE and the thin film dielectric 11 are covered with the insulating resin layer 12.
  • the LC composite electronic component 101 is mounted on the mounting substrate 1 with the thin film insulator layer TL side on which the capacitor element CE is formed as a mounting surface.
  • the wiring path between the capacitor element CE and the mounting substrate 1 can be shortened, the parasitic inductance of the capacitor element CE is reduced, and the LC composite electronic component 101 having excellent high frequency characteristics can be realized.
  • a low-pass filter is configured with the inductor element LE and the capacitor element CE as in this embodiment, an unnecessary pole is generated if a large parasitic inductance is applied to the shunt-connected capacitor element CE.
  • the function as a desired low-pass filter is not performed. Therefore, the above configuration in the present embodiment is particularly useful when a low-pass filter is configured with the inductor element LE and the capacitor element CE.
  • the planar shape of the ceramic substrate CL is a rectangular parallelepiped shape
  • the present invention is not limited to this configuration.
  • the shape of the ceramic substrate CL can be appropriately changed within the range where the functions and effects of the present invention are exhibited.
  • the planar shape may be a flat plate such as a square, a polygon, a circle, an ellipse, an L shape, and a T shape. .
  • the ceramic substrate CL is an example of a magnetic plate formed by laminating a plurality of magnetic layers.
  • the ceramic substrate CL may have a magnetic layer in part. That is, as long as the ceramic substrate CL has a magnetic layer in part, the outermost layer in the stacking direction may be a nonmagnetic layer, or the inner layer in the stacking direction is a nonmagnetic layer. Also good.
  • the number of laminated ceramic substrates CL can be changed as appropriate.
  • a single-layer magnetic flat plate may be used.
  • the inductor element LE is a helical coil-shaped conductor having about 4 turns, but the present invention is not limited to this.
  • the number of turns of the inductor element LE can be changed as appropriate, and may be, for example, one turn or less. Further, the inductor element LE may be a spiral coil conductor.
  • the winding axis of the inductor element LE has a structure along the stacking direction (Z direction) of the plurality of magnetic layers, but the present invention is not limited to this.
  • the winding axis of the inductor element LE may have a structure along a direction perpendicular to the Z direction (for example, the X direction or the Y direction). With this configuration, it is possible to suppress the magnetic flux generated in the inductor element LE from being disturbed by the capacitor element CE.
  • the low-pass filter is configured by the inductor element LE and the capacitor element CE
  • the present invention is not limited to this.
  • the circuit configuration of the LC composite electronic component can be changed as appropriate.
  • a high-pass filter may be configured, such as a circuit in which the inductor element LE and the capacitor element CE are connected in series, a ⁇ -type circuit, or a T-type circuit.
  • the inductor element LE and the capacitor element CE included in the LC composite electronic component are not limited to one each. There may be a plurality of inductor elements LE and capacitor elements CE, which can be appropriately changed depending on the circuit configuration of the LC composite electronic component.
  • the LC composite electronic component 101 including the rectangular external terminals P1, P2, and P3 is shown, but is not limited to this configuration.
  • the number of external terminals can be appropriately changed depending on the circuit configuration of the LC composite electronic component.
  • the shape of the external terminal can be changed as appropriate, and may be, for example, polygonal, circular, elliptical, L-shaped, T-shaped, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

LC複合電子部品(101)は、磁性体層を有するセラミック基板(CL)、セラミック基板(CL)の表面に薄膜プロセスによって形成される薄膜絶縁体層(TL)、セラミック基板(CL)に形成されるコイル状のインダクタ素子(LE)、薄膜絶縁体層(TL)に形成されるキャパシタ素子(CE)、薄膜絶縁体層(TL)の表面に形成される外部端子(P1,P2,P3)を備える。キャパシタ素子(CE)は、薄膜絶縁体層(TL)が有する第1キャパシタ電極(31)と、第2キャパシタ電極(32)と、少なくとも一部が第1キャパシタ電極(31)と第2キャパシタ電極(32)との間に配置される薄膜誘電体(11)とによって構成される。外部端子(P1,P2,P3)はインダクタ素子(LE)およびキャパシタ素子(CE)の少なくとも一方に接続される。

Description

LC複合電子部品、およびLC複合電子部品の実装構造
 本発明は、LC複合電子部品に関し、特に例えばインダクタ素子が形成されたセラミック基板と、キャパシタ素子が形成された薄膜絶縁体層とを備えるLC複合電子部品に関する。また、本発明は、特に例えば上記LC複合電子部品の実装基板への実装構造に関する。
 従来、集積受動素子(IPD:Integrated Passive Device)として、半導体基板上にキャパシタやインダクタを薄膜プロセスで形成した各種LC複合電子部品が考案されている(特許文献1)。
 上記薄膜プロセスでキャパシタを形成した場合には、キャパシタ用電極間の距離を短くできることから容量の大きなキャパシタを形成しやすい。しかし、上記薄膜プロセスでインダクタを形成した場合には、インダクタ用導体パターンの膜厚を厚くし難いため、特にインダクタの直流抵抗(DCR)は増加してしまう。そのため、薄膜プロセスによってQ値の高いインダクタを形成することが難しく、薄膜プロセスで形成したLC複合電子部品において、高周波帯域で損失の小さなLC共振回路を構成することは困難である。
 一方、キャパシタを形成した誘電体セラミック基板と、インダクタを形成した磁性体セラミック基板とを積層した構造のLC複合電子部品が知られている(特許文献2)。
特開平6-53406号公報 特開平11-67587号公報
 特許文献2のように、誘電体セラミック基板にキャパシタを構成した場合には、キャパシタ用電極間の距離を短くすることが困難であるため、容量の大きなキャパシタを形成し難い。
 さらに、外部に接続するための外部端子を上記セラミック基板の表面に形成した場合に、上記セラミック基板を形成する材料と端子材料との焼成時の収縮率や収縮挙動が大きく異なるため、上記セラミック基板と外部端子との間の高い密着強度を得ることは難しい。そのため、このLC複合電子部品を実装基板に実装すると、LC複合電子部品が実装基板から脱落しやすい。また、上記セラミック基板と外部端子との密着強度が低いため、上記セラミック基板と外部端子との界面に沿って微小な隙間が形成されやすい。そのため、外部に存在する水分が上記の隙間からLC複合電子部品の内部に浸入することによりマイグレーションが生じ、上記セラミック基板内部に形成された導体間や外部端子間に短絡が生じる虞がある。
 本発明の目的は、信頼性の高い外部端子を備え、且つ、良好な高周波特性を有するLC複合電子部品を提供することにある。また、上記LC複合電子部品を用いることにより、LC複合電子部品と実装基板との間の接続信頼性を高めた、LC複合電子部品の実装構造を提供することにある。
(1)本発明のLC複合電子部品は、
 磁性体層を有するセラミック基板と、
 前記セラミック基板の表面に薄膜プロセスによって形成され、且つ、第1キャパシタ電極、前記第1キャパシタ電極よりも前記セラミック基板に近接する第2キャパシタ電極、および薄膜誘電体を有する薄膜絶縁体層と、
 前記セラミック基板に形成されるコイル状のインダクタ素子と、
 前記薄膜絶縁体層に形成されるキャパシタ素子と、
 前記薄膜絶縁体層の表面に形成され、前記インダクタ素子および前記キャパシタ素子の少なくとも一方に接続される外部端子と、
 を備え、
 前記キャパシタ素子は、前記第1キャパシタ電極と、前記第2キャパシタ電極と、少なくとも一部が前記第1キャパシタ電極と前記第2キャパシタ電極との間に配置される前記薄膜誘電体と、によって構成されることを特徴とする。
 この構成では、インダクタ素子を構成するコイル導体パターンの膜厚を厚くしやすく、直流抵抗(DCR)を抑制したインダクタ素子を構成しやすい。したがって、Q値の高いインダクタ素子を構成しやすく、高周波帯域で損失の小さなLC回路(特にLC共振回路)を有する薄型のLC複合電子部品を実現できる。
 また、この構成では、薄膜プロセスによって形成された薄膜絶縁層の表面に外部端子を形成するため、製造プロセスに起因する外部端子の剥がれがおきにくく、素体と外部端子との間の微小な隙間が生じにくい。そのため、セラミック基板の表面に同時焼成(co-fire)によって外部端子を形成した場合に比べ、外部端子と薄膜絶縁層との密着強度は高く、外部端子と薄膜絶縁層との界面に沿って微小な隙間が形成され難い。したがって、外部に存在する水分(外部端子へのめっき処理のために行うバレルめっきの際のめっき液等)が上記の隙間からLC複合電子部品の内部に浸入することによるマイグレーションが抑制され、LC複合電子部品内部に形成された導体パターン間や外部端子間の短絡が抑制される。
(2)上記(1)において、前記薄膜誘電体は、チタン酸バリウムストロンチウムの焼結体であることが好ましい。この構成では、セラミック基板が800℃以上の温度で焼成して形成されるため、薄膜絶縁体層(薄膜誘電体)が700℃付近で焼成されたとしても、セラミック基板に形成されるインダクタ素子の特性劣化が抑制される。
(3)上記(1)または(2)において、前記薄膜誘電体の少なくとも一部は、前記第2キャパシタ電極と前記磁性体層との間に形成されることが好ましい。この構成により、一般に、磁性体の内部にコイル状のインダクタ素子が形成されている場合において、磁性体の表面に電極等の導体パターンが形成されていると、インダクタ素子に発生する磁界が導体パターンによる影響を受けて、インダクタ素子のQ値は低下する傾向がある。一方、本実施形態では、第2キャパシタ電極と高透磁率である磁性体層との間に、低透磁率である薄膜誘電体を挟むことにより、インダクタ素子とキャパシタ素子が磁気的に分離される。したがって、インダクタ素子に発生する磁界がキャパシタ素子によって影響を受けることが抑制され、インダクタ素子のQ値の低下を抑制できる。
(4)上記(1)から(3)のいずれかにおいて、前記薄膜絶縁体層は絶縁樹脂層をさらに有し、前記キャパシタ素子は前記絶縁樹脂層に覆われ、前記外部端子は前記絶縁樹脂層の表面に形成されることが好ましい。この構成により、キャパシタ素子を外力等から保護することができ、堅牢性の高いLC複合電子部品を実現できる。また、薄膜誘電体11が耐湿性の低い材料である場合には、薄膜誘電体全体が絶縁樹脂層で被覆されることで、大気中の水分による薄膜誘電体の特性変化が抑制される。
(5)上記(1)から(4)のいずれかにおいて、前記インダクタ素子と前記キャパシタ素子とで、ローパスフィルタが構成されていてもよい。
(6)本発明の実装基板に対するLC複合電子部品の実装構造は、
 外部端子を有するLC複合電子部品と、
 実装端子を有する実装基板と、
 を備える、前記LC複合電子部品の実装構造であって、
 前記外部端子は、前記実装端子に接続され、
 前記LC複合電子部品は、
  磁性体層を有するセラミック基板と、
  前記セラミック基板の表面に薄膜プロセスによって形成され、且つ、第1キャパシタ電極、前記第1キャパシタ電極よりも前記セラミック基板に近接する第2キャパシタ電極、および薄膜誘電体を有する薄膜絶縁体層と、
  前記セラミック基板に形成されるコイル状のインダクタ素子と、
  前記薄膜絶縁体層に形成されるキャパシタ素子と、
 をさらに備え、
  前記外部端子は、前記薄膜絶縁体層の表面に形成され、前記インダクタ素子および前記キャパシタ素子の少なくとも一方に接続され
  前記キャパシタ素子は、前記第1キャパシタ電極と、前記第2キャパシタ電極と、少なくとも一部が前記第1キャパシタ電極と前記第2キャパシタ電極との間に配置される前記薄膜誘電体と、によって構成されることを特徴とする。
 この構成では、キャパシタ素子と実装基板との間の配線経路を短くできるため、キャパシタ素子の寄生インダクタンスが小さくなり、高周波特性に優れたLC複合電子部品を実現できる。
 本発明によれば、信頼性の高い外部端子を備え、且つ、良好な高周波特性を有するLC複合電子部品を実現できる。また、上記LC複合電子部品を用いることにより、LC複合電子部品と実装基板との間の接続信頼性を高めた、LC複合電子部品の実装構造を実現できる。
図1は第1の実施形態に係るLC複合電子部品101の断面図である。 図2はLC複合電子部品101が備える導体パターンおよび外部端子P1,P2,P3を示す外観斜視図である。 図3はLC複合電子部品101の回路図である。 図4は、LC複合電子部品101を実装基板1に実装した状態を示す断面図である。
 《第1の実施形態》
 図1は第1の実施形態に係るLC複合電子部品101の断面図である。図2はLC複合電子部品101が備える導体パターンおよび外部端子P1,P2,P3を示す外観斜視図である。なお、図1において、各部の厚みは誇張して図示している。以降の各実施形態における断面図についても同様である。LC複合電子部品101は、インダクタ素子とキャパシタ素子とを備え、実装基板上に実装される表面実装型の電子部品である。
 LC複合電子部品101は、第1主面S1を有するセラミック基板CL、インダクタ素子LE、第2主面S2を有する薄膜絶縁体層TL、キャパシタ素子CE、外部端子P1,P2,P3を備える。本発明では、この第1主面S1が「天面」に相当し、第2主面S2が「実装面」に相当する。
 セラミック基板CLは、複数の磁性体層を積層してなる直方体状の磁性体平板であり、コイル導体パターン21,22,23,24および層間接続導体V11,V12,V13,V14,V15を有する。上記磁性体層は例えばフェライトセラミック粉末を焼結してなる磁性体フェライトセラミック層である。
 インダクタ素子LEは、セラミック基板CLの内部に形成されるヘリカルコイル状の導体であり、コイル導体パターン21,22,23,24および層間接続導体V13,V14,V15によって構成され、積層方向(Z方向)に沿った巻回軸を有する。コイル導体パターン21,22,23,24および層間接続導体V11,V12,V13,V14,V15は例えばAg等を主成分とした金属粉末を含有した導電性ペーストの焼結体膜である。
 コイル導体パターン21の第1端は、層間接続導体V13を介してコイル導体パターン22の第1端に接続される。コイル導体パターン22の第2端は、層間接続導体V14を介してコイル導体パターン23の第1端に接続される。コイル導体パターン23の第2端は、層間接続導体V15を介してコイル導体パターン24の第1端に接続される。
 薄膜絶縁体層TLは、セラミック基板CLの一方の面(第1主面S1とは反対側の面)に薄膜プロセスによって形成される非磁性の絶縁体層からなる再配線層であり、薄膜誘電体11、絶縁樹脂層12、第1キャパシタ電極31、第2キャパシタ電極32および層間接続導体V21,V22,V23,V32を有する。薄膜誘電体11は、誘電率が30以上の高誘電率の材料であり、例えばチタン酸バリウムストロンチウム((Ba,Sr1-x)TiO:以下「BST」)の焼結体からなる強誘電体層である。なお、薄膜誘電体11は、例えばチタン酸ストロンチウム(SrTiO:「STO」)等からなる強誘電体層であってもよい。絶縁樹脂層12は例えばポリイミド樹脂やエキポシ樹脂等である。層間接続導体V21,V22,V23,V32は例えばPtやAu等の導体である。
 外部端子P1,P2,P3は、実装基板に実装するためのLGA(Land grid array)型端子であり、薄膜絶縁体層TLの第2主面S2に島状に形成されている。外部端子P1,P2,P3は、例えばCuにNiやAu等のめっき膜を被覆したものである。本実施形態では、外部端子P3はグランドに接続される。
 キャパシタ素子CEは、薄膜絶縁体層TLの内部に形成されており、第1キャパシタ電極31と、第1キャパシタ電極31に対向配置される第2キャパシタ電極32と、第1キャパシタ電極31と第2キャパシタ電極32との間に配置される薄膜誘電体11の一部とによって構成される。図1に示すように、キャパシタ素子CEは絶縁樹脂層12に覆われている。
 セラミック基板CLの一方の面には薄膜誘電体11が形成され、薄膜誘電体11の内部には第1キャパシタ電極31および第2キャパシタ電極32が配置されている。図1に示すように、第2キャパシタ電極32は、第1キャパシタ電極31よりもセラミック基板CLに近接して配置される。そのため、第2キャパシタ電極32とセラミック基板CL(磁性体)との間には、薄膜誘電体11の一部が配置される。この部分の薄膜誘電体11は、セラミック基板CLと第2キャパシタ電極32との密着層として機能する。本実施形態に係る薄膜誘電体11は耐湿性の低いBSTの焼結体であるため、大気中に露出しないよう、薄膜誘電体11全体が絶縁樹脂層12に被覆されている。絶縁樹脂層12の第2主面S2には外部端子P1,P2,P3が形成される。
 外部端子P1は、層間接続導体V11,V21を介してコイル導体パターン21の第2端に接続される。外部端子P2は、層間接続導体V22,V32を介して第2キャパシタ電極32に接続され、第2キャパシタ電極32は、層間接続導体V12,V32を介してコイル導体パターン24の第2端に接続される。外部端子P3は、層間接続導体V23を介して第1キャパシタ電極31に接続される。
 図3はLC複合電子部品101の回路図である。図3において、インダクタ素子LEをインダクタL1で表し、キャパシタ素子CEをキャパシタC1で表している。
 LC複合電子部品101は、図3に示すように、外部端子P1,P2間にインダクタL1が接続され、外部端子P2,P3間にキャパシタC1が接続された回路である。外部端子P1はインダクタL1の第1端に接続され、外部端子P2はインダクタL1の第2端およびキャパシタC1の第1端接続され、外部端子P3はキャパシタC1の第2端に接続される。
 なお、本実施形態では、外部端子P3がグランドに接続される。そのため、本実施形態では、インダクタ素子LEとキャパシタ素子CEとでローパスフィルタが構成される。
 LC複合電子部品101は、例えば次の(1)から(7)に述べるような材料および工程で製造する。
(1)まず、インダクタ素子LEが形成されたセラミック基板CLを用意する。セラミック基板CLは、Ag等の導電性ペーストによるコイル導体パターンや層間接続導体を形成した複数の磁性体層を積層して圧着後、800℃以上の温度で焼成して得る。磁性体層は、例えば磁性体フェライト等のグリーンシートである。
(2)次に、セラミック基板CLの一方の面を研磨してから、その面に第1の焼結体薄膜を形成する。第1の焼結体薄膜をBSTで形成する場合には、Ba、Sr、Tiが、モル比で例えばBa:Sr:Ti=7:3:10に配合された成膜原料溶液を用意する。そして、この成膜原料溶液を、研磨したセラミック基板CLの一方の面上に塗布し、ホットプレ-ト上で乾燥させた後、熱処理を行って結晶化させて第1の焼結薄膜を形成する。その後、第1の焼結体薄膜に層間接続導体V21,V32用の開口を形成する。
 上記ホットプレートの温度は所望の乾燥特性が得られれば特に限定されるものではないが、好ましくは300℃以上400℃以下の範囲内に設定される。また、前記熱処理の温度は所望の結晶化がなされればよく、特に限定されるものではないが、好ましくは600℃以上700℃以下(700℃付近)の範囲内で設定される。また、前記熱処理の時間は所望の結晶化がなされればよく、特に限定されるものではないが、好ましくは10分乃至60分間の範囲内で設定される。
(3)次に、第1の焼結体薄膜上に、第2キャパシタ電極32および層間接続導体V32を形成する。具体的には、RFマグネトロンスパッタ法によりPtやAuからなる第2キャパシタ電極32および層間接続導体V32等を形成する。
(4)次に、第1の焼結体薄膜および第2キャパシタ電極32の表面に、さらに第2の焼結体薄膜であるBST膜を形成した後、第1キャパシタ電極31等を形成し、第2の焼結体薄膜および第1キャパシタ電極31の表面に、第3の焼結体薄膜であるBST膜を形成する。これら第1の焼結体薄膜、第2の焼結体薄膜および第3の焼結体薄膜によって、薄膜誘電体11が構成される。
(5)その後、薄膜誘電体11全体を絶縁樹脂層12で被覆する。絶縁樹脂層12は例えばポリイミド樹脂やエキポシ樹脂等である。
(6)その後、第1の焼結体薄膜、第2の焼結体薄膜および第3の焼結体薄膜に層間接続導体用の開口を形成し、RFマグネトロンスパッタ法によって、Cu等による導体パターンにより層間接続導体V21,V22,V23および外部端子P1,P2,P3を形成する。なお、外部端子P1,P2,P3の表面にNi/Auめっき膜を形成してもよい。
(7)なお、上記の工程は、複数のLC複合電子部品101が形成されたウェハ状態のまま処理される。最後にダイシングを行い、ウェハから個々のLC複合電子部品101単位(個片)に分離する。
 図4は、LC複合電子部品101を実装基板1に実装した状態を示す断面図である。
 実装基板1の上面には複数の実装端子41,42,43が形成されている。LC複合電子部品101は、薄膜絶縁体層TL側を実装面として、実装基板1に実装される。実装基板1は例えばプリント配線基板である。
 外部端子P1は導電性接合材51を介して実装基板1の実装端子41に接続され、外部端子P2は導電性接合材52を介して実装基板1の実装端子42に接続され、外部端子P2は導電性接合材53を介して実装基板1の実装端子43に接続される。導電性部材51,52,53は例えばはんだ等である。
 本実施形態に係るLC複合電子部品101によれば次のような効果を奏する。
(a)本実施形態に係るLC複合電子部品101では、磁性体層を有するセラミック基板CLにコイル状のインダクタ素子LEが形成されている。この構成では、インダクタ素子LEを構成するコイル導体パターン21,22,23,24の膜厚を厚くしやすく、直流抵抗(DCR)を抑制したインダクタ素子LEを構成しやすい。したがって、Q値の高いインダクタ素子LEを構成しやすく、高周波帯域で損失の小さなLC回路(特にLC共振回路)を有する薄型のLC複合電子部品101を実現できる。
(b)LC複合電子部品101では、入出力端子外部端子P1,P2,P3が絶縁樹脂層12(薄膜絶縁層TL)の表面に形成される。この構成では、薄膜プロセスによって形成された薄膜絶縁層TLの表面に外部端子P1,P2,P3を形成するため、製造プロセスに起因する外部端子P1,P2,P3の剥がれがおきにくく、素体と外部端子P1,P2,P3との間の微小な隙間が生じにくい。そのため、セラミック基板CLの表面に同時焼成(co-fire)によって外部端子P1,P2,P3を形成した場合に比べ、外部端子P1,P2,P3と薄膜絶縁層TLとの密着強度は高く、外部端子P1,P2,P3と薄膜絶縁層TLとの界面に沿って微小な隙間が形成され難い。したがって、外部に存在する水分(外部端子へのめっき処理のために行うバレルめっきの際のめっき液等)が上記の隙間からLC複合電子部品101の内部に浸入することによるマイグレーションが抑制され、LC複合電子部品101内部に形成された導体パターン間や外部端子P1,P2,P3間の短絡が抑制される。
 また、一般に、実装基板1であるプリント配線板はエキポシ樹脂等で構成されるため、セラミック基板CL側を実装面として実装基板1に実装する場合に比べ、LC複合電子部品101の実装面(第2主面S2)と実装基板1との間の熱膨張係数の差は小さい。したがって、実装基板1からのLC複合電子部品101の脱落が抑制され、LC複合電子部品101の外部端子P1,P2,P3と実装基板1の実装端子41,42,43との接続箇所の断線等が抑制される。
(c)LC複合電子部品101では、セラミック基板CLの表面に形成される薄膜誘電体11がBSTの焼結体である。この構成では、セラミック基板CLが800℃以上の温度で焼成して形成されるため、薄膜絶縁体層TL(薄膜誘電体11)が700℃付近で焼成されたとしても、セラミック基板CLに形成されるインダクタ素子LEの特性劣化が抑制される。
(d)LC複合電子部品101では、薄膜誘電体11の少なくとも一部が、第2キャパシタ電極32とセラミック基板CLとの間に形成される。薄膜誘電体11およびセラミック基板CLはいずれも焼結体、より具体的には金属酸化物の多結晶体であるため、電極材料よりも薄膜誘電体材料の方がセラミック基板CLとの密着性が高い。そのため、薄膜絶縁体層TL(薄膜誘電体11)とセラミック基板CLとの間に高い密着強度を得ることができる。さらに、薄膜誘電体11であるBSTの焼結体は、第2キャパシタ電極32の材料であるPtと相性が良いため、薄膜誘電体11と第2キャパシタ電極32との間は高い密着強度を得ることができる。
(e)また、本実施形態では、薄膜誘電体11の少なくとも一部が、第2キャパシタ電極32とセラミック基板CLの磁性体層との間に形成される。一般に、磁性体の内部にコイル状のインダクタ素子が形成されている場合において、磁性体の表面に電極等の導体パターンが形成されていると、インダクタ素子に発生する磁界が導体パターンによる影響(渦電流の発生や導体パターンが磁界放射に寄与する等)を受けて、インダクタ素子のQ値は低下する傾向がある。一方、本実施形態では、第2キャパシタ電極32と高透磁率である磁性体層との間に、低透磁率である薄膜誘電体11を挟むことにより、インダクタ素子LEとキャパシタ素子CEが磁気的に分離される。したがって、インダクタ素子LEに発生する磁界がキャパシタ素子CEによって影響を受けることが抑制され、インダクタ素子LEのQ値の低下を抑制できる。
(f)LC複合電子部品101は、絶縁樹脂層12を有し、キャパシタ素子CEが絶縁樹脂層12に覆われている。この構成により、キャパシタ素子CEを外力等から保護することができ、堅牢性の高いLC複合電子部品101を実現できる。また、本実施形態のように、薄膜誘電体11が耐湿性の低いBSTの焼結体である場合には、薄膜誘電体11全体が絶縁樹脂層12で被覆されることで、大気中の水分による薄膜誘電体11の特性変化が抑制される。なお、LC複合電子部品101において絶縁樹脂層12は必須ではなく、薄膜誘電体11の表面に外部端子P1,P2,P3を形成してもよい。但し、上述したように、LC複合電子部品101は絶縁樹脂層12を有し、キャパシタ素子CEおよび薄膜誘電体11が絶縁樹脂層12に覆われていることが好ましい。
(g)また、LC複合電子部品101は、キャパシタ素子CEが形成される薄膜絶縁体層TL側を実装面として実装基板1に実装される。この構成では、キャパシタ素子CEと実装基板1との間の配線経路を短くできるため、キャパシタ素子CEの寄生インダクタンスが小さくなり、高周波特性に優れたLC複合電子部品101を実現できる。なお、本実施形態のように、インダクタ素子LEとキャパシタ素子CEとでローパスフィルタが構成されている場合に、シャント接続されたキャパシタ素子CEに大きな寄生インダクタンスが付与されると、不要なポールが生じ、所望のローパスフィルタとしての機能を果たさなくなる。したがって、本実施形態における上記構成は、インダクタ素子LEとキャパシタ素子CEとでローパスフィルタを構成する場合に特に有用である。
 《その他の実施形態》
 なお、上述の実施形態では、セラミック基板CLの平面形状が矩形の直方体状である例を示したが、この構成に限定されるものではない。セラミック基板CLの形状は、本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば平面形状が正方形、多角形、円形、楕円形、L字形、T字形等の平板であってもよい。
 また、上述の実施形態では、セラミック基板CLが複数の磁性体層を積層してなる磁性体平板である例を示したが、この構成に限定されるものではない。セラミック基板CLは一部に磁性体層を有していればよい。すなわち、セラミック基板CLは一部に磁性体層を有していれば、積層方向における最外層が非磁性体層であってもよいし、積層方向における内側の層が非磁性体層であってもよい。
 セラミック基板CLの積層数は適宜変更可能であり、例えば単一層の磁性体平板であってもよい。また、上述の実施形態では、インダクタ素子LEが約4ターンのヘリカルコイル状導体である例を示したが、これに限定されるものではない。インダクタ素子LEの巻回数は適宜変更可能であり、例えば1ターン以下であってもよい。さらに、インダクタ素子LEはスパイラルコイル状導体であってもよい。
 上述の実施形態では、インダクタ素子LEの巻回軸が、複数の磁性体層の積層方向(Z方向)に沿った構造である例を示したが、これに限定されるものではない。インダクタ素子LEの巻回軸は、Z方向に垂直な方向(例えばX方向またはY方向等)に沿った構造であってもよい。この構成により、インダクタ素子LEに発生する磁束が、キャパシタ素子CEによって妨げられることを抑制できる。
 なお、上述の実施形態では、インダクタ素子LEとキャパシタ素子CEとでローパスフィルタが構成される例を示したが、これに限定されるものではない。LC複合電子部品の回路構成は適宜変更可能であり、例えばハイパスフィルタが構成されていてもよく、インダクタ素子LEとキャパシタ素子CEが直列接続された回路や、π形回路、またはT形回路等であってもよい。また、LC複合電子部品が備えるインダクタ素子LEおよびキャパシタ素子CEは、1つずつに限定されるものではない。インダクタ素子LEおよびキャパシタ素子CEは複数であってもよく、LC複合電子部品の回路構成によって適宜変更可能である。
 上述の実施形態では、矩形状の外部端子P1,P2,P3を備えるLC複合電子部品101を示したが、この構成に限定されるものではない。外部端子の個数は、LC複合電子部品の回路構成によって適宜変更可能である。また、外部端子の形状についても適宜変更可能であり、例えば多角形、円形、楕円形、L字形、T字形等であってもよい。
LE…インダクタ素子
CE…キャパシタ素子
CL…セラミック基板
TL…薄膜絶縁体層
P1,P2,P2…外部端子
S1…第1主面
S2…第2主面
V11,V12,V13,V14,V15,V21,V22,V23,V32…層間接続導体
1…実装基板
11…薄膜誘電体
12…絶縁樹脂層
21,22,23,24…コイル導体パターン
31…第1キャパシタ電極
32…第2キャパシタ電極
41,42,43…実装端子
51,52,53…導電性接合材
101…LC複合電子部品

Claims (6)

  1.  磁性体層を有するセラミック基板と、
     前記セラミック基板の表面に薄膜プロセスによって形成され、且つ、第1キャパシタ電極、前記第1キャパシタ電極よりも前記セラミック基板に近接する第2キャパシタ電極、および薄膜誘電体を有する薄膜絶縁体層と、
     前記セラミック基板に形成されるコイル状のインダクタ素子と、
     前記薄膜絶縁体層に形成されるキャパシタ素子と、
     前記薄膜絶縁体層の表面に形成され、前記インダクタ素子および前記キャパシタ素子の少なくとも一方に接続される外部端子と、
     を備え、
     前記キャパシタ素子は、前記第1キャパシタ電極と、前記第2キャパシタ電極と、少なくとも一部が前記第1キャパシタ電極と前記第2キャパシタ電極との間に配置される前記薄膜誘電体と、によって構成される、LC複合電子部品。
  2.  前記薄膜誘電体は、チタン酸バリウムストロンチウムの焼結体である、請求項1に記載のLC複合電子部品。
  3.  前記薄膜誘電体の少なくとも一部は、前記第2キャパシタ電極と前記磁性体層基板との間に形成される、請求項1または2に記載のLC複合電子部品。
  4.  前記薄膜絶縁体層は絶縁樹脂層をさらに有し、
     前記キャパシタ素子は前記絶縁樹脂層に覆われ、
     前記外部端子は前記絶縁樹脂層の表面に形成される、請求項1から3のいずれかに記載のLC複合電子部品。
  5.  前記インダクタ素子と前記キャパシタ素子とで、ローパスフィルタが構成される、請求項1から4のいずれかに記載のLC複合電子部品。
  6.  外部端子を有するLC複合電子部品と、
     実装端子を有する実装基板と、
     を備える、前記LC複合電子部品の実装構造であって、
     前記外部端子は、前記実装端子に接続され、
     前記LC複合電子部品は、
      磁性体層を有するセラミック基板と、
      前記セラミック基板の表面に薄膜プロセスによって形成され、且つ、第1キャパシタ電極、前記第1キャパシタ電極よりも前記セラミック基板に近接する第2キャパシタ電極、および薄膜誘電体を有する薄膜絶縁体層と、
      前記セラミック基板に形成されるコイル状のインダクタ素子と、
      前記薄膜絶縁体層に形成されるキャパシタ素子と、
     をさらに備え、
      前記外部端子は、前記薄膜絶縁体層の表面に形成され、前記インダクタ素子および前記キャパシタ素子の少なくとも一方に接続され
      前記キャパシタ素子は、前記第1キャパシタ電極と、前記第2キャパシタ電極と、少なくとも一部が前記第1キャパシタ電極と前記第2キャパシタ電極との間に配置される前記薄膜誘電体と、によって構成される、LC複合電子部品の実装構造。
PCT/JP2016/080160 2015-10-16 2016-10-12 Lc複合電子部品、およびlc複合電子部品の実装構造 WO2017065141A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201690001268.XU CN208142032U (zh) 2015-10-16 2016-10-12 Lc复合电子部件以及lc复合电子部件的安装构造
JP2017545202A JP6601502B2 (ja) 2015-10-16 2016-10-12 Lc複合電子部品、およびlc複合電子部品の実装構造
US15/944,938 US10320356B2 (en) 2015-10-16 2018-04-04 LC composite electronic component, and mounting structure for LC composite electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015204732 2015-10-16
JP2015-204732 2015-10-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/944,938 Continuation US10320356B2 (en) 2015-10-16 2018-04-04 LC composite electronic component, and mounting structure for LC composite electronic component

Publications (1)

Publication Number Publication Date
WO2017065141A1 true WO2017065141A1 (ja) 2017-04-20

Family

ID=58518246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080160 WO2017065141A1 (ja) 2015-10-16 2016-10-12 Lc複合電子部品、およびlc複合電子部品の実装構造

Country Status (4)

Country Link
US (1) US10320356B2 (ja)
JP (1) JP6601502B2 (ja)
CN (1) CN208142032U (ja)
WO (1) WO2017065141A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768233A (zh) * 2020-12-29 2021-05-07 西北核技术研究所 一种高压兆伏级同轴-平板混合型低电感脉冲电容器
WO2023149240A1 (ja) * 2022-02-04 2023-08-10 株式会社村田製作所 電子部品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520888B2 (ja) * 2016-10-31 2019-05-29 株式会社村田製作所 複合型電子部品
WO2022178874A1 (zh) * 2021-02-27 2022-09-01 华为技术有限公司 一种磁基板结构及电子装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745785A (ja) * 1993-07-30 1995-02-14 Tdk Corp 複合集積回路部品とその製造方法
JPH09213894A (ja) * 1996-02-06 1997-08-15 Nippon Telegr & Teleph Corp <Ntt> 平滑回路素子
WO2006040941A1 (ja) * 2004-10-08 2006-04-20 Matsushita Electric Industrial Co., Ltd. 積層セラミック部品とその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04140909A (ja) * 1990-10-01 1992-05-14 Taiyo Yuden Co Ltd 複合型lcフィルタ
JPH0653406A (ja) 1992-07-28 1994-02-25 Matsushita Electric Ind Co Ltd 薄膜回路形成法
US5643804A (en) 1993-05-21 1997-07-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a hybrid integrated circuit component having a laminated body
US5416356A (en) 1993-09-03 1995-05-16 Motorola, Inc. Integrated circuit having passive circuit elements
JP3521699B2 (ja) 1997-08-19 2004-04-19 株式会社村田製作所 積層セラミック複合部品の製造方法
JP2001044778A (ja) 1999-07-27 2001-02-16 Fuji Electric Co Ltd 複合電子部品
JP2001223301A (ja) 2000-02-08 2001-08-17 Hitachi Ltd 薄膜コンデンサが作り込まれた回路搭載用基板、電子回路装置、および、薄膜コンデンサ
JP2002261561A (ja) * 2001-02-27 2002-09-13 Matsushita Electric Ind Co Ltd フィルタ部品
JP2003318272A (ja) 2002-04-25 2003-11-07 Taiyo Yuden Co Ltd 高周波モジュール
JP4591689B2 (ja) * 2005-04-28 2010-12-01 Tdk株式会社 Lc複合部品の製造方法
DE102005044330A1 (de) 2005-09-16 2007-03-29 Epcos Ag Abstimmbarer Kondensator und Schaltung mit einem solchen Kondensator
WO2008108783A2 (en) * 2006-05-24 2008-09-12 Ngimat Co. Radio frequency devices with enhanced ground structure
WO2009090917A1 (ja) * 2008-01-17 2009-07-23 Murata Manufacturing Co., Ltd. 積層型共振器および積層型フィルタ
JP5803731B2 (ja) 2012-02-22 2015-11-04 株式会社村田製作所 薄膜素子
KR20160000166A (ko) * 2014-06-24 2016-01-04 삼성전기주식회사 복합 전자부품 및 그 실장 기판

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745785A (ja) * 1993-07-30 1995-02-14 Tdk Corp 複合集積回路部品とその製造方法
JPH09213894A (ja) * 1996-02-06 1997-08-15 Nippon Telegr & Teleph Corp <Ntt> 平滑回路素子
WO2006040941A1 (ja) * 2004-10-08 2006-04-20 Matsushita Electric Industrial Co., Ltd. 積層セラミック部品とその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768233A (zh) * 2020-12-29 2021-05-07 西北核技术研究所 一种高压兆伏级同轴-平板混合型低电感脉冲电容器
WO2023149240A1 (ja) * 2022-02-04 2023-08-10 株式会社村田製作所 電子部品

Also Published As

Publication number Publication date
CN208142032U (zh) 2018-11-23
US10320356B2 (en) 2019-06-11
JPWO2017065141A1 (ja) 2018-06-07
JP6601502B2 (ja) 2019-11-06
US20180226935A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US10014102B2 (en) Inductor and manufacturing method thereof
US9722568B2 (en) Thin film surface mount components
JP6601502B2 (ja) Lc複合電子部品、およびlc複合電子部品の実装構造
US9251943B2 (en) Multilayer type inductor and method of manufacturing the same
US8922975B2 (en) Multilayer ceramic capacitor
US9111682B2 (en) Multilayer ceramic electronic component
KR20130077400A (ko) 박막형 코일 부품 및 그 제조 방법
KR100799475B1 (ko) 서지 흡수 소자
WO2007049789A1 (ja) 非可逆回路素子
KR20150080739A (ko) 외부전극용 도전성 페이스트, 칩형 전자부품 및 그 제조방법
KR101825695B1 (ko) 회로 보호 소자
US8743530B2 (en) Electronic component and substrate module including an embedded capacitor
US10122339B2 (en) Composite electronic component and board having the same
KR20010043838A (ko) 집중 정수형 비상반소자
JPH04257112A (ja) 積層チップt型フィルタ
JP5488954B2 (ja) 多結晶セラミック磁性体材料、マイクロ波磁性体、及びこれを用いた非可逆回路素子
US20160181010A1 (en) Composite electronic component
JP2000151325A (ja) 積層チップ型ノイズフィルタ及びその製造方法
KR20130134868A (ko) 적층형 인덕터
JP2017084961A (ja) 集積回路素子の実装構造
JP6327233B2 (ja) 集積回路素子の実装構造
JP2002170740A (ja) Lc複合部品
JP2020194803A (ja) 積層型コイル部品
JPH11329852A (ja) 複合部品およびその製造方法
KR101558132B1 (ko) 박막형 코일 부품 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855395

Country of ref document: EP

Kind code of ref document: A1