WO2017064843A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2017064843A1
WO2017064843A1 PCT/JP2016/004426 JP2016004426W WO2017064843A1 WO 2017064843 A1 WO2017064843 A1 WO 2017064843A1 JP 2016004426 W JP2016004426 W JP 2016004426W WO 2017064843 A1 WO2017064843 A1 WO 2017064843A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
cation exchange
exchange resin
electrolyte
negative electrode
Prior art date
Application number
PCT/JP2016/004426
Other languages
English (en)
French (fr)
Inventor
要 中島
平祐 西川
周二 人見
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to EP16855099.4A priority Critical patent/EP3364490B1/en
Priority to US15/766,866 priority patent/US11196078B2/en
Priority to JP2017545088A priority patent/JP6757504B2/ja
Priority to CN201680059805.0A priority patent/CN108140899B/zh
Priority to CN202111215600.6A priority patent/CN114122387B/zh
Publication of WO2017064843A1 publication Critical patent/WO2017064843A1/ja
Priority to US17/517,347 priority patent/US20220131177A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are widely used in portable terminals, electric vehicles, hybrid vehicles, and the like, and further improvements in energy density are expected in the future.
  • lithium transition metal oxides are used as the positive electrode active material for lithium ion secondary batteries in practical use
  • carbon materials are used as the negative electrode active material
  • nonaqueous electrolytes in which a lithium salt is dissolved in a nonaqueous solvent are used as the electrolyte. It is used for.
  • JP2015-128063A International Publication No. 2015/083314 Special table 2015-507837
  • the non-aqueous electrolyte secondary battery having a large resistance at the interface between the positive electrode and the cation exchange resin layer or the negative electrode and the cation exchange resin layer and having the cation exchange resin layer
  • the present inventors have found that the high rate discharge performance is low.
  • a non-aqueous electrolyte secondary battery for solving the above problems is disposed between a positive electrode containing sulfur, a negative electrode, a non-aqueous electrolyte, a positive electrode and a negative electrode, and has a roughness factor of 3
  • a cation exchange resin layer having the first surface as described above.
  • nonaqueous electrolyte secondary battery having low interface resistance on the first surface of the cation exchange resin layer and having excellent high rate discharge performance.
  • FIG. 1 is an external perspective view of a nonaqueous electrolyte secondary battery according to a first embodiment. It is typical sectional drawing which shows the local structure of the nonaqueous electrolyte secondary battery of this embodiment. It is the schematic which shows the electrical storage apparatus comprised by gathering together the nonaqueous electrolyte secondary battery which concerns on 1st embodiment. It is typical sectional drawing which shows the structure of the cell for resistance measurement used for the Example of this embodiment. It is typical sectional drawing which shows the structure of the test cell used for the Example of this embodiment. It is a figure which shows the relationship between the interface resistance in an Example, and the roughness factor of the cation exchange resin layer surface.
  • a nonaqueous electrolyte secondary battery includes a first surface that is disposed between a positive electrode containing sulfur, a negative electrode, a nonaqueous electrolyte, and a positive electrode and a negative electrode, and has a roughness factor of 3 or more.
  • a cation exchange resin layer is disposed between a positive electrode containing sulfur, a negative electrode, a nonaqueous electrolyte, and a positive electrode and a negative electrode, and has a roughness factor of 3 or more.
  • the interface resistance of the first surface of the cation exchange resin layer is reduced, and the high-rate discharge performance of the nonaqueous electrolyte secondary battery is improved.
  • the arithmetic average roughness Ra of the first surface of the cation exchange resin layer is preferably 0.5 ⁇ m or more.
  • the interface resistance can be reduced.
  • the maximum height roughness Rz of the first surface of the cation exchange resin layer is preferably 5 ⁇ m or more.
  • the maximum height roughness Rz of the first surface of the cation exchange resin layer is 5 ⁇ m or more, even when the electrolyte salt concentration is low, the interface resistance of the first surface of the cation exchange resin layer can be reduced.
  • the non-aqueous electrolyte secondary battery may further include a porous layer.
  • the porous layer is preferably in contact with the first surface of the cation exchange resin layer.
  • the nonaqueous electrolyte includes a positive electrode electrolyte disposed between the positive electrode and the cation exchange resin layer, and a negative electrode electrolyte disposed between the negative electrode and the cation exchange resin layer, the positive electrode electrolyte includes lithium polysulfide,
  • the sulfur equivalent concentration of the negative electrode electrolyte is preferably lower than the sulfur equivalent concentration of the positive electrode electrolyte.
  • the concentration in terms of sulfur of the positive electrode electrolyte is 1.2 mol / l or more.
  • Such a configuration not only improves the charge / discharge cycle performance, but also increases the charge / discharge efficiency after the cycle.
  • the concentration in terms of sulfur of the positive electrode electrolyte is preferably 3.0 mol / l or more.
  • Such a configuration can provide a non-aqueous electrolyte secondary battery having high capacity and high energy density.
  • the concentration in terms of sulfur of the positive electrode electrolyte is preferably 18 mol / l or less.
  • the viscosity of the positive electrode electrolyte does not increase too much, and the interface resistance between the positive electrode electrolyte and the cation exchange resin layer does not increase too much, so the non-aqueous electrolyte secondary battery has a high utilization rate of sulfur and a high energy density. Is obtained.
  • the concentration of anions contained in at least one of the positive electrode electrolyte and the negative electrode electrolyte is 0.7 mol / l or less.
  • a nonaqueous electrolyte secondary battery having low interface resistance between the nonaqueous electrolyte and the cation exchange resin layer can be obtained.
  • the concentration of anions contained in the positive electrode electrolyte is preferably 0.3 mol / l or less.
  • At least one of the positive electrode and the negative electrode may contain a cation exchange resin, and the concentration of anions contained in the nonaqueous electrolyte may be 0.7 mol / l or less.
  • the non-aqueous electrolyte secondary battery includes a non-aqueous electrolyte secondary battery including a positive electrode containing sulfur, a negative electrode, a cation exchange resin layer interposed between the positive electrode and the negative electrode, and between the positive electrode and the cation exchange resin layer.
  • the first surface is provided.
  • the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery usually includes an electrolyte salt and a non-aqueous solvent.
  • a non-aqueous solvent that does not include an electrolyte salt is referred to as a “non-aqueous electrolyte”.
  • the roughness factor is the ratio of the actual surface area to the apparent unit surface area (geometric unit area), and is an index indicating the roughness of the surface.
  • the cation exchange resin layer is a layer containing a cation exchange resin and serves as a separator that keeps the positive electrode and the negative electrode in an insulating state.
  • the cation exchange resin has a structure in which an anionic functional group such as a sulfonic acid group or a carboxylic acid group is bonded to a polymer mainly composed of hydrocarbon. Due to the electrostatic interaction of this anionic group, it has a high cation permeability, while the anion permeability is low. That is, the cation exchange resin allows lithium ions to pass therethrough and slightly dissociates in the positive electrode electrolyte (electrolytic solution) to block the passage of anionic lithium polysulfide. Thereby, since the cation exchange resin layer suppresses the movement of the lithium polysulfide from the positive electrode to the negative electrode, the shuttle phenomenon is suppressed.
  • the lower limit of the roughness factor of the first surface which is at least one surface is 3, preferably 4, and more preferably 10.
  • the upper limit of the roughness factor of the first surface of the cation exchange resin layer is preferably 20, more preferably 18, and still more preferably 16.
  • the roughness factor is 3 or more, the resistance at the interface between the cation exchange resin layer and the nonaqueous electrolyte is reduced, so that the high rate discharge performance of the nonaqueous electrolyte secondary battery is improved.
  • regulated to JISB0601: 2013 becomes like this.
  • the arithmetic average roughness Ra satisfies the above range, the resistance at the interface between the cation exchange resin layer and the positive electrode can be reduced. Furthermore, in order to maintain the strength of the cation exchange resin layer, the arithmetic average roughness Ra is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the first surface of the cation exchange resin layer in the present embodiment preferably has a maximum height roughness Rz defined by JIS B 0601: 2013 of 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the maximum height roughness Rz is preferably 30 ⁇ m or less, and more preferably 28 ⁇ m or less.
  • the roughness factor, arithmetic average roughness Ra, and maximum height roughness Rz of the first surface of the cation exchange resin layer are determined by photographing and measuring the surface of the cation exchange resin layer under the following conditions and performing shape analysis.
  • ⁇ Measuring equipment Ultra deep shape measuring microscope VK-8500 (manufactured by Keyence Corporation) Measurement range: 1.04 ⁇ 10 ⁇ 3 cm 2 -Shape analysis application: VK-H1A9 (manufactured by Keyence Corporation)
  • Examples of the roughening treatment method in which the roughness factor of the surface of the cation exchange resin layer according to the present embodiment is 3 or more include a method of roughening the surface of the cation exchange resin layer with an abrasive such as sandpaper, and a sandblasting method. And a chemical etching method.
  • an abrasive such as sandpaper
  • sandpaper it is preferable to use sandpaper having a grain size of 320 to 1000 for abrasive cloth abrasives specified in JIS R 6010: 2000.
  • the thickness of the cation exchange resin layer according to this embodiment is preferably 20 to 180 ⁇ m, and more preferably 30 to 180 ⁇ m.
  • the thickness of the cation exchange resin layer can be sufficiently maintained even when the surface roughening treatment is performed, so that handling during battery manufacture becomes easy.
  • the energy density of a battery can be improved.
  • the cation exchange resin layer may be formed by forming a mixture of a cation exchange resin and other polymer into a thin film and roughening the surface.
  • the other polymer materials constituting the porous layer described later can be appropriately used.
  • the nonaqueous electrolyte secondary battery according to the present embodiment may further include a porous layer. It is preferable that the porous layer is in contact with the first surface of the cation exchange resin layer.
  • the surface of a positive electrode and a negative electrode has the unevenness
  • the porous layer containing a polymer is superior in flexibility to the cation exchange resin layer, so that the porous layer is in contact with the first surface of the cation exchange resin layer, so that the positive electrode-porous layer-cation exchange Good contact between the first surfaces of the resin layers or between the first surfaces of the negative electrode, the porous layer, and the cation exchange resin layer is maintained, and lithium ions are transmitted well. Furthermore, since the non-aqueous electrolyte can be held in the porous layer, uneven distribution of the non-aqueous electrolyte in the positive electrode or the negative electrode hardly occurs, and the charge / discharge reaction at the positive electrode or the negative electrode can be made uniform.
  • the porous layer may be provided only between the positive electrode and the first surface of the cation exchange resin layer, or may be provided only between the negative electrode and the first surface of the cation exchange resin layer. Alternatively, a porous layer may be provided both between the positive electrode and the cation exchange resin layer and between the negative electrode and the cation exchange resin layer.
  • the positive electrode electrolyte preferably contains lithium polysulfide. Furthermore, the sulfur equivalent concentration of the positive electrode electrolyte is preferably higher than the sulfur equivalent concentration of the negative electrode electrolyte.
  • the “positive electrode electrolyte” and the “negative electrode electrolyte” may be collectively referred to as “nonaqueous electrolyte”.
  • the lithium polysulfide produced at the positive electrode during the charge / discharge reaction is highly soluble in a non-aqueous solvent. Elution easily into the positive electrolyte during the discharge cycle.
  • the present inventors only suppress elution of lithium polysulfide produced at the positive electrode.
  • the lithium polysulfide in the positive electrode electrolyte can exhibit excellent charge / discharge cycle performance by contributing to the charge / discharge reaction as a positive electrode active material.
  • the positive electrolyte contains lithium polysulfide
  • the non-aqueous electrolyte secondary battery having high charge / discharge cycle performance is obtained by making the sulfur equivalent concentration of the positive electrode electrolyte higher than the sulfur equivalent concentration of the negative electrode electrolyte.
  • the sulfur equivalent concentration is a value obtained by converting the concentration of the sulfur compound in the non-aqueous electrolyte into the concentration of sulfur atoms.
  • 1 mol / l lithium sulfide corresponds to a sulfur equivalent concentration of 1 mol / l
  • 1 mol / l Li 2 S 6 corresponds to a sulfur equivalent concentration of 6 mol / l
  • 1 mol / l sulfur corresponds to a sulfur equivalent concentration of 8 mol / l.
  • the lower limit of the concentration in terms of sulfur of the positive electrode electrolyte is preferably 1.2 mol / l, more preferably 1.5 mol / l, and even more preferably 3.0 mol / l.
  • concentration in terms of sulfur is 3.0 mol / l or more, a non-aqueous electrolyte secondary battery having a high capacity and a high energy density can be realized.
  • the upper limit of the concentration in terms of sulfur of the positive electrode electrolyte is preferably 18 mol / l, more preferably 12 mol / l, and even more preferably 9 mol / l.
  • the sulfur equivalent concentration is not more than the above upper limit, the viscosity of the positive electrode electrolyte does not increase too much, and the interface resistance between the positive electrode electrolyte and the cation exchange resin layer does not become too high, so the utilization rate of sulfur is high and the energy density is high. A nonaqueous electrolyte secondary battery is obtained.
  • the lithium polysulfides positive electrolyte contains, but are not limited to, lithium polysulfides represented by Li 2 S n (4 ⁇ n ⁇ 8) are preferred.
  • Method for producing a lithium polysulfides represented by the composition formula Li 2 S n (4 ⁇ n ⁇ 8) is not limited.
  • Li 2 S lithium sulfide
  • sulfur S 8
  • the mixture is placed in a sealed container and allowed to react for 4 days or longer in a thermostatic bath at 80 ° C. Can be obtained.
  • the negative electrode electrolyte preferably has a lower sulfur equivalent concentration than the positive electrode electrolyte. That is, it is preferable that the total concentration of elemental sulfur, lithium polysulfide and Li 2 S contained in the negative electrode electrolyte is lower than that of the positive electrode electrolyte.
  • Lithium polysulfide reacts with the negative electrode active material to reduce the charging depth of the negative electrode active material, and produces Li 2 S as a reduction product. Since Li 2 S is insoluble in the non-aqueous solvent, it precipitates on the negative electrode surface and reduces the reaction area of the negative electrode.
  • the upper limit of the sulfur equivalent concentration of the negative electrode electrolyte is preferably 0.5 mol / l, and may be 0 mol / l. Since lithium polysulfide is known to react on the negative electrode surface to form a solid electrolyte coating (SEI), the negative electrode electrolyte preferably contains a small amount of lithium polysulfide.
  • the concentration of the anion contained in the nonaqueous electrolyte is more preferably 0.7 mol / l or less.
  • the aspect in which at least one of the positive electrode and the negative electrode includes the cation exchange resin is not particularly limited, it is preferably provided on the surface or inside of the positive electrode mixture layer or the negative electrode mixture layer. That is, the aspect which a cation exchange resin covers the surface of a mixture layer may be sufficient, and the aspect which exists in at least one part inside a mixture layer may be sufficient.
  • the cation exchange resin allows only cations to pass and inhibits the passage of anions. Therefore, the transport number of lithium ions in the cation exchange resin is approximately 1. That is, the cation exchange resin is a single ion conductor.
  • the transport number of lithium ions in a non-aqueous electrolyte containing a lithium salt since both lithium ions and counter anions move, the transport number of lithium ions is not 1, and the non-aqueous electrolyte is not a single ion conductor.
  • the interface resistance is large at the interface between the nonaqueous electrolyte and the cation exchange resin layer.
  • a lithium conduction path made of the cation exchange resin is formed between the cation exchange resin layer and the positive electrode active material or the negative electrode active material. That is, since lithium ions can go back and forth between the cation exchange resin layer and the positive electrode active material or the negative electrode active material without going through the nonaqueous electrolyte, the interface resistance of the cation exchange resin layer can be reduced. Thereby, it is estimated that the nonaqueous electrolyte secondary battery which has a high discharge capacity and the outstanding charging / discharging cycling performance can be obtained.
  • the cation exchange resin provided in the positive electrode mixture layer is preferably 10% by mass to 150% by mass with respect to the total mass of the positive electrode mixture layer. It is preferable that the amount of the cation exchange resin is 10% by mass to 150% by mass with respect to the total mass of the positive electrode mixture layer because a continuous lithium ion conduction channel can be formed in the positive electrode mixture layer.
  • the cation exchange resin provided in the negative electrode mixture layer is preferably 10% by mass to 150% by mass with respect to the total mass of the negative electrode mixture layer. It is preferable that the amount of the cation exchange resin is 10% by mass to 150% by mass with respect to the total mass of the negative electrode mixture layer because a continuous lithium ion conduction channel can be formed in the negative electrode mixture layer.
  • the positive electrode in which the cation exchange resin is present in the positive electrode mixture layer can be produced as follows.
  • a particulate positive electrode active material, a cation exchange resin, a conductive agent, and a binder are mixed with a dispersion medium such as alcohol or toluene to prepare a positive electrode mixture paste.
  • the obtained positive electrode mixture paste is applied to both surfaces of a sheet-like positive electrode substrate, dried and then pressed to produce a positive electrode.
  • a powder mixer such as a V-type mixer, an S-type mixer, a scraper, a ball mill, a planetary ball mill, or the like is used.
  • a method of using dry or wet mixing is employed.
  • the cation exchange resin the materials mentioned in the first embodiment can be used as appropriate.
  • a negative electrode containing a cation exchange resin inside the negative electrode mixture layer can also be produced by the above-described method.
  • a cation exchange resin covers the positive electrode or negative electrode surface by apply
  • cation exchange resin exists in the mixture layer surface and inside because the solution containing a cation exchange resin permeates the inside of the mixture layer.
  • the method for applying a solution containing a cation exchange resin include a spray method, a dispensing method, a dipping method, and a blade coating method.
  • the cation exchange resin may be contained in at least one of the positive electrode and the negative electrode, but is preferably contained in the positive electrode, and may be contained in both the positive electrode and the negative electrode.
  • the lithium polysulfide produced at the positive electrode during the charge / discharge reaction is suppressed from being eluted into the positive electrode electrolyte in the vicinity of the positive electrode, and the capacity of the positive electrode is unlikely to decrease.
  • the cation exchange resin in the positive electrode and the negative electrode a lithium ion conduction path is formed by the cation exchange resin from the positive electrode through the cation exchange resin layer to the negative electrode. High discharge capacity and charge / discharge efficiency can be achieved.
  • the nonaqueous electrolyte may contain an anion derived from an electrolyte salt.
  • the anion in the present embodiment refers to an anion derived from an electrolyte salt dissolved in a non-aqueous solvent, and an anionic functional group such as a sulfonic acid group contained in the molecular structure of the cation exchange resin or a lithium-rich group. It does not include compounds in which a part of sulfide and lithium polysulfide is dissociated and anionic.
  • the upper limit of the concentration of the anion contained in at least one of the positive electrode electrolyte and the negative electrode electrolyte is preferably 0.7 mol / l, more preferably 0.5 mol / l, still more preferably 0.3 mol / l.
  • the upper limit of the concentration of the anion contained in the positive electrode electrolyte is preferably 0.3 mol / l, more preferably 0.2 mol / l, and may be 0 mol / l.
  • the anion concentration is not more than the above upper limit, it is possible to reduce the viscosity of the nonaqueous electrolyte, and it is possible to obtain a nonaqueous electrolyte secondary battery having a high discharge capacity and excellent charge / discharge cycle performance.
  • the lower limit of the concentration of the anion contained in at least one of the positive electrode electrolyte and the negative electrode electrolyte may be 0 mol / l, preferably 0.1 mol / l, and more preferably 0.3 mol / l.
  • the positive electrode according to the present embodiment includes a positive electrode base material and a positive electrode mixture layer disposed directly or via an intermediate layer on the positive electrode base material.
  • the positive electrode base material a known material can be appropriately used as long as it is an electronic conductor that does not adversely affect the battery.
  • the positive electrode base material include aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, conductive glass, etc., and aluminum and copper for the purpose of improving adhesiveness, conductivity, and oxidation resistance. Or the like can be used which have been treated with carbon, nickel, titanium, silver or the like.
  • the shape of the positive electrode base material a film shape, a sheet shape, a net shape, a punched or expanded material, a lath body, a porous body, a foamed body, a formed body of fiber groups, and the like are used in addition to a foil shape.
  • the thickness is not particularly limited, but a thickness of 1 to 500 ⁇ m is used.
  • the intermediate layer is a coating layer on the surface of the positive electrode substrate, and reduces the contact resistance between the positive electrode substrate and the positive electrode mixture layer by containing a conductive agent such as carbon particles.
  • a conductive agent such as carbon particles.
  • the configuration of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a binder and a conductive agent.
  • the positive electrode mixture layer includes an active material, a conductive agent, and a binder, and the active material includes sulfur.
  • the active material sulfur combined with a conductive material is preferably used.
  • the conductive substance include carbon materials such as porous carbon, carbon black, graphite, and carbon fiber, and electron conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole.
  • the positive electrode mixture layer may contain an active material other than sulfur, a thickener, a filler, and the like as necessary.
  • the positive electrode mixture layer may not contain solid-state sulfur.
  • the positive electrode mixture layer contains only the conductive agent and the binder, and the lithium polysulfide in the positive electrode electrolyte contributes to charge / discharge as an active material. It is preferable to contain solid sulfur because the discharge capacity and energy density of the nonaqueous electrolyte secondary battery can be improved.
  • any known material can be used as long as it is a positive electrode active material capable of occluding and releasing lithium ions.
  • a composite oxide represented by Li x MO y (M represents at least one transition metal) (Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x MnO 3 , Li x Ni y Co (1-y) O 2 , Li x Ni y Mn z Co (1-yz) O 2 , Li x Ni y Mn (2-y) O 4, etc.), or Li w Me x (XO y ) z (Me represents at least one kind of transition metal, and X represents, for example, P, Si, B, V) polyanion compounds (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO) 4 ) 3 , Li 2 MnSiO 4 ,
  • the elements or polyanions in these compounds may be partially substituted with other elements or anion species, and the surface is coated with a metal oxide such as ZrO 2 , MgO, Al 2 O 3 or carbon. Also good. Further, examples thereof include, but are not limited to, conductive polymer compounds such as disulfide, polypyrrole, polyaniline, polyparastyrene, polyacetylene, and polyacene-based materials, pseudographite-structured carbonaceous materials, and simple sulfur. Moreover, these compounds may be used independently and may mix and use 2 or more types.
  • the conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance.
  • natural graphite scale-like graphite, scale-like graphite, like-like graphite
  • artificial graphite carbon black
  • acetylene black Use of one or a mixture of two or more conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material it can.
  • acetylene black is preferable from the viewpoints of electron conductivity and coatability.
  • the addition amount of the conductive agent is preferably 0.1% by mass to 50% by mass and more preferably 0.5% by mass to 30% by mass with respect to the total mass of the positive electrode mixture layer. It is preferable to use acetylene black by pulverizing it into ultrafine particles of 0.1 to 0.5 ⁇ m because the necessary carbon amount can be reduced.
  • binders generally used for non-aqueous electrolyte secondary batteries can be used.
  • thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, and polypropylene
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene terpolymer
  • SBR styrene butadiene rubber
  • fluororubber ethylene-propylene-diene terpolymer
  • the addition amount of the binder is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass with respect to the total mass of the positive electrode mixture layer.
  • the thickener examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose a functional group that reacts with lithium
  • the filler is not particularly limited as long as it does not adversely affect the battery performance.
  • the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, and glass.
  • the negative electrode according to the present embodiment includes a negative electrode substrate and a negative electrode mixture layer disposed on the negative electrode substrate directly or via an intermediate layer.
  • the negative electrode mixture layer includes a negative electrode active material and a binder.
  • the negative electrode mixture layer may contain a conductive agent, a thickener, a filler, and the like as necessary.
  • the intermediate layer of the negative electrode can be the same as the intermediate layer of the positive electrode described above.
  • the negative electrode active material used for the negative electrode mixture layer is not particularly limited as long as it is a substance capable of electrochemically occluding and releasing lithium ions, and a known material can be appropriately used.
  • Examples thereof include carbonaceous materials, metal oxides such as tin oxide and silicon oxide, metal composite oxides, lithium alloys such as lithium alone and lithium aluminum alloys, and metals that can form alloys with lithium such as Sn and Si.
  • Examples of the carbonaceous material include graphite (graphite), cokes, non-graphitizable carbon, graphitizable carbon, fullerene, carbon nanotube, carbon black, activated carbon and the like.
  • graphite is preferable as a negative electrode active material because it has an operating potential very close to that of metallic lithium and can realize charge and discharge at a high operating voltage.
  • artificial graphite and natural graphite are preferable.
  • graphite in which the surface of the negative electrode active material particles is modified with amorphous carbon or the like is desirable because it generates less gas during charging.
  • These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
  • carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of safety.
  • the various binders described above can be used.
  • the negative mix layer may contain the above-mentioned electrically conductive agent, a thickener, a filler, etc.
  • the negative electrode substrate in addition to copper, nickel, iron, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al—Cd alloy, etc., adhesion, conductivity, reduction resistance
  • a surface of copper or the like treated with carbon, nickel, titanium, silver or the like can be used.
  • a film shape, a sheet shape, a net shape, a punched or expanded material, a lath body, a porous body, a foamed body, a formed body of fiber groups, and the like are used in addition to the foil shape.
  • the thickness is not particularly limited, but a thickness of 1 to 500 ⁇ m is used.
  • the cation exchange resin layer serves as a separator that insulates the positive electrode from the negative electrode.
  • the cation exchange resin layer contains a cation exchange resin.
  • the cation exchange resin include polyacrylic acid, polymethacrylic acid, polyvinylbenzenesulfonic acid, polybenzenemethanesulfonic acid, and polyacrylamide-2-methyl-1-propanesulfonic acid.
  • a cation exchange resin can be obtained by introducing a sulfonic acid group (—SO 3 H), a carboxylic acid group (—COOH), or a hydroxyl group (—OH) into various resins.
  • Examples of the various resins include perfluorocarbon resins, aromatic polyether ketone resins, polyphenylene sulfide resins, polyether sulfone resins, polyphenylene oxide resins, and polybenzimidazole resins.
  • a perfluorocarbon sulfonic acid resin in which a sulfonic acid group is introduced into the perfluorocarbon resin is preferable because high ion conductivity is obtained.
  • the form in which the cation exchange resin layer contains the cation exchange resin is not particularly limited.
  • a cation exchange membrane in which a cation exchange resin is formed into a film may be used, or a commercially available ion exchange membrane may be used. Specific examples include Nafion membrane (trade name, manufactured by DuPont), Flemion (trade name, manufactured by Asahi Glass Co., Ltd.), Aciplex (trade name, manufactured by Asahi Kasei Co., Ltd.), and the like.
  • the cation exchange resin layer may be formed by filling the inside of the porous structure of the porous layer with a cation exchange resin.
  • the filling method is not particularly limited, and examples thereof include a spray method, a dispensing method, a dipping method, and a blade coating method.
  • the cation exchange resin layer does not have pores communicating from one surface to the other surface, that is, is non-porous. By being non-porous, the positive electrode electrolyte and the negative electrode electrolyte are not mixed, and the possibility that the lithium polysulfide reaches the negative electrode is reduced. Note that at least one surface may have pores or irregularities that do not communicate with the other surface.
  • a commercially available cation exchange resin or cation exchange membrane is a proton (H + ) type in which a proton is bonded to an anionic functional group.
  • H + proton
  • a cation exchange resin or a cation exchange membrane When applying a cation exchange resin or a cation exchange membrane to a non-aqueous electrolyte secondary battery, it is preferable to replace the H + type with a lithium (Li + ) type.
  • the substitution to the Li + type is performed by immersing the separator in an aqueous lithium hydroxide solution. After immersion, the separator is washed with deionized water at 25 ° C. until the washing water becomes neutral.
  • the temperature of the lithium hydroxide aqueous solution is preferably 70 to 90 ° C., and the immersion time is preferably 2 to 6 hours.
  • the cation exchange resin layer preferably contains a non-aqueous solvent for the conduction of lithium ions therein.
  • a non-aqueous solvent contained in the cation exchange resin layer various non-aqueous solvents that can be used for a positive electrode electrolyte or a negative electrode electrolyte described later can be appropriately used.
  • a cation exchange resin layer not containing a non-aqueous solvent may be applied to a non-aqueous electrolyte secondary battery as it is, but some cation exchange resins have a low swelling property of a non-aqueous solvent (or non-aqueous electrolyte). Therefore, it is preferable to perform the swelling treatment with a non-aqueous solvent in advance before battery production.
  • the swelling treatment is performed by immersing the cation exchange resin layer substituted with the Li + type in a non-aqueous solvent.
  • the swelling treatment time is preferably 12 to 48 hours.
  • the amount of the non-aqueous solvent contained in the cation exchange resin layer may be 30% by mass or less based on the cation exchange resin layer.
  • a method for adjusting the mass of the nonaqueous solvent contained in the cation exchange resin layer it may be performed by using a nonaqueous solvent with low impregnation into the cation exchange resin, or a nonaqueous solvent in which the cation exchange resin is immersed. You may carry out the quantity of 30 mass% or less previously with respect to the quantity of a cation exchange resin.
  • Examples of the solvent having low impregnation property to the cation exchange resin layer include 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyl diglyme, dimethyl ether, diethyl
  • examples include ethers such as ether, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate.
  • the nonaqueous solvent used for the positive electrode electrolyte or the negative electrode electrolyte described later can be appropriately used.
  • Examples of the material constituting the porous layer include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene.
  • Polymer vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride- Hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoro Ethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be used tetrafluoroethylene copolymer.
  • the nonaqueous solvent used for the positive electrode electrolyte and the negative electrode electrolyte is not limited, and those generally proposed for use in lithium secondary batteries and the like can be used.
  • the non-aqueous solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate; cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; dimethyl carbonate, diethyl carbonate, Chain carbonates such as ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1 Ethers such as 1,4-dibutoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; diox
  • the positive electrode electrolyte or the negative electrode electrolyte may contain an additive.
  • an electrolyte additive generally used for a nonaqueous electrolyte secondary battery can be used.
  • aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenylether, dibenzofuran; 2-fluorobiphenyl, o-cyclohexylfluorobenzene , Fluorinated anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, and 3,5-difluoroanisole; Cyclic hydrocarbons such as vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, fluoroethylene carbonate, difluoro
  • electrolyte salt contained in the positive electrode electrolyte or the negative electrode electrolyte known electrolyte salts can be appropriately used.
  • An inorganic ion salt containing one of sodium (Na) or potassium (K) LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, (CH 3) 4 NBF 4, (CH 3) 4 NBr, (C 2 H 5) 4 NClO 4, (C 2 H 5) 4 NI, (C 3 H 7) 4 NBr, (n-C 4 H 9) 4
  • the viscosity of the electrolyte can be lowered.
  • the performance can be improved, and self-discharge can be suppressed, which is more preferable.
  • the non-aqueous electrolyte may be a room temperature molten salt or ionic liquid.
  • the nonaqueous electrolyte secondary battery according to this embodiment is manufactured by the following method.
  • the manufacturing method includes, for example, (1) a step of producing a positive electrode, (2) a step of producing a negative electrode, (3) a step of preparing a positive electrode electrolyte and a negative electrode electrolyte, and (4) a first surface of a cation exchange resin layer.
  • a step of performing a roughening treatment (5) a step of immersing the cation exchange resin layer in a nonaqueous electrolyte or a nonaqueous solvent, (6) a step of injecting a positive electrode electrolyte between the positive electrode and the cation exchange resin layer, (7 ) A step of injecting a negative electrode electrolyte between the negative electrode and the cation exchange resin layer, and (8) forming an electrode group in which the positive electrode and the negative electrode are alternately superimposed by laminating or winding the cation exchange resin layer.
  • a step, (9) a step of accommodating the positive electrode and the negative electrode (electrode group) in the battery case (case), and (10) a step of sealing the opening of the battery case.
  • the steps (1) to (4) may be performed in any order, and the steps (6) to (8) may be performed simultaneously or sequentially.
  • non-aqueous electrolyte secondary battery of the present embodiment for example, a non-aqueous electrolyte secondary battery 1 (lithium ion secondary battery) shown in FIG.
  • the nonaqueous electrolyte secondary battery 1 includes a container 3, a positive electrode terminal 4, and a negative electrode terminal 5, and the container 3 is a container main body and an upper wall that accommodate the electrode group 2 and the like. And a cover plate.
  • an electrode group 2, a positive electrode lead 4 ', and a negative electrode lead 5' are arranged inside the container body.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ', and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5'. Note that although the positive electrode is impregnated with the positive electrode electrolyte and the negative electrode is impregnated with the negative electrode electrolyte, the illustration of the liquid is omitted.
  • the electrode group 2 includes a positive electrode, a negative electrode, and a separator, and can store electricity. Specifically, as shown in FIG. 2, the electrode group 2 is formed in a layered manner so that the separator 25 is sandwiched between the negative electrode 23 and the positive electrode 21.
  • the electrode group 2 includes a positive electrode electrolyte 22 between the positive electrode 21 and the separator 25, and includes a negative electrode electrolyte 24 between the negative electrode 23 and the separator 25.
  • the positive electrode electrolyte 22 and the negative electrode electrolyte 24 may be the same or different.
  • the separator 25 includes a cation exchange resin layer 25a having a first surface 25c and a second surface 25d and a porous layer 25b, and the first surface 25c and the porous layer 25b are in contact with each other.
  • the roughness factor of the first surface 25c of the cation exchange resin layer 25a is 3 or more.
  • the positive electrode electrolyte 22 is disposed between the positive electrode 21 and the porous layer 25b, and the negative electrode electrolyte 24 is disposed between the negative electrode 23 and the cation exchange resin layer 25a.
  • the positive electrode electrolyte 22 is impregnated in the positive electrode 21 and the porous layer 25b, and the negative electrode electrolyte 24 is impregnated in the negative electrode 23, in a normal battery, the positive electrode 21 is in contact with the porous layer 25b, and the negative electrode 23 is It is in contact with the cation exchange resin layer 25a. That is, in the battery, the positive electrode 21, the porous layer 25b, the cation exchange resin layer 25a, and the negative electrode 23 are laminated in this order.
  • the separator 25 has a structure in which a cation exchange resin layer 25a having a first surface 25c and a porous layer 25b are laminated.
  • the first surface 25c is in contact with the porous layer 25b.
  • the cation exchange resin layer 25a contains a cation exchange resin and suppresses the lithium polysulfide Li 2 S x (4 ⁇ x ⁇ 8) produced at the positive electrode 21 and / or contained in the positive electrode electrolyte 22 from reaching the negative electrode. To do. For this reason, the lithium polysulfide produced at the positive electrode 21 and / or contained in the positive electrode electrolyte 22 is prevented from reaching the negative electrode, and the shuttle phenomenon is suppressed.
  • the positive electrode, the porous layer, the cation exchange resin layer, and the negative electrode are arranged in this order, and the roughness factor of the surface in contact with the porous layer, which is the first surface of the cation exchange resin layer
  • the roughness factor of the surface in contact with the negative electrode, which is the second surface may be 3 or more. That is, the roughness factors of the first surface and the second surface of the cation exchange resin layer may be 3 or more, respectively.
  • the positive electrode, the cation exchange resin layer, the porous layer, and the negative electrode may be arranged in this order, and the roughness factor of the surface of the cation exchange resin layer in contact with the porous layer may be 3 or more.
  • the interface resistance of a cation exchange resin layer and a porous layer can be made low.
  • the cation exchange resin layer and the porous layer are formed as a single layer, but a plurality of cation exchange resin layers or porous layers may be provided.
  • the first surface having a roughness factor of 3 or more may be provided in all the cation exchange resin layers, but may be provided in at least one cation exchange resin layer. This is because the interfacial resistance of the cation exchange resin layer can be lowered and the high rate discharge performance of the battery can be improved.
  • the configuration of the nonaqueous electrolyte secondary battery according to the present invention is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), a flat battery, and the like. It is good also as an electrical storage apparatus provided with two or more said nonaqueous electrolyte secondary batteries.
  • a power storage device is shown in FIG. In FIG. 3, the power storage device 100 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of nonaqueous electrolyte secondary batteries 1.
  • the power storage device 100 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), and the like.
  • Example 1-1 As a cation exchange membrane, both sides of a 50 ⁇ m-thick Nafion membrane (manufactured by Sigma-Aldrich) were roughened using a P320 sandpaper having a grain size of abrasive material for abrasive cloth of 320 ⁇ m as defined in JIS R 6010: 2000. Surface treatment. The number of times of sandpaper polishing was 80 per side. This membrane is used as the cation exchange membrane of Example 1-1.
  • Example 1-2 The Nafion film was roughened in the same manner as in Example 1-1 except that P400 sandpaper was used. This membrane is used as the cation exchange membrane of Example 1-2.
  • Example 1-3 The Nafion membrane was roughened in the same manner as in Example 1-1 except that P1000 sandpaper was used. This membrane is used as the cation exchange membrane of Example 1-3.
  • Example 1-4 was carried out in the same manner as Example 1-3, except that the number of times of polishing with sandpaper was changed and the roughness factor, arithmetic average roughness Ra, and maximum height roughness Rz were changed to the values shown in Table 1.
  • a cation exchange membrane of ⁇ 1-6 was prepared.
  • the obtained Li + -type cation exchange membrane was mixed with a mixed solvent in which 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) were mixed at a volume ratio of 50:50 at 25 ° C. for 12 hours. Impregnation treatment was performed by dipping. By this treatment, the cation exchange membrane after the impregnation treatment was impregnated with 20% by mass of a mixed solvent with respect to the mass of the cation exchange membrane before the impregnation treatment. The thickness of the cation exchange membrane before and after the impregnation treatment was 50 ⁇ m and 64 ⁇ m, respectively.
  • a resistance measurement cell 30 was produced using the cation exchange membrane of each Example and Comparative Example after the impregnation treatment and an electrochemical measurement cell 31 (manufactured by Nippon Tomcell Co., Ltd.) as shown in FIG.
  • a stainless steel plate electrode 31e and a porous membrane (porous layer) 36 sandwich a cation exchange resin layer 35 inside an O-ring 31f having an inner diameter of 26 mm and an outer diameter of 34 mm provided on a stainless steel plate support 31a. Laminated.
  • the resistance measurement cell 30 was assembled by stacking a stainless steel plate lid 31b on the laminate and fastening a bolt 31c and a nut 31d.
  • the microporous membrane 36 made of polyethylene includes a non-aqueous electrolyte containing 0.3 mol / l lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) and mixing DME and DOL at 50:50 (volume ratio). Impregnated.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the electrolyte layer resistance R was measured by AC impedance measurement.
  • the AC impedance measurement was performed at an applied voltage amplitude of 5 mV and a frequency of 1 MHz to 100 mHz.
  • a Nyquist diagram of the measurement results was prepared, and fitting was performed using an equivalent circuit. The value on the low frequency side of the intersection of the curve and the real axis fitted with the arc appearing on the highest frequency side was read and used as the electrolyte resistance R.
  • the electrolyte layer resistance R includes a porous layer resistance Re that is the resistance of the polyethylene microporous membrane 36, an interface resistance Ri that is a resistance at the interface between the polyethylene microporous membrane 36 and the cation exchange membrane 35 after the impregnation treatment, and an impregnation treatment.
  • a cation exchange resin layer resistance Rc which is the resistance of the subsequent cation exchange membrane 35, is included and is represented by the following formula (1).
  • R 2Re + 2Ri + Rc (1)
  • the interface resistance Ri was calculated using the formula (1).
  • the concentration of LiTFSI in the electrolyte solution impregnated in the polyethylene microporous membrane was changed to the value shown in Table 2, and the AC impedance measurement was performed using the cation exchange membranes of the Examples and Comparative Examples after the impregnation treatment, and the interface The resistance Ri was calculated.
  • the LiTFSI concentration was 0.5 mol / l, only Examples 1-1 to 1-3 and Comparative Example 1-1 were measured.
  • the sulfur conversion concentration of lithium polysulfide in the electrolyte solution impregnated in the polyethylene microporous membrane was 3.0 mol / l, and the concentration of LiTFSI was The impedance was changed to the values shown in Table 3, AC impedance measurement was performed, and the interface resistance Ri was calculated.
  • the electrolyte solution containing lithium polysulfide was produced as follows. In a glove box having a dew point of ⁇ 50 ° C. or less, DME and lithium polysulfide (Li 2 S) and sulfur (S 8 ) are in a stoichiometric ratio (molar ratio 8: 5) that Li 2 S 6 can generate.
  • Table 1 shows the roughness factor, arithmetic average roughness Ra, and maximum height roughness Rz of the cation exchange membrane of each Example and Comparative Example, and the concentrations of the cation exchange membrane, LiTFSI and lithium polysulfide after impregnation were changed.
  • Tables 2 and 3 show the interfacial resistance Ri with the polyethylene microporous membrane containing the electrolytic solution at the time.
  • divided the interface resistance of Examples 1-1 to 1-6 by the interface resistance of the comparative example 1-1 with respect to roughness factor, arithmetic mean roughness Ra, and maximum height roughness Rz is a figure. Shown in 6-8.
  • the concentration of LiTFSI when the concentration of LiTFSI is as low as 0.3 mol / l, in Examples 1-1 to 1-4 where the maximum height roughness on the surface of the cation exchange membrane is 10 ⁇ m or more, the maximum height roughness is 10 ⁇ m. It was found that the interface resistance was lower than those in Examples 1-5 and 1-6, which are less than the above.
  • the concentration of LiTFSI when the concentration of LiTFSI is as high as 1.0 mol / l, Examples 1-1 to 1-3 and Examples 1-5 and 1-6, in which the arithmetic average roughness Ra is 0.5 ⁇ m or more, Compared with Example 1-4 in which the arithmetic average roughness Ra is less than 0.5 ⁇ m, the interface resistance was low. As shown in Table 3, it was found that even when lithium polysulfide was included, the interface resistance was lowered by roughening the surface of the cation exchange membrane.
  • Example 2-1 Magnesium citrate was carbonized at 900 ° C. under an argon atmosphere for 1 hour, and then immersed in a 1 mol / l sulfuric acid aqueous solution to extract MgO. Subsequently, washing and drying were performed to obtain porous carbon. This porous carbon and sulfur were mixed at a mass ratio of 30:70. The mixture was sealed in a sealed container under an argon atmosphere, heated to 150 ° C. at a heating rate of 5 ° C./min, held for 5 hours, and then allowed to cool to 80 ° C. Thereafter, the temperature was raised again to 300 ° C. at a heating rate of 5 ° C./min, and heat treatment was performed for 2 hours to obtain a carbon-sulfur composite (hereinafter also referred to as “SPC composite”).
  • SPC composite carbon-sulfur composite
  • Positive electrode paste using SPC composite as positive electrode active material, acetylene black as conductive agent, and polyvinylidene fluoride (PVDF) as binder at a mass ratio of 85: 5: 10, and using N-methylpyrrolidone (NMP) as a solvent was made.
  • the obtained positive electrode paste was filled in a nickel mesh current collector and dried to prepare a positive electrode plate.
  • the coating amount of the positive electrode paste was 1.2 mg / cm 2 .
  • a metal foil was attached to a copper foil having a thickness of 10 ⁇ m so that the total thickness of the negative electrode was 310 ⁇ m.
  • a Nafion membrane which was subjected to a roughening treatment on only one side using a P400 sandpaper, was used.
  • the positive electrode electrolyte a solution containing 3.0 mol / l of lithium polysulfide in terms of sulfur and mixed with DME and DOL at a volume ratio of 50:50 was used.
  • a test cell 40 was produced using an electrochemical measurement cell 41 (manufactured by Nippon Tomcell) as shown in FIG.
  • the positive electrode 43 produced as described above is placed inside an O-ring 41f having an inner diameter of 26 mm and an outer diameter of 34 mm provided on a stainless steel plate support 41a.
  • a porous membrane (porous layer) 46 impregnated with the positive electrode electrolyte After laminating a porous membrane (porous layer) 46 impregnated with the positive electrode electrolyte, a cation exchange resin layer 45 having a size larger than the inner diameter of the O-ring was disposed. At this time, the cation exchange resin layer 45 was disposed so that the first surface 45 a subjected to the roughening treatment was in contact with the porous membrane 46.
  • a negative electrode 44 impregnated with the negative electrode electrolyte was laminated thereon.
  • a test cell 40 (hereinafter also referred to as a “battery”) is formed by disposing a stainless steel plate electrode 41e on the negative electrode 44, and overlapping a stainless steel plate lid 41b and fastening a bolt 41c and a nut 41d. Assembled. This is designated as Example Battery 2-1.
  • Comparative Example 2-1 A test cell 30 according to Comparative Example 2-1 was produced in the same manner as in Example 2-1, except that a Nafion membrane that had not been roughened was used as the cation exchange membrane. This is designated as Comparative Example Battery 2-1.
  • Example battery 2-1 and Comparative example battery 2-1 are measured by the following method, and the 0.2 C discharge capacity is divided by the 0.1 C discharge capacity. Thus, a 0.2C / 0.1C ratio (%) was calculated.
  • a 0.1 C constant current discharge up to 1.5 V at 25 ° C. and a 0.1 C constant current charge up to 3.0 V were performed.
  • the charge and discharge termination conditions were set until the set voltage was reached or 10 hours had passed.
  • the above-described 0.1 C discharging and charging step was set as one cycle, and this cycle was repeated three times.
  • a value obtained by dividing the discharge capacity at the third cycle by the mass of the SPC composite was taken as 0.1 C discharge capacity (mAh / g).
  • 1C is a current value at which the capacity of the positive electrode active material is discharged in one hour when the capacity per mass of the SPC composite used as the positive electrode active material is set to 1675 mAh / g which is a theoretical capacity.
  • 0.2C constant current discharge to 1.5V and 25C constant current charge to 3.0V were performed at 25 degreeC.
  • the charge and discharge termination conditions were until the set voltage was reached or 5 hours had passed.
  • the above-described 0.2 C discharging and charging step was set as one cycle, and this cycle was repeated three times.
  • a value obtained by dividing the discharge capacity at the third cycle by the mass of the SPC composite was defined as 0.2 C discharge capacity (mAh / g).
  • the 0.2C / 0.1C ratio (%) was calculated by dividing the 0.2C discharge capacity by the 0.1C discharge capacity.
  • Table 4 shows the 0.1 C discharge capacity, 0.2 C discharge capacity, and 0.2 C / 0.1 C ratio (%) of Example Battery 2-1 and Comparative Example Battery 2-1.
  • FIG. 9 shows discharge curves of 0.1 C and 0.2 C of Example battery 2-1 and Comparative example battery 2-1.
  • Example Battery 2-1 exhibited a high discharge capacity of 1150 mAh / g at both discharge currents of 0.1 C and 0.2 C, and the ratio of 0.2 C / 0.1 C was 100%.
  • the comparative battery 2-1 had a 0.1C discharge capacity equivalent to that of the example battery 2-1, but the 0.2C discharge capacity was low, and the 0.2C / 0.1C ratio was 71.7. %Met. This is presumably because, in Example Battery 2-1, the cation exchange membrane whose surface was roughened was used as the cation exchange resin layer, so that the interface resistance was lowered and the high rate discharge performance was improved.
  • Example Battery 2-1 as shown in FIG.
  • a non-aqueous electrolyte secondary battery excellent in high-rate discharge performance can be obtained, so that it is useful as a secondary battery for a wide range of uses such as in-vehicle use and stationary use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

硫黄を含む正極と、負極と、非水電解質と、正極と負極との間に配され、ラフネスファクターが3以上である第一面を有するカチオン交換樹脂層と、を備える非水電解質二次電池を提供する。 硫黄を含む正極と、負極と、正極と負極との間に介在し、ラフネスファクターが3以上である第一面を備えるカチオン交換樹脂層を備えた非水電解質二次電池の製造方法であって、 正極とカチオン交換樹脂層との間に、リチウム多硫化物を含む正極電解質を注入し、負極とカチオン交換樹脂層との間に、正極電解質よりもリチウム多硫化物の濃度が低い負極電解質を注入することを含む。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、携帯用端末、電気自動車、ハイブリッド自動車等に広く用いられており、今後もエネルギー密度の向上が期待されている。現在、実用化されているリチウムイオン二次電池の正極活物質にはリチウム遷移金属酸化物、負極活物質には炭素材料、電解質には非水溶媒にリチウム塩を溶解させた非水電解質が主に用いられている。
 非水電解質二次電池の正極活物質として、リチウム遷移金属酸化物の代替に硫黄を用いる検討が進められている。硫黄は、質量あたりの理論容量が1675mAh/gと大きいため、高容量化に向けた次世代正極活物質として期待されている。
 しかしながら、充放電中に正極で生成したリチウム多硫化物(Li、4≦n≦8)が非水電解質に溶出し、負極に到達して還元されることにより自己放電が進行するシャトル現象が課題となっている。シャトル現象を抑制するために、正極と負極との間にカチオン交換樹脂層を配置する技術が知られている。(特許文献1~3、非特許文献1、2)。
特開2015-128063号公報 国際公開第2015/083314号 特表2015-507837号公報
Journal of Power Sources,Vol.251,p.417-422(2014) Journal of Power Sources,Vol.218,p.163-167(2012)
 正極と負極との間にカチオン交換樹脂層を設けた場合、正極とカチオン交換樹脂層、又は負極とカチオン交換樹脂層との界面における抵抗が大きく、カチオン交換樹脂層を有する非水電解質二次電池の高率放電性能が低いという課題を、本発明者らは見出した。
 上記課題を解決するための本発明の一側面にかかる非水電解質二次電池は、硫黄を含む正極と、負極と、非水電解質と、正極と負極との間に配され、ラフネスファクターが3以上である第一面を有するカチオン交換樹脂層と、を備える。
 本発明の一側面によれば、カチオン交換樹脂層の第一面の界面抵抗が低く、優れた高率放電性能を有する非水電解質二次電池を提供できる。
第一実施形態に係る非水電解質二次電池の外観斜視図である。 本実施形態の非水電解質二次電池の局所的な構成を示す模式的断面図である。 第一実施形態に係る非水電解質二次電池を複数個集合して構成した蓄電装置を示す概略図である。 本実施形態の実施例に用いた抵抗測定用セルの構成を示す模式的断面図である。 本実施形態の実施例に用いた試験用セルの構成を示す模式的断面図である。 実施例における界面抵抗とカチオン交換樹脂層表面のラフネスファクターとの関係を示す図である。 実施例における界面抵抗とカチオン交換樹脂層表面の算術平均粗さとの関係を示す図である。 実施例における界面抵抗とカチオン交換樹脂層表面の最大高さ粗さとの関係を示す図である。 (a)実施例電池2-1の放電カーブを示す図であり、(b)比較例電池2-1の放電カーブを示す図である。
 本発明の一側面に係る非水電解質二次電池は、硫黄を含む正極と、負極と、非水電解質と、正極と負極との間に配され、ラフネスファクターが3以上である第一面を有するカチオン交換樹脂層と、を備える。
 上記構成を有することにより、カチオン交換樹脂層の第一面の界面抵抗が低減され、非水電解質二次電池の高率放電性能が向上する。
 カチオン交換樹脂層の第一面の算術平均粗さRaは、0.5μm以上であることが好ましい。
 カチオン交換樹脂層の第一面の算術平均粗さRaが0.5μm以上であることにより、界面抵抗を低減することができる。
 カチオン交換樹脂層の第一面の最大高さ粗さRzは、5μm以上であることが好ましい。
 カチオン交換樹脂層の第一面の最大高さ粗さRzが5μm以上であることにより、電解質塩濃度が低い場合においても、カチオン交換樹脂層の第一面の界面抵抗を低減することができる。
 前記非水電解質二次電池はさらに多孔質層を備えていてもよい。その場合、多孔質層はカチオン交換樹脂層の第一面に接していることが好ましい。
 詳しくは後述するが、カチオン交換樹脂層中では、カチオンが選択的(優先的)に移動し、アニオンの移動は起こりにくい。一方、カチオン及びアニオンを含む非水電解質が含浸された多孔質層中では、カチオン及びアニオンの双方が移動することができる。そのため、カチオン交換樹脂層と多孔質層とを備える非水電解質二次電池では、イオンの伝達機構が異なるため、カチオン交換樹脂層と多孔質層との界面の抵抗が大きい値となる傾向にある。このように、界面抵抗が高い非水電解質二次電池に本実施形態を適用することにより、顕著に界面抵抗が低減し、優れた高率放電性能を備えた非水電解質二次電池を得ることができる。
 非水電解質は、正極とカチオン交換樹脂層との間に配される正極電解質、及び負極とカチオン交換樹脂層との間に配される負極電解質を備え、正極電解質はリチウム多硫化物を含み、負極電解質の硫黄換算濃度が正極電解質の硫黄換算濃度よりも低いことが好ましい。
 上記構成により、充放電サイクル性能に優れた非水電解質二次電池を得ることができる。
 上記構成において、正極電解質の硫黄換算濃度が、1.2mol/l以上であることが好ましい。
 このような構成により、充放電サイクル性能がより優れたものとなるだけでなく、サイクル後の充放電効率を高くすることができる。
 上記構成において、正極電解質の硫黄換算濃度は、3.0mol/l以上であることが好ましい。
 このような構成により、高容量かつ高エネルギー密度を有する非水電解質二次電池が提供できる。
 正極電解質の硫黄換算濃度は、18mol/l以下であることが好ましい。
 このような構成により、正極電解質の粘度が上がりすぎず、正極電解質とカチオン交換樹脂層との界面抵抗が高くなり過ぎないので、硫黄の利用率が高く、エネルギー密度の高い非水電解質二次電池が得られる。
 上記構成において、前記正極電解質及び前記負極電解質の少なくとも一方に含まれるアニオンの濃度が0.7mol/l以下であることが好ましい。
 このような構成とすることにより、非水電解質とカチオン交換樹脂層との界面抵抗の低い非水電解質二次電池とすることができる。
 正極電解質に含まれるアニオンの濃度が、0.3mol/l以下であることが好ましい。
 上記構成により、正極電解質に含まれるリチウム多硫化物の濃度を高くしても、非水電解質とカチオン交換樹脂層との界面抵抗が上昇しにくく、高い容量を有する非水電解質二次電池とすることができる。
 正極及び負極の少なくとも一方がカチオン交換樹脂を含み、非水電解質に含まれるアニオンの濃度が0.7mol/l以下であってもよい。
 このような構成により、優れた充放電サイクル性能を有する非水電解質二次電池を得ることができる。
 以下、本発明の実施形態に係る非水電解質二次電池について説明する。以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示している。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より好ましい形態を構成する任意の構成要素として説明される。
 本実施形態に係る非水電解質二次電池は、非水電解質二次電池は、硫黄を含む正極、負極、正極と負極との間に介在するカチオン交換樹脂層、正極とカチオン交換樹脂層の間に配される正極電解質(非水電解質の一例)、及び負極とカチオン交換樹脂層の間に配される負極電解質(非水電解質の一例)を備え、カチオン交換樹脂層は、ラフネスファクターが3以上である第一面を備える。なお、非水電解質二次電池に用いられる非水電解質は、通常、電解質塩と非水溶媒とを含むが、本明細書においては、電解質塩を含まない非水溶媒を「非水電解質」ということがある。ラフネスファクターとは、見かけの単位表面積(幾何単位面積)に対する実表面積の比であり、その表面の粗さを示す指標である。
 カチオン交換樹脂層は、カチオン交換樹脂を含む層であり、正極と負極とを絶縁状態に保つセパレータの役割を有する。カチオン交換樹脂は、主に炭化水素からなるポリマー中に、スルホン酸基、カルボン酸基等のアニオン性の官能基が結合した構造を有する。このアニオン性基の静電相互作用により、高いカチオン透過性を有する一方、アニオンの透過性は低い。すなわち、カチオン交換樹脂は、リチウムイオンを通過させ、正極電解質(電解液)中でわずかに解離してアニオン性を帯びているリチウム多硫化物の通過を阻止する。これにより、カチオン交換樹脂層は、正極から負極へのリチウム多硫化物の移動を抑制するため、シャトル現象が抑制される。
 本実施形態に係るカチオン交換樹脂層は、少なくとも一方の表面である第一面のラフネスファクターの下限が3であり、好ましくは4であり、より好ましくは10である。カチオン交換樹脂層の第一面のラフネスファクターの上限は、20が好ましく、18がより好ましく、16がさらに好ましい。ラフネスファクターが3以上であることにより、カチオン交換樹脂層と非水電解質との界面の抵抗が低減するため、非水電解質二次電池の高率放電性能が向上する。
 本実施形態におけるカチオン交換樹脂層の第一面は、JIS B 0601:2013に規定される算術平均粗さRaが、好ましくは0.5μm以上、より好ましくは2μm以上である。上記算術平均粗さRaが上記範囲を満たすことにより、カチオン交換樹脂層と正極との界面の抵抗を低減することができる。さらに、カチオン交換樹脂層の強度を維持するために、上記算術平均粗さRaは、10μm以下が好ましく、8μm以下がより好ましく、5μm以下がさらに好ましい。
 本実施形態におけるカチオン交換樹脂層の第一面は、JIS B 0601:2013に規定される最大高さ粗さRzが、5μm以上であることが好ましく、10μm以上であることがより好ましい。最大高さ粗さRzが上記範囲を満たすことにより、非水電解質中の電解質塩濃度が低い場合においても、界面抵抗を低減することができる。上記最大高さ粗さRzは、30μm以下が好ましく、28μm以下がより好ましい。
 カチオン交換樹脂層の第一面のラフネスファクター、算術平均粗さRa及び最大高さ粗さRzは、カチオン交換樹脂層の表面を以下の条件により撮影及び測定し、形状解析を行うことにより求める。
・測定機器:超深度形状測定顕微鏡VK-8500(キーエンス社製)
・測定範囲:1.04×10-3 cm
・形状解析アプリケーション:VK-H1A9(キーエンス社製)
 本実施形態に係るカチオン交換樹脂層の表面のラフネスファクターを3以上とする粗面化処理の方法としては、例えば、サンドペーパー等の研磨材によってカチオン交換樹脂層の表面を荒らす方法や、サンドブラスト法、化学エッチング法などが挙げられる。研磨材としては、JIS R 6010:2000に規定される研磨布紙用研磨剤の粒度が320~1000であるサンドペーパーを用いることが好ましい。
 本実施形態に係るカチオン交換樹脂層の厚みは、20~180μmが好ましく、30~180μmがより好ましい。30μm以上とすることで、粗面化処理を行ってもカチオン交換樹脂層の厚みが充分に保たれるので、電池製造時のハンドリングが容易となる。また、180μm以下とすることで、電池の内部抵抗を低減できるとともに、電池のエネルギー密度を向上させることができる。
 カチオン交換樹脂層は、カチオン交換樹脂とその他の高分子との混合物を薄膜状に成形し、表面を粗面化したものであってもよい。その他の高分子としては、後述する多孔質層を構成する材料を適宜用いることができる。
 本実施形態に係る非水電解質二次電池は、さらに多孔質層を備えていてもよい。多孔質層は、カチオン交換樹脂層の第一面に接していることが好ましい。
 通常、正極及び負極の表面は、粒子状の活物質に由来する凹凸を有している。そのため、柔軟性が低いカチオン交換樹脂層を用いた場合、粗面化した第一面と正極又は負極との接触面積が、粗面化していない場合に比べて低下する虞がある。ポリマーを含む多孔質層は、カチオン交換樹脂層に比べて柔軟性に優れているため、多孔質層がカチオン交換樹脂層の第一面に接していることで、正極-多孔質層-カチオン交換樹脂層の第一面間、又は負極-多孔質層-カチオン交換樹脂層の第一面間の接触が良好に保たれ、リチウムイオンが良好に伝達される。さらに、多孔質層に非水電解質を保持させることができるので、正極又は負極中での非水電解質の偏在が起こりにくく、正極又は負極での充放電反応を均一化できる。
 なお、多孔質層は、正極とカチオン交換樹脂層の第一面との間のみに設けられてもよいし、負極とカチオン交換樹脂層の第一面との間のみに設けられてもよい。あるいは、正極とカチオン交換樹脂層の間及び負極とカチオン交換樹脂層の間の両方に、多孔質層を設けてもよい。
 本実施形態において、正極電解質はリチウム多硫化物を含むことが好ましい。さらに、正極電解質の硫黄換算濃度が負極電解質の硫黄換算濃度よりも高いことが好ましい。なお、以降の説明において、「正極電解質」と「負極電解質」とを合わせて「非水電解質」ということがある。
 カチオン交換樹脂層により、正極から負極へのリチウム多硫化物の移動は抑制されるが、充放電反応中に正極で生成したリチウム多硫化物は、非水溶媒への溶解性が高いため、充放電サイクル中に容易に正極電解質中に溶出する。本発明者らは、正極とカチオン交換樹脂層との間に配される正極電解質にあらかじめリチウム多硫化物を混合しておくことにより、正極で生成したリチウム多硫化物の溶出が抑制されるばかりでなく、正極電解質中のリチウム多硫化物が正極活物質として充放電反応に寄与することにより、優れた充放電サイクル性能を発揮できることを見出した。すなわち、本実施形態において、正極電解質がリチウム多硫化物を含み、正極電解質の硫黄換算濃度を負極電解質の硫黄換算濃度より高くすることにより、高い充放電サイクル性能を有する非水電解質二次電池が得られる。ここで、硫黄換算濃度とは、非水電解質中の硫黄化合物の濃度を硫黄原子の濃度に換算した値である。すなわち、1mol/lの硫化リチウム(LiS)は硫黄換算濃度1mol/lに相当し、1mol/lのLiは硫黄換算濃度6mol/lに相当し、1mol/lの硫黄(S)は硫黄換算濃度8mol/lに相当する。
 正極電解質の硫黄換算濃度の下限は、1.2mol/lが好ましく、1.5mol/lがより好ましく、3.0mol/lがさらに好ましい。硫黄換算濃度が1.2mol/l以上であることにより、充放電サイクル後の充放電効率が向上する。硫黄換算濃度が3.0mol/l以上であることにより、高容量かつ高エネルギー密度を有する非水電解質二次電池が実現できる。
 正極電解質の硫黄換算濃度の上限は、18mol/lが好ましく、12mol/lがより好ましく、9mol/lがさらに好ましい。硫黄換算濃度が上記上限以下であることにより、正極電解質の粘度が上がりすぎず、正極電解質とカチオン交換樹脂層との界面抵抗が高くなり過ぎないので、硫黄の利用率が高く、エネルギー密度の高い非水電解質二次電池が得られる。
 正極電解質が含有するリチウム多硫化物としては、特に限定されないが、Li(4≦n≦8)で表されるリチウム多硫化物が好ましい。
 組成式Li(4≦n≦8)で表されるリチウム多硫化物の製造方法は限定されない。例えば、目的とする組成比でリチウム硫化物(LiS)と硫黄(S)とを、溶媒中で混合及び撹拌したのち、密閉容器に入れて80℃の恒温槽で4日以上反応させることにより、得ることができる。
 本実施形態において、負極電解質は正極電解質よりも硫黄換算濃度が低いことが好ましい。すなわち、負極電解質に含まれる単体硫黄、リチウム多硫化物及びLiSの濃度の総和が、正極電解質のそれよりも低いことが好ましい。リチウム多硫化物は、負極活物質と反応して負極活物質の充電深度を下げるとともに、還元生成物としてLiSを生じる。LiSは非水溶媒に不溶性であるため、負極表面に析出して負極の反応面積を低下させる。このため、負極電解質の硫黄換算濃度の上限は、0.5mol/lが好ましく、0mol/lであってもよい。リチウム多硫化物は、負極表面で反応して固体電解質被膜(SEI)を形成することが知られているため、負極電解質は少量のリチウム多硫化物を含んでいることが好ましい。
 本実施形態に係る非水電解質二次電池において、正極及び負極の少なくとも一方がカチオン交換樹脂を備えることが好ましい。この場合、非水電解質に含まれるアニオンの濃度が0.7mol/l以下であることがより好ましい。
 正極及び負極の少なくとも一方がカチオン交換樹脂を備える態様は特に限定されないが、正極合剤層又は負極合剤層の表面又は内部に備えることが好ましい。すなわち、カチオン交換樹脂が合剤層の表面を覆う態様でも良いし、合剤層内部の少なくとも一部に存在する態様でも良い。
 前述したように、カチオン交換樹脂は、カチオンのみを通過させ、アニオンの通過を阻害する。したがって、カチオン交換樹脂中のリチウムイオンの輸率はほぼ1である。すなわち、カチオン交換樹脂は、シングルイオン伝導体となっている。一方、リチウム塩を含む非水電解質中では、リチウムイオンと対アニオンの双方が移動するため、リチウムイオンの輸率は1ではなく、非水電解質はシングルイオン伝導体ではない。このように、イオンの伝達機構が異なるため、非水電解質とカチオン交換樹脂層の界面では、界面抵抗が大きい。
 カチオン交換樹脂が、正極及び負極の少なくとも一方に含まれることにより、カチオン交換樹脂層と正極活物質又は負極活物質との間にカチオン交換樹脂からなるリチウム伝導パスが形成される。すなわち、リチウムイオンは、非水電解質を経由することなく、カチオン交換樹脂層と正極活物質又は負極活物質との間を行き来できることから、カチオン交換樹脂層の界面抵抗を小さくすることができる。これにより、高い放電容量と優れた充放電サイクル性能を有する非水電解質二次電池を得ることができると推測される。
 正極合剤層が備えるカチオン交換樹脂は、正極合剤層全体の質量に対して、10質量%~150質量%であることが好ましい。カチオン交換樹脂の量が、正極合剤層全体の質量に対して10質量%~150質量%であることにより、正極合剤層内に連続したリチウムイオン伝導チャネルを形成できるため好ましい。
 負極合剤層が備えるカチオン交換樹脂は、負極合剤層全体の質量に対して、10質量%~150質量%であることが好ましい。カチオン交換樹脂の量が、負極合剤層全体の質量に対して10質量%~150質量%であることにより、負極合剤層内に連続したリチウムイオン伝導チャネルを形成できるため好ましい。
 正極合剤層の内部にカチオン交換樹脂が存在する正極は、次のようにして作製することができる。粒子状の正極活物質、カチオン交換樹脂、導電剤、及び結着剤を、アルコールやトルエン等の分散媒と混合し、正極合剤ペーストを作製する。得られた正極合剤ペーストを、シート状の正極基材の両面に塗布、乾燥後、プレスすることにより、正極を作製する。正極活物質、カチオン交換樹脂、導電剤、及び結着剤等を混合する方法としては、例えば、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルなどの粉体混合機を用い、乾式又は湿式で混合する方法が採用される。カチオン交換樹脂としては、第一実施形態において挙げた材料を適宜用いることができる。
 負極合剤層内部にカチオン交換樹脂が含まれている負極も、上述の方法により作製できる。
 カチオン交換樹脂を含む溶液を、正極合剤層上又は負極合剤層上に塗布することにより、カチオン交換樹脂が正極又は負極表面を覆う形態としてもよい。その際、カチオン交換樹脂を含む溶液が合剤層内部に浸透することにより、合剤層表面及び内部にカチオン交換樹脂が存在することが好ましい。カチオン交換樹脂を含む溶液を塗布する方法としては、例えば、スプレー法、ディスペンス法、浸漬法、ブレードコート法が挙げられる。
 カチオン交換樹脂は、正極及び負極の少なくとも一方に含まれていればよいが、正極に含まれていることが好ましく、正極及び負極の両方に含まれていてもよい。カチオン交換樹脂が正極に含まれていることで、充放電反応中に正極で生成したリチウム多硫化物が正極近傍に存在する正極電解質中に溶出することが抑制され、正極の容量低下が生じにくい。カチオン交換樹脂が正極及び負極に含まれていることで、正極からカチオン交換樹脂層を経て負極に至るまで、カチオン交換樹脂によるリチウムイオン伝導パスが形成されるため、リチウムイオンの伝導が良好となり、高い放電容量及び充放電効率を達成することができる。
 非水電解質(正極電解質及び負極電解質)は、電解質塩に由来するアニオンを含んでいてもよい。なお、本実施形態におけるアニオンとは、非水溶媒中に溶解している電解質塩由来のアニオンを指し、カチオン交換樹脂の分子構造中に含まれるスルホン酸基等のアニオン性官能基や、リチウム多硫化物及びリチウム多硫化物の一部が乖離してアニオン性を帯びた化合物は含まない。
 正極電解質及び負極電解質の少なくとも一方に含まれるアニオンの濃度の上限は、0.7mol/lが好ましく、0.5mol/lがより好ましく、0.3mol/lがさらに好ましい。正極電解質に含まれるアニオンの濃度の上限は、0.3mol/lが好ましく、0.2mol/lがより好ましく、0mol/lであってもよい。アニオンの濃度が上記上限以下であることにより、非水電解質の粘度を下げることが可能となり、放電容量が高く、充放電サイクル性能に優れた非水電解質二次電池を得ることができる。
 正極電解質及び負極電解質の少なくとも一方に含まれるアニオンの濃度の下限は、0mol/lであってもよいが、0.1mol/lが好ましく、0.3mol/lがより好ましい。非水電解質中に少量のアニオンを含むことにより、優れた充放電サイクル性能が得られる。
 本実施形態に係る正極は、正極基材、及び正極基材上に直接又は中間層を介して配された正極合剤層を含む。
 正極基材としては、電池内で悪影響を及ぼさない電子伝導体であれば、公知の材料を適宜用いることができる。正極基材としては、例えば、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。正極基材の形状は、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発泡体、繊維群の形成体等が用いられる。厚みの限定は特にないが、1~500μmのものが用いられる。
 上記中間層は、正極基材の表面の被覆層であり、炭素粒子等の導電剤を含むことで正極基材と正極合剤層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば結着剤及び導電剤を含有する組成物により形成できる。
 正極合剤層は、活物質、導電剤及び結着剤を含み、活物質は硫黄を含む。活物質として、導電性物質と複合化した硫黄を用いることが好ましい。導電性物質としては、多孔性カーボン、カーボンブラック、黒鉛、炭素繊維などの炭素材料やポリアニリン、ポリチオフェン、ポリアセチレン、ポリピロールなどの電子伝導性ポリマーが挙げられる。正極合剤層は、必要に応じて、硫黄以外の活物質、増粘剤、フィラー等を含んでいてもよい。
 正極合剤層は、固体状態の硫黄を含まなくてもよい。この場合、正極合剤層は導電剤及び結着剤のみを含有し、正極電解質中のリチウム多硫化物が活物質として充放電に寄与する。固体状硫黄を含有することで、非水電解質二次電池の放電容量及びエネルギー密度を向上させられるため、好ましい。
 硫黄以外の正極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質であれば、適宜公知の材料を使用できる。例えば、LiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(LiCoO、LiNiO、LiMn、LiMnO、LiNiCo(1-y)、LiNiMnCo(1-y-z)、LiNiMn(2-y)等)、あるいは、LiMe(XO(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V)で表されるポリアニオン化合物(LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等)から選択することができる。また、これらの化合物中の元素またはポリアニオンは一部他の元素またはアニオン種で置換されていてもよく、表面にZrO、MgO、Al等の金属酸化物や炭素を被覆されていてもよい。さらに、ジスルフィド、ポリピロール、ポリアニリン、ポリパラスチレン、ポリアセチレン、ポリアセン系材料等の導電性高分子化合物、擬グラファイト構造炭素質材料、単体の硫黄等が挙げられるが、これらに限定されない。また、これらの化合物は単独で用いてもよく、2種以上を混合して用いてもよい。
 導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、士状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種又は2種以上の混合物を用いることができる。これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが好ましい。導電剤の添加量は、正極合剤層の総質量に対して0.1質量%~50質量%が好ましく、0.5質量%~30質量%がより好ましい。アセチレンブラックを0.1~0.5μmの超微粒子に粉砕して用いると必要な炭素量を削減できるため好ましい。
 結着剤としては、一般に非水電解質二次電池に使用される結着剤が使用でき、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン等の熱可塑性樹脂、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーの1種又は2種以上の混合物を使用することができる。結着剤の添加量は、正極合剤層の総質量に対して1~50質量%が好ましく、2~30質量%がより好ましい。
 増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。
 フィラーとしては、電池性能に悪影響を与えないものであれば特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス等が挙げられる。
 本実施形態に係る負極は、負極基材と、負極基材上に直接又は中間層を介して配された負極合剤層を含む。負極合剤層は、負極活物質及び結着剤を含む。負極合剤層は、必要に応じて、導電剤、増粘剤、フィラー等を含んでいてもよい。負極の中間層は、上述した正極の中間層と同様とすることができる。
 負極合剤層に用いられる負極活物質としては、電気化学的にリチウムイオンを吸蔵放出可能な物質であれば、特に制限はなく、適宜公知の材料を使用できる。例えば、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。炭素質材料としては、グラファイト(黒鉛)、コークス類、難黒鉛化性炭素、易黒鉛化性炭素、フラーレン、カーボンナノチューブ、カーボンブラック、活性炭等が挙げられる。これらの中でもグラファイトは、金属リチウムに極めて近い作動電位を有し、高い作動電圧での充放電を実現できるため負極活物質として好ましく、例えば、人造黒鉛、天然黒鉛が好ましい。特に、負極活物質粒子表面を不定形炭素等で修飾してあるグラファイトは、充電中のガス発生が少ないことから望ましい。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。
 負極合剤層に用いられる結着剤としては、前述した種々の結着剤を用いることができる。また、負極合剤層は、上述の導電剤、増粘剤及びフィラー等を含んでいてもよい。
 負極基材としては、銅、ニッケル、鉄、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al-Cd合金等の他に、接着性、導電性、耐還元性の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。
 負極基材の形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発泡体、繊維群の形成体等が用いられる。厚みの限定は特にないが、1~500μmのものが用いられる。
 本実施形態において、カチオン交換樹脂層は、正極と負極とを絶縁するセパレータの役割を担う。カチオン交換樹脂層はカチオン交換樹脂を含む。カチオン交換樹脂としては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリビニルベンゼンスルホン酸、ポリベンゼンメタンスルホン酸、ポリアクリルアミド-2-メチル-1-プロパンスルホン酸が挙げられる。また、種々の樹脂にスルホン酸基(-SOH)、カルボン酸基(-COOH)、又は水酸基(-OH)を導入することにより、カチオン交換樹脂を得ることができる。種々の樹脂としては、パーフルオロカーボン樹脂、芳香族ポリエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンオキサイド樹脂、ポリベンゾイミダゾール樹脂等が挙げられる。
 高いイオン伝導性が得られるため、パーフルオロカーボン樹脂にスルホン酸基を導入したパーフルオロカーボンスルホン酸樹脂が好ましい。
 カチオン交換樹脂層が、カチオン交換樹脂を含む形態は、特に限定されない。カチオン交換樹脂を膜状に形成したカチオン交換膜を用いてもよいし、市販のイオン交換膜を用いてもよい。具体的には、ナフィオン膜(商品名、デュポン社製)、フレミオン(商品名、旭硝子社製)、アシプレックス(商品名、旭化成社製)等を挙げることができる。
 カチオン交換樹脂層は、多孔質層の多孔質構造の内部にカチオン交換樹脂を充填することにより形成よい。充填する方法としては、特に限定されないが、例えば、スプレー法、ディスペンス法、浸漬法、ブレードコート法を挙げることができる。
 カチオン交換樹脂層は、一方の表面から他方の表面へ連通する孔を有しない、すなわち非多孔性である。非多孔性であることにより、正極電解質と負極電解質とが混合されることがなく、リチウム多硫化物が負極へと到達する虞が低減される。なお、少なくとも一方の表面に、他方の表面と連絡しない細孔や凹凸を有していてもよい。
 通常、市販されているカチオン交換樹脂又はカチオン交換膜は、アニオン性官能基にプロトンが結合したプロトン(H)型である。非水電解質二次電池にカチオン交換樹脂又はカチオン交換膜を適用するにあたって、H型からリチウム(Li)型に置換を行うことが好ましい。Li型への置換は、セパレータを水酸化リチウム水溶液に浸漬することによって行う。浸漬後、セパレータを25℃の脱イオン水で、洗浄水が中性となるまで洗浄する。水酸化リチウム水溶液の温度は70℃~90℃が好ましく、浸漬時間は2時間~6時間が好ましい。
 カチオン交換樹脂層は、その内部でのリチウムイオンの伝導のために、非水溶媒を含むことが好ましい。カチオン交換樹脂層に含まれる非水溶媒には、後述する正極電解質又は負極電解質に使用できる各種非水溶媒が適宜使用できる。非水溶媒を含まないカチオン交換樹脂層をそのまま非水電解質二次電池に適用してもよいが、カチオン交換樹脂の中には、非水溶媒(又は非水電解質)の膨潤性が低いものがあるので、電池作製前にあらかじめ非水溶媒で膨潤処理を行うことが好ましい。膨潤処理は、Li型に置換されたカチオン交換樹脂層を、非水溶媒に浸漬することによって行う。膨潤処理時間は、12~48時間が好ましい。
 カチオン交換樹脂層に含まれる非水溶媒の量は、カチオン交換樹脂層に対して30質量%以下であってもよい。このような構成とすることにより、カチオン交換樹脂層が非水溶媒によって適度に膨潤され、カチオン交換樹脂層内でのリチウムイオンの移動がスムーズになる。その結果、非水電解質二次電池の放電容量を大きくすることができる。
 カチオン交換樹脂層に含有される非水溶媒の質量の調整方法としては、カチオン交換樹脂への含浸性が低い非水溶媒を用いることによって行ってもよいし、カチオン交換樹脂を浸漬する非水溶媒の量を、あらかじめカチオン交換樹脂の量に対して30質量%以下として行ってもよい。カチオン交換樹脂層への含浸性が低い溶媒としては、例えば、1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム、ジメチルエーテル、ジエチルエーテル等のエーテル類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類が挙げられる。その他、後述する正極電解質又は負極電解質に用いられる非水溶媒を適宜用いることができる。
 多孔質層を構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-パーフルオロビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-フルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロアセトン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-プロピレン共重合体、フッ化ビニリデン-トリフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン-テトラフルオロエチレン共重合体等を用いることができる。
 正極電解質及び負極電解質に用いる非水溶媒は、限定されず、一般にリチウム二次電池等への使用が提案されているものが使用可能である。非水溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
 本実施形態において、正極電解質又は負極電解質には、添加剤を含有させてもよい。添加剤としては、一般に非水電解質二次電池に使用される電解質添加剤が使用できる。例えば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物等の無水カルボン酸;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、プロペンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド等の含硫黄化合物;パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル等を単独で又は二種以上混合して用いることができる。
 正極電解質又は負極電解質が含有する電解質塩としては、公知の電解質塩を適宜用いることができる。例えば、LiClO、LiBF、LiAsF、LiPF、LiSCN、LiBr、LiI、LiSO、Li10Cl10、NaClO、NaI、NaSCN、NaBr、KClO、KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、(CHNBF、(CHNBr、(CNClO、(CNI、(CNBr、(n-CNClO、(n-CNI、(CN-maleate、(CN-benzoate、(CN-phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。
 さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、電解質の粘度を下げることができるので、低温性能を高めることができ、また、自己放電を抑制することができ、より好ましい。
 非水電解質は、常温溶融塩やイオン液体を用いてもよい。
 本実施形態に係る非水電解質二次電池は、以下の方法により製造される。当該製造方法は、例えば、(1)正極を作製する工程、(2)負極を作製する工程、(3)正極電解質及び負極電解質を調製する工程、(4)カチオン交換樹脂層の第一面に粗面化処理を行う工程、(5)カチオン交換樹脂層を非水電解質又は非水溶媒に浸漬する工程、(6)正極とカチオン交換樹脂層との間に正極電解質を注入する工程、(7)負極とカチオン交換樹脂層との間に負極電解質を注入する工程、(8)正極及び負極を、カチオン交換樹脂層を介して積層又は巻回することにより交互に重畳された電極群を形成する工程、(9)正極及び負極(電極群)を電池容器(ケース)に収容する工程、並びに(10)上記電池容器の開口部を封止する工程を備えることができる。
 上記(1)~(4)の工程はどのような順序で行ってもよく、(6)~(8)の工程は同時に行っても逐次行ってもよい。
 本実施形態の非水電解質二次電池としては、例えば、図1に示す非水電解質二次電池1(リチウムイオン二次電池)が挙げられる。
 図1に示すように、非水電解質二次電池1は、容器3と、正極端子4と、負極端子5とを備え、容器3は、電極群2等を収容する容器本体と上壁である蓋板とを備えている。また、容器本体内方には、電極群2と、正極リード4’と、負極リード5’とが配置されている。
 正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。なお、正極には正極電解質が含浸され、負極には負極電解質が含浸されているが、当該液体の図示は省略する。
 電極群2は、正極と、負極と、セパレータとを備え、電気を蓄えることができる。具体的には、電極群2は、図2に示すように、負極23と正極21との間にセパレータ25が挟み込まれるように層状に配置されて形成されている。
 電極群2の局所的な模式断面図を図2に示す。電極群2は、正極21とセパレータ25との間に正極電解質22を備え、負極23とセパレータ25との間に負極電解質24を備える。正極電解質22と負極電解質24は、同じでも異なっていてもよい。セパレータ25は、第一面25c及び第二面25dを有するカチオン交換樹脂層25aと多孔質層25bとを備え、第一面25cと多孔質層25bとが接している。カチオン交換樹脂層25aの第一面25cのラフネスファクターが3以上である。
 なお、図2では、正極21と多孔質層25bとの間に正極電解質22が配置され、負極23とカチオン交換樹脂層25aとの間に負極電解質24が配置されている。しかしながら、正極電解質22は、正極21及び多孔質層25bに含浸されており、負極電解質24は負極23に含浸されているため、通常の電池では正極21は多孔質層25bに接し、負極23はカチオン交換樹脂層25aに接している。すなわち、電池内では、正極21、多孔質層25b、カチオン交換樹脂層25a、負極23の順に積層されて配置されている。
 セパレータ25は、第一面25cを有するカチオン交換樹脂層25aと多孔質層25bとが積層された構造を有する。第一面25cは、多孔質層25bと接している。カチオン交換樹脂層25aはカチオン交換樹脂を含み、正極21で生成する、及び/又は正極電解質22に含まれるリチウム多硫化物Li(4≦x≦8)が負極に到達することを抑制する。このため、正極21で生成する、及び/又は正極電解質22に含まれるリチウム多硫化物は負極に到達することが妨げられ、シャトル現象が抑制される。
 図2、及び後述する実施例においては、正極、多孔質層、カチオン交換樹脂層及び負極を、この順に配置し、カチオン交換樹脂層の第一面である、多孔質層に接する表面のラフネスファクターを3以上としたが、第二面である、負極に接する表面のラフネスファクターも3以上としてもよい。すなわち、カチオン交換樹脂層の第一面及び第二面のラフネスファクターを、それぞれ3以上としてもよい。カチオン交換樹脂層の両面のラフネスファクターを、それぞれ3以上とすることにより、カチオン交換樹脂層の界面抵抗を低くすることができ、電池の高率放電性能を向上させることができる。
 正極、カチオン交換樹脂層、多孔質層、負極という順に配置し、カチオン交換樹脂層の、多孔質層に接する表面のラフネスファクターが3以上としてもよい。これにより、カチオン交換樹脂層と多孔質層の界面抵抗を低いものとすることができる。また、正極、多孔質層、カチオン交換樹脂層、多孔質層、負極という順に配置してもよい。この場合、カチオン交換樹脂層の両面のラフネスファクターが、それぞれ3以上であることが好ましい。これにより、カチオン交換樹脂層と多孔質層の界面抵抗を低いものとすることができ、電池の高率放電性能を向上させることができる。
 図2、及び後述する実施例においては、カチオン交換樹脂層及び多孔質層をそれぞれ一層としたが、カチオン交換樹脂層又は多孔質層が複数備えられていてもよい。この場合、ラフネスファクターが3以上である第一面は、すべてのカチオン交換樹脂層に設けられていてもよいが、少なくとも一つのカチオン交換樹脂層に設けられていればよい。カチオン交換樹脂層の界面抵抗を低いものとし、電池の高率放電性能を向上させることができるからである。
 本発明に係る非水電解質二次電池の構成については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。上記の非水電解質二次電池を複数備える蓄電装置としてもよい。蓄電装置の一実施形態を図3に示す。図3において、蓄電装置100は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。上記蓄電装置100は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
(実施例1-1)
 カチオン交換膜として、厚み50μmのナフィオン膜(シグマアルドリッチ社製)の両面を、JIS R 6010:2000に規定される研磨布紙用研磨材の粒度が320μmであるP320番のサンドペーパーを用いて粗面化処理した。サンドペーパーによる研磨回数は片面あたり80回とした。この膜を実施例1-1のカチオン交換膜とする。
(実施例1-2)
 P400番のサンドペーパーを用いたこと以外は、実施例1-1と同様にしてナフィオン膜の粗面化処理を行った。この膜を実施例1-2のカチオン交換膜とする。
(実施例1-3)
 P1000番のサンドペーパーを用いたこと以外は、実施例1-1と同様にしてナフィオン膜の粗面化処理を行った。この膜を実施例1-3のカチオン交換膜とする。
(実施例1-4)~(実施例1-6)
 サンドペーパーによる研磨回数を変更し、ラフネスファクター、算術平均粗さRa及び最大高さ粗さRzを表1に示す値としたこと以外は、実施例1-3と同様にして実施例1-4~1-6のカチオン交換膜を作製した。
(比較例1-1)
 粗面化処理を行わなかったナフィオン膜を、比較例1-1のカチオン交換膜とする。
[1.表面形態観察]
 次の条件で、実施例1-1~1-6、及び比較例1-1のカチオン交換膜の表面形態観察を行い、ラフネスファクター、算術平均粗さRa、及び最大高さ粗さRzを算出した。
・測定機器:超深度形状測定顕微鏡VK-8500(キーエンス社製)
・測定範囲:1.04×10-3 cm
・形状解析アプリケーション:VK-H1A9(キーエンス社製)
[2.界面抵抗測定]
 [2-1.カチオン交換膜の含浸処理]
 実施例1-1~1-6、及び比較例1-1のカチオン交換膜を、1mol/lの水酸化リチウムの水/アルコール溶液に浸漬し、80℃で12時間撹拌することにより、カチオン交換膜中のプロトンをリチウムイオンに交換した。撹拌後の各実施例及び比較例のカチオン交換膜は、脱イオン水で洗浄し、120℃の脱気下で乾燥することにより、水酸化リチウム及び溶媒の除去を行った。
 得られたLi型カチオン交換膜を、1,2-ジメトキシエタン(DME)と1,3-ジオキソラン(DOL)とを体積比50:50で混合した混合溶媒に、25℃環境下で12時間浸漬することにより、含浸処理を行った。この処理により、含浸処理後のカチオン交換膜には、含浸処理前のカチオン交換膜の質量に対して20質量%の混合溶媒が含浸された。含浸処理前後のカチオン交換膜の厚みは、それぞれ50μm、64μmであった。
 [2-2.電解質層抵抗Rの測定]
 含浸処理後の各実施例及び比較例のカチオン交換膜、及び図4に示すような電気化学測定用セル31(日本トムセル社製)を用いて、抵抗測定用セル30を作製した。ステンレス鋼板製支持体31aに設けられた内径26mm、外径34mmのO-リング31fの内側に、ステンレス鋼板製電極31e及び多孔質膜(多孔質層)36が、カチオン交換樹脂層35を挟み込む形で積層した。積層体上に、ステンレス鋼板製蓋体31bを重ねてボルト31cとナット31dとを締結することにより、抵抗測定用セル30を組み立てた。なお、ポリエチレン製微多孔膜36には、0.3mol/lのリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を含み、DMEとDOLとを50:50(体積比)で混合した非水電解質が含浸されている。
 上記抵抗測定用セルを用いて、交流インピーダンス測定により電解質層抵抗Rを測定した。交流インピーダンス測定は、印加電圧振幅5mV、周波数1MHz~100mHzにて行った。測定結果のナイキスト線図を作製し、等価回路を用いてフィッティングを行った。最も高周波数側に表れる円弧をフィッティングした曲線と実軸との交点のうち、低周波数側の値を読み取り、電解質抵抗Rとした。電解質層抵抗Rは、ポリエチレン製微多孔膜36の抵抗である多孔質層抵抗Re、ポリエチレン製微多孔膜36と含浸処理後のカチオン交換膜35との界面の抵抗である界面抵抗Ri、含浸処理後のカチオン交換膜35の抵抗であるカチオン交換樹脂層抵抗Rcが含まれており、次式(1)で表される。
       R=2Re+2Ri+Rc        (1)
 [2-3.カチオン交換樹脂層抵抗Rcの測定]
 0.3mol/lのLiTFSIを含むDME:DOL=50:50(体積比)の電解液が含浸されたポリエチレン製微多孔膜を配置しないこと以外は[2-2.電解質層抵抗Rの測定]と同様にして、交流インピーダンス測定を行った。この測定により求められた抵抗を、カチオン交換樹脂層抵抗Rcとした。
 [2-4.多孔質層抵抗Reの測定]
 含浸処理後のカチオン交換膜を配置せずに、0.3mol/lのLiTFSIを含むDME:DOL=50:50(体積比)の電解液が含浸されたポリエチレン製微多孔膜1枚のみを配置したこと以外は[2-3.カチオン交換樹脂層抵抗Rcの測定]と同様にして、交流インピーダンス測定を行った。この測定により求められた抵抗を、多孔質層抵抗Reとした。
 交流インピーダンス測定により求めた電解質層抵抗R、カチオン交換樹脂層抵抗Rc、多孔質層抵抗Reの値から、式(1)を用いて界面抵抗Riを算出した。
 ポリエチレン製微多孔膜に含浸した電解液中のLiTFSIの濃度を表2に示す値に変更し、含浸処理後の各実施例及び比較例のカチオン交換膜を用いて、交流インピーダンス測定を行い、界面抵抗Riを算出した。なお、LiTFSIの濃度が0.5mol/lの場合は、実施例1-1~1-3及び比較例1-1のみ測定を行った。
 実施例1-2及び比較例1-1のカチオン交換膜を用い、ポリエチレン製微多孔膜に含浸した電解液中のリチウム多硫化物の硫黄換算濃度を3.0mol/lとし、LiTFSIの濃度を表3に示す値に変更して、交流インピーダンス測定を行い、界面抵抗Riを算出した。
 なお、リチウム多硫化物を含む電解液は次のようにして作製した。露点-50℃以下のグローブボックス内で、リチウム多硫化物(LiS)と硫黄(S)をLiが生成し得る量論比(モル比8:5)にて、DMEとDOLとを体積比50:50で混合した非水溶媒に投入し、撹拌した。この溶液を密閉容器に封入し、80℃の恒温槽内に4日間静置することにより、LiSとSとを反応させ、リチウム多硫化物を含む溶液を作製した。このリチウム多硫化物溶液には、硫黄に換算した場合3.0mol/lに相当するリチウム多硫化物が溶解している。この溶液に、LiTFSIの濃度が0、0.3、0.5又は1.0mol/lとなるようにLiTFSIを溶解させて、リチウム多硫化物を含む電解液を作製した。
 各実施例及び比較例のカチオン交換膜のラフネスファクター、算術平均粗さRa、最大高さ粗さRzを表1に、含浸処理後のカチオン交換膜とLiTFSI及びリチウム多硫化物の濃度を変更した時の、電解液を含むポリエチレン製微多孔膜との界面抵抗Riを表2、表3に示す。実施例1-1~1-6の界面抵抗を比較例1-1の界面抵抗で除した値を、ラフネスファクター、算術平均粗さRa及び最大高さ粗さRzに対してプロットしたグラフを図6~8に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、サンドペーパーによる粗面化処理を行うことにより、ラフネスファクター、算術平均粗さRa、最大高さ粗さRzのいずれもが増加することがわかった。また、表2、表3及び図4~6に示すように、LiTFSIの濃度又はリチウム多硫化物の有無によらず、粗面化処理を行った実施例1-1~1-6のカチオン交換膜は、粗面化処理を行っていない比較例1-1のカチオン交換膜に比べて、界面抵抗Riが減少することが明らかとなった。さらに、LiTFSIの濃度が0.3mol/lと低い場合には、カチオン交換膜表面の最大高さ粗さが10μm以上である実施例1-1~1-4では、最大高さ粗さが10μm未満である実施例1-5、1-6に比べて、界面抵抗が低下することがわかった。また、LiTFSIの濃度が1.0mol/lと高い場合には、算術平均粗さRaが0.5μm以上である実施例1-1~1-3及び実施例1-5、1-6は、算術平均粗さRaが0.5μm未満である実施例1-4に比べて、低い界面抵抗を示した。
 表3に示した通り、リチウム多硫化物を含む場合であっても、カチオン交換膜表面を粗面化することにより、界面抵抗は低下することがわかった。
[3.高率放電試験]
(実施例2-1)
 クエン酸マグネシウムを900℃、アルゴン雰囲気下で1時間炭化処理したのち、1mol/lの硫酸水溶液中に浸漬することによって、MgOを抽出した。続いて、洗浄及び乾燥して、多孔性カーボンを得た。この多孔性カーボンと硫黄とを質量比30:70で混合した。この混合物を、アルゴン雰囲気下で密閉容器に封入し、昇温速度5℃/分で150℃まで昇温し、5時間保持した後、80℃まで放冷した。その後、再び昇温速度5℃/分で300℃まで昇温し、2時間保持する熱処理を行い、カーボン-硫黄複合体(以下、「SPC複合体」ともいう)を得た。
 正極活物質としてSPC複合体、導電剤としてアセチレンブラック、及び結着剤としてポリフッ化ビニリデン(PVDF)を質量比85:5:10で含み、溶媒としてN-メチルピロリドン(NMP)を用いた正極ペーストを作製した。得られた正極ペーストをニッケルメッシュ集電体に充填したのち、乾燥することにより、正極板を作製した。なお、正極ペーストの塗工量は、1.2mg/cmとした。
 負極板には、厚さ10μmの銅箔に金属Liを貼り付けて、負極全体の厚みを310μmとしたものを用いた。
 カチオン交換膜としては、P400番のサンドペーパーを用いて、片面のみ粗面化処理を行ったナフィオン膜を用いた。
 正極電解液は、リチウム多硫化物を硫黄換算濃度で3.0mol/l含み、DMEとDOLとを体積比50:50で混合した溶液を用いた。
 負極電解液としては、DMEとDOLとを体積比50:50で混合した溶媒を用いた。
 図5に示すような電気化学測定用セル41(日本トムセル社製)を用いて、試験用セル40を作製した。まず、ステンレス鋼板製支持体41aに設けられた内径26mm、外径34mmのO-リング41fの内側に、上記のようにして作製した正極43を配置する。正極電解質を含浸させた多孔質膜(多孔質層)46を積層したのち、O-リングの内径よりも大きなサイズとしたカチオン交換樹脂層45を配置した。このとき、上記粗面化処理を行った第一面45aが、多孔質膜46と接するようにカチオン交換樹脂層45を配置した。その上に、負極電解質を含浸させた負極44を積層した。ステンレス鋼板製の電極41eを負極44上に配置し、ステンレス鋼板製蓋体41bを重ねてボルト41cとナット41dとを締結することにより、試験用セル40(以下、「電池」ともいう。)を組み立てた。これを、実施例電池2-1とする。
(比較例2-1)
 カチオン交換膜として粗面化処理を行っていないナフィオン膜を用いたこと以外は、実施例2-1と同様にして比較例2-1に係る試験用セル30を作製した。これを、比較例電池2-1とする。
 次の方法で、実施例電池2-1及び比較例電池2-1の0.1C放電容量、及び0.2C放電容量を測定し、0.2C放電容量を0.1C放電容量で除することにより、0.2C/0.1C比(%)を算出した。
 25℃で1.5Vまでの0.1C定電流放電、及び3.0Vまでの0.1C定電流充電を行った。充電及び放電の終止条件は、設定電圧に到達するか10時間経過するまでとした。上記0.1Cの放電及び充電の工程を1サイクルとして、このサイクルを3サイクル繰り返した。3サイクル目の放電容量をSPC複合体の質量で除した値を、0.1C放電容量(mAh/g)とした。
 なお、1Cは、正極活物質として用いたSPC複合体の質量あたりの容量を、理論容量である1675mAh/gとしたときに、正極活物質の容量を1時間で放電する電流値とした。
 次に、25℃で1.5Vまでの0.2C定電流放電、及び3.0Vまでの0.2C定電流充電を行った。充電及び放電の終止条件は、設定電圧に到達するか5時間経過するまでとした。上記0.2Cの放電及び充電の工程を1サイクルとして、このサイクルを3サイクル繰り返した。3サイクル目の放電容量をSPC複合体の質量で除した値を、0.2C放電容量(mAh/g)とした。0.2C放電容量を0.1C放電容量で除することにより、0.2C/0.1C比(%)を算出した。
 実施例電池2-1及び比較例電池2-1の0.1C放電容量、0.2C放電容量及び0.2C/0.1C比(%)を表4に示す。また、実施例電池2-1及び比較例電池2-1の0.1C及び0.2Cの放電カーブを図9に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例電池2-1は、0.1C、0.2Cどちらの放電電流でも1150mAh/gという高い放電容量を示し、0.2C/0.1C比は100%であった。一方、比較例電池2-1は、0.1C放電容量は、実施例電池2-1と同等であったものの、0.2C放電容量は低く、0.2C/0.1C比は71.7%であった。これは、実施例電池2-1では、カチオン交換樹脂層として、表面を粗面化処理したカチオン交換膜を用いたために、界面抵抗が低下し、高率放電性能が向上したものと考えられる。
 なお、実施例電池2-1では、図9(a)に示したように、正極活物質層中の硫黄の容量に相当する1150mAh/g放電後にも、放電電位は低下しなかった。一方、比較例電池2-1では、図9(b)に示したように、放電末期に放電電位が低下する現象が観測された。これは、粗面化処理によってカチオン交換樹脂層の界面抵抗が低下したことに起因して、正極表面の電流分布がより均一になったためと考えられる。また、粗面化処理により、正極表面でのリチウム多硫化物の保持性が向上したことに起因して、正極電解液中に含有されるリチウム多硫化物の充放電反応への寄与が高まったためと考えられる。
 本実施形態によると、高率放電性能に優れた非水電解質二次電池が得られるため、車載用・定置用などの幅広い用途の二次電池として有用である。
 1 非水電解質二次電池
 2 電極群
 3 電池容器
 4 正極端子
 4’ 正極リード
 5 負極端子
 5’ 負極リード
 20 蓄電ユニット
 21、43 正極
 22 正極電解液
 23、44 負極
 24 負極電解液
 25 セパレータ
 25a、35、45 カチオン交換樹脂層
 25b、36、46 多孔質層(多孔質膜)
 25c、45a 第一面
 25d 第二面
 30 抵抗測定用セル
 31、41 電気化学測定用セル
 31a、41a 支持体
 31b、41b 蓋体
 31c、41c ボルト
 31d、41d ナット
 31e、41e 電極
 31f、41f O-リング
 40 試験用セル
 100 蓄電装置
 

Claims (12)

  1.  硫黄を含む正極と、
     負極と、
     非水電解質と、
     正極と負極との間に配され、ラフネスファクターが3m/m以上である第一面を有するカチオン交換樹脂層と、を備える
     非水電解質二次電池。
  2.  カチオン交換樹脂層の第一面の算術平均粗さRaが0.5μm以上である
     請求項1の非水電解質二次電池。
  3.  カチオン交換樹脂層の第一面の最大高さ粗さRzが5μm以上である
     請求項1又は2の非水電解質二次電池。
  4.  さらに多孔質層を備え、多孔質層はカチオン交換樹脂層の第一面に接している、
     請求項1~3のいずれかの非水電解質二次電池。
  5.  非水電解質は、正極電解質と負極電解質とを備え、
     正極電解質はリチウム多硫化物を含み、
     正極電解質の硫黄換算濃度が負極電解質の硫黄換算濃度よりも高い
     請求項1~4のいずれかの非水電解質二次電池。
  6.  正極電解質の硫黄換算濃度が、1.2mol/l以上である
     請求項5の非水電解質二次電池。
  7.  正極電解質の硫黄換算濃度が、3.0mol/l以上である
     請求項6の非水電解質二次電池。
  8.  正極電解質の硫黄換算濃度が、18mol/l以下である
     請求項5~7のいずれかの非水電解質二次電池。
  9.  正極電解質及び負極電解質の少なくとも一方に含まれるアニオンの濃度が0.7mol/l以下である
     請求項5~8のいずれかの非水電解質二次電池。
  10.  正極電解質に含まれるアニオンの濃度が0.3mol/l以下である
     請求項5~9のいずれかの非水電解質二次電池。
  11.  正極及び負極の少なくとも一方がカチオン交換樹脂を備え、
     非水電解質に含まれるアニオンの濃度が0.7mol/l以下である
     請求項1~4のいずれかの非水電解質二次電池。
  12.  硫黄を含む正極と、負極と、正極と負極との間に介在し、ラフネスファクターが3以上である第一面を備えるカチオン交換樹脂層を備えた非水電解質二次電池の製造方法であって、
     正極とカチオン交換樹脂層との間に、リチウム多硫化物を含む正極電解質を注入し、負極とカチオン交換樹脂層との間に、正極電解質よりもリチウム多硫化物の濃度が低い負極電解質を注入することを含む
     非水電解質二次電池の製造方法。

     
PCT/JP2016/004426 2015-10-14 2016-09-30 非水電解質二次電池 WO2017064843A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16855099.4A EP3364490B1 (en) 2015-10-14 2016-09-30 Nonaqueous electrolyte secondary battery
US15/766,866 US11196078B2 (en) 2015-10-14 2016-09-30 Nonaqueous electrolyte secondary battery
JP2017545088A JP6757504B2 (ja) 2015-10-14 2016-09-30 非水電解質二次電池
CN201680059805.0A CN108140899B (zh) 2015-10-14 2016-09-30 非水电解质二次电池
CN202111215600.6A CN114122387B (zh) 2015-10-14 2016-09-30 非水电解质二次电池
US17/517,347 US20220131177A1 (en) 2015-10-14 2021-11-02 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015202630 2015-10-14
JP2015-202630 2015-10-14
JP2015218141 2015-11-06
JP2015-218141 2015-11-06
JP2016109738 2016-06-01
JP2016-109738 2016-06-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/766,866 A-371-Of-International US11196078B2 (en) 2015-10-14 2016-09-30 Nonaqueous electrolyte secondary battery
US17/517,347 Continuation US20220131177A1 (en) 2015-10-14 2021-11-02 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2017064843A1 true WO2017064843A1 (ja) 2017-04-20

Family

ID=58517178

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/004426 WO2017064843A1 (ja) 2015-10-14 2016-09-30 非水電解質二次電池
PCT/JP2016/004424 WO2017064842A1 (ja) 2015-10-14 2016-09-30 非水電解質二次電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004424 WO2017064842A1 (ja) 2015-10-14 2016-09-30 非水電解質二次電池

Country Status (5)

Country Link
US (3) US11196078B2 (ja)
EP (2) EP3364486B1 (ja)
JP (2) JP6757504B2 (ja)
CN (3) CN114122387B (ja)
WO (2) WO2017064843A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878747A (zh) * 2018-06-13 2018-11-23 力源(广州)新能源科技有限公司 改善锂硫电池性能的功能隔膜及包含该功能隔膜的锂硫电池
WO2020090986A1 (ja) * 2018-11-01 2020-05-07 株式会社Gsユアサ 非水電解液二次電池
CN111902990A (zh) * 2018-03-29 2020-11-06 松下知识产权经营株式会社 电化学器件

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102268181B1 (ko) * 2017-11-21 2021-06-22 주식회사 엘지화학 황-탄소 복합체의 제조방법
JP6992692B2 (ja) * 2018-07-19 2022-01-13 ブラザー工業株式会社 リチウム硫黄電池、及びリチウム硫黄電池の製造方法
FR3094574B1 (fr) * 2019-03-26 2023-10-06 Armor Collecteur de courant, ensemble et dispositif de stockage associés
CN110379986A (zh) * 2019-07-11 2019-10-25 郭建中 一种锂硫二次电池用新型隔膜材料及制备方法
CN110416477A (zh) * 2019-07-19 2019-11-05 田韬 一种锂硫电池正极用离子透过型包覆膜材料
JP7388157B2 (ja) * 2019-11-28 2023-11-29 トヨタ紡織株式会社 二次電池用セパレータ
JP6950855B1 (ja) * 2020-08-28 2021-10-13 昭和電工マテリアルズ株式会社 リチウムイオン二次電池、分離膜及びこれらの製造方法
CN112216890B (zh) * 2020-11-19 2021-11-02 江西海量动力新能源有限公司 一种锰酸锂电池的化成方法
CN112886140A (zh) * 2021-01-29 2021-06-01 苏州科技大学 锂硫电池改性隔膜及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215916A (ja) * 1999-01-26 2000-08-04 Hitachi Maxell Ltd ポリマ―電解質電池
JP2010192385A (ja) * 2009-02-20 2010-09-02 Toyota Central R&D Labs Inc 硫黄電池
JP2015520502A (ja) * 2012-06-19 2015-07-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 電解質添加剤とアイオノマー物品とを含む電気化学セル、ならびにその製造方法および使用方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707422A (en) * 1983-06-27 1987-11-17 Voltaix, Inc. Composite coating for electrochemical electrode and method
JPH08130034A (ja) 1994-10-27 1996-05-21 Mitsubishi Cable Ind Ltd Li二次電池及びセパレータ
US6030720A (en) 1994-11-23 2000-02-29 Polyplus Battery Co., Inc. Liquid electrolyte lithium-sulfur batteries
JPH11339808A (ja) 1998-05-29 1999-12-10 Fujikura Ltd 電 極
JP2001200079A (ja) * 2000-01-17 2001-07-24 Tokuyama Corp バイポーラ膜及びその製造方法
KR100326466B1 (ko) 2000-07-25 2002-02-28 김순택 리튬 설퍼 전지용 전해액
CN1186391C (zh) 2001-04-26 2005-01-26 三星Sdi株式会社 聚合物凝胶电解质及采用该电解质的锂电池
CN1412882A (zh) * 2001-10-15 2003-04-23 三星Sdi株式会社 用于锂-硫电池的电解质和含有该电解质的锂-硫电池
JP2008152985A (ja) 2006-12-15 2008-07-03 Toyota Motor Corp リチウムイオン電池およびその製造方法
WO2010074151A1 (ja) * 2008-12-24 2010-07-01 三菱樹脂株式会社 電池用セパレータおよび非水系リチウム電池
KR20100084326A (ko) * 2009-01-16 2010-07-26 도레이첨단소재 주식회사 리튬이차전지용 분리막 및 이를 포함하는 리튬이차전지
CN102160216A (zh) * 2009-06-30 2011-08-17 松下电器产业株式会社 非水电解质二次电池用正极及其制造方法以及非水电解质二次电池
JP5533871B2 (ja) 2009-08-07 2014-06-25 コニカミノルタ株式会社 固体電解質および固体電解質を有するリチウム二次電池
JP6058874B2 (ja) 2010-08-19 2017-01-11 株式会社アストム イオン交換膜及びその製造方法
US9093710B2 (en) 2012-01-18 2015-07-28 E I Du Pont De Nemours And Company Compositions, layerings, electrodes and methods for making
US20150140360A1 (en) 2012-02-23 2015-05-21 E I Du Pont De Nemours And Company Compositions, layerings, electrodes and methods for making
US8889300B2 (en) * 2012-02-27 2014-11-18 California Institute Of Technology Lithium-based high energy density flow batteries
JP2013191391A (ja) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd 二次電池
CN103682414B (zh) * 2012-08-30 2016-01-13 中国科学院大连化学物理研究所 锂硫液流电池和锂硫液流电池用正极电解液及其制备
DE102012018621A1 (de) 2012-09-14 2014-04-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Alkali-Chalkogen-Batterie mit geringer Selbstentladung und hoher Zyklenfestigkeit und Leistung
CN103474603B (zh) * 2013-09-11 2016-11-02 清华大学 用于锂硫二次电池的离子选择性隔膜及其制备与应用方法
CN203725158U (zh) * 2013-10-28 2014-07-23 上海长翊科技股份有限公司 微结构优化的镓离子交换树脂颗粒
DE112014005499T5 (de) * 2013-12-03 2016-09-01 Ulvac, Inc. Lithium-Schwefel-Akkumulator
KR101610446B1 (ko) 2013-12-30 2016-04-07 현대자동차주식회사 리튬 황 이차전지 분리막
US20150188109A1 (en) * 2013-12-30 2015-07-02 Hyundai Motor Company Separator for lithium-sulfur secondary battery
WO2015141952A1 (ko) * 2014-03-19 2015-09-24 (주)오렌지파워 리튬 설퍼 전지
US10164289B2 (en) * 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215916A (ja) * 1999-01-26 2000-08-04 Hitachi Maxell Ltd ポリマ―電解質電池
JP2010192385A (ja) * 2009-02-20 2010-09-02 Toyota Central R&D Labs Inc 硫黄電池
JP2015520502A (ja) * 2012-06-19 2015-07-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 電解質添加剤とアイオノマー物品とを含む電気化学セル、ならびにその製造方法および使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364490A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902990A (zh) * 2018-03-29 2020-11-06 松下知识产权经营株式会社 电化学器件
CN108878747A (zh) * 2018-06-13 2018-11-23 力源(广州)新能源科技有限公司 改善锂硫电池性能的功能隔膜及包含该功能隔膜的锂硫电池
CN108878747B (zh) * 2018-06-13 2021-12-03 力源(广州)新能源科技有限公司 改善锂硫电池性能的功能隔膜及包含该功能隔膜的锂硫电池
WO2020090986A1 (ja) * 2018-11-01 2020-05-07 株式会社Gsユアサ 非水電解液二次電池
JPWO2020090986A1 (ja) * 2018-11-01 2021-09-24 株式会社Gsユアサ 非水電解液二次電池

Also Published As

Publication number Publication date
EP3364486B1 (en) 2021-02-17
US20180294506A1 (en) 2018-10-11
WO2017064842A1 (ja) 2017-04-20
EP3364490A1 (en) 2018-08-22
JP6757504B2 (ja) 2020-09-23
CN114122387A (zh) 2022-03-01
US20220131177A1 (en) 2022-04-28
EP3364486A1 (en) 2018-08-22
EP3364490B1 (en) 2021-03-03
EP3364486A4 (en) 2019-05-22
EP3364490A4 (en) 2019-06-05
JPWO2017064842A1 (ja) 2018-08-02
JPWO2017064843A1 (ja) 2018-08-02
US10892513B2 (en) 2021-01-12
CN108140899A (zh) 2018-06-08
CN108140875B (zh) 2021-02-26
CN108140875A (zh) 2018-06-08
US11196078B2 (en) 2021-12-07
CN108140899B (zh) 2021-11-09
CN114122387B (zh) 2024-05-31
JP6856027B2 (ja) 2021-04-07
US20180287120A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2017064843A1 (ja) 非水電解質二次電池
JP7232353B2 (ja) 再充電可能なバッテリーセル
JP6156939B2 (ja) リチウムイオン二次電池
KR20130117718A (ko) 다층구조 전극 및 그 제조방법
JP2015069863A (ja) 負極活物質、負極活物質を含む負極、及びそれを用いたリチウムイオン二次電池
WO2019077919A1 (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
EP3404763B1 (en) Electricity storage element
KR20130116038A (ko) 다층구조 전극 및 그 제조방법
JP2016085838A (ja) リチウムイオン二次電池
JP6702338B2 (ja) 非水電解質蓄電素子及びその製造方法
KR20180028930A (ko) 3차원 망상 구조의 전극 집전체를 포함하는 전극
JP7155719B2 (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP6613952B2 (ja) 正極活物質、及びそれを用いた正極ならびにリチウムイオン二次電池
CN114899352A (zh) 非水电解质蓄电元件及其制造方法
KR101493255B1 (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
JP2017152126A (ja) 負極活物質、負極活物質を含有する負極及びリチウムイオン二次電池
JP6922242B2 (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP2016081707A (ja) 負極及びそれを用いたリチウムイオン二次電池
JP2016081706A (ja) 負極及びそれを用いたリチウムイオン二次電池
Shi Study of fluorinated ether-based electrolyte for high-voltage lithium ion batteries and functional porous sulfur cathode for lithium sulfur batteries
CN117716556A (zh) 非水电解质蓄电元件
JP2017152125A (ja) 負極活物質、負極活物質を含む負極及びその負極を含むリチウムイオン二次電池
JP2018125210A (ja) 非水電解質蓄電素子及びその製造方法
KR20130116809A (ko) 이차전지용 전극 활물질 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545088

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15766866

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016855099

Country of ref document: EP