WO2017057213A1 - シリンダ装置 - Google Patents

シリンダ装置 Download PDF

Info

Publication number
WO2017057213A1
WO2017057213A1 PCT/JP2016/078153 JP2016078153W WO2017057213A1 WO 2017057213 A1 WO2017057213 A1 WO 2017057213A1 JP 2016078153 W JP2016078153 W JP 2016078153W WO 2017057213 A1 WO2017057213 A1 WO 2017057213A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
spacer
inner cylinder
rod
intermediate cylinder
Prior art date
Application number
PCT/JP2016/078153
Other languages
English (en)
French (fr)
Inventor
有未 田邊
夕成 木村
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to KR1020177026892A priority Critical patent/KR102527030B1/ko
Priority to DE112016001084.2T priority patent/DE112016001084T5/de
Priority to JP2017543223A priority patent/JP6652571B2/ja
Priority to CN201680020053.7A priority patent/CN107407364B/zh
Priority to US15/562,310 priority patent/US10309479B2/en
Publication of WO2017057213A1 publication Critical patent/WO2017057213A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/36Special sealings, including sealings or guides for piston-rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3235Constructional features of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3235Constructional features of cylinders
    • F16F9/3242Constructional features of cylinders of cylinder ends, e.g. caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/532Electrorheological [ER] fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/30Sealing arrangements

Definitions

  • the present invention relates to a cylinder device suitably used for buffering vibration of a vehicle such as an automobile.
  • a cylinder device represented by a hydraulic shock absorber is provided between a vehicle body (spring top) side and each wheel (spring bottom) side.
  • an intermediate cylinder is provided between the inner cylinder and the outer cylinder of the cylinder device, and a working fluid (for example, electrorheological fluid) is circulated between the inner cylinder and the intermediate cylinder.
  • the inner cylinder is fixed with an axial clamping force between the rod guide and the base member.
  • the intermediate cylinder extends in the axial direction between the rod guide and the base member in a state in which the inner cylinder is surrounded from the radially outer side.
  • a spacer made of, for example, an insulating material is provided between the intermediate cylinder and the rod guide.
  • An object of the present invention is to provide a cylinder device that can stably attach an inner cylinder and an intermediate cylinder and can suppress leakage of fluid.
  • a cylinder device includes an inner cylinder in which a functional fluid whose fluid properties are changed by an electric field or a magnetic field is sealed, and a rod inserted therein, and an outer cylinder provided outside the inner cylinder.
  • An intermediate cylinder provided between the inner cylinder and the outer cylinder, in which the functional fluid flows from one end side to the other end side in the axial direction of the cylinder device by the forward and backward movement of the rod
  • a rod guide that supports the rod and is provided between the inner cylinder and an intermediate cylinder that functions as an electrode or a magnetic pole, and is provided so as to close ends of the one end side of the inner cylinder and the outer cylinder.
  • the inner cylinder and the intermediate cylinder can be stably attached to the rod guide, and fluid leakage can also be suppressed by the seal member.
  • FIG. 2 is an enlarged cross-sectional view showing a mounting portion of a rod guide, an inner cylinder, and an intermediate cylinder in a state where a piston rod, a rod seal, and the like in FIG. 1 are removed.
  • FIGS. 1 to 3 show a shock absorber as a cylinder device according to the first embodiment of the present invention.
  • the shock absorber 1 is configured as a damping force-adjustable hydraulic shock absorber (semi-active damper) using a functional fluid (that is, an electrorheological fluid) as a working fluid 20 such as a working oil sealed inside.
  • the shock absorber 1 constitutes a suspension device for a vehicle together with a suspension spring (not shown) made of, for example, a coil spring.
  • a suspension spring not shown
  • one end side of the shock absorber 1 in the axial direction is described as an “upper end” side
  • the other end side in the axial direction is described as a “lower end” side.
  • the shock absorber 1 includes an inner cylinder 2, an outer cylinder 3, a piston 5, a piston rod 8, a rod guide 9, an intermediate cylinder 15, and the like.
  • the inner cylinder 2 is formed as a cylindrical cylinder extending in the axial direction, and a working fluid 20 (that is, a functional fluid) described later is enclosed inside.
  • a piston rod 8 which will be described later is inserted into the inner cylinder 2, and the outer cylinder 3 is disposed outside the inner cylinder 2 so as to be coaxial.
  • the outer cylinder 3 forms an outer shell of the shock absorber 1 and is formed as a cylindrical body.
  • the outer cylinder 3 has a closed end whose lower end is closed by a bottom cap 4 using welding means or the like.
  • the bottom cap 4 constitutes a base member together with a valve body 12A of the bottom valve 12 described later.
  • the upper end side of the outer cylinder 3 serves as an opening end, and a caulking portion 3A is formed at the opening end side by bending inward in the radial direction.
  • the caulking portion 3A holds the outer peripheral side of an annular plate body 10A of a rod seal 10 described later in a state of retaining.
  • the inner cylinder 2 is provided coaxially with the outer cylinder 3 in the outer cylinder 3.
  • the lower end side of the inner cylinder 2 is attached to the valve body 12A of the bottom valve 12, and the upper end side is attached to the rod guide 9.
  • the inner cylinder 2 constitutes a cylinder together with the outer cylinder 3, and a working fluid 20 is sealed in the cylinder.
  • the inner cylinder 2 is formed with an oil hole 2A that is always in communication with a passage 16 to be described later as a radial lateral hole, and the rod-side oil chamber B in the inner cylinder 2 is provided with a passage 16 to be described later by the oil hole 2A.
  • An annular reservoir chamber A is formed between the inner cylinder 2 and the outer cylinder 3.
  • a gas is sealed in the reservoir chamber A together with the working fluid 20.
  • This gas may be atmospheric pressure air or a compressed gas such as nitrogen gas.
  • the gas in the reservoir chamber A is compressed to compensate for the entry volume of the piston rod 8 when the piston rod 8 is contracted (contraction stroke).
  • the piston 5 is slidably fitted (inserted) into the inner cylinder 2.
  • the piston 5 defines the inside of the inner cylinder 2 in two chambers, a rod-side oil chamber B and a bottom-side oil chamber C.
  • the piston 5 is formed with a plurality of oil passages 5A and 5B that allow the rod-side oil chamber B and the bottom-side oil chamber C to communicate with each other in the circumferential direction.
  • the shock absorber 1 according to the present embodiment has a uniflow structure. For this reason, the working fluid 20 in the inner cylinder 2 is transferred from the rod-side oil chamber B (that is, the oil hole 2A of the inner cylinder 2) to the passage 16 described later in both the contraction stroke and the expansion stroke of the piston rod 8. It always circulates in one direction (ie, the direction indicated by arrow E in FIG. 1).
  • the upper end surface of the piston 5 is opened when the piston 5 is slid downward in the inner cylinder 2 in the contraction stroke of the piston rod 8, and is closed at other times.
  • a contraction-side check valve 6 is provided.
  • the contraction-side check valve 6 allows the oil liquid (working fluid 20) in the bottom-side oil chamber C to flow through the oil passages 5A toward the rod-side oil chamber B, and the oil in the opposite direction. It is configured to prevent the liquid from flowing.
  • a disk valve 7 is provided as an extension side damping force generating mechanism.
  • the extension-side disc valve 7 opens when the pressure in the rod-side oil chamber B exceeds a predetermined relief set pressure when the piston 5 slides upward in the inner cylinder 2 during the extension stroke of the piston rod 8. The pressure at this time is relieved to the bottom side oil chamber C side through each oil passage 5B.
  • the piston rod 8 as a rod extends in the inner cylinder 2 so as to be displaceable in the axial direction.
  • the lower end side of the piston rod 8 is connected (fixed) to the piston 5 in the inner cylinder 2, and the upper end side extends to the outside of the inner cylinder 2 and the outer cylinder 3 serving as cylinders.
  • the upper end side that is one end side of the piston rod 8 protrudes to the outside of the outer cylinder 3 via the rod guide 9.
  • the rod guide 9 is fitted and provided so as to close the upper end sides of the inner cylinder 2 and the outer cylinder 3.
  • the rod guide 9 is formed as a cylindrical body having a predetermined shape, for example, by subjecting a metal material, a hard resin material, or the like to molding or cutting. As shown in FIGS. 1 and 2, the rod guide 9 is positioned on the upper side and is positioned on the lower side of the large-diameter portion 9A.
  • the small cylindrical portion 9B having a short cylindrical shape that is inserted into the inner peripheral side of the inner cylinder 2 and the spacer 17 described later is fitted between the small diameter portion 9B and the large diameter portion 9A.
  • the annular step 9C is formed into a stepped cylindrical shape.
  • a guide portion 9D for guiding the piston rod 8 so as to be slidable in the axial direction is provided on the inner peripheral side of the small diameter portion 9B of the rod guide 9.
  • the guide portion 9D is formed, for example, by applying a tetrafluoroethylene coating to the inner peripheral surface of a metal cylinder.
  • the large-diameter portion 9A of the rod guide 9 is provided with communication passages 9E at a plurality of locations (for example, three locations) spaced apart in the circumferential direction.
  • Each communication passage 9E is a passage for communicating an oil sump chamber 11 described later to the reservoir chamber A via the check valve body 10C.
  • the rod guide 9 configured as described above is attached by press-fitting the large-diameter portion 9A to the inner peripheral side of the outer cylinder 3 and press-fitting the small-diameter portion 9B to the inner peripheral side of the inner cylinder 2.
  • the rod guide 9 supports the piston rod 8 by guiding the piston rod 8 to be slidable in the axial direction by a guide portion 9D provided on the inner peripheral side.
  • the rod seal 10 is provided between the caulking portion 3A of the outer cylinder 3 and the large diameter portion 9A of the rod guide 9.
  • the rod seal 10 includes a metallic annular plate 10A having an insertion hole for the piston rod 8 on the inner peripheral side, and an elastic seal portion made of an elastic material such as rubber fixed to the annular plate 10A by means of baking or the like. 10B and a check valve body 10C formed on the lower surface side of the annular plate body 10A so as to be elastically deformable.
  • the rod seal 10 seals (seal) between the outer cylinder 3 and the piston rod 8 in a liquid-tight and air-tight manner when the inner periphery of the elastic seal portion 10B is in sliding contact with the outer periphery of the piston rod 8. .
  • An oil sump chamber 11 is provided between the large-diameter portion 9A of the rod guide 9 and the rod seal 10.
  • the oil sump chamber 11 is formed as an annular space surrounded by the piston rod 8, the large diameter portion 9A of the rod guide 9, the elastic seal portion 10B of the rod seal 10, and the like.
  • the oil sump chamber 11 is configured such that when the hydraulic oil in the rod side oil chamber B or gas mixed in the oil leaks through a slight gap between the piston rod 8 and the guide portion 9D, Etc. are temporarily stored.
  • the check valve body 10C of the rod seal 10 is arranged between the oil reservoir chamber 11 and the reservoir chamber A.
  • the check valve body 10 ⁇ / b> C allows leakage oil in the oil sump chamber 11 to flow into the reservoir chamber A through the communication passages 9 ⁇ / b> E of the rod guide 9, and prevents reverse flow.
  • the check valve body 10C prevents the gas and hydraulic oil in the reservoir chamber A from flowing back to the oil reservoir chamber 11 side.
  • a bottom valve 12 is provided on the lower end side of the inner cylinder 2 so as to be positioned between the inner cylinder 2 and the bottom cap 4.
  • the bottom valve 12 includes a valve body 12A that is fixedly provided on the inner side surface (upper surface) of the bottom cap 4, and an expansion side member and a reduction side valve member that are provided on the valve body 12A.
  • the valve body 12 ⁇ / b> A defines a reservoir chamber A and a bottom-side oil chamber C between the lower end side of the inner cylinder 2 and the bottom cap 4.
  • the valve body 12A is formed with oil passages that allow the reservoir chamber A and the bottom-side oil chamber C to communicate with each other via the valve member at intervals in the circumferential direction.
  • annular stepped portion 12B is formed on the outer peripheral side of the valve body 12A, and the lower end inner peripheral side of the inner cylinder 2 is fitted and fixed to the stepped portion 12B.
  • An annular holding member 13 is fitted and attached to the step portion 12B on the outer peripheral side of the inner cylinder 2.
  • the holding member 13 holds the lower end side of an intermediate cylinder 15 to be described later in a state of being positioned in the radial direction and the axial direction.
  • the holding member 13 is formed of, for example, an electrically insulating material, and keeps the inner cylinder 2, the bottom cap 4 and the valve body 12 ⁇ / b> A and the intermediate cylinder 15 in an electrically insulated state.
  • the holding member 13 is formed with a plurality of oil passages 13 ⁇ / b> A that allow passages 16 to be described later to communicate with the reservoir chamber A.
  • An oil passage 14 communicating with the reservoir chamber A is provided between the valve body 12A of the bottom valve 12 and the bottom cap 4.
  • the oil passage 14 also communicates with a passage 16 in the intermediate cylinder 15 through each oil passage 13A of the holding member 13.
  • the oil passage 14 is disposed between the bottom-side oil chamber C and the reservoir chamber A in the inner cylinder 2, and communicates and blocks between the two by the bottom valve 12.
  • an intermediate cylinder 15 made of a pressure tube extending in the axial direction is disposed between the inner cylinder 2 and the outer cylinder 3, an intermediate cylinder 15 made of a pressure tube extending in the axial direction is disposed.
  • the intermediate cylinder 15 is formed using a conductive material and constitutes a cylindrical electrode.
  • the intermediate cylinder 15 is coaxial with the inner cylinder 2 and extends in the axial direction, and has a cylindrical portion 15A that is slightly larger in diameter than the outer diameter of the inner cylinder 2, and is formed at a top end of the cylindrical portion 15A.
  • the upper diameter-expanded cylindrical portion 15C that is integrally formed on the side and expanded radially outwardly via the tapered inclined cylindrical portion 15B, and the lower diameter-expanded portion that is also integrally formed on the lower end side of the cylindrical portion 15A. It is comprised including cylinder part 15D.
  • the lower diameter expanded cylindrical portion 15D is expanded radially outward from the lower end side of the cylindrical portion 15A via a tapered
  • an annular step part is configured between the cylindrical part 15A and the enlarged diameter cylinder part 15C. That is, the upper diameter expanded cylindrical portion 15C is expanded radially outward from the upper end side of the cylindrical portion 15A via the annular stepped portion (tapered inclined cylindrical portion 15B). 15 C of this enlarged diameter cylinder part has fitted the lower cylinder part 17B of the spacer 17 which the upper end inner peripheral side mentions later.
  • the upper end side (the enlarged diameter cylindrical portion 15C) of the intermediate cylinder 15 is positioned at the annular step 9C of the rod guide 9 via the spacer 17, and the enlarged diameter cylindrical portion 15D on the lower end side is held by the stepped portion 12B of the valve body 12A. It is positioned via the member 13.
  • the intermediate cylinder 15 is formed with an annular passage 16 extending so as to surround the outer peripheral side of the inner cylinder 2 over the entire circumference (that is, between the inner cylinder 2). This passage 16 is always in communication with the rod-side oil chamber B through an oil hole 2 ⁇ / b> A formed in the inner cylinder 2.
  • the working fluid 20 in the inner cylinder 2 flows into the passage 16 from the rod side oil chamber B in the direction of arrow E through the oil hole 2A in both the contraction stroke and the extension stroke of the piston rod 8.
  • the working fluid 20 that has flowed into the passage 16 is moved upward and backward in the inner cylinder 2 (that is, while the contraction stroke and the extension stroke are repeated). It flows toward the lower end side.
  • the working fluid 20 that has flowed into the passage 16 flows out from the lower end side of the intermediate cylinder 15 into the reservoir chamber A via the oil passage 13A of the holding member 13 and the like.
  • the pressure of the working fluid 20 is highest on the upstream side of the passage 16 (that is, on the oil hole 2A side), and gradually decreases because it receives flow passage (passage) resistance while flowing through the passage 16.
  • the working fluid 20 in the passage 16 has the lowest pressure when flowing through the downstream side of the passage 16 (that is, the oil passage 13A of the holding member 13).
  • the spacer 17 is an attachment member for positioning the upper end side of the intermediate cylinder 15 (that is, the diameter-expanded cylinder portion 15C) with respect to the rod guide 9.
  • the spacer 17 is formed as a short stepped cylindrical body made of, for example, an electrically insulating material, and includes an upper cylindrical portion 17A, a lower cylindrical portion 17B, an annular flange portion 17C, and a seal holding portion 17D which will be described later.
  • the spacer 17 is attached in a state in which the inner peripheral side (the inner peripheral side of the upper cylindrical portion 17A and the lower cylindrical portion 17B) is fitted to the outer periphery on the upper end side of the inner cylinder 2.
  • the upper cylindrical portion 17A of the spacer 17 is fitted into the annular step 9C of the rod guide 9, and is fixed (positioned) in a retaining state with respect to the annular step 9C.
  • annular flange portion 17C is provided at a position below the intermediate portion in the axial direction (between the upper cylinder portion 17A and the lower cylinder portion 17B).
  • the lower cylinder part 17B located below the flange part 17C is formed thicker (so that the radial dimension becomes larger) than the upper cylinder part 17A.
  • a seal holding portion 17D is provided so as to protrude downward.
  • the seal holding portion 17D is formed such that the lower end portion of the lower cylinder portion 17B of the spacer 17 is shaved over the entire circumference from the inner side and the outer side in the radial direction, and is thinner than the lower cylinder portion 17B. It is shaped as a protrusion.
  • An elastic seal member 18 that seals one end (upper end side) of the passage 16 between the inner cylinder 2 and the intermediate cylinder 15 is attached to the seal holding portion 17D.
  • the spacer 17 is formed so that its inner diameter is slightly larger than the outer diameter of the inner cylinder 2, and the outer diameter of the lower cylinder part 17 ⁇ / b> B is slightly smaller than the inner diameter of the enlarged cylinder part 15 ⁇ / b> C of the intermediate cylinder 15. Is formed.
  • An enlarged diameter cylinder portion 15C of the intermediate cylinder 15 is loosely fitted to the outer cylinder side of the lower cylinder portion 17B of the spacer 17, and at this time, the flange 17C of the spacer 17 and the upper end of the enlarged diameter cylinder portion 15C are attached. As shown in FIG. 3, a gap S is formed between the two.
  • the spacer 17 is provided so as to be relatively movable in the axial direction within the gap S with respect to the diameter-enlarging cylindrical portion 15 ⁇ / b> C of the intermediate cylinder 15 and the inner cylinder 2.
  • the flange portion 17 ⁇ / b> C is provided at a position where it does not come into contact with one end of the intermediate tube 15 (the upper end of the enlarged diameter tube portion 15 ⁇ / b> C).
  • the seal member 18 made of an elastic material is arranged between the inner cylinder 2 and the seal holding part 17D of the spacer 17 with a tightening margin, and seals between the first seal part 18A and the enlarged diameter cylinder part 15C of the intermediate cylinder 15. And a seal holding portion 17D of the spacer 17 and a second seal portion 18B which is disposed with a tightening margin and seals between the two.
  • the seal member 18 is formed as a seal having a U-shaped cross section (for example, U packing), and the first seal portion 18A and the second seal portion 18B are connected in a U-shape. It is integrally formed by the part 18C.
  • the seal member 18 prevents the working fluid in the passage 16 from leaking from between the inner cylinder 2 and the intermediate cylinder 15 to the outside together with the spacer 17.
  • the seal member 18 is held in a retaining state via a seal holding portion 17D on the lower end side of the lower cylindrical portion 17B of the spacer 17.
  • the lower cylinder portion 17B of the spacer 17 is loosely fitted between the outer peripheral surface of the inner cylinder 2 and the enlarged diameter cylinder portion 15C of the intermediate cylinder 15, and the seal portions 18A and 18B of the seal member 18 are
  • the two fitting portions that is, the outer peripheral surface of the inner cylinder 2 and the diameter-enlarged cylinder portion 15C of the intermediate cylinder 15
  • the sealing member 18 in an elastically deformed state can impart a retaining property and a sealing property to the fitting portion between them.
  • the upper end side of the intermediate cylinder 15 is a diameter-enlarged cylinder part 15C that is expanded radially outward through a tapered inclined cylinder part 15B.
  • the tapered inclined cylindrical portion 15B (that is, the annular stepped portion) serves as a pressure receiving surface that receives pressure by the working fluid 20 in the passage 16, and the intermediate cylinder 15 is formed by the pressure received by the inclined cylindrical portion 15B. It is pressed downward (in the direction of arrow F in FIGS. 1 and 2). As a result, the intermediate cylinder 15 is held in a state in which the lower diameter expanded cylinder portion 15D is pressed downward against the holding member 13 (that is, the stepped portion 12B of the valve body 12A).
  • the lower cylinder portion 17B of the spacer 17 receives the pressure by the working fluid 20 in the passage 16 while being sandwiched between the enlarged diameter cylinder portion 15C of the intermediate cylinder 15 and the inner cylinder 2. For this reason, the spacer 17 is pressed upward by the pressure in the passage 16, is pressed against the annular step 9C of the rod guide 9, and is held in a state of being fitted to the annular step 9C.
  • the intermediate cylinder 15 is connected to the positive electrode of a battery 19 serving as a power source via, for example, a high voltage driver (not shown) that generates a high voltage.
  • the intermediate cylinder 15 constitutes an electrode (electrode) that applies an electric field to the working fluid 20 (that is, electrorheological fluid as a functional fluid) in the passage 16.
  • Both end sides of the intermediate cylinder 15 (that is, the upper and lower enlarged diameter cylinder portions 15C and 15D) are electrically insulated by the electrically insulating holding member 13 and the spacer 17.
  • the inner cylinder 2 is connected to the negative electrode (ground) via the rod guide 9, the bottom valve 12, the bottom cap 4, the outer cylinder 3, the high-voltage driver, and the like.
  • An annular passage 16 formed between the inner cylinder 2 and the intermediate cylinder 15 has a flow resistance against the working fluid 20 (that is, electrorheological fluid) that flows through the sliding of the piston 5 in the inner cylinder 2 and the outer cylinder 3.
  • the working fluid 20 that is, electrorheological fluid
  • the working fluid 20 serving as the working oil employed in the present embodiment is configured using an electrorheological fluid (ER fluid: Electric Rheological Fluid) as a functional fluid.
  • the electrorheological fluid changes its flow resistance (damping force) according to the applied voltage.
  • the electrorheological fluid includes, for example, base oil (base oil) made of silicon oil or the like, and particles (fine particles) that are mixed in a state dispersed in the base oil and whose viscosity resistance changes according to a change in electric field. It is comprised by.
  • the high voltage driver boosts the DC voltage output from the battery 19 based on a command (high voltage command) output from a controller (not shown) for variably adjusting the damping force of the shock absorber 1. .
  • a high voltage obtained by boosting the DC voltage from the battery 19 is supplied (applied) to the intermediate cylinder 15.
  • a potential difference corresponding to the voltage applied to the intermediate cylinder 15 is generated in the passage 16 between the inner cylinder 2 and the intermediate cylinder 15, and the viscosity of the working fluid 20 (that is, electrorheological fluid) is different from the potential difference. It is variably controlled according to
  • the shock absorber 1 continuously changes the generated damping force characteristic (damping force characteristic) from a hard characteristic (hard characteristic) to a soft characteristic (soft characteristic) according to the voltage applied to the intermediate cylinder 15. Can be adjusted.
  • the shock absorber 1 is not necessarily required to continuously change the damping force characteristic, and can be configured to be adjustable in, for example, two stages or a plurality of stages.
  • the shock absorber 1 generates a potential difference in the passage 16 between the inner cylinder 2 and the intermediate cylinder 15, and controls the viscosity of the electrorheological fluid passing through the passage 16, thereby reducing the generated damping force. It is configured to be variably controlled (adjusted).
  • the shock absorber 1 according to the present embodiment has the above-described configuration, and the operation thereof will be described next.
  • the upper end (projecting end) side of the piston rod 8 is attached to the vehicle body side of the vehicle, and the lower end side of the outer cylinder 3 (for example, the mounting eye on the bottom cap 4 side). ) To the wheel side (axle side).
  • the piston rod 8 is displaced so as to extend and contract from the outer cylinder 3.
  • a potential difference is generated in the passage 16 between the inner cylinder 2 and the intermediate cylinder 15 based on a command from the controller, and the viscosity of the working fluid 20 (that is, electrorheological fluid) passing through the passage 16 is increased.
  • the generated damping force of the shock absorber 1 is variably adjusted.
  • the piston 5 moves upward in the inner cylinder 2 and the contraction-side check valve 6 of the piston 5 is closed.
  • the working fluid 20 in the rod side oil chamber B is pressurized, flows into the passage 16 through the oil hole 2 ⁇ / b> A of the inner cylinder 2, and flows from the lower end side of the passage 16 to the reservoir chamber A.
  • the working fluid 20 flows into the bottom side oil chamber C of the inner cylinder 2 from the reservoir chamber A so as to be replenished via the bottom valve 12.
  • the working fluid 20 that has flowed into the passage 16 in both the expansion stroke and the contraction stroke of the piston rod 8 corresponds to the potential difference between the inner cylinder 2 and the intermediate cylinder 15 (that is, in the passage 16). It flows through the passage 16 toward the outlet side (that is, the oil passage 13A side of the holding member 13) with a high viscosity and flows out into the reservoir chamber A. At this time, the working fluid 20 passing through the passage 16 can generate a damping force corresponding to its viscosity (that is, viscous resistance), and the shock absorber 1 can buffer (attenuate) the vertical vibration of the vehicle.
  • the inner cylinder 2 and the intermediate cylinder 15 are disposed so as to extend in the axial direction between the rod guide 9 and the valve body 12A of the bottom valve 12.
  • the inner cylinder 2 and the intermediate cylinder 15 each have a dimensional tolerance in the axial direction. It becomes necessary to strictly manage the dimensions, making it difficult to manage the dimensions. For this reason, if only the inner cylinder 2 is to be positioned in the axial direction between the rod guide 9 and the valve body 12A, the positioning of the intermediate cylinder 15 is deteriorated, and the intermediate cylinder 15 (that is, the passage 16) is not positioned.
  • the working fluid may leak to the reservoir chamber A side.
  • the upper end side of the intermediate cylinder 15 is attached to the rod guide 9 via the spacer 17 and the upper end side of the passage 16 is sealed between the inner cylinder 2 and the intermediate cylinder 15.
  • the sealing member 18 is provided on the lower end side of the spacer 17. That is, the spacer 17 is fitted to the outer peripheral surface of the inner cylinder 2, the upper cylinder portion 17A is fitted to the annular step 9C of the rod guide, and the lower cylinder portion 17B below the flange portion 17C is A diameter-enlarged cylinder portion 15C of the intermediate cylinder 15 is fitted and attached.
  • a gap S can be formed between the flange portion 17C of the spacer 17 and the upper end of the enlarged diameter cylindrical portion 15C as shown in FIG. 15 (upper diameter expanded cylindrical portion 15C) can be fitted and attached so as to be relatively movable in the axial direction within the gap S. For this reason, it is not necessary to strictly manage the axial dimension of the intermediate cylinder 15, and workability and productivity in manufacturing the intermediate cylinder 15 can be improved.
  • a diameter-increasing cylindrical portion 15C that expands radially outward is formed on the upper end side of the intermediate cylinder 15, and a tapered inclined cylindrical portion 15B that serves as a pressure receiving surface is formed on the lower side thereof.
  • the pressure of the working fluid 20 having the highest pressure in the passage 16 is received by the inclined cylinder portion 15B to generate a pressing force in the direction indicated by the arrow F on the intermediate cylinder 15, and this force is received on the holding member 13 side.
  • the intermediate cylinder 15 is placed between the rod guide 9 and the valve body 12A in a state in which a gap S (see FIG.
  • a seal holding portion 17D is provided on the lower cylinder portion 17B of the spacer 17 disposed between the enlarged diameter cylindrical portion 15C of the intermediate cylinder 15 and the inner cylinder 2, and the inner portion of the seal holding portion 17D includes An elastic seal member 18 that seals one end (upper end side) of the passage 16 is provided between the cylinder 2 and the intermediate cylinder 15.
  • the seal member 18 includes a first seal portion 18A that seals between the inner cylinder 2 and the seal holding portion 17D of the spacer 17, and a gap between the enlarged diameter cylinder portion 15C of the intermediate cylinder 15 and the seal holding portion 17D of the spacer 17. And a second seal portion 18B for sealing.
  • the working fluid 20 in the passage 16 can be prevented from leaking outside from the spacer 17 side between the inner cylinder 2 and the intermediate cylinder 15 by the seal member 18.
  • the pressure of the passage 16 that is, the pressure of the working fluid 20
  • the spacer 17 receives an upward pressing force, so that it comes into contact with the annular step 9C of the rod guide 9,
  • the spacer 17 can be positioned with an axial clamping force with respect to the rod guide 9.
  • the diameter-enlarging tube portion 15C of the intermediate tube 15 is fitted to the lower tube portion 17B of the spacer 17 from the outside, and is located on the downstream side of the passage 16 from this fitting portion.
  • the intermediate cylinder 15 has a larger inner diameter (diameter) than the cylindrical portion 15A.
  • the outer diameter of the spacer 17 (lower cylinder portion 17B) is slightly smaller than the inner diameter of the intermediate cylinder 15 (expanded cylinder portion 15C), and the inner diameter of the spacer 17 is slightly larger than the outer diameter of the inner cylinder 2.
  • the spacer 17 can move relative to the inner cylinder 2 and the intermediate cylinder 15.
  • the lower cylinder part 17B of the spacer 17 is provided with a seal holding part 17D provided with a seal member 18 for sealing the pressure in the intermediate cylinder 15.
  • the spacer 17 receives an upward pressing force, so that it hits the annular step 9C of the rod guide 9,
  • the spacer 17 can be positioned with respect to the rod guide 9 with an axial tightening force, that is, an axial force.
  • the intermediate cylinder 15 receives the downward pressure (that is, the pressure of the working fluid 20) by the inclined cylinder portion 15B that becomes the pressure receiving surface of the diameter-enlarging cylinder portion 15C.
  • the intermediate cylinder 15 can be positioned with respect to the valve body 12A with an axial tightening force by the diameter cylinder portion 15D) striking the stepped portion 12B of the valve body 12A via the holding member 13.
  • the spacer 17 protrudes radially outward on the upper side of the lower cylinder part 17B to which the enlarged cylinder part 15C of the intermediate cylinder 15 is fitted, and is larger than the inner diameter of the intermediate cylinder 15 (expanded cylinder part 15C). It has a flange portion 17C having a diameter. For this reason, when assembling the spacer 17 so that the lower cylinder part 17B of the spacer 17 is sandwiched between the enlarged cylinder part 15C of the intermediate cylinder 15 and the inner cylinder 2, the spacer 17 is unnecessarily attached to the intermediate cylinder 15. Intrusion into the inside can be prevented by the flange portion 17C.
  • the inner cylinder 2 can be positioned in the axial direction between the rod guide 9 and the bottom valve 12 (valve body 12A), and an intermediate
  • the cylinder 15 can also be positioned in the axial direction using the spacer 17 and the seal member 18 while abutting against the holding member 13 and the valve body 12A and positioned in the axial direction. It is possible to suppress backlash in the direction and displacement.
  • leakage of the working fluid 20 in the intermediate cylinder 15 to the outside of the passage 16 can be suppressed by the seal member 18 and the spacer 17.
  • FIGS. 4 to 6 show a second embodiment of the present invention.
  • a feature of the present embodiment is that a configuration in which the space between the inner cylinder, the spacer, and the intermediate cylinder is sealed using a highly versatile seal member.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the spacer 31 employed in the second embodiment is divided into an upper spacer 32 as one spacer and a lower spacer 33 as another spacer.
  • the upper spacer 32 is composed of an upper cylindrical portion 32A and a lower cylindrical portion 32B in the same manner as the spacer 17 described in the first embodiment.
  • the lower cylinder part 32B in this case is formed shorter than the lower cylinder part 17B described in the first embodiment. That is, the lower cylinder part 32B is disposed at a position above the diameter-enlarged cylinder part 15C of the intermediate cylinder 15, and between the lower end 32B1 of the lower cylinder part 32B and the upper end of the diameter-enlarged cylinder part 15C, FIG.
  • a gap S is formed as shown in FIG.
  • the lower cylinder part 32B of the upper spacer 32 is formed to be thicker (so that the radial dimension becomes larger) than the upper cylinder part 32A.
  • the outer peripheral side of the lower cylinder part 32 ⁇ / b> B constitutes a flange part in the spacer 31.
  • the lower cylindrical portion 32B is provided with an annular mounting hole 32C that is open on the lower side and closed on the upper side.
  • the annular mounting hole 32C is a ring-shaped concave groove (bottomed hole) that extends over the entire circumference of the lower cylindrical portion 32B. Is formed.
  • the annular attachment hole 32C is an attachment hole for attaching the lower spacer 33 to the upper spacer 32 and assembling them together.
  • the lower cylindrical portion 32B is formed with a plurality of openings 32D that are elongated holes extending in the radial direction and extending in the circumferential direction of the annular mounting hole 32C, and each opening 32D is formed as shown in FIG.
  • the lower cylinder portion 32B is open on the outer peripheral surface.
  • a substantially U-shaped notch 32E is formed at a position between the openings 32D on the outer peripheral side of the lower cylinder part 32B, and each notch 32E has an annular mounting hole 32C and a lower cylinder part 32B. It communicates in the radial direction.
  • These notches 32E engage with positioning protrusions 33E described later, whereby the upper spacer 32 and the lower spacer 33 are stopped.
  • the lower spacer 33 is formed as a short cylinder that is loosely fitted between the diameter-enlarged cylinder portion 15 ⁇ / b> C of the intermediate cylinder 15 and the inner cylinder 2.
  • an annular protrusion 33A that extends toward the inside of the annular mounting hole 32C of the upper spacer 32 is integrally formed.
  • a plurality of hook portions 33B are provided that are hooked on the lower end 32B1 side of the lower cylinder portion 32B via the openings 32D.
  • annular seal groove 33C is formed at a position between the lower end side inner periphery of the annular protrusion 33A and the lower end surface of the upper spacer 32.
  • An O-ring 34 as a seal member is mounted in the seal groove 33C, and the O-ring 34 constitutes a first seal portion that seals between the inner cylinder 2 and the spacer 31.
  • another annular seal groove 33D is formed at a position lower in the axial direction than the annular protrusion 33A, and an O-ring as a seal member is formed in the seal groove 33C. 35 is mounted.
  • the O-ring 35 constitutes a second seal portion that seals between the intermediate cylinder 15 and the spacer 31.
  • positioning protrusions 33E are provided on the outer peripheral side of the lower spacer 33, and the positioning protrusions 33E are formed as protrusions having a substantially U shape. Then, the positioning protrusion 33E is detachably engaged with the notch 32E of the upper spacer 32, whereby the lower spacer 33 is held against the upper spacer 32. That is, the lower spacer 33 is secured in the axial direction with respect to the lower cylinder portion 32B of the upper spacer 32 by the hook portion 33B of the annular protrusion 33A, and is surrounded by the positioning projection 33E with respect to the notch 32E of the upper spacer 32. Stopped in the direction.
  • the intermediate cylinder 15 can be positioned in the axial direction, and the intermediate cylinder 15 can be prevented from rattling or being displaced in the axial direction due to external vibration or the like.
  • the O-rings 34 and 35 can suppress the working fluid 20 in the intermediate cylinder 15 from leaking to the outside of the passage 16.
  • the spacer 31 is divided into the upper spacer 32 and the lower spacer 33 so that the upper spacer 32 and the lower spacer 33 can be easily formed and processed.
  • the structure of the molding die can be simplified.
  • the versatile O-rings 34 and 35 can be used as the sealing member, and the leakage of the working fluid 20 can be suppressed with a simple structure.
  • the spacer 31 is divided into the upper spacer 32 and the lower spacer 33 as an example.
  • the present invention is not limited to this, and the spacer 31 may be integrally formed with the upper spacer 32 and the lower spacer 33 as a single unit in advance. Therefore, in this case, the annular mounting hole 32C, the opening 32D, the notch 32E of the upper spacer 32, the annular protrusion 33A of the lower spacer 33, the hook 33B, the positioning protrusion 33E, and the like are unnecessary and omitted. Can do.
  • the seal member 18 is configured by a seal having a U-shaped cross section (for example, U packing) including the first seal portion 18A, the second seal portion 18B, and the connecting portion 18C.
  • U packing for example, U packing
  • a configuration using two O-rings instead of the seal member 18 may be used.
  • a working fluid as a functional fluid may be configured using, for example, a magnetic fluid (MR fluid).
  • MR fluid magnetic fluid
  • the magnetic field may be variably controlled from the outside.
  • the insulating holding member 13 and the spacer 17 (31) may be formed of a nonmagnetic material.
  • the buffer 1 as a cylinder apparatus was used for a four-wheel vehicle was mentioned as an example, and was demonstrated.
  • the present invention is not limited to this.
  • various shock absorbers such as shock absorbers used for motorcycles, shock absorbers used for various mechanical devices including general industrial equipment, shock absorbers used for buildings, etc. Widely used as a device).
  • the one end side of the intermediate cylinder is provided with a diameter-enlarging cylinder portion that is radially expanded through an annular stepped portion, and the diameter-enlarging cylinder portion is fitted to the outer peripheral side of the other end of the spacer. It is configured to match.
  • the step part of the intermediate cylinder becomes a pressure receiving surface that receives the fluid pressure in the passage, and the intermediate cylinder can be pressed toward the base member side by the pressure received by the step part.
  • the lower holding member 13 and the stepped portion 12B of the valve body 12A The lower holding member 13 and the stepped portion 12B of the valve body 12A).
  • the other end of the spacer extends between the intermediate cylinder and the inner cylinder, and the seal member is between a first seal portion between the inner cylinder and the spacer, and between the intermediate cylinder and the spacer.
  • the second seal portion Further, the first seal part and the second seal part may be integrated.
  • the spacer is provided so as to be movable relative to the intermediate cylinder in the axial direction.
  • the other end of the spacer is attached by loosely fitting between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the intermediate cylinder, and the seal member is tightened in an elastically deformed state with respect to the fitting portion of both.
  • the first seal portion of the seal member can be brought into contact with the inner cylinder and the spacer, and the second seal portion can be brought into contact with the intermediate cylinder and the spacer with an allowance in an elastically deformed state.
  • the sealing member in the elastically deformed state can provide the retaining property and the sealing property to the fitting portion between them.
  • a flange portion is provided on the outer peripheral side of the spacer at a position where it does not contact one end of the intermediate cylinder. Accordingly, a gap can be formed between the flange portion of the spacer and the upper end of the intermediate cylinder, and the intermediate cylinder is fitted and attached to the spacer so as to be relatively movable in the axial direction within the gap. be able to. For this reason, it is not necessary to strictly manage the axial dimension of the intermediate cylinder, and workability and productivity in manufacturing the intermediate cylinder can be improved.
  • lifted for example.
  • a cylinder device includes an inner cylinder in which a functional fluid whose fluid properties change due to an electric field or a magnetic field is sealed, and a rod inserted therein, an outer cylinder provided outside the inner cylinder, An intermediate cylinder provided between an inner cylinder and the outer cylinder, wherein a passage through which the functional fluid flows from one end side to the other end side in the axial direction of the cylinder device as the rod moves forward and backward
  • An intermediate cylinder that is formed between the inner cylinder and functions as an electrode or a magnetic pole; a rod guide that is provided so as to close the end on the one end side of the inner cylinder and the outer cylinder, and supports the rod;
  • a spacer having one end positioned on the rod guide side and the other end positioned on the one end side of the intermediate cylinder; and a spacer fitted to the inner cylinder; and disposed at the other end of the spacer.
  • the intermediate cylinder includes a diameter-expanding cylinder portion that is radially expanded outwardly through an annular stepped portion on the one end side of the intermediate cylinder.
  • the diameter-expanding cylindrical portion is fitted to the outer periphery of the other end of the spacer.
  • the other end of the spacer extends between the intermediate cylinder and the inner cylinder, and the seal member includes the inner cylinder and the spacer. And a second seal portion between the intermediate cylinder and the spacer.
  • the first seal portion and the second seal portion are integral.
  • the spacer is provided to be movable relative to the intermediate cylinder in the axial direction.
  • the spacer has a collar portion at a position where the outer periphery of the spacer does not contact the end portion on the one end side of the intermediate cylinder. Is provided.
  • 1 shock absorber (cylinder device), 2 inner cylinder, 3 outer cylinder, 4 bottom cap (base member), 5 piston, 8 piston rod (rod), 9 rod guide, 12 bottom valve, 12A valve body (base member), 13 holding member, 15 intermediate cylinder, 15B inclined cylinder part (step part), 15C diameter-expanding cylinder part, 16 passage, 17, 31 spacer, 18 seal member, 18A first seal part, 18B second seal part, 20 working fluid (Functional fluid), 32 upper spacer (one side spacer), 32B lower cylinder part (saddle part), 33 lower spacer (other side spacer), 34 O ring (seal member, first seal part), 35 O ring (Seal member, second seal part)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid-Damping Devices (AREA)
  • Gasket Seals (AREA)

Abstract

ロッドガイドに対して内筒と中間筒とを安定して取付けることができるようにし、作動流体の漏れも抑えることができる。 シリンダ装置は、電界または磁界により流体の性状が変化する機能性流体が封入され、内部にロッドが挿入される内筒と、内筒の外側に設けられる外筒と、内筒と外筒との間に設けられる中間筒であって、ロッドの進退動により機能性流体がシリンダ装置の軸方向の一端側から他端側に向けて流動する通路を内筒との間に形成し、電極または磁極として機能する中間筒と、内筒および外筒の一端側の端部を閉塞するように設けられ、ロッドを支持するロッドガイドと、ロッドガイド側に位置する一端と、中間筒の一端側に位置する他端と、を有し、内筒と嵌合されるスペーサと、スペーサの他端のところに配置され、中間筒と内筒との間の通路の一端側の端部を封止する弾性のシール部材と、を備える。

Description

シリンダ装置
 本発明は、例えば自動車等の車両の振動を緩衝するのに好適に用いられるシリンダ装置に関する。
 一般に、自動車等の車両には、車体(ばね上)側と各車輪(ばね下)側との間に油圧緩衝器に代表されるシリンダ装置が設けられている。ここで、シリンダ装置の内筒と外筒との間には中間筒を設け、前記内筒と中間筒との間に作動流体(例えば、電気粘性流体)を流通させる構成としたものが知られている(例えば、特許文献1参照)。前記内筒は、ロッドガイドとベース部材との間に軸方向の締付力をもって固定される。前記中間筒は、前記内筒を径方向外側から取囲んだ状態で前記ロッドガイドとベース部材との間を軸方向に延びている。また、前記中間筒とロッドガイドとの間には、例えば絶縁性材料からなるスペーサが設けられている。
国際公開第2014/135183号
 ところで、特許文献1による従来技術では、ロッドガイドとベース部材との間で内筒と中間筒とに軸方向の締付力、つまり軸力を付与しようとした場合に、前記内筒と中間筒とは、それぞれ軸方向の寸法公差を厳しく管理する必要が生じ、寸法管理が難しくなる。このため、内筒だけをロッドガイドとベース部材との間に軸方向で位置決めしようとすると、前記中間筒の位置決め性が低下し、外部からの振動等で中間筒が軸方向にガタ付いたり、位置ずれしたりする可能性がある。また、中間筒内の作動流体が漏洩する虞れがある。
 本発明の目的は、内筒と中間筒とを安定して取付けることができ、流体の漏れも抑えることができるようにしたシリンダ装置を提供することにある。
 本発明の一実施形態によるシリンダ装置は、電界または磁界により流体の性状が変化する機能性流体が封入され、内部にロッドが挿入される内筒と、該内筒の外側に設けられる外筒と、前記内筒と前記外筒との間に設けられる中間筒であって、前記ロッドの進退動により前記機能性流体が前記シリンダ装置の軸方向の一端側から他端側に向けて流動する通路を前記内筒との間に形成し、電極または磁極として機能する中間筒と、前記内筒および前記外筒の前記一端側の端部を閉塞するように設けられ、前記ロッドを支持するロッドガイドと、前記ロッドガイド側に位置する一端と、前記中間筒の前記一端側に位置する他端と、を有し、前記内筒と嵌合されるスペーサと、前記スペーサの前記他端のところに配置され、前記中間筒と前記内筒との間の前記通路の前記一端側の端部を封止する弾性のシール部材と、を備えている。
 本発明の一実施形態のシリンダ装置によれば、ロッドガイドに対して内筒と中間筒とを安定して取付けることができ、シール部材により流体の漏れも抑制できる。
第1の実施形態によるシリンダ装置としての緩衝器を示す縦断面図である。 図1中のピストンロッドおよびロッドシール等を取外した状態で、ロッドガイドと内筒、中間筒の取付け部分を拡大して示す断面図である。 図2中のシール部材およびスペーサの下端側等を拡大して示す断面図である。 第2の実施形態によるロッドガイドと内筒、中間筒の取付け部分を拡大して示す断面図である。 図4中のシール部材およびスペーサの下端側等を拡大して示す断面図である。 図4中のロッドガイドと内筒、スペーサの取付け部分を示す部分斜視図である。
 以下、本発明の実施形態によるシリンダ装置を、4輪自動車等の車両に設ける緩衝器に適用した場合を例に挙げ、添付図面に従って説明する。
 ここで、図1ないし図3は本発明の第1の実施形態によるシリンダ装置としての緩衝器を示している。緩衝器1は、内部に封入する作動油等の作動流体20として機能性流体(即ち、電気粘性流体)を用いた減衰力調整式の油圧緩衝器(セミアクティブダンパ)として構成されている。緩衝器1は、例えばコイルばねからなる懸架ばね(図示せず)と共に、車両用のサスペンション装置を構成する。なお、以下の説明では、緩衝器1の軸方向の一端側を「上端」側と、軸方向の他端側を「下端」側として記載するものとする。
 緩衝器1は、内筒2、外筒3、ピストン5、ピストンロッド8、ロッドガイド9および中間筒15等を含んで構成されている。内筒2は、軸方向に延びる円筒状の筒体として形成され、後述の作動流体20(即ち、機能性流体)が内部に封入されている。内筒2の内部には、後述のピストンロッド8が挿入され、内筒2の外側には、外筒3が同軸となるように配設されている。
 外筒3は、緩衝器1の外殻をなすもので、円筒体として形成されている。外筒3は、その下端側がボトムキャップ4により溶接手段等を用いて閉塞された閉塞端となっている。ボトムキャップ4は、後述するボトムバルブ12のバルブボディ12Aと共にベース部材を構成している。外筒3の上端側は、開口端となり、この開口端側には、かしめ部3Aが径方向内側に屈曲して形成されている。該かしめ部3Aは、後述するロッドシール10の環状板体10Aの外周側を抜け止め状態で保持している。
 内筒2は、外筒3内に該外筒3と同軸に設けられている。内筒2は、下端側がボトムバルブ12のバルブボディ12Aに嵌合して取付けられ、上端側はロッドガイド9に嵌合して取付けられている。内筒2は、外筒3と共にシリンダを構成し、該シリンダ内には、作動流体20が封入されている。また、内筒2には、後述の通路16に常時連通する油穴2Aが径方向の横孔として形成され、該油穴2Aによって、内筒2内のロッド側油室Bは後述の通路16に連通される。
 内筒2と外筒3との間には、環状のリザーバ室Aが形成されている。リザーバ室A内には、作動流体20と共にガスが封入されている。このガスは、大気圧状態の空気であってもよく、また圧縮された窒素ガス等の気体を用いてもよい。リザーバ室A内のガスは、ピストンロッド8の縮小(縮み行程)時に、当該ピストンロッド8の進入体積分を補償すべく圧縮される。
 ピストン5は、内筒2内に摺動可能に嵌装(挿嵌)されている。該ピストン5は、内筒2内をロッド側油室Bとボトム側油室Cとの2室に画成している。ピストン5には、ロッド側油室Bとボトム側油室Cとを連通可能とする油路5A,5Bがそれぞれ複数個、周方向に離間して形成されている。ここで、本実施の形態による緩衝器1は、ユニフロー構造となっている。このため、内筒2内の作動流体20は、ピストンロッド8の縮み行程と伸び行程との両行程で、ロッド側油室B(即ち、内筒2の油穴2A)から後述の通路16に向けて常に一方向(即ち、図1中の矢示E方向)に流通する。
 このようなユニフロー構造を実現するため、ピストン5の上端面には、ピストンロッド8の縮み行程でピストン5が内筒2内を下向きに摺動変位するときに開弁し、これ以外のときには閉弁する縮み側逆止弁6が設けられている。縮み側逆止弁6は、ボトム側油室C内の油液(作動流体20)がロッド側油室Bに向けて各油路5A内を流通するのを許し、これとは逆向きに油液が流れるのを阻止する構成となっている。
 ピストン5の下端面には、例えば伸長側減衰力発生機構としてのディスクバルブ7が設けられている。伸長側のディスクバルブ7は、ピストンロッド8の伸び行程でピストン5が内筒2内を上向きに摺動変位するときに、ロッド側油室B内の圧力が所定のリリーフ設定圧を越えると開弁し、このときの圧力を、各油路5Bを介してボトム側油室C側にリリーフさせる。
 ロッドとしてのピストンロッド8は、内筒2内を軸方向に変位可能に延びている。ピストンロッド8は、その下端側が内筒2内でピストン5に連結(固定)され、上端側はシリンダとなる内筒2および外筒3の外部へと延出している。この場合、ピストンロッド8の一端側となる上端側は、ロッドガイド9を介して外筒3の外部に突出している。
 ロッドガイド9は、内筒2と外筒3の上端側を閉塞するように嵌合して設けられている。ロッドガイド9は、例えば金属材料、硬質な樹脂材料等に成形加工、切削加工等を施すことにより所定形状の筒体として形成されている。図1および図2に示す如く、ロッドガイド9は、上側に位置して外筒3の内周側に挿嵌される環状の大径部9Aと、該大径部9Aの下側に位置して内筒2の内周側に挿嵌される短尺筒状の小径部9Bと、該小径部9Bと大径部9Aとの間に位置して外周側に設けられ後述のスペーサ17が嵌合される環状段差9Cとにより段付円筒状に形成されている。
 ロッドガイド9の小径部9Bの内周側には、ピストンロッド8を軸方向に摺動可能にガイドするガイド部9Dが設けられている。このガイド部9Dは、例えば金属筒の内周面に4フッ化エチレンコーティングを施すことにより形成されている。また、ロッドガイド9の大径部9Aには、周方向に離間した複数箇所(例えば、3箇所)に連通路9Eが設けられている。該各連通路9Eは、後述の油溜め室11をチェック弁体10Cを介してリザーバ室Aに連通させるための通路である。このように構成されたロッドガイド9は、大径部9Aを外筒3の内周側に圧入し、小径部9Bを内筒2の内周側に圧入して取付けられている。この状態で、ロッドガイド9は、内周側に設けたガイド部9Dによりピストンロッド8を軸方向に摺動可能にガイドし、ピストンロッド8を支持している。
 外筒3のかしめ部3Aとロッドガイド9の大径部9Aとの間には、環状のロッドシール10が設けられている。ロッドシール10は、内周側がピストンロッド8の挿通孔となった金属性の環状板体10Aと、該環状板体10Aに焼付け等の手段で固着されたゴム等の弾性材料からなる弾性シール部10Bと、環状板体10Aの下面側に弾性変形可能に形成されたチェック弁体10Cとを含んで構成されている。ロッドシール10は、弾性シール部10Bの内周がピストンロッド8の外周側に摺接することにより、外筒3とピストンロッド8との間を液密、気密に封止(シール)するものである。
 ロッドガイド9の大径部9Aとロッドシール10との間には、油溜め室11が設けられている。該油溜め室11は、ピストンロッド8、ロッドガイド9の大径部9A、ロッドシール10の弾性シール部10B等に囲まれた環状の空間部として形成されている。そして、油溜め室11は、ロッド側油室B内の作動油またはこの油中に混入したガスがピストンロッド8とガイド部9Dとの僅かな隙間等を介して漏出したときに、この漏出油等を一時的に溜めるものである。
 ロッドシール10のチェック弁体10Cは、油溜め室11とリザーバ室Aとの間に配置されている。チェック弁体10Cは、前記油溜め室11内の漏洩油がロッドガイド9の各連通路9Eを通じてリザーバ室A内に流通するのを許し、逆向きの流れを阻止する。これにより、チェック弁体10Cは、リザーバ室A内のガス、作動油が油溜め室11側へと逆流するように流れるのを阻止する。
 内筒2の下端側には、該内筒2とボトムキャップ4との間に位置してボトムバルブ12が設けられている。該ボトムバルブ12は、ボトムキャップ4の内側面(上面)に固着して設けられたバルブボディ12Aと、該バルブボディ12Aに設けられた伸長側および縮小側の弁部材等とを備えている。バルブボディ12Aは、内筒2の下端側とボトムキャップ4との間でリザーバ室Aとボトム側油室Cとを画成している。また、バルブボディ12Aには、リザーバ室Aとボトム側油室Cとを前記弁部材を介して連通可能とする油路がそれぞれ周方向に間隔をあけて形成されている。
 バルブボディ12Aの外周側には、図1に示すように環状の段差部12Bが形成され、該段差部12Bには、内筒2の下端内周側が嵌合して固定されている。また、段差部12Bには、環状の保持部材13が内筒2の外周側に嵌合して取付けられている。保持部材13は、後述する中間筒15の下端側を径方向および軸方向に位置決めした状態で保持している。保持部材13は、例えば電気絶縁性材料により形成され、内筒2、ボトムキャップ4およびバルブボディ12Aと中間筒15との間を電気的に絶縁した状態に保っている。また、保持部材13には、後述の通路16をリザーバ室Aに対して連通させる複数の油路13Aが形成されている。
 ボトムバルブ12のバルブボディ12Aとボトムキャップ4との間には、リザーバ室Aに連通する油通路14が設けられている。この油通路14は、保持部材13の各油路13Aを介して中間筒15内の通路16にも連通する。油通路14は、内筒2内のボトム側油室Cとリザーバ室Aとの間に配設され、両者間をボトムバルブ12により連通,遮断させる。
 内筒2と外筒3との間には、軸方向に延びる圧力管からなる中間筒15が配設されている。この中間筒15は、導電性材料を用いて形成され筒状の電極を構成するものである。中間筒15は、内筒2と同軸をなして軸方向に延び内筒2の外径よりも予め決められた寸法だけ僅かに大径に形成された円筒部15Aと、該円筒部15Aの上端側に一体形成されテーパ状の傾斜筒部15Bを介して径方向外向きに拡径された上側の拡径筒部15Cと、円筒部15Aの下端側に同じく一体形成された下側の拡径筒部15Dとを含んで構成されている。該下側の拡径筒部15Dは、円筒部15Aの下端側からテーパ状の傾斜筒部15Eを介して径方向外向きに拡径されている。
 中間筒15の傾斜筒部15Bには、円筒部15Aと拡径筒部15Cとの間に位置して環状の段部を構成している。即ち、上側の拡径筒部15Cは、円筒部15Aの上端側から環状の段部(テーパ状の傾斜筒部15B)を介して径方向外向きに拡径されている。この拡径筒部15Cは、その上端内周側が後述するスペーサ17の下筒部17Bに嵌合している。
 中間筒15の上端側(拡径筒部15C)は、スペーサ17を介してロッドガイド9の環状段差9Cに位置決めされ、下端側の拡径筒部15Dは、バルブボディ12Aの段差部12Bに保持部材13を介して位置決めされている。中間筒15は、内筒2の外周側を全周にわたって取囲むように延びる環状の通路16を内部(即ち、内筒2との間)に形成している。この通路16は、内筒2に形成した油穴2Aを介してロッド側油室Bと常時連通している。
 ここで、内筒2内の作動流体20は、ピストンロッド8の縮み行程と伸び行程の両方で、ロッド側油室Bから矢示E方向へと油穴2Aを通じて通路16に流入する。通路16内に流入した作動流体20は、ピストンロッド8が内筒2内を進退動するとき(即ち、縮み行程と伸び行程を繰返す間)に、この進退動により通路16の軸方向の上端側から下端側に向けて流動する。
 通路16内に流入した作動流体20は、中間筒15の下端側から保持部材13の油路13A等を介してリザーバ室Aへと流出する。このとき、作動流体20の圧力は、通路16の上流側(即ち、油穴2A側)で最も高く、通路16内を流通する間に流路(通路)抵抗を受けるため漸次低下する。このため、通路16内の作動流体20は、通路16の下流側(即ち、保持部材13の油路13A)を流通するときに最も低い圧力となっている。
 スペーサ17は、中間筒15の上端側(即ち、拡径筒部15C)をロッドガイド9に対して位置決めするための取付部材である。スペーサ17は、例えば電気絶縁性材料により短尺な段付筒状体として形成され、後述の上筒部17A、下筒部17B、環状の鍔部17Cおよびシール保持部17Dを有している。スペーサ17は、その内周側(上筒部17Aおよび下筒部17Bの内周側)が内筒2の上端側外周に嵌合した状態で取付けられる。このとき、スペーサ17の上筒部17Aは、ロッドガイド9の環状段差9Cに嵌合され、環状段差9Cに対して抜止め状態で固定(位置決め)される。
 スペーサ17の外周側には、軸方向中間部よりも下側となる位置(上筒部17Aと下筒部17Bとの間)に環状の鍔部17Cが設けられている。スペーサ17のうち、鍔部17Cよりも下側に位置する下筒部17Bは、上筒部17Aよりも厚肉(径方向寸法が大きくなるよう)に形成されている。下筒部17Bの下端には、シール保持部17Dが下向きに突出して設けられている。該シール保持部17Dは、スペーサ17の下筒部17Bのうち、その下端側部位を径方向の内側と外側とから全周にわたって肉削ぎするように形成され、下筒部17Bよりも薄肉な筒状突起として成形されている。シール保持部17Dには、内筒2と中間筒15との間で通路16の一端(上端側)を封止する弾性のシール部材18が装着されて設けられている。
 スペーサ17は、その内径が内筒2の外径よりも僅かに大きくなるように形成され、下筒部17Bの外径が中間筒15の拡径筒部15Cの内径よりも僅かに小さくなるように形成されている。スペーサ17の下筒部17Bには、その外周側に中間筒15の拡径筒部15Cが緩く嵌合して取付けられ、このときに、スペーサ17の鍔部17Cと拡径筒部15Cの上端との間には、図3に示すように隙間Sが形成される。これにより、スペーサ17は、中間筒15の拡径筒部15Cと内筒2とに対して隙間Sの範囲で軸方向に相対移動可能に設けられることになる。換言すると、スペーサ17の外周側には、中間筒15の一端(拡径筒部15Cの上端)とは当接しない位置に鍔部17Cが設けられている。
 弾性材料からなるシール部材18は、内筒2とスペーサ17のシール保持部17Dとの間に締代をもって配置され両者間をシールする第1シール部18Aと、中間筒15の拡径筒部15Cとスペーサ17のシール保持部17Dとの間に締代をもって配置され両者間をシールする第2シール部18Bとを有している。図3に示すように、シール部材18は、横断面がU字状をなすシール(例えば、Uパッキン)として形成され、第1シール部18Aと第2シール部18Bとは、U字状の連結部18Cにより一体となって成形されている。シール部材18は、通路16内の作動流体が内筒2と中間筒15との間から外部に漏洩するのをスペーサ17と一緒に防ぐものである。
 シール部材18は、スペーサ17の下筒部17Bの下端側にシール保持部17Dを介して抜止め状態に保持されている。一方、スペーサ17の下筒部17Bは、内筒2の外周面と中間筒15の拡径筒部15Cとの間に緩く嵌合して取付けられ、シール部材18のシール部18A,18Bは、両者の嵌合部(即ち、内筒2の外周面と中間筒15の拡径筒部15C)に対して弾性変形状態で締代をもって当接する。このため、弾性変形状態にあるシール部材18は、両者の嵌合部に対して抜止め性とシール性とを付与することができる。
 ここで、中間筒15の上端側は、テーパ状の傾斜筒部15Bを介して径方向外向きに拡径された拡径筒部15Cとなっている。このため、テーパ状の傾斜筒部15B(即ち、環状の段部)は、通路16内の作動流体20による圧力を受圧する受圧面となり、傾斜筒部15Bが受圧する圧力によって、中間筒15は下向き(図1、図2中の矢示F方向)に押圧される。この結果、中間筒15は、下側の拡径筒部15Dが保持部材13(即ち、バルブボディ12Aの段差部12B)に対して下向きに押付けられた状態で保持される。
 また、スペーサ17の下筒部17Bは、中間筒15の拡径筒部15Cと内筒2との間に挟まれた状態で、通路16内の作動流体20による圧力を受圧する。このため、スペーサ17は、通路16内の圧力で上向きに押圧され、ロッドガイド9の環状段差9Cに押付けられると共に、環状段差9Cに嵌合された状態に保持される。
 中間筒15は、電源となるバッテリ19の正極に、例えば、高電圧を発生する高電圧ドライバ(図示せず)を介して接続されている。中間筒15は、通路16内の作動流体20(即ち、機能性流体としての電気粘性流体)に電界をかける電極(エレクトロード)を構成する。中間筒15の両端側(即ち、上,下の拡径筒部15C,15D)は、電気絶縁性の保持部材13,スペーサ17により電気的に絶縁されている。一方、内筒2は、ロッドガイド9、ボトムバルブ12、ボトムキャップ4、外筒3、前記高電圧ドライバ等を介して負極(グランド)に接続されている。内筒2と中間筒15との間に形成された環状の通路16は、内筒2および外筒3内でピストン5の摺動によって流通する作動流体20(即ち、電気粘性流体)に流動抵抗を付与し、これによって後述の如く減衰力を発生することができる。
 ここで、本実施の形態で採用した作動油となる作動流体20は、機能性流体としての電気粘性流体(ER流体:Electric Rheological Fluid)を用いて構成されている。電気粘性流体は、印加される電圧に応じて流動抵抗(減衰力)が変化するものである。具体的には、電気粘性流体は、例えば、シリコンオイル等からなる基油(ベースオイル)と、該基油に分散した状態で混合され電界の変化に応じて粘性抵抗が変化する粒子(微粒子)とにより構成されている。
 前記高電圧ドライバは、緩衝器1の減衰力を可変に調整するためのコントローラ(図示せず)から出力される指令(高電圧指令)に基づいて、バッテリ19から出力される直流電圧を昇圧する。そして、中間筒15には、バッテリ19からの直流電圧を昇圧した高電圧が供給(印加)される。これにより、内筒2と中間筒15との間の通路16内には、中間筒15に印加される電圧に応じた電位差が発生し、作動流体20(即ち、電気粘性流体)の粘度が電位差に応じて可変に制御される。
 この結果、緩衝器1は、中間筒15に印加される電圧に応じて、発生減衰力の特性(減衰力特性)をハードな特性(硬特性)からソフトな特性(軟特性)に連続的に調整することができる。なお、緩衝器1は、減衰力特性を必ずしも連続的に変化させる必要はなく、例えば2段階または複数段階に調整可能に構成することもできる。このように、緩衝器1は、内筒2と中間筒15との間で通路16内に電位差を発生させ、該通路16を通過する電気粘性流体の粘度を制御することにより、発生減衰力を可変に制御(調整)する構成となっている。
 本実施の形態による緩衝器1は、上述の如き構成を有するもので、次にその作動について説明する。
 緩衝器1を自動車等の車両に実装するときは、例えば、ピストンロッド8の上端(突出端)側を車両の車体側に取付け、外筒3の下端側(例えば、ボトムキャップ4側の取付アイ)を車輪側(車軸側)に取付ける。車両の走行時には、路面の凹凸等により、上,下方向の振動が発生すると、ピストンロッド8が外筒3から伸長、縮小するように変位する。このとき、内筒2と中間筒15との間の通路16内には、コントローラからの指令に基づいて電位差を生じさせ、通路16を通過する作動流体20(即ち、電気粘性流体)の粘度を可変に制御することにより、緩衝器1の発生減衰力を可変に調整する。
 例えば、ピストンロッド8の伸び行程では、内筒2内をピストン5が上向きに移動し、ピストン5の縮み側逆止弁6が閉弁される。このため、ロッド側油室Bの作動流体20は加圧され、内筒2の油穴2Aを通じて通路16内に流入し、通路16の下端側からリザーバ室Aへと流れる。このとき、内筒2のボトム側油室C内には、リザーバ室Aから作動流体20がボトムバルブ12を介して補給されるように流入する。
 一方、ピストンロッド8の縮み行程では、内筒2内をピストン5が下向きに移動し、ピストン5の縮み側逆止弁6が開弁される。このとき、ボトムバルブ12は実質的に閉弁されるため、ボトム側油室Cの油液は、ピストン5の油路5Aを通じてロッド側油室Bへと流入する。このため、ピストンロッド8が縮み行程で内筒2内に進入した進入体積分に相当する作動流体20が、ロッド側油室Bから内筒2の油穴2Aを通じて通路16内に流入する。
 このように、ピストンロッド8の伸び行程、縮み行程の両行程において、通路16内に流入した作動流体20は、内筒2と中間筒15との間(即ち、通路16内)の電位差に応じた粘度で通路16内を出口側(即ち、保持部材13の油路13A側)に向けて流通し、リザーバ室Aへと流出する。このとき、通路16内を通過する作動流体20は、その粘度(即ち、粘性抵抗)に応じた減衰力を発生でき、緩衝器1は車両の上下振動を緩衝(減衰)することができる。
 ところで、内筒2と中間筒15とは、ロッドガイド9とボトムバルブ12のバルブボディ12Aとの間を軸方向に延びて配置されている。ロッドガイド9とバルブボディ12Aとの間で内筒2と中間筒15とに軸方向の締付力を付与しようとした場合に、内筒2と中間筒15とは、それぞれ軸方向の寸法公差を厳しく管理する必要が生じ、寸法管理が難しくなる。このため、内筒2だけをロッドガイド9とバルブボディ12Aとの間で軸方向に位置決めしようとすると、中間筒15の位置決め性が低下し、また、中間筒15(即ち、通路16)内の作動流体が例えばリザーバ室A側に漏洩する虞れがある。
 そこで、第1の実施の形態では、中間筒15の上端側をスペーサ17を介してロッドガイド9に取付けると共に、内筒2と中間筒15との間で通路16の上端側を封止する弾性のシール部材18をスペーサ17の下端側に設ける構成としている。即ち、スペーサ17は、内筒2の外周面に嵌合されると共に、上筒部17Aがロッドガイドの環状段差9Cに嵌合され、鍔部17Cよりも下側の下筒部17Bには、中間筒15の拡径筒部15Cが嵌合して取付けられる。
 これにより、スペーサ17の鍔部17Cと拡径筒部15Cの上端との間には、図3に示すように隙間Sを形成することができ、スペーサ17の下筒部17Bに対して中間筒15(上側の拡径筒部15C)を隙間Sの範囲で軸方向に相対移動可能に嵌合して取付けることができる。このため、中間筒15の軸方向寸法を厳しく管理する必要がなくなり、中間筒15を製作する上での作業性、生産性を向上することができる。
 また、中間筒15の上端側には、径方向外向きに拡径する拡径筒部15Cを形成し、その下側には圧力の受圧面となるテーパ状の傾斜筒部15Bを形成している。このため、通路16内で最も高圧となる作動流体20の圧力を傾斜筒部15Bで受圧させて中間筒15に矢示F方向の押付け力を発生させ、この力を保持部材13側で受承させることができる。この結果、中間筒15は、スペーサ17の鍔部17Cと拡径筒部15Cとの間に隙間S(図3参照)を残した状態で、中間筒15をロッドガイド9とバルブボディ12Aとの間に軸方向の押付け力(締付力)をもって位置決めできるようになり、中間筒15の位置決め精度を確保することができる。
 さらに、中間筒15の拡径筒部15Cと内筒2との間に挟まれて配置されるスペーサ17の下筒部17Bにはシール保持部17Dを設け、該シール保持部17Dには、内筒2と中間筒15との間で通路16の一端(上端側)を封止する弾性のシール部材18を設ける構成としている。このシール部材18は、内筒2とスペーサ17のシール保持部17Dとの間をシールする第1シール部18Aと、中間筒15の拡径筒部15Cとスペーサ17のシール保持部17Dとの間をシールする第2シール部18Bとを有している。
 これにより、通路16内の作動流体20が内筒2と中間筒15との間のスペーサ17側から外部に漏洩するのをシール部材18により防ぐことができる。しかも、中間筒15内に通路16の圧力(即ち、作動流体20の圧力)が作用したときに、スペーサ17は上向きの押付け力を受けるため、ロッドガイド9の環状段差9Cに突き当たるようになり、スペーサ17をロッドガイド9に対して軸方向の締付力をもって位置決めすることができる。
 かくして、第1の実施の形態によれば、中間筒15の拡径筒部15Cは、スペーサ17の下筒部17Bに外側から嵌合し、この嵌合部よりも通路16の下流側に位置する中間筒15の円筒部15Aよりも大きな内径(直径)を有してる。また、スペーサ17(下筒部17B)の外径は、中間筒15(拡径筒部15C)の内径よりも僅かに小さく、スペーサ17の内径は内筒2の外径よりも僅かに大きくすることで、スペーサ17が内筒2および中間筒15に対して相対移動可能としている。さらに、スペーサ17の下筒部17Bには、中間筒15内の圧力を封入するためのシール部材18が設けられるシール保持部17Dを設ける構成としている。
 これにより、中間筒15内に通路16の圧力(即ち、作動流体20の圧力)が作用したときに、スペーサ17は上向きの押付け力を受けるので、ロッドガイド9の環状段差9Cに突き当たることで、スペーサ17をロッドガイド9に対して軸方向の締付力、つまり軸力をもって位置決めすることができる。同時に、中間筒15は、拡径筒部15Cの受圧面となる傾斜筒部15Bで下向きの圧力(即ち、作動流体20の圧力)を受圧するので、中間筒15の下端側(下側の拡径筒部15D)が保持部材13を介してバルブボディ12Aの段差部12Bに突き当たることで、中間筒15をバルブボディ12Aに対して軸方向の締付力をもって位置決めすることができる。
 さらに、スペーサ17は、中間筒15の拡径筒部15Cが嵌合される下筒部17Bの上側で径方向外向きに突出し、中間筒15(拡径筒部15C)の内径よりも大きな外径を有する鍔部17Cを有している。このため、スペーサ17の下筒部17Bを中間筒15の拡径筒部15Cと内筒2との間に挟み込むように、スペーサ17を組付けるときに、スペーサ17が不必要に中間筒15の内部に入り込むのを、鍔部17Cによって防ぐことができる。
 従って、第1の実施の形態によれば、上述の如き構成を採用することにより、内筒2をロッドガイド9とボトムバルブ12(バルブボディ12A)との間で軸方向に位置決めできると共に、中間筒15も保持部材13およびバルブボディ12Aに突き当てて軸方向に位置決めしつつ、スペーサ17およびシール部材18を用いて軸方向に位置決めすることができ、外部からの振動等で中間筒15が軸方向にガタ付いたり、位置ずれしたりするのを抑えることができる。しかも、中間筒15内の作動流体20が通路16の外部に漏洩するのをシール部材18およびスペーサ17により抑えることができる。
 次に、図4ないし図6は本発明の第2の実施の形態を示している。本実施の形態の特徴は、内筒とスペーサと中間筒との間を汎用性の高いシール部材を用いてシールする構成としたことにある。なお、第2の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 第2の実施の形態で採用したスペーサ31は、一側スペーサとしての上側スペーサ32と他側スペーサとしての下側スペーサ33とに2分割して形成されている。上側スペーサ32は、前記第1の実施の形態で述べたスペーサ17と同様に上筒部32Aと下筒部32Bとにより構成されている。しかし、この場合の下筒部32Bは、第1の実施の形態で述べた下筒部17Bよりも短尺に形成されている。即ち、下筒部32Bは、中間筒15の拡径筒部15Cよりも上方となる位置に配置され、下筒部32Bの下端32B1 と拡径筒部15Cの上端との間には、図5に示すように隙間Sが形成される。
 上側スペーサ32の下筒部32Bは、上筒部32Aよりも厚肉(径方向寸法が大きくなるよう)に形成されている。下筒部32Bの外周側は、スペーサ31における鍔部を構成している。下筒部32Bには、下側が開口し上側が閉塞された環状取付穴32Cが設けられ、該環状取付穴32Cは、下筒部32Bの全周にわたって延びるリング状凹溝(有底穴)として形成されている。環状取付穴32Cは、下側スペーサ33を上側スペーサ32に取付け、両者を一体に組付けるための取付穴である。
 ここで、下筒部32Bには、環状取付穴32Cの径方向に延びると共に周方向に延びる長孔からなる複数の開口部32Dが形成され、該各開口部32Dは、図6に示すように、下筒部32Bの外周面に開口している。また、下筒部32Bの外周側には、各開口部32Dの間となる位置に略U字状の切欠き32Eが形成され、該各切欠き32Eは、環状取付穴32Cと下筒部32Bの径方向で連通している。これらの切欠き32Eには、後述の位置決め突起33Eが係合し、これによって、上側スペーサ32と下側スペーサ33とが廻止めされる。
 下側スペーサ33は、中間筒15の拡径筒部15Cと内筒2との間に緩く嵌合される短尺な筒体として形成されている。下側スペーサ33の上端側には、上側スペーサ32の環状取付穴32C内に向けて延びる環状突部33Aが一体形成されている。環状突部33Aの上端側外周には、前記各開口部32Dを介して下筒部32Bの下端32B1 側に掛止めされる複数のフック部33Bが設けられている。これによって、下側スペーサ33は、上側スペーサ32に対して軸方向で抜止めされる。
 また、下側スペーサ33の内周側には、環状突部33Aの下端側内周と上側スペーサ32の下端面との間となる位置に環状のシール溝33Cが形成される。該シール溝33C内には、シール部材としてのOリング34が装着され、このOリング34は、内筒2とスペーサ31との間を封止する第1シール部を構成している。下側スペーサ33の外周側には、環状突部33Aよりも軸方向の下側となる位置に他の環状のシール溝33Dが形成され、該シール溝33C内には、シール部材としてのOリング35が装着されている。このOリング35は、中間筒15とスペーサ31との間を封止する第2シール部を構成している。
 さらに、下側スペーサ33の外周側には、図6に示すように、位置決め突起33Eが設けられ、該位置決め突起33Eは、略U字状をなす突部として形成されている。そして、位置決め突起33Eは、上側スペーサ32の切欠き32Eに着脱可能に係合し、これによって、下側スペーサ33は上側スペーサ32に対して廻止め状態に保持される。即ち、下側スペーサ33は、環状突部33Aのフック部33Bにより上側スペーサ32の下筒部32Bに対して軸方向で抜止めされ、位置決め突起33Eにより上側スペーサ32の切欠き32Eに対して周方向で廻止めされる。
 かくして、このように構成される第2の実施の形態でも、上側スペーサ32と下側スペーサ33とからなるスペーサ31と、Oリング34,35を用いることにより、第1の実施の形態と同様に中間筒15を軸方向に位置決めすることができ、外部からの振動等で中間筒15が軸方向にガタ付いたり、位置ずれしたりするのを抑えることができる。しかも、中間筒15内の作動流体20が通路16の外部に漏洩するのをOリング34,35により抑えることができる。
 特に、第2の実施の形態では、スペーサ31を上側スペーサ32と下側スペーサ33とに2分割して形成しているので、上側スペーサ32と下側スペーサ33の成形、加工を容易に行うことができ、例えば成形用金型の構造を簡素化することができる。また、シール部材として汎用性の高いOリング34,35を用いることができ、作動流体20の漏洩を簡単な構造で抑えることができる。
 なお、前記第2の実施の形態では、スペーサ31を上側スペーサ32と下側スペーサ33とに2分割して形成する場合を例に挙げて説明した。しかし、本発明はこれに限らず、上側スペーサ32と下側スペーサ33とを予め一体物として、スペーサ31を一体成形する構成としてもよい。従って、この場合には、上側スペーサ32の環状取付穴32C、開口部32D、切欠き32E、下側スペーサ33の環状突部33A、フック部33Bおよび位置決め突起33E等が不要となって省略することができる。
 また、第1の実施の形態では、シール部材18を、第1シール部18A、第2シール部18Bおよび連結部18Cからなる横断面がU字状のシール(例えば、Uパッキン)により構成する場合を例に挙げて説明した。しかし、例えばシール部材18に替えて、2つのOリングを用いる構成としてもよい。
 前記各実施の形態では、機能性流体としての作動流体20を、電気粘性流体により構成する場合を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば磁性流体(MR流体)を用いて機能性流体としての作動流体を構成してもよい。磁性流体を用いる場合には、例えば内筒2と中間筒15との間に磁界を発生させ、発生減衰力を可変に調整するときには、外部から前記磁界を可変に制御できる構成とすればよい。また、絶縁用の保持部材13とスペーサ17(31)等は、非磁性材料により形成すればよい。
 さらに、前記各実施の形態では、シリンダ装置としての緩衝器1を4輪自動車に用いる場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば、2輪車に用いる緩衝器、一般産業機器を含む各種の機械機器に用いる緩衝器、建築物に用いる緩衝器等のように各種の緩衝器(シリンダ装置)として広く用いることができる。
 次に、上記の各実施形態に含まれる態様について記載する。即ち、前記中間筒の一端側には、環状の段部を介して径方向外向きに拡径された拡径筒部を設け、該拡径筒部は、前記スペーサの他端外周側に嵌合する構成としている。これにより、中間筒の段部は、通路内の流体圧力を受圧する受圧面となり、段部が受圧する圧力によって、中間筒をベース部材側に向け押圧でき、中間筒は、ベース部材側(即ち、下側の保持部材13、バルブボディ12Aの段差部12B)に対して下向きに押付けられた状態で保持される。
 前記スペーサの他端は、前記中間筒と前記内筒との間まで延び、前記シール部材は、前記内筒と前記スペーサとの間の第1シール部と、前記中間筒と前記スペーサとの間の第2シール部とを有している。また、前記第1シール部と前記第2シール部とが一体である構成としてもよい。
 また、前記スペーサは、前記中間筒に対して軸方向に相対移動可能に設けられている。これにより、スペーサの他端側は、内筒の外周面と中間筒の内周面との間に緩く嵌合して取付けられ、両者の嵌合部に対してシール部材を弾性変形状態で締代をもって当接できる。例えば、シール部材の第1シール部を内筒とスペーサとの間に、第2シール部を中間筒とスペーサとの間に弾性変形状態で締代をもって当接させることができる。このため、弾性変形状態にあるシール部材は、両者の嵌合部に対して抜止め性とシール性とを付与することができる。
 さらに、前記スペーサの外周側には、前記中間筒の一端とは当接しない位置に鍔部を設ける構成としている。これにより、スペーサの鍔部と中間筒の上端との間には、隙間を形成することができ、スペーサに対して中間筒を前記隙間の範囲で軸方向に相対移動可能に嵌合して取付けることができる。このため、中間筒の軸方向寸法を厳しく管理する必要がなくなり、中間筒を製作する上での作業性、生産性を向上することができる。
 以上の実施形態に基づくシリンダ装置としては、例えば以下に記載する態様のものがあげられる。第1の態様のシリンダ装置は、電界または磁界により流体の性状が変化する機能性流体が封入され、内部にロッドが挿入される内筒と、該内筒の外側に設けられる外筒と、前記内筒と前記外筒との間に設けられる中間筒であって、前記ロッドの進退動により前記機能性流体が前記シリンダ装置の軸方向の一端側から他端側に向けて流動する通路を前記内筒との間に形成し、電極または磁極として機能する中間筒と、前記内筒および前記外筒の前記一端側の端部を閉塞するように設けられ、前記ロッドを支持するロッドガイドと、前記ロッドガイド側に位置する一端と、前記中間筒の前記一端側に位置する他端と、を有し、前記内筒と嵌合されるスペーサと、前記スペーサの前記他端のところに配置され、前記中間筒と前記内筒との間の前記通路の前記一端側の端部を封止する弾性のシール部材と、を備える。
 上記第2の態様によれば、第1の態様において、前記中間筒は、環状の段部を介して径方向外向きに拡径された拡径筒部を前記中間筒の前記一端側に備え、前記拡径筒部は、前記スペーサの前記他端の外周と嵌合する。
 上記第3の態様によれば、第1または第2の態様において、前記スペーサの前記他端は、前記中間筒と前記内筒との間まで延び、前記シール部材は、前記内筒と前記スペーサとの間の第1シール部と、前記中間筒と前記スペーサとの間の第2シール部と、を備える。
 上記第4の態様によれば、第3の態様において、前記第1シール部と前記第2シール部とは一体である。
 上記第5の態様によれば、第1乃至第4の何れかの態様において、前記スペーサは、前記中間筒に対して軸方向に相対移動可能に設けられる。
 上記第6の態様によれば、第1乃至第5の何れかの態様において、前記スペーサは、該スペーサの外周において、前記中間筒の前記一端側の端部とは当接しない位置に鍔部を備える。
 以上、本発明のいくつかの実施形態について説明してきたが、上述した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
 本願は、2015年9月30日出願の日本特許出願番号2015-192849号に基づく優先権を主張する。2015年9月30日出願の日本特許出願番号2015-192849号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。
 1 緩衝器(シリンダ装置)、 2 内筒、 3 外筒、 4 ボトムキャップ(ベース部材)、 5 ピストン、 8 ピストンロッド(ロッド)、 9 ロッドガイド、 12 ボトムバルブ、 12A バルブボディ(ベース部材)、 13 保持部材、 15 中間筒、 15B 傾斜筒部(段部)、 15C 拡径筒部、 16 通路、 17,31 スペーサ、 18 シール部材、 18A 第1シール部、 18B 第2シール部、 20 作動流体(機能性流体)、 32 上側スペーサ(一側スペーサ)、 32B 下筒部(鍔部)、 33 下側スペーサ(他側スペーサ)、 34 Oリング(シール部材、第1シール部)、 35 Oリング(シール部材、第2シール部)

Claims (6)

  1.  シリンダ装置であって、
     電界または磁界により流体の性状が変化する機能性流体が封入され、内部にロッドが挿入される内筒と、
     該内筒の外側に設けられる外筒と、
     前記内筒と前記外筒との間に設けられる中間筒であって、前記ロッドの進退動により前記機能性流体が前記シリンダ装置の軸方向の一端側から他端側に向けて流動する通路を前記内筒との間に形成し、電極または磁極として機能する中間筒と、
     前記内筒および前記外筒の前記一端側の端部を閉塞するように設けられ、前記ロッドを支持するロッドガイドと、
     前記ロッドガイド側に位置する一端と、前記中間筒の前記一端側に位置する他端と、を有し、前記内筒と嵌合されるスペーサと、
     前記スペーサの前記他端のところに配置され、前記中間筒と前記内筒との間の前記通路の前記一端側の端部を封止する弾性のシール部材と
     を備えるシリンダ装置。
  2.  請求項1に記載のシリンダ装置であって、
     前記中間筒は、環状の段部を介して径方向外向きに拡径された拡径筒部を前記中間筒の前記一端側に備え、
     前記拡径筒部は、前記スペーサの前記他端の外周と嵌合する
     シリンダ装置。
  3.  請求項1または2に記載のシリンダ装置であって、
     前記スペーサの前記他端は、前記中間筒と前記内筒との間まで延び、
     前記シール部材は、前記内筒と前記スペーサとの間の第1シール部と、前記中間筒と前記スペーサとの間の第2シール部と、を備える
     シリンダ装置。
  4.  請求項3に記載のシリンダ装置であって、
     前記第1シール部と前記第2シール部とは一体である
     シリンダ装置。
  5.  請求項1乃至4の何れかに記載のシリンダ装置であって、
     前記スペーサは、前記中間筒に対して軸方向に相対移動可能に設けられる
     シリンダ装置。
  6.  請求項1乃至5の何れかに記載のシリンダ装置であって、
     前記スペーサは、該スペーサの外周において、前記中間筒の前記一端側の端部とは当接しない位置に鍔部を備える
     シリンダ装置。
PCT/JP2016/078153 2015-09-30 2016-09-26 シリンダ装置 WO2017057213A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177026892A KR102527030B1 (ko) 2015-09-30 2016-09-26 실린더 장치
DE112016001084.2T DE112016001084T5 (de) 2015-09-30 2016-09-26 Zylindervorrichtung
JP2017543223A JP6652571B2 (ja) 2015-09-30 2016-09-26 シリンダ装置
CN201680020053.7A CN107407364B (zh) 2015-09-30 2016-09-26 液压缸装置
US15/562,310 US10309479B2 (en) 2015-09-30 2016-09-26 Cylinder device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-192849 2015-09-30
JP2015192849 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057213A1 true WO2017057213A1 (ja) 2017-04-06

Family

ID=58427442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078153 WO2017057213A1 (ja) 2015-09-30 2016-09-26 シリンダ装置

Country Status (6)

Country Link
US (1) US10309479B2 (ja)
JP (1) JP6652571B2 (ja)
KR (1) KR102527030B1 (ja)
CN (1) CN107407364B (ja)
DE (1) DE112016001084T5 (ja)
WO (1) WO2017057213A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017220344A1 (de) * 2017-11-15 2019-05-16 Volkswagen Aktiengesellschaft Dämpfer für ein Fahrzeug
WO2019093026A1 (ja) * 2017-11-08 2019-05-16 日立オートモティブシステムズ株式会社 高電圧システムおよび高電圧システムの故障診断方法
JP2019128031A (ja) * 2018-01-26 2019-08-01 日立オートモティブシステムズ株式会社 シリンダ装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020210538A1 (de) * 2020-08-19 2022-02-24 Thyssenkrupp Ag Schwingungsdämpfer und ein Dämpferrohr für einen Schwingungsdämpfer
US11566679B2 (en) * 2020-11-03 2023-01-31 DRiV Automotive Inc. Bumper cap for damper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610984A (ja) * 1992-06-26 1994-01-21 Kayaba Ind Co Ltd 緩衝器
JPH10110768A (ja) * 1996-10-04 1998-04-28 Isuzu Motors Ltd 緩衝器
JP2013204799A (ja) * 2012-03-29 2013-10-07 Showa Corp 油圧緩衝器
JP2014199078A (ja) * 2013-03-29 2014-10-23 日立オートモティブシステムズ株式会社 緩衝器およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321210A (en) * 1966-04-12 1967-05-23 Frederick J Harding Electrically controlled shock absorber system
DE2934671A1 (de) * 1979-08-28 1981-03-19 Fichtel & Sachs Ag, 8720 Schweinfurt Federbein fuer fahrzeuge mit einer auswechselbaren daempfeinheit
IT1144348B (it) * 1981-05-08 1986-10-29 Iao Industrie Riunite Spa Perfezionamenti negli ammortizzatori idraulici telescopici del tipo bitubo
DE3131262A1 (de) * 1981-08-07 1983-02-24 Fichtel & Sachs Ag, 8720 Schweinfurt Hydropneumatischer zweirohr-schwingungsdaempfer mit temperaturkompensation der daempfkraefte
DE3231739A1 (de) * 1982-08-26 1984-03-01 Fichtel & Sachs Ag, 8720 Schweinfurt Zweirohr-schwingungsdaempfer oder federbein mit veraenderbarer daempfkraft
US4724938A (en) * 1985-12-09 1988-02-16 General Motors Corporation Method of making and checking the jounce and rebound actions of an hydraulic damper
DE3712349C2 (de) * 1987-04-11 1994-07-07 Bosch Gmbh Robert Vorrichtung zur Dämpfung von Bewegungsabläufen
JPH04219536A (ja) * 1990-09-25 1992-08-10 Bridgestone Corp 振動減衰装置
DE4131532A1 (de) * 1991-09-21 1993-03-25 Fichtel & Sachs Ag Verstellbares daempfventil mittels eines elektrorheologischen steuermediums fuer einen schwingungsdaempfer
US5259487A (en) * 1992-07-14 1993-11-09 The Lubrizol Corporation Adjustable dampers using electrorheological fluids
CN2198451Y (zh) * 1994-07-08 1995-05-24 清华大学 汽车减振器衬套密封结构
CN2632388Y (zh) * 2002-04-24 2004-08-11 王明珠 机动车组合密封减震器
JP5383452B2 (ja) * 2009-11-26 2014-01-08 株式会社ショーワ 油圧緩衝器
CN201818701U (zh) * 2010-08-31 2011-05-04 大庆高新区飞驰减振器制造有限公司 带导向器的减振器油封装置
WO2013120919A1 (de) 2012-02-14 2013-08-22 Ald Vacuum Technologies Gmbh Dekontaminationsverfahren für radioaktiv kontaminiertes material
DE102013003841B4 (de) 2012-12-21 2016-11-24 Fludicon Gmbh Schwingungsdämpfer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610984A (ja) * 1992-06-26 1994-01-21 Kayaba Ind Co Ltd 緩衝器
JPH10110768A (ja) * 1996-10-04 1998-04-28 Isuzu Motors Ltd 緩衝器
JP2013204799A (ja) * 2012-03-29 2013-10-07 Showa Corp 油圧緩衝器
JP2014199078A (ja) * 2013-03-29 2014-10-23 日立オートモティブシステムズ株式会社 緩衝器およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093026A1 (ja) * 2017-11-08 2019-05-16 日立オートモティブシステムズ株式会社 高電圧システムおよび高電圧システムの故障診断方法
JP2019088129A (ja) * 2017-11-08 2019-06-06 日立オートモティブシステムズ株式会社 高電圧システムおよび高電圧システムの故障診断方法
DE112018004538T5 (de) 2017-11-08 2020-05-28 Hitachi Automotive Systems, Ltd. Hochspannungssystem und fehlerdiagnoseverfahren für hochspannungssystem
JP6997594B2 (ja) 2017-11-08 2022-01-17 日立Astemo株式会社 高電圧システムおよび高電圧システムの故障診断方法
US11630164B2 (en) 2017-11-08 2023-04-18 Hitachi Astemo, Ltd. High-voltage system and failure diagnosis method for high-voltage system
DE102017220344A1 (de) * 2017-11-15 2019-05-16 Volkswagen Aktiengesellschaft Dämpfer für ein Fahrzeug
CN109882539A (zh) * 2017-11-15 2019-06-14 大众汽车有限公司 用于车辆的阻尼器
CN109882539B (zh) * 2017-11-15 2021-08-24 大众汽车有限公司 用于车辆的阻尼器
JP2019128031A (ja) * 2018-01-26 2019-08-01 日立オートモティブシステムズ株式会社 シリンダ装置

Also Published As

Publication number Publication date
KR20180061086A (ko) 2018-06-07
CN107407364A (zh) 2017-11-28
JP6652571B2 (ja) 2020-02-26
CN107407364B (zh) 2019-05-03
JPWO2017057213A1 (ja) 2018-07-26
DE112016001084T5 (de) 2018-01-04
US10309479B2 (en) 2019-06-04
KR102527030B1 (ko) 2023-04-27
US20180051767A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
WO2017057213A1 (ja) シリンダ装置
KR102131400B1 (ko) 유압 압축 정지 어셈블리를 갖는 유압 댐퍼
JP6328742B2 (ja) 電子制御式弁用途用のロッドガイド装置
US20180320751A1 (en) Cylinder device
JP6440861B2 (ja) 緩衝器及び緩衝器の組立方法
JP6503510B2 (ja) シリンダ装置およびその製造方法
KR20190007004A (ko) 감쇠력 조정식 완충기
US20230032430A1 (en) Solenoid, damping force adjustment mechanism, and damping force adjustable shock absorber
JP6368433B2 (ja) シリンダ装置
KR20180118735A (ko) 완충기
JP2018017266A (ja) ダンパ装置およびその製造方法
JP2017187110A (ja) 緩衝器及び緩衝器の製造方法
WO2017002982A1 (ja) シリンダ装置
JP2018173099A (ja) シリンダ装置
JP2015197141A (ja) 緩衝器
WO2017047646A1 (ja) シリンダ装置
JP6761897B2 (ja) シリンダ装置
WO2016013311A1 (ja) 圧力緩衝装置および減衰力発生機構
JP2019128031A (ja) シリンダ装置
JP2019007601A (ja) シリンダ装置
JP2015068479A (ja) 減衰力調整式緩衝器
JP2019007599A (ja) シリンダ装置
JP2020002980A (ja) シリンダ装置
JP2020143674A (ja) シリンダ装置およびシリンダ装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543223

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177026892

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15562310

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001084

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851384

Country of ref document: EP

Kind code of ref document: A1