WO2017052299A1 - 신규한 캔디다 인판티콜라 균주, 이의 변이균주 및 형질전환균주, 및 이를 이용하여 디오익 산류를 생산하는 방법 - Google Patents

신규한 캔디다 인판티콜라 균주, 이의 변이균주 및 형질전환균주, 및 이를 이용하여 디오익 산류를 생산하는 방법 Download PDF

Info

Publication number
WO2017052299A1
WO2017052299A1 PCT/KR2016/010706 KR2016010706W WO2017052299A1 WO 2017052299 A1 WO2017052299 A1 WO 2017052299A1 KR 2016010706 W KR2016010706 W KR 2016010706W WO 2017052299 A1 WO2017052299 A1 WO 2017052299A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
acid
candida
candida infanticola
infanticola
Prior art date
Application number
PCT/KR2016/010706
Other languages
English (en)
French (fr)
Inventor
신동명
김종필
박희준
이승훈
장혜란
이홍원
안정오
전우영
박규연
이희석
Original Assignee
롯데케미칼 주식회사
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150134598A external-priority patent/KR101722328B1/ko
Priority claimed from KR1020160121725A external-priority patent/KR101887272B1/ko
Priority claimed from KR1020160121723A external-priority patent/KR101847731B1/ko
Application filed by 롯데케미칼 주식회사, 한국생명공학연구원 filed Critical 롯데케미칼 주식회사
Priority to EP16849024.1A priority Critical patent/EP3354743B1/en
Priority to JP2018515663A priority patent/JP6577666B2/ja
Priority to CN201680055333.1A priority patent/CN108401434B/zh
Priority to US15/762,294 priority patent/US10604775B2/en
Publication of WO2017052299A1 publication Critical patent/WO2017052299A1/ko
Priority to US16/791,141 priority patent/US10837032B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/02Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/03Oxidoreductases acting on the CH-CH group of donors (1.3) with oxygen as acceptor (1.3.3)
    • C12Y103/03006Acyl-CoA oxidase (1.3.3.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/165Yeast isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/72Candida

Definitions

  • the present invention relates to a method for producing dioic acids from a substrate such as a hydrocarbon or a fatty acid using a Candida infantifola strain, and to Candida infantifola microorganisms used therein.
  • Dioic acids are very important chemicals in the chemical industry, as well as petroleum-derived nylon used in engineering resins, automotive parts, sporting goods, carpets and toothbrushes, as well as other polymeric plasticizers, adhesives, lubricants, epoxy resins, and corrosion. It is used in a variety of industrial applications, including as an inhibitor, coating, processing plastic, perfume and pharmaceutical product. Of these dioic acids, approximately 15,000,000,000 pounds of dodecane dioic acid per year are synthesized from petrochemical feedstocks. These petrochemical feedstocks are primarily scarce natural raw materials. Closely related, these petrochemical raw materials are sensitive to price fluctuations and add to the burden of environmental pollution.
  • a method for producing diioic acid from a substrate comprising a hydrocarbon or fatty acid using a Candida infantifola strain is provided.
  • step (B) inducing an omega-oxidation reaction by adding a carbon source or a substrate including a hydrocarbon, a fatty acid or a derivative thereof to the culture obtained in step (A);
  • step (C) culturing with the addition of a substrate or glucose comprising a hydrocarbon or fatty acid to the reaction obtained in step (B)
  • step (A) may be performed for 30 to 5 °C, 20 to 50 hours at a dissolved oxygen amount of 10% or more conditions.
  • reaction of step (B) may be performed for 10 to 30 hours with a carbon source of 0.5 to 5%.
  • step (C) may be performed for 50 to 100 hours with a substrate of 0.1 to 2ml / L / h and glucose of 1 to 3g / L / h.
  • the dioic acid is ethanedioic acid (propanedioic acid), propanedioic acid (propanedioic acid), butanedioic acid (butanedioic acid), pentanedioic acid (pentanedioic acid), Hexanedioic acid, octanedioic acid, nonanedioic acid, decandiodioic acid, undecanedioic acid, dodecanedioic acid, dodecanedioic acid It may be selected from the group consisting of dodecanedioic acid and hexadecanedioic acid or a combination thereof.
  • the Candida Infanticola strain is Candida Infanticola DS02 (KCTC 12820BP), Candida Infanticola mutant strain (Candida infanticola LC-DA01; KCTC13099BP), Candida Infanta Ticola transformation strains (Candida infanticola; KCTC13103BP, KCTC13104BP, KCTC13105BP, KCTC13106BP) and combinations thereof.
  • the present invention also provides a Candida infanticola strain that produces dioic acids from substrates comprising hydrocarbons or fatty acids.
  • the present invention relates to a method for producing dioic acids from substrates containing hydrocarbons or fatty acids using candida infantifola strains, and to candida infantifola microorganisms used therein. It can be used in various industrial sectors that use DDDA as it reduces the burden of cost increase and environmental pollution caused by oil price fluctuation.
  • FIG. 1 is a view briefly showing a competitive induction continuous integrated culture apparatus.
  • Figure 2 is a graph showing the change in OD value with time of microorganisms in a competitive induction continuous integration culture.
  • Figure 3 is a graph showing the change in dilution rate (dilution rate) with time of the microorganism in the competition-induced continuous integration culture.
  • Fig. 4 shows the 18s rRNA nucleotide sequence of the isolate.
  • FIG. 5 is a graph showing the growth rate according to the pH of the isolated strain (Candida infanticola DS02; KCTC 12820BP) Candida Infanticola.
  • FIG. 6 is a graph showing dodecane consumption rate and cell mass produced over time for Candida infantifola wild type strain (KCTC 12820BP) and Candida tropicalis (ATCC 20336).
  • Figure 7 is a graph showing the conversion of dodecanedioic acid (DDDA) of dodecane by Candida Infanticola wild type strain (Candida infanticola DS02; KCTC 12820BP).
  • DDDA dodecanedioic acid
  • FIG. 8 is a graph showing conversion of dodecanedioic acid (DDDA) of dodecane by Candida tropicalis (ATCC20336).
  • DDDA dodecanedioic acid
  • 9 is a schematic diagram of solid medium production using steam.
  • FIG. 10 is a graph showing the OD value according to the presence or absence of a single carbon source for the Candida Infanticola mutant strain (Candida infanticola LC-DA01: KCTC13099BP).
  • 11 is a graph showing the results of conversion of dioic acid of mutant strains using fatty acids.
  • Figure 13 is a graph showing the results of conversion dioic acid of mutant strains using decane.
  • 15 is a phase contrast micrograph showing the state of cells according to the concentration of urea hydroxide.
  • Figure 16 is a schematic diagram of the uracil nutritional strain strain production and gDNA PCR results.
  • 17 is a schematic of CiPOX1 gene deletion strain production cassette and gDNA PCR results.
  • Figure 19 is a schematic diagram of the CiPOX1 and CiPOX2 gene deletion strain production cassette and gDNA PCR results.
  • FIG. 20 shows the results of dicarboxylic acid production in flasks against wild-type strains, CiPOX1 and CiPOX1 / CiPOX2 gene deletion strains.
  • FIG. 21 shows the results of dicarboxylic acid production in a 5 L fermenter for CiPOX1 / CiPOX2 gene deficient strains.
  • blocking may be used interchangeably with “inhibition” and may mean blocking any pathway or reaction.
  • hydrocarbon may refer to an organic compound consisting of only carbon and hydrogen.
  • fatty acid may refer to a chain-shaped saturated or unsaturated monocarboxylic acid.
  • 'omega-oxidation' may mean a reaction in which the methyl terminal of a fatty acid is oxidized to dicarboxylic acid, and 'beta-oxidation' is a carbon source of ⁇ -position in the carboxy group. It may mean a reaction that is self-oxidized to decompose while releasing acetyl CoA.
  • the oxidation of fatty acids is the main reaction beta-oxidation ( ⁇ -oxidation) is cleaved into two carbon units from the end of the carboxyl group, the omega-oxidation is secondary to medium chain fatty acids having 10 to 12 carbon atoms It is understood as a path.
  • the method for producing the dioic acid of the present invention it is possible to produce the dioic acid using a substrate containing a hydrocarbon or a fatty acid using a Candida infantifola strain.
  • the method for producing the diioic acid is (A) culturing the Candida infantifola strain in yeast extract glucose medium (YG medium) to which a substrate containing a hydrocarbon or fatty acid for securing the initial cell mass is added. Making; (B) inducing an omega-oxidation reaction by adding a carbon source or a substrate including a hydrocarbon, a fatty acid or a derivative thereof to the culture of step (A); (C) adding the substrate and glucose comprising a hydrocarbon or a fatty acid to the reaction of the step (B) and culturing; and may be characterized.
  • Cultivation of the step (A) may be carried out for 20 to 50 hours at 30 ⁇ 5 °C, 10% or more dissolved oxygen, preferably 24 to 48 hours at 30 ⁇ 3 °C, 30 ⁇ 3% dissolved oxygen May proceed.
  • the substrate may be, but is not limited to, methyl laurate.
  • step (B) may proceed for 10 to 30 hours with a carbon source or substrate of 0.5 to 5%, preferably for 0.5 to 3% for 15 to 25 hours, more preferably about 1%
  • the dodecane may proceed for 15 to 25 hours.
  • the culturing of step (C) may proceed for 50 to 100 hours with a substrate of 0.1 to 2ml / L / h and glucose of 1 to 3g / L / h, preferably 0.5 to 1ml / L / h substrate and It can proceed for 80 to 100 hours with a glucose of 1.5 to 2.5 g / L / h.
  • the substrate may be methyl laurate, but is not limited thereto.
  • the diioic acid may be ethanedioic acid, propanedioic acid, butanedioic acid, pentanedioic acid, hexanedioic acid, or octane.
  • Octanedioic acid, nonanedioic acid, decanedioic acid, undecanedioic acid, dodecanedioic acid, hexadecanedioic It may include those selected from the group consisting of hexadecanedioic acid and combinations thereof, and preferably the dioic acid may include dodecane dioic acid.
  • the Candida Infantifola strain may comprise a wild type strain, a mutant strain, a transformed strain, and a combination thereof.
  • the wild-type strain is Candida Infanticola wild type strain (Candida infanticola DS02; KCTC 12820BP) not genetically engineered
  • the mutant strain is Candida Infanticola mutant strain (Candida infanticola LC-DA01; KCTC13099BP)
  • the converting strain may be a Candida infanticola transforming strain (Candida infanticola; KCTC13103BP, KCTC13104BP, KCTC13105BP, KCTC13106BP).
  • the Candida Infanticola wild type strain (Candida infanticola DS02; KCTC 12820BP) may be a strain using a carbon source selected from the group consisting of hydrocarbons and fatty acids or a combination thereof.
  • the carbon source may be selected from hydrocarbons or fatty acids having 6 to 30 carbon atoms, preferably alkanes or fatty acids having 8 to 20 carbon atoms.
  • it may be dodecane, methyl laulate, lauric acid, derivatives thereof, or combinations thereof, and the derivatives of lauric acid may be C1-8 alkyllaurate.
  • Can be Preferably it may be selected from the group consisting of methyl laurate, ethyl laurate, propyl laurate and the like or a combination thereof.
  • Candida Infanticola mutant strain (Candida infanticola LC-DA01; KCTC13099BP) may be a strain using a substrate selected from the group consisting of hydrocarbons or fatty acids or a combination thereof.
  • Mutant strains can be prepared, for example, by treating a wild type strain with a method selected from EMS (ethyl methanesulfonate), UV (ultra violet) and combinations thereof, but is not limited to the above method.
  • Candida Infanticola transformation strain (Candida infanticola; KCTC13103BP, KCTC13104BP, KCTC13105BP, KCTC13106BP) may be used as a substrate selected from the group consisting of hydrocarbons or fatty acids or a combination thereof.
  • the transformed strain may be prepared by inducing transformation by applying physical stimulation such as heat treatment, electroporation, or chemical stimulation such as urea hydroxide treatment, for example, polyethylene glycol (PEG) or lithium during heat shock.
  • PEG polyethylene glycol
  • DMSO dimethyl sulfoxide
  • eukaryotes such as yeast are known to control homologous and nonhomologous recombination according to the cell cycle.
  • Homologous recombination may occur mainly in S and G2 phases using chromosomes in DNA replication.
  • the cell cycle may be controlled using hydroxyurea.
  • hydroxyurea may play a role in stabilizing the cell cycle by reducing the amount of dNTP to be used for DNA synthesis by inhibiting ribonucleotide reductase, thereby increasing the probability of homology combinations during transformation. Can be.
  • the transforming strain may include a strain lacking the URA3 and POX genes.
  • the gene-deficient strain may induce transformation by applying heatshock, hydroxyurea treatment, or a combination thereof to the wild-type Candida infantifola strain, the order and number of times being determined by those skilled in the art. May be appropriately selected.
  • the transforming strain may be a haploid.
  • the candida infantifola strain which is a haploid haploid compared to Candida tropicallis, a diploid commonly used in industrial dicarboxylic acid production, may be advantageous for genetic engineering.
  • Example 1 Isolation of Candida Infanticola Wild-type Strain (Candida infanticola DS02; KCTC 12820BP)
  • the sample is prepared by collecting wastewater samples in 1L sterile water quality sample pack from the inflow water of the oil separator, the effluent of the oil separator, the equalization effluent, the aeration tank influent, the aeration tank effluent, the sedimentation tank influent and the sedimentation tank effluent. To the laboratory. A portion of the collected sample was first spread on a solid plate (agar plate) made of the composition of the primary culture medium shown in Table 1, and incubated for 1 week in a 30 ° C incubator. After incubation, colonies generated in the solid medium were harvested in order to select fast growing strains from the culture solution containing dodecane (C 12 alkanes), and the secondary culture medium shown in Table 1 below.
  • a solid plate agar plate
  • Dodecane (C 12 alkane) prepared in the composition was inoculated in a competitive induction continuous culture medium containing only carbon as a source of 30 °C, 1 v / v / m aeration, 400 rpm stirring rate and pH 5.0 ( Cultured in a competition-induced continuous integrated culture apparatus (FIG. 1) under the condition of controlled by 10N NaOH. After exhausting 20 g / L of dodecane, which was initially added during the competition-induced continuous integrated culture, an additional medium of Table 2 including 40 g / L of dodecane was additionally added to dilution rate at 0.
  • Candida Infanticola wild type strain (Candida infanticola DS02; KCTC 12820BP) was isolated.
  • the antibiotic kanamycin 25mg / L was used to inhibit the growth of some microorganisms in the experiment.
  • the experimental results are shown in FIGS. 2 and 3.
  • the isolated strain isolated in Example 1 was analyzed by 18s rRNA sequencing.
  • yeast gDNA prep kit PureHelixTM, NANOHELIX
  • the yeast gDNA prep kit PureHelixTM, NANOHELIX
  • an 18s rRNA nucleotide sequence was obtained through DNA sequencing reaction.
  • the nucleotide sequence is shown in FIG. 4 as SEQ ID NO: 1.
  • SEQ ID NO: 1 The nucleotide sequence of the isolated strain shown in Figure 4 (SEQ ID NO: 1) was examined for homology of the strain using the BLAST (Basic Local Alignment search tool) of the National Center for Biotechnology Information (NCBI). The investigation results are shown in Table 3 below.
  • the isolated strain is a related species having high homology with Candida Infantifola CBS11940.
  • the dodecane consumption rate of Candida Infantifola DS02 was 6.2 g / L per day, and the dodecane consumption rate of Candida Tropicalis used as a comparative strain was 1.6 times faster than that of 3.7 g / L per day. have.
  • the produced cell mass was also confirmed to be 17% higher.
  • Example 2 Conversion of dodecane (dodecanedioic acid) to dodecane by Candida Infanticola wild type strain (Candida infanticola DS02; KCTC 12820BP)
  • Candida infantifola wild type strain (Candida infanticola DS02; KCTC 12820BP) and non-genetically modified wild type strain Candida trpoicalis (ATCC 20336), Candida parapsilosis and Pichia cari Yeast extraction using methyl laurate substrate containing 50 g / L glucose to obtain initial cell mass for dodecanedioic acid (DDDA) conversion of dodecane by Pichia caribbica
  • DDDA dodecanedioic acid
  • Candida Infanticola wild type strain (Candida infanticola DS02; KCTC 12820BP) of Example 1 was stirred at 30 ° C., 1v / v / m air flow rate, and dissolved oxygen (DO) 30% (DO).
  • Example 1 (Candida infanticola DS02; KCTC 12820BP) 157.4 14.0 Comparative Example 3 (Candida tropicalis; ATCC 20336) 133.1 0.62 Comparative Example 4 (Candida parapsilosis) 146.8 0 Comparative Example 5 (Pichia caribbica) 141.8 0
  • Example 1 Candida infanticola DS02; KCTC 12820BP
  • DDDA concentration 157 and 14.0 g / L
  • Comparative Example 3 Candida tropicalis; ATCC 20336
  • OD value of 133.1 and DDDA concentration was significantly higher than 0.62 g / L
  • Comparative Example 4 and Comparative Example 5 DDDA conversion is not made, it can be seen that the added carbon source was used only for cell growth.
  • Wild type Candida Infanticola (Candida infanticola DS02; KCTC 12820BP) strains can be grown using dodecane as a single carbon source, but dodecane is used for mutant strains that block the beta-oxidation pathway. It does not grow substantially using a single carbon source. The substantially non-growth may mean not growing or growing weakly. Therefore, mutant strains were selected by comparing strain growth in solid medium containing glucose or dodecane as a single carbon source.
  • EMS ethyl methanesulfonate
  • UV ultraviolet
  • Candida Infanticola DS02 (KCTC 12820BP) strain turbidity with an optical density of 600 nm (0.01 to 0.1) was prepared using PBS buffer (phosphate buffered saline). methanesulfonate) was adjusted to 1ml, and then reacted at 30 ° C. and 150rpm for 120 minutes, centrifuged to remove the supernatant, and then washed twice with 20% sodium thiosulfate to remove EMS. After straining the strain in 1ml PBS buffer, 10ul of which was applied to YPD solid medium and cultured for 30 days at 30 °C, to obtain a surviving primary mutant strain within 10%.
  • PBS buffer phosphate buffered saline
  • strain growth in solid medium containing glucose or dodecane as a single carbon source was compared.
  • the composition of the solid medium used was 6.7 g / L of yeast nitrogen base without amino acid (YNB) and 10 g / L of glucose) and dodecane as a single carbon source.
  • Medium (YNB, yeast nitrogen base without amino acid) 6.7 g / L, dodecane 10 g / L).
  • YNB yeast nitrogen base without amino acid
  • dodecane 10 g / L dodecane 10 g / L
  • a sterilized paper filter was placed in a solid medium, and a quantitative dose of dodecane was applied to the filter.
  • the dodecane was spread as a vapor into the solid medium, and the strain was used.
  • Candidate mutant strains were suspended in PBS buffer to prepare strain turbidity with an OD of 0.01 to 0.1, and then inoculated with 10ul using a micropipette in the two solid mediums described above, followed by incubation at 30 ° C. for 3 days to grow well in glucose solid medium. Beta-oxidation ( ⁇ -oxidation) is blocked, the first screening was performed by selecting strains that do not grow in the dodecane solid medium.
  • the first selected mutant strain was secondarily selected for beta-oxidation gene blocking strain through strain growth in liquid medium containing dodecane as a single carbon source.
  • a liquid culture of a total of six selected strains was performed.
  • the liquid culture used was inoculated in 250ml Erlenmeyer flask (70 ml of dodecane as a single carbon source) in the culture medium of each selected strain to the initial culture OD 1 and incubated at 30 °C, 150rpm for 6 days.
  • the composition of the liquid medium used was 20 g / L of yeast nitrogen base without amino acid (YNB, 20 g / L of dodecane) using dodecane as a single carbon source.
  • the culture results are shown in Figure 10, respectively, graphically the OD measurement of the mutant strain using a dodecane and a mutant strain using dodecane as a carbon source.
  • the strain that did not use dodecane was determined to be a beta-oxidation-blocked strain, and the second screening was completed.
  • the mutant strain that blocked beta-oxidation was determined as Candida infanticola LC-DA01. It was named and deposited in the Korea Institute of Biotechnology and Biotechnology Center (Accession No. KCTC13099BP, September 08, 2016).
  • Candida infanticola LC-DA01 (Accession No. KCTC13099BP) was added to the yeast extract medium using methyl laurate substrate containing glucose of 30, 1v / v. / m aeration, dissolved oxygen (DO) was incubated for 24 to 48 hours at a stirring rate of 30% (100 ⁇ 900rpm depending on DO value) and pH5. After 12 to 24 hours of incubation, 50 g / L of glucose was consumed and glucose was added at 1 to 4 g / L / h to proceed to the end of the culture.
  • DDDA dodecanedioic acid
  • KCTC13099BP Candida infanticola LC-DA01
  • Candida Infanticola mutant strain (Candida infanticola LC-DA01; Accession No. KCTC13099BP) blocked beta-oxidation, OD (optical density, maximum / final) value was 62.1 / 36.2, DDDA DDDA of wild-type Candida Infanticola strain (Candida infanticola DS02; KCTC 12820BP) with no beta-oxidation at 140.9 g / L (conversion yield 90%) and DDDA productivity 1.67 g / L / h It can be seen that the concentration can be obtained significantly higher than 13 times compared to 10.6g / L.
  • Example 5 Dioic Acid Conversion Culture of Candida Infanticola Mutant Strains Using a Hydrocarbon Substrate
  • the reaction was carried out for 15 minutes at 42 ° C., the supernatant was removed, suspended in YPED medium, shaken for 6 hours at 30 ° C., and then plated on YEPD medium containing antibiotics and incubated at 30 ° C. for 3 days.
  • DTT dithiothreitol
  • DMSO dimethyl sulfoxide
  • Homologous recombination may occur mainly in S and G2 phases using chromosomes during DNA replication, and the cell cycle was controlled using hydroxyurea to increase the probability of homologous recombination. It was confirmed that the most S-phase cells were observed after 2 hours of 107/20 ml of Candida Infanticola (Candida infanticola DS02; KCTC 12820BP) growing in YEPD medium after 0.2 M of urea hydroxide treatment. Shown in
  • Candida Infanticola DS02 (KCTC 12820BP) cells with stagnant S-cycles were transformed with the above heat treatment and hydroxyaureate treatment methods.
  • Strain (Accession Number: KCTC13103BP) was obtained.
  • FIG. 16 shows a schematic diagram of uracil nutrient-restrictor strain preparation and gDNA PCR.
  • 5-Fluoroorotic acid (5'-FOA) is converted to 5-fluorouracil, a harmful substance during uracil synthesis, leading to cell death, so the URA3 gene-deficient strain is uracil, It can grow on medium containing 5'-FOA and not on medium without uracil.
  • the URA3 pop-out vector was constructed using a URA3 pop-out vector containing a 500bp homology region at both ends of the CiPOX1 gene, and then transformed into a S phase-regulated uracil nutrient recombinant strain (Accession Number: KCTC13103BP). CiPOX1 gene removal cassette was introduced.
  • the URA3 pop-out vector is derived from bacillus subtilis at both ends of the Ct.URA3 gene for pop-out of the URA3 (Ct.URA3) gene and Ct.URA3 gene of Candida tropicalis to survive in uracil removal medium. Repeated sequences are included, and the transformed strain can be selected from the uracil removal medium of Table 10 by the Ct.URA3 gene.
  • SEQ ID NO: 8 shows the URA3 (Ct.URA3) sequence of Candida tropicalis
  • SEQ ID NO: 9 shows the repeated sequence derived from bacillus subtilis, and shows the results of sequence identification using a vector, a cassette schematic diagram and gDNA PCR. (Accession Number: KCTC13104BP).
  • the URA3 pop-out vector was constructed using a URA3 pop-out vector containing a 500bp homology region at both ends of the CiPOX2 gene, and then transformed into a S phase-regulated uracil nutrient recombinant strain (Accession Number: KCTC13103BP). CiPOX2 gene removal cassette was introduced.
  • the URA3 pop-out vector is derived from bacillus subtilis at both ends of the Ct.URA3 gene for pop-out of the URA3 (Ct.URA3) and Ct.URA3 genes of Candida tropicalis to survive in uracil-deficient media. Repeated sequences are included, and the transformed strain can be selected from the uracil removal medium by the Ct.URA3 gene. Sequence identification results using a vector, cassette schematic diagram and gDNA PCR are shown in FIG. 18 (Accession Number: KCTC13105BP).
  • CiPOX2 gene removal cassette was prepared using a URA3 pop-out vector containing a 500bp homology region at both ends of the CiPOX2 gene, and then introduced into the SPO-regulated CiPOX1 and CtURA3 deletion strains. It was. CiPOX1 and CtURA3 removal strains popped out Ct.URA3 from the CiPOX1 removal strain (Accession Number: KCTC13104BP).
  • the URA3 pop-out vector is derived from bacillus subtilis at both ends of the Ct.URA3 gene for pop-out of the URA3 (Ct.URA3) and Ct.URA3 genes of Candida tropicalis to survive in uracil-deficient media. A repeated sequence is included. Transformed strains are selectable in uracil removal medium by the Ct.URA3 gene. Sequence identification results using a vector, cassette schematic diagram and gDNA PCR are shown in FIG. 19 (Accession Number: KCTC13106BP).
  • Example 11 Dioic Acid Conversion Flask Culture of a Candida Infanticola Transgenic Strain
  • each strain wild type strain (Accession Number: KCTC 12820BP), POX1 gene removal strain (Accession Number: KCTC13104BP), CiPOX2 gene removal strain (Accession Number : KCTC13105BP), CiPOX1 / CiPOX2 gene removal strain (Accession Number: KCTC13106BP)) flask culture was performed. 50 ml liquid culture was performed using a 500 ml baffled flask. Culture conditions are YPED medium, total culture time 72 hours, 30, 200rpm, pH is 6 to 7.5.
  • glucose was used as a carbon source for 24 hours, followed by 1% dodecane addition, and potassium phosphate (potassium phosphate) for pH7.5 adjustment. From the time of addition of dodecane, glucose was added in 0.5% increments every 6 hours.
  • fermenter culture of 5L scale using CiPOX1 and CiPOX2 gene-deficient strains was performed.
  • Primary culture conditions were culture volume 2L, pH5-6, temperature 30 °C, aeration 1vvm, agitation 200rpm, 10N NaOH was used for pH control, and the dissolved oxygen in the culture medium was adjusted by 30 rpm to reduce dissolved oxygen by 30%. It kept over.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

캔디다 인판티콜라 균주를 이용하여 탄화수소 또는 지방산을 포함하는 기질로부터 디오익 산류(dioic acids)를 생산하는 방법 및 이에 사용되는 캔디다 인판티콜라 미생물에 대한 것으로, 본 발명에 따르면 화석연료의 사용으로 인한 국제 유가변동에 따른 비용 증가 및 환경 오염의 부담을 줄여 DDDA를 원료로 하는 다양한 산업 분야에 활용될 수 있다.

Description

신규한 캔디다 인판티콜라 균주, 이의 변이균주 및 형질전환균주, 및 이를 이용하여 디오익 산류를 생산하는 방법
본 발명은 캔디다 인판티콜라 균주를 이용하여 탄화수소 또는 지방산과 같은 기질로부터 디오익 산류(dioic acids)를 생산하는 방법 및 이에 이용되는 캔디다 인판티콜라 미생물에 대한 것이다.
디오익 산(dioic acids)은 화학산업에 있어서 매우 중요한 화학물질로서 엔지니어링 수지, 자동차 부품, 스포츠 용품, 카펫 및 칫솔 등에 이용되는 석유 유래 나일론뿐만 아니라, 다른 고분자 가소제, 접착제, 윤활유, 에폭시수지, 부식방지제, 코팅제, 가공 플라스틱, 향수 및 약제품 등 다양한 산업적 용도로 사용된다. 이들 디오익 산(dioic acids) 가운데 연간 약 15,000,000,000파운드의 도데칸 디오익 산이 석유화학 원료로부터 합성되고 있으며, 이러한 석유화학 원료들은 주로 부족한 천연 원료로서 이들 원료의 사용은 전세계적으로 환경 파괴·변화와 밀접한 연관이 있으며, 이러한 석유화학 원료들은 가격변동에 민감하고 환경 오염에 대한 부담을 가중시킨다.
따라서, 재생 가능하며 지속가능하고 환경에 대한 부담을 줄일 수 있는 디오익 산의 대체적인 생산방법이 요구되고 있다.
본 발명에서는 상기와 같은 종래 기술의 문제점을 해결하기 위하여, 디오익 산류를 생산하는 방법 및 캔디다 인판티콜라 균주를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은
캔디다 인판티콜라 균주를 이용하여 탄화수소 또는 지방산을 포함하는 기질로부터 디오익 산류를 생산하는 방법을 제공한다.
상기 디오익 산류를 생산하는 방법은,
(A) 초기 셀 매스 확보를 위한 탄화수소 또는 지방산을 포함하는 기질을 첨가한 효모 추출물 글루코스 배지(yeast extract glucose medium; YG medium)에서 캔디다 인판티콜라 균주를 배양하는 단계;
(B) 상기 단계(A)에서 얻은 배양액에 탄화수소, 지방산 또는 이들 유도체를 포함하는 탄소원 또는 기질을 첨가하여 오메가-산화(ω-oxidation) 반응을 유도하는 단계; 및
(C) 상기 단계(B)에서 얻은 반응물에 탄화수소 또는 지방산을 포함하는 기질 및 글루코스를 첨가하며 배양하는 단계
를 포함하는 것 일 수 있다.
상기 단계(A)의 배양은 30±5℃, 용존산소량 10% 이상의 조건에서 20 내지 50시간 동안 진행되는 것일 수 있다.
또한, 상기 단계(B)의 반응은 0.5 내지 5%의 탄소원으로 10 내지 30시간 동안 진행될 수 있다.
또한, 상기 단계(C)의 배양은 0.1 내지 2ml/L/h의 기질 및 1 내지 3g/L/h의 글루코스로 50 내지 100시간 동안 진행될 수 있다.
디오익 산류를 생산하는 방법에 있어서, 상기 디오익 산류는 에탄디오익산(ethanedioic acid), 프로판디오익 산(propanedioic acid), 부탄디오익 산(butanedioic acid), 펜탄디오익 산(pentanedioic acid), 헥산디오익 산(hexanedioic acid), 옥탄디오익 산(octanedioic acid), 노난디오익 산(nonanedioic acid), 데칸디오익 산(decanedioic acid), 언데칸디오익 산(undecanedioic acid), 도데칸디오익 산(dodecanedioic acid) 및 헥사데칸디오익 산(hexadecanedioic acid)로 이루어진 군으로부터 선택되거나 이들의 조합일 수 있다.
디오익 산류를 생산하는 방법에 있어서, 상기 캔디다 인판티콜라 균주는 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP), 캔디다 인판티콜라 돌연변이 균주(Candida infanticola LC-DA01; KCTC13099BP), 캔디다 인판티콜라 형질전환 균주(Candida infanticola; KCTC13103BP, KCTC13104BP, KCTC13105BP, KCTC13106BP) 및 이들의 조합일 수 있다.
본 발명은 또한 탄화수소 또는 지방산을 포함하는 기질로부터 디오익산(dioic acids)류를 생산하는 캔디다 인판티콜라(Candida infanticola) 균주를 제공한다.
본 발명은 캔디다 인판티콜라 균주를 이용하여 탄화수소 또는 지방산을 포함하는 기질로부터 디오익 산류(dioic acids)를 생산하는 방법 및 이에 사용되는 캔디다 인판티콜라 미생물에 대한 것으로, 화석연료의 사용으로 인한 국제 유가변동에 따른 비용 증가 및 환경 오염의 부담을 줄여 DDDA를 원료로 하는 다양한 산업 분야에 활용될 수 있다.
도 1은 경쟁유도 연속식 집적 배양장치를 간략하게 나타내는 도면이다.
도 2는 경쟁유도 연속식 집적 배양에서 미생물의 시간에 따른 OD값 변화를 나타내는 그래프이다.
도 3은 경쟁유도 연속식 집적 배양에서 미생물의 시간에 따른 희석율(dilution rate) 변화를 나타내는 그래프이다.
도 4는 분리균주의 18s rRNA 염기서열을 나타내는 도면이다.
도 5는 분리균주(캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP))의 pH에 따른 성장률을 나타내는 그래프이다.
도 6은 캔디다 인판티콜라 야생형 균주(KCTC 12820BP) 및 캔디다 트로피칼리스(ATCC 20336)에 대한 시간에 따른 도데칸 소모 속도 및 생산되는 균체량을 나타내는 그래프이다.
도 7은 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)에 의한 도데칸의 DDDA(dodecanedioic acid) 전환을 나타내는 그래프이다.
도 8은 트로피칼리스(Candida tropicalis; ATCC20336)에 의한 도데칸의 DDDA(dodecanedioic acid) 전환을 나타내는 그래프이다.
도 9는 증기를 이용한 고체 배지 제작에 대한 개략도이다.
도 10은 캔디다 인판티콜라 돌연변이 균주(Candida infanticola LC-DA01: KCTC13099BP)에 대한 단일 탄소원 이용 유무에 따른 OD 값을 나타낸 그래프이다.
도 11은 지방산을 이용한 돌연변이 균주의 디오익 산류 전환 결과를 나타낸 그래프이다.
도 12는 도데칸을 이용한 돌연변이 균주의 디오익 산류 전환 결과를 나타낸 그래프이다.
도 13은 데칸을 이용한 돌연변이 균주의 디오익 산류 전환 결과를 나타낸 그래프이다.
도 14는 열처리에 따른 균주의 형질전환 결과를 나타낸 그래프이다.
도 15는 수산화요소 농도에 따른 세포의 상태를 나타낸 위상차 현미경 사진이다.
도 16은 우라실 영양요구체 균주제작 카세트 모식도 및 gDNA PCR 결과이다.
도 17은 CiPOX1 유전자 결손 균주제작 카세트 모식도 및 gDNA PCR 결과이다.
도 18은 CiPOX2 유전자 결손 균주제작 카세트 모식도 및 gDNA PCR 결과이다.
도 19는 CiPOX1 및 CiPOX2 유전자 결손 균주제작 카세트 모식도 및 gDNA PCR 결과이다.
도 20은 야생형 균주, CiPOX1 및 CiPOX1/CiPOX2 유전자 결손 균주에 대한 플라스크에서의 디카복시산 생산능을 나타낸 결과이다.
도 21은 CiPOX1/CiPOX2 유전자 결손 균주에 대한 5L 발효조에서 디카복시산 생산능을 나타낸 결과이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공기 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하에서 본 발명을 구체적으로 설명한다.
본 발명에 사용된 용어 '차단'이란 '저해'와 혼용될 수 있으며, 어떤 경로 또는 반응 등을 막는 것을 의미할 수 있다.
또한, '탄화수소'는 탄소와 수소만으로 이루어져 있는 유기 화합물을 지칭할 수 있다.
또한, '지방산'은 사슬 모양의 포화 또는 불포화 모노카복시산을 지칭할 수 있다.
또한, '오메가-산화(ω-oxidation)'는 지방산의 메틸기 말단이 산화되어 디카복시산으로 되는 반응을 의미할 수 있고, '베타-산화(β-oxidation)'는 카복시기에서 β 자리의 탄소원자가 산화되어 아세틸 CoA를 방출하면서 분해되는 반응을 의미할 수 있다. 일반적으로 지방산의 산화는 카복시기 말단부터 탄소 2개 단위로 절단되는 베타-산화(ω-oxidation)가 주요 반응이며, 오메가-산화(ω-oxidation)는 탄소수 10 내지 12의 중간 사슬 지방산에 대한 보조 경로로 이해되고 있다.
본 발명의 디오익 산류를 생산하는 방법에 따르면, 캔디다 인판티콜라 균주를 이용하여 탄화수소 또는 지방산을 포함하는 기질을 사용하여 디오익산류를 생산할 수 있다.
상기 디오익 산류를 생산하는 방법은 (A)초기 셀 매스를 확보하기 위한 탄화수소 또는 지방산을 포함하는 기질을 첨가한 효모 추출물 글루코스 배지(yeast extract glucose medium; YG medium)에서 캔디다 인판티콜라 균주를 배양하는 단계; (B) 상기 단계(A)의 배양액에 탄화수소, 지방산 또는 이들 유도체를 포함하는 탄소원 또는 기질을 첨가하여 오메가-산화(ω-oxidation) 반응을 유도하는 단계(B); (C) 상기 단계(B)의 반응물에 탄화수소 또는 지방산을 포함하는 기질 및 글루코스를 첨가하며 배양하는 단계;를 포함하는 것을 특징으로 할 수 있다.
상기 단계(A)의 배양은 30±5℃, 용존산소량 10% 이상의 조건에서 20 내지 50시간 동안 진행될 수 있으며, 바람직하게는 30±3℃, 용존산소량 30±3%의 조건에서 24 내지 48시간 동안 진행될 수 있다. 또한, 상기 기질은 라우릴산 메틸(methyl laurate)일 수 있으나 이에 한정되는 것은 아니다.
상기 단계(B)의 반응은 0.5 내지 5%의 탄소원 또는 기질로 10 내지 30시간 동안 진행될 수 있으며, 바람직하게는 0.5 내지 3%로 15 내지 25시간 동안 진행될 수 있으며, 더욱 바람직하게는 약 1%의 도데칸으로 15 내지 25시간 동안 진행될 수 있다.
상기 단계(C)의 배양은 0.1 내지 2ml/L/h의 기질 및 1 내지 3g/L/h의 글루코스로 50 내지 100시간 동안 진행될 수 있으며, 바람직하게는 0.5 내지 1ml/L/h의 기질 및 1.5 내지 2.5g/L/h의 글루코스로 80 내지 100시간 동안 진행될 수 있다. 상기 기질은 라우릴산 메틸(methyl laurate)일 수 있으나 이에 한정되는 것은 아니다.
상기 디오익 산류는 에탄디오익산(ethanedioic acid), 프로판디오익 산(propanedioic acid), 부탄디오익 산(butanedioic acid), 펜탄디오익 산(pentanedioic acid), 헥산디오익 산(hexanedioic acid), 옥탄디오익 산(octanedioic acid), 노난디오익 산(nonanedioic acid), 데칸디오익 산(decanedioic acid), 언데칸디오익 산(undecanedioic acid), 도데칸디오익 산(dodecanedioic acid), 헥사데칸디오익 산(hexadecanedioic acid) 및 이들의 조합로 이루어진 군으로부터 선택된 것을 포함할 수 있으며, 바람직하게는 디오익 산류가 도데칸 디오익산을 포함할 수 있다.
상기 캔디다 인판티콜라 균주는 야생형 균주, 돌연변이 균주, 형질전환 균주 및 이들의 조합으로부터 선택된 것을 포함할 수 있다.
구체적으로, 상기 야생형 균주는 유전자 조작을 하지 않은 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)이고, 상기 돌연변이 균주는 캔디다 인판티콜라 돌연변이 균주(Candida infanticola LC-DA01; KCTC13099BP), 상기 형질전환 균주는 캔디다 인판티콜라 형질전환 균주(Candida infanticola; KCTC13103BP, KCTC13104BP, KCTC13105BP, KCTC13106BP)일 수 있다.
일구현예에 따르면, 상기 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)는 탄화수소 및 지방산으로 이루어진 군으로부터 선택되거나 이들의 조합을 포함하는 것을 탄소원으로 이용하는 균주일 수 있다.
상기 탄소원은 탄소수 6 내지 30의 탄화수소 또는 지방산, 바람직하게는 탄소수 8 내지 20의 알케인 또는 지방산으로부터 선택될 수 있다. 예를 들어, 도데칸(dodecane), 메틸 라우레이트(Methyl laulate), 라우르산(lauric acid), 이들의 유도체, 또는 이들의 조합일 수 있으며, 라우르산의 유도체는 C1-8 알킬라우레이트일 수 있다. 바람직하게는 메틸라우레이트(methyl laurate), 에틸라우레이트, 프로필라우레이트 등으로 이루어진 군으로부터 선택되거나 이들의 조합일 수 있다.
또한, 상기 캔디다 인판티콜라 돌연변이 균주(Candida infanticola LC-DA01; KCTC13099BP)는 탄화수소 또는 지방산으로 이루어진 군으로부터 선택되거나 이들의 조합을 포함하는 것을 기질로 이용하는 균주일 수 있다. 돌연변이 균주는 예를 들어, 야생형 균주에 EMS(ethyl methanesulfonate), UV(ultra violet) 및 이들의 조합으로부터 선택된 방법을 처리하여 제조될 수 있으나, 상기 방법에 한정되지는 않는다.
또한, 상기 캔디다 인판티콜라 형질전환 균주(Candida infanticola; KCTC13103BP, KCTC13104BP, KCTC13105BP, KCTC13106BP)는 탄화수소 또는 지방산으로 이루어진 군으로부터 선택되거나 이들의 조합을 포함하는 것을 기질로 이용할 수 있다. 형질전환 균주는 열처리, 전기천공법 등의 물리적 자극, 수산화요소 처리 등의 화학적 자극 등을 가하여 형질전환을 유도함으로써 제조할 수 있으며, 예를 들어, 열처리(heatshock) 시 폴리에틸렌글리콜(PEG), 리튬-아세테이트, 디메틸설폭시드(DMSO) 등을 이용하여 형질전환 효율을 향상시킬 수 있다. 일반적으로 효모와 같은 진핵생물은 세포주기에 따라 상동재조합, 비상동재조합이 조절된다고 알려져 있다. 상동재조합은 DNA 복제 시 염색분체를 이용하는 S기, G2기에서 주로 발생할 수 있으며, 예를 들어 상동재조합의 확률을 증가시키기 위하여 수산화요소(hydroxyurea)를 이용하여 세포주기를 조절할 수 있다. 구체적으로, 수산화요소(hydroxyurea)는 리보뉴클레오티드 환원효소를 억제시켜 DNA 합성에 이용될 dNTP의 양을 낮춰 S기로 세포주기를 정체시키는 역할을 할 수 있어, 형질전환 시 상동성 조합의 확률을 증가시킬 수 있다.
일구현예에 따르면, 형질전환 균주는 URA3 및 POX 유전자가 결손된 균주를 포함할 수 있다. 상기 유전자 결손 균주는 예를 들어, 야생형 캔디다 인판티콜라 균주에 열처리(heatshock), 수산화요소(hydroxyurea) 처리 또는 이들의 조합을 적용하여 형질전환을 유도할 수 있으며, 그 순서와 횟수는 당업자에 의해 적절히 선택될 수 있다. 또한, 일구현예에 따르면, 상기 형질전환 균주는 반수체일 수 있다. 예를 들어, 일반적으로 산업상 디카르복실산 생산에 주로 쓰이는 이배체인 캔디다 트로피칼리스(Candida tropicallis)에 비하여 배수성이 반수체인 캔디다 인판티콜라 균주가 유전자 조작에 있어서 유리할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술 사상 범위 내에서 다양한 변경 및 수정이 가능함은 본 기술분야에서 통상의 지식을 가진 자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허 청구범위에 속하는 것도 자명한 것이다.
실시예 1: 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)의 분리
고농도의 다양한 탄소원이 포함된 석유화학 공장의 폐수를 처리하기 위하여 오일세퍼레이터(CPI, Coagulated Plate Interceptor)에서 일차적으로 처리를 진행한 후 균등조, 폭기조, 침전조 등을 거쳐가며 폐수 처리를 진행하는 석유화학 공정의 폐수처리시설의 오일세퍼레이터(CPI), 폭기조, 침전조에서 시료를 채취하였다.
상기 시료는 오일세퍼레이터의 유입수, 오일세퍼레이터의 방류수, 균등조 방류수, 폭기조 유입수, 폭기조 방류수, 침전조 유입수 및 침전조 방류수에서 폐수 샘플을 1L 멸균 수질 샘플 팩에 채취하여 준비하고, 채취한 시료는 아이스박스에 넣어 실험실로 이송하였다. 상기 채취한 샘플의 일부를 하기 표 1에 나타낸 1차 배양 배지의 조성으로 만들어진 고체 배지(agar plate)에 1차 평판도말(spreading)하고, 30℃ 항온 배양기에서 1주일간 배양하였다. 배양 후, 도데칸(Dodecane; C12 알케인)이 포함된 배양액에서 생장성이 빠른 균주를 선별하기 위해, 고체 배지에 생성된 군락(colony)들을 채취하여, 하기 표 1에 나타낸 2차 배양 배지의 조성으로 만들어진 도데칸(dodecane; C12 알케인)을 유일한 탄소원으로 포함하는 경쟁 유도 연속식 집적배양 배지에 접종하여 30℃, 1 v/v/m 통기량, 400rpm 교반속도 및 pH5.0(controlled by 10N NaOH)의 조건의 경쟁 유도 연속식 집적배양장치(도 1)에서 배양하였다. 상기 경쟁 유도 연속식 집적배양 시 초기 투입된 20g/L의 도데칸을 소진한 후, 추가로 40g/L의 도데칸이 포함된 하기 표 2의 추가 배지를 투입하여 희석률(dilution rate)을 0에서 0.4까지 상승시켜, 최종적으로 생장성이 가장 우수한 균주 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)를 분리하였다. 상기 실험에서 일부 미생물의 성장을 억제하기 위하여 항생제 카나마이신 25mg/L를 사용하였다. 상기 실험 결과를 도 2 및 도 3에 나타내었다.
배지 조성 1차 배양 배지(고체 배지) 경쟁 유도 연속식 집적배양 배지
2차 배양 배지 추가 배지
YNB(Yeast nitrogen base without amino acid) 6.7 g/L 20 g/L 20 g/L
도데칸(Dodecane) 10 g/L 20 g/L 40 g/L
계면활성제 Gum Arabic 0.5 % Tween 80 3 mL/L Tween 80 3 mL/L
실험예 1: 분리균주의 18s rRNA 유전학적 분석
상기 실시예 1에서 분리한 분리균주에 대해서 18s rRNA 염기서열분석법으로 분석하였다. Yeast gDNA prep kit(PureHelixTM, NANOHELIX)를 이용하여 상기 실시예 1의 분리균주의 genomic DNA를 추출하고, 상기 추출한 genomic DNA를 주형으로 하기 표 2의 18s ITS ¼ primer를 이용한 PCR 반응으로 증폭시킨 후, TA 벡터 클로닝 시킨 후, DNA 시퀀싱 반응을 통하여 18s rRNA 염기서열을 얻었으며, 상기 염기서열은 서열번호 1로서 도 4에 나타내었다.
염기서열(5' → 3') 서열번호
정방향 프라이머 TCC GTA GGT GAA CCT GCG G 서열번호 2
역방향 프라이머 TCC TCC GCT TAT TGA TAT GC 서열번호 3
도 4(서열번호 1)에 나타낸 상기 분리 균주의 염기서열을 NCBI(National Center for Biotechnology Information)의 BLAST(Basic Local Alignment search tool)을 사용하여 균주의 상동성을 조사하였다. 상기 조사결과는 하기 표 3에 나타내었다.
하기 표 3에 나타낸 바와 같이 상기 분리 균주는 캔디다 인판티콜라 CBS11940와 높은 상동성을 가지는 근연종인 것을 확인할 수 있다.
분리 균주 서열의 길이 근연종 상동성
Candida infanticola DS02 441bp Candida infanticola strain CBS11940 (HQ695010) 99%
실험예 2: 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)의 탄소원 자화능(資化能) 분석
상기 균주(캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)의 탄소원 자화능을 알아보기 위하여 API 20c AUX (Biomerieux 社)를 사용하여 분석하였다, API 20c AUX(Biomerieux 社)를 이용하여 분석한 실험 결과는 종래의 캔디다 인판티콜라 kurtzman 및 캔디다 인판티콜라 sp.와 비교분석 하였으며, 그 결과를 하기 표 4에 나타내었다.
탄소원 실시예 1(Candida infanticola DS02; KCTC 12820BP) 비교예 1(Candida infanticola kurtzman) 비교예 2(Candida infanticola sp.)
글루코오스(Glucose) + + +
글리세롤(Glycerol) - + +
2-케토-D-글루콘산(2-keto-D-gluconate) - - -
L-아라비노오스(L-Arabinose) - - -
D-자일로스(D-Xylose) - - -
아도니톨(Adonitol) - - -
자일리톨(Xylitol) - - -
D-갈락토스(D-galactose) - + +
이노시톨(Inositol) - - -
D-솔비톨(D-Sorbitol) - + +
A-메틸-D-글루코시드(A-Methyl-D-glucoside) - - -
N-아세틸-D-글루코사민(N-Acetyl-D-glucosamine) - - -
D-세롤비오스(D-Cellobiose) - - -
D-젖당(D-Lactose) - - -
D-맥아당(D-Maltose) - - -
D-자당(D-Saccharose (Sucrose)) - - -
D-트레할로오스(D-Trehalose) - - -
D-멜레치토오스(D-Melezitose) - - -
D-라피노오스(D-Raffinose) - - -
상기 표 4에 나타낸 바와 같이 비교예 1(Candida infanticola kurtzman) 및 비교예 2(Candida infanticola sp.) 와 캔디다 인판티콜라 야생형 균주(KCTC 12820BP)(실시예 1)을 비교해 보면, 기존에 알려진 캔디다 인판티콜라 균주인 비교예 1 및 비교예 2의 경우 글루코오스, 글리세롤, D-갈락토스 및 D-솔비톨의 탄소원에 대한 자화능을 가지는 반면, 캔디다 인판티콜라 야생형 균주(KCTC 12820BP)는 탄소원으로 글루코스만 이용할 수 있음을 확인할 수 있다. 상기 실험 결과와 같이 본 발명의 신규한 캔디다 인판티콜라 야생형 균주(KCTC 12820BP)는 기존의 균주들과 비교하여 탄소 자화능에서 큰 차이를 보이는 것을 알 수 있다.
실험예 3: 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)의 최적 성장 pH
캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)의 최적 성장 pH를 알아보기 위하여, 상기 균주를 아미노산이 포함되지 않은 YNB(yeast nitrogen base(without amino acid)) 배지의 초기 pH를 4 내지 7로 다양하게 설정하고 배양하였다. 상기 실험 결과는 도 5에 나타내었다.
도 5에 나타낸 바와 같이, 캔디다 인판티콜라 야생형 균주(KCTK 12820BP)의 최적생장 pH는 pH 7인 것을 확인할 수 있다.
실험예 4: 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)를 알케인(C12)을 유일한 탄소원으로 배양하였을 때의 알케인(C12) 기질 섭취 속도 비교
캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)의 알케인(C12) 기질 배양에서의 알케인(C12) 소모 속도 및 생산되는 균체량에 대하여 알아보기 위하여, 하기 표 5에 나타난 것과 같이 20g/L의 도데칸을 유일한 탄소원으로 포함하는 효모 추출 배지에 실시예 1의 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP) 및 비교 표준 균주 캔디다 트로피칼리스(Candida tropicalis; ATCC 20336)를 배양하였다. 상기 실험 결과는 도 6에 나타내었다.
구 성 함 량(g/L)
Dodecane 20
MgSO4ㆍ7H2O 1
Yeast extract 20
(NH4)2SO4 8
KH2PO4(monobasic) 2
NaCl 0.1
CaCl2ㆍ2H2O 0.1
Trace element solution CaCl2 · 2H2O 13.2 g/L 1ml
FeSO4 · 7H2O 8.4 g/L
MnSO4 · 4H2O 2.4 g/L
ZnSO4 · 7H2O 2.4 g/L
CuSO4 · 5H2O 0.48 g/L
CoCl2 · 6H2O 0.48 g/L
Na2MoO4 · 2H2O 0.24 g/L
K2B4O7 · 4H2O 0.06 g/L
CaCl2 · 2H2O 13.2 g/L
Antifoam 0.5ml
도 6에 나타낸 바와 같이, 캔디다 인판티콜라 DS02의 도데칸 소모 속도는 일당 6.2g/L로 비교 균주로 사용된 캔디다 트로피칼리스의 도데칸 소모 속도 일당 3.7g/L 에 비해 1.6배 빠른 것을 확인할 수 있다. 뿐만 아니라, 생산된 균체량 또한 17% 높은 것을 확인할 수 있다.
실시예 2: 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)에 의한 도데칸(dodecane)의 DDDA(dodecanedioic acid) 전환
캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP) 및 상기 균주와 같은 속의 유전자 조작이 되지 않은 야생형 균주 캔디다 트로피칼리스(Candida trpoicalis; ATCC 20336), 캔디다 파랍실로시스(Candida parapsilosis) 및 피키아 카리비카(Pichia caribbica)에 의한 도데칸의 DDDA(dodecanedioic acid) 전환을 위한 초기 세포량(cell mass)을 얻기 위하여 50g/L의 글루코스를 포함하는 라우릴산 메틸(methyl laurate)기질을 사용한 효모 추출(yeast extract) 배지에 실시예 1의 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)를 30℃, 1v/v/m 통기량, 용존 산소량(dissolved oxygen:DO) 30%의 교반 속도(DO 값에 따라 100~900rpm) 및 pH5로 24 내지 48시간 동안 배양한 후, 1% 도데칸을 이용하여 pH7에서 12 내지 20시간 동안 오메가-산화(ω-oxidation) 유도를 진행한 후, 라우릴산 메틸 0.5 내지 1.0 ml/L/h 및 글루코스 2g/L/h 로 넣어주며 96시간 배양하여 pH7 내지 8에서 DDDA 전환을 진행하였다. 상기 실험 결과는 도 7, 도 8 및 하기 표 6에 나타내었다.
144 시간 배양결과 O.D. (max.) DDDA 농도 (g/L)
실시예 1(Candida infanticola DS02; KCTC 12820BP) 157.4 14.0
비교예 3(Candida tropicalis; ATCC 20336) 133.1 0.62
비교예 4(Candida parapsilosis) 146.8 0
비교예 5(Pichia caribbica) 141.8 0
상기 표 6에 나타낸 바와 같이, 실시예 1(Candida infanticola DS02; KCTC 12820BP)의 경우 144시간 배양결과 O.D(optical density)값 및 DDDA 농도가 157 및 14.0 g/L으로 비교예 3(Candida tropicalis; ATCC 20336)의 O.D 값 133.1 및 DDDA 농도 0.62 g/L 보다 월등히 높게 나타났으며, 비교예 4 및 비교예 5에서는 DDDA 전환이 이루어지지 않고, 투입된 탄소원은 세포의 성장에만 사용된 것을 확인할 수 있다.
실시예 3: 야생형 캔디다 인판티콜라 균주에 대한 돌연변이 유도 및 스크리닝
야생형 캔디다 인판티콜라(Candida infanticola DS02; KCTC 12820BP) 균주의 경우 도데칸(dodecane)을 단일 탄소원으로 이용하여 생장이 가능하지만 베타-산화(β-oxidation) 경로가 차단된 돌연변이 균주의 경우 도데칸을 단일 탄소원으로 이용하여 실질적으로 생장하지 못한다. 상기 실질적으로 생장하지 못한다는 것은 성장하지 않거나, 미약하게 성장하는 것을 의미할 수 있다. 따라서 글루코스(glucose) 또는 도데칸(dodecane)을 단일 탄소원으로 포함하는 고체 배지에서의 균주 생장성을 비교하여 돌연변이 균주를 선별하였다.
선별된 돌연변이 균주에 돌연변이를 유도하기 위하여, EMS(ethyl methanesulfonate)와 UV를 사용하였다. PBS 버퍼(phosphate buffered saline)를 이용하여 OD(optical density 600nm) 0.01 내지 0.1인 캔디다 인판티콜라(Candida infanticola DS02; KCTC 12820BP) 균주 혼탁액을 준비하여 2% 농도의 돌연변이원(mutagen) EMS (ethyl methanesulfonate) 처리하여 1ml을 맞춘 후, 30℃, 150rpm에서 120분 반응시키고, 원심분리하여 상등액을 제거한 후, 20% 티오황산나트륨(sodium thiosulfate)로 2회 수세하여 EMS를 제거한다. 그리고 1ml PBS 버퍼에 균주를 혼탁시킨 후, 그 중 10ul를 YPD 고체 배지에 도포하여 30℃, 3일 배양하여 10% 이내의 생존된 1차 변이균주를 얻었다.
EMS 돌연변이원을 처리한 균주에 PBS 버퍼(phosphate buffered saline)로 OD 0.01~0.1인 균주 혼탁액을 준비하여 YPD 고체배지에 10ul 도포 후 UV(ultraviolet 254 nm)를 120초 조사하고, 30℃, 3일 배양하여 약 10% 이내의 생존된 2차 변이균주를 얻었다. 돌연변이 유도 과정은 EMS 처리 후 UV 조사, UV 조사 후 EMS 처리 또는 EMS, UV 단독으로도 진행할 수 있으며, 그 순서 및 횟수는 당업자에 의해 적절히 선택될 수 있다.
돌연변이 유도에 의하여 베타-산화(β-oxidation)가 차단된 돌연변이 균주를 선별하기 위하여, 글루코스(glucose) 또는 도데칸(dodecane)을 단일 탄소원으로 포함하는 고체배지에서의 균주 생장성을 비교하였다. 사용된 고체 배지의 조성은 글루코스(glucose)를 단일 탄소원으로 사용한 고체 배지(YNB, yeast nitrogen base without amino acid) 6.7g/L, glucose 10g/L)와 도데칸(dodecane)을 단일 탄소원으로 사용한 고체배지 (YNB, yeast nitrogen base without amino acid) 6.7g/L, 도데칸(Dodecane) 10g/L)이다. 도데칸을 포함한 고체 배지의 경우 고체 배지의 색이 불투명한 흰색으로 생장한 콜로니 확인이 용이하지 않기 때문에, 도데칸 증기를 이용한 고체 배지를 제작하여 균주 성장성을 효율적으로 비교하였으며, 고체 배지는 도 9에 도시하였다.
고체 배지 내 멸균된 종이 재질의 필터를 넣고 필터에 정량의 도데칸을 도포하여 고체 배양 시 도데칸이 증기로 고체 배지 내에 퍼져 균주가 이용하는 방법으로 진행하였다. 후보 돌연변이 균주를 PBS 버퍼에 혼탁시켜 OD 0.01~0.1인 균주 혼탁액 준비 후 위에서 설명한 두 고체 배지에 마이크로피펫을 이용하여 10ul 접종한 후 30℃, 3일 배양을 진행하여 글루코스 고체 배지에서는 잘 자라지만 베타-산화(β-oxidation)가 차단되어 도데칸 고체 배지에서는 자라지 못하는 균주를 선별하는 방법으로 1차 선별을 진행하였다.
1차 선별된 돌연변이 균주를 도데칸이 단일 탄소원으로 포함된 액체 배지에서의 균주 생장성을 통해 베타-산화(β-oxidation) 유전자 차단 균주를 2차 선별하였다. 본 실시에서는 총 6개의 선별된 균주의 액체배양을 수행하였다. 사용된 액체배양은 250ml의 삼각플라스크(Erlenmeyer flask)에 70ml의 도데칸을 단일 탄소원으로 하는 배양액에 각 선별된 균주를 초기 배양 OD 1로 맞추어 접종하여 30℃, 150rpm으로 6일간 배양하였다. 사용된 액체배지의 조성은 도데칸을 단일 탄소원으로 사용한 배지(YNB, yeast nitrogen base without amino acid) 20g/L, 도데칸(Dodecane) 20g/L)이다. 배양 결과는 도데칸을 탄소원으로 이용하지 못한 돌연변이 균주와 도데칸을 이용한 돌연변이 균주의 OD 측정값을 그래프로 각각 도 10에 나타내었다. 도데칸을 이용하지 못한 균주는 베타-산화(β-oxidation)가 차단된 균주로 판단하여 2차 선별을 완료하여, 베타-산화(β-oxidation)가 차단된 돌연변이 균주를 Candida infanticola LC-DA01로 명명하고, 한국생명공학연구원 생물자원센터에 기탁하였다(기탁번호 KCTC13099BP, 2016년 09월 08일).
도 10에 나타난 바와 같이, 돌연변이 균주(기탁번호 KCTC13099BP)의 베타 산화 경로가 차단된 것을 1차적으로 확인할 수 있다.
실시예 4: 지방산 기질을 이용한 캔디다 인판티콜라 돌연변이 균주의 디오익 산 전환 배양
캔디다 인판티콜라 돌연변이 균주(수탁번호: KCTC13099BP)에 의한 라우릴산 메틸(methyl laurate)의 도데칸 디오익 산(DDDA, dodecanedioic acid) 전환을 위한 초기 세포량(cell mass)을 얻기 위하여 50g/L의 글루코스(glucose)를 포함하는 라우릴산 메틸(methyl laurate)기질을 사용한 효모 추출(yeast extract) 배지에 캔디다 인판티콜라 돌연변이 균주(Candida infanticola LC-DA01; 수탁번호 KCTC13099BP)를 30, 1v/v/m 통기량, 용존 산소량(dissolved oxygen: DO) 30%의 교반 속도(DO 값에 따라 100~900rpm) 및 pH5 로 24 내지 48시간 동안 배양하였다. 배양 중 12 내지 24시간에 50g/L의 글루코스를 모두 소모한 뒤 1 내지 4g/L/h로 글루코스를 투입하여 배양 종료까지 진행하였다.
초기 세포량을 얻은 후, 1% 도데칸을 이용하여 pH7에서 12 내지 20시간 동안 오메가-산화(ω-oxidation) 유도를 진행한 후, 라우릴산 메틸 0.5 내지 4.0ml/L/h 및 글루코스 1 내지 4g/L/h 로 넣어주며 96 내지 144시간 배양하여 pH7 내지 8에서 DDDA 전환을 진행하였으며, 결과는 도 11 및 표 7에 나타내었다.
C. infantiola 야생형DS02; KCTC 12820BP 돌연변이β-oxidation이 차단된 Lotte LC-DA01
균체량 (O.D.)(최대/최종) 184.0/159.8 62.1/36.2
DDDA 농도(g/L) 10.6 140.9
DDDA 생산성(g/L/h) 0.07 1.67
DDDA 전환 수율(DDDA/substrates) 0.08 0.90
베타-산화(β-oxidation)가 차단된 캔디다 인판티콜라 돌연변이 균주(Candida infanticola LC-DA01; 수탁번호 KCTC13099BP)의 경우 108시간 배양결과 O.D(optical density, 최대/최종)값은 62.1/36.2, DDDA 농도는 140.9g/L(전환 수율 90%), DDDA 생산성 1.67g/L/h 로 베타-산화(β-oxidation)가 차단되지 않은 야생형 캔디다 인판티콜라 균주(Candida infanticola DS02; KCTC 12820BP)의 DDDA 농도 10.6g/L에 비해 13배 이상 월등히 높게 얻을 수 있음을 확인할 수 있다.
실시예 5: 탄화수소 기질을 이용한 캔디다 인판티콜라 돌연변이 균주의 디오익 산 전환 배양
캔디다 인판티콜라 돌연변이 균주(KCTC13099BP)에 의한 도데칸(dodecane)과 데칸(decane)의 디오익 산(dioic acid) 전환을 위한 초기 세포량(cell mass)을 얻기 위하여 50g/L의 글루코스(glucose)를 포함하는 라우릴산 메틸(methyl laurate)기질을 사용한 효모 추출(yeast extract) 배지에 캔디다 인판티콜라 돌연변이 균주(Candida infanticola LC-DA01; 수탁번호 KCTC13099BP)를 30℃, 1v/v/m 통기량, 용존 산소량(dissolved oxygen: DO) 30%의 교반 속도(DO 값에 따라 100~900rpm) 및 pH5 로 24 내지 48시간 동안 배양한다. 배양 중 12 내지 24시간에 50g/L의 글루코스를 모두 소모한 뒤 1 내지 4g/L/h로 글루코스를 투입하여 배양 종료까지 진행하였다.
초기 세포량을 얻은 후, 1% 도데칸을 이용하여 pH 7에서 12 내지 20시간 동안 오메가-산화(ω-oxidation) 유도를 진행한 후, 도데칸(dodecane)과 데칸 (decane) 기질을 0.5 내지 4.0ml/L/h 및 글루코스 1 내지 4g/L/h 로 넣어주며 96 내지 144시간 배양하여 pH7 내지 8에서 DDDA 전환을 진행하였으며, 도데칸 기질 결과는 도 12, 데칸 기질 결과는 도 13 및 표 8에 나타내었다.
C. infantiola LC-DA01 Dodecane 기질 이용 DDDA 생산 Decane 기질 이용 sebacic acid 생산
균체량 (O.D.)(최대/최종) 64.2/42.6 66.9/40.0
DDDA / sebacic acid 농도(g/L) 122.5 77.6
DDDA / sebacic acid 생산성(g/L/h) 1.70 0.81
DDDA 전환 수율(DDDA/substrates) 0.99 0.75
베타-산화(β-oxidation)가 차단된 캔디다 인판티콜라 돌연변이 균주(Candida infanticola LC-DA01; 수탁번호 KCTC13099BP)의 도데칸 기질 발효 결과의 경우 96시간 배양결과 O.D(optical density, 최대/최종)값은 64.2/42.6, DDDA 농도는 122.5g/L(전환 수율 99%), DDDA 생산성 1.70g/L/h로 베타-산화(β-oxidation)가 차단되어 탄화수소를 기질로 하여 디오익 산 생산성을 향상시킬 수 있음을 확인할 수 있다.
또한, 베타-산화(β-oxidation)가 차단된 캔디다 인판티콜라 돌연변이 균주(Candida infanticola LC-DA01; 수탁번호 KCTC13099BP)의 데칸 기질 발효 결과의 경우 96시간 배양결과 O.D(optical density, 최대/최종)값은 66.9/40.0, 세바스 산(sebacic acid) 농도는 77.6g/L(전환 수율 99%), 세바스 산(sebacic acid) 생산성 0.75g/L/h로 베타-산화(β-oxidation)가 차단되어 탄화수소를 기질로 하여 디오익 산의 생산성을 향상시킬 수 있음을 확인할 수 있다.
실험예 5: 형질전환방법 최적화
형질전환 균주를 획득하기 위하여 외래 유전자 도입을 위한 형질전환방법으로 효모에서 주로 쓰이는 폴리에틸렌글리콜(PEG) 및 리튬-아세테이트 이용한 열처리(heatshock)방법을 이용하였다. YPED 고체배지에서 30℃, 20-24시간 배양 후 캔디다 인판티콜라(Candida infanticola DS02; KCTC 12820BP) 2x106 개의 균체를 취하여 50% 폴리에틸렌글리콜과 리튬-아세테이트를 섞은 버퍼에 현탁시킨 후 30℃에서 45분 반응, 42℃에서 15분 반응시키고, 상등액을 제거한 후 YPED 배지에 현탁하여 30℃에서 6시간 진탕 배양 후 항생제가 포함된 YEPD 배지에 도말하여 30℃에 3일간 배양하였다. 형질전환효율을 높이기 위하여 열처리(heatshock) 과정에서 디티오트레이톨(DTT) 및 디메틸설폭시드(DMSO)와 같은 화학물질을 첨가하여 효율이 가장 높은 방법을 비교한 결과 DMSO를 처리한 열처리 방법이 가장 효율이 높음을 확인하였으며, 결과는 도 14에 나타내었다.
실험예 6: 수산화요소를 이용한 세포주기 조절
DNA 복제 시 염색분체를 이용하는 S기, G2기에서 상동재조합이 주로 발생할 수 있으므로, 상동재조합의 확률을 증가시키기 위하여 수산화요소(hydroxyurea)를 이용하여 세포주기를 조절하였다. YEPD 배지에서 생장 중인 107/20ml의 캔디다 인판티콜라(Candida infanticola DS02; KCTC 12820BP) 균체에 0.2M의 수산화요소 처리 후 2시간 반응 시 S기의 세포가 가장 많이 관찰됨을 확인하였으며, 결과는 도 15에 나타내었다.
실시예 6: 우라실 영양요구체 균주 획득
S기로 세포주기가 정체된 캔디다 인판티콜라(Candida infanticola DS02; KCTC 12820BP) 균체를 이용하여 상기한 열처리 및 수산화 요소 처리 방법으로 형질전환을 시킨 결과 URA3 gene 위치에 외래 유전자가 대체된 우라실 영양요구체 균주(수탁번호: KCTC13103BP)를 획득하였다.
선별 배지는 우라실 및 5-플루오로오로토산(5'-FOA)을 첨가한 미니멀 배지를 사용하였으며, 우라실 영양요구체 균주제작 모식도 및 gDNA PCR을 이용한 서열 확인 결과를 도 16에 나타내었다.
5-플루오로오로토산(5-Fluoroorotic acid, 5'-FOA)는 우라실 합성 과정에서 유해한 물질인 5-플루오로우라실(5-fluorouracil)로 전환되어 세포사멸에 이르게 하므로 URA3 유전자 결손 균주는 우라실, 5'-FOA이 들어간 배지에서 생장할 수 있고, 우라실이 없는 배지에서 생장할 수 없다.
실시예 7: 베타-산화(β-oxidation) 유전자 선별
베타-산화(β-oxidation)의 첫번째 단계인 지방산 아실-CoA(fatty acyl-CoA)로부터 2 trans-enoyl-CoA로 전환하는 효소인 acyl-CoA oxidase (pox gene) 을 제거하기 위해서 캔디다 트로피칼리스(Candidan tropicalis) 20336의 POX4, POX5, POX2 유전자의 아미노산 서열을 비교한 결과, 두 개의 유전자 CINF_04670, CINF_13455의 상동성이 40% 이상으로 가장 높게 나왔으며, 이 유전자들을 CiPOX1, CiPOX2로 명하였고, 하기 표 9에 아미노산 서열을 비교하여 나타내었다. 또한, CINF_04670에 대하여 핵산 서열은 서열번호 4에, 아미노산 서열은 서열번호 5에 나타내었다. 또한, CINF_13455에 대하여 핵산 서열은 서열번호 6에, 아미노산 서열은 서열번호 7에 나타내었다.
구분 CINF_04670(CiPOX1) CINF_13455(CiPOX2)
Ct.POX4 43% 40%
Ct.POX5 44% 41%
Ct.POX2 42% 41%
서열번호 4 (핵산)
TAGTGTCATGAAGCCTTTCTTCACCCGCAAGTTCAACGACGACCCTGATCTCAGTGCTCTTGAGGAAGAGGAGGCCGAGGAGAACGAGTAA
서열번호 5 (아미노산)
MTKSLSTNPANDVVIDGKKYNTFTEPPKAMAAERAKASFPVREMTYYLDGGEKVTEYNEAVWEQLERAPAFDNTDYYDVCGDHELLRARTLAKVGAIAEIVTDGRSERDIQKVLSFVSVIDPGAMTRIGVHFGLFLNGVRGSGTSEQFNYWVGEGAANLSNFFGCFCMTELGHGSNVAGVETTATFDRNTEEFVINTPTIAASKWWIGGAAHTATHGLVFARLIVDGKDYGVKNFVVPLRDRNTWNLMPGVSIGDIGKKMGRDGIDNGWVQFSNVRIPRLFMMMKYAKVSKDGKVTQPPLAQLAYGALISGRVSMVYDSYTWARRFLTIAIRYACCRRQFSSSPGGLETKLIDYTFHQRRLLPRLAYAYAMNAGSAELYKIYFAATDRLASTKPTDKEGLQSAIDDVKELFSVSAGLKAFSTWGTAQIIDECRQACGGLGYSGYNGFGQGYNDWVVQCTWEGDNNVLTLSAGRSLIQSGLAIRKGEHVGAAASYLKRELNAKLNGRSLEDLNVLIDGWEHVSAVGISQAVDRYVELEKEGVSQTEAFERLSQQRYDVTRVHTRMYLIKSFFENLKTASPALQPVLTDLALLFALWSIEIDASVFLRYGFLEPKDISTITVLVNKYTGKVREQAIPLTDAFNQSDFVINAPIGNYNGDVYNNYFAKTKAANPPINTHPPYYDSVMKPFFTRKFNDDPDLSALEEEEAEENE
서열번호 6 (핵산)
CGCATTCTTCAAGCGCACTCCCTATGAGCAACCCAGGCTCGATGAGATTTAA
서열번호 7 (아미노산)
MKANNTASLLKDGKELNTFTRPASDMQAERDRTSFPVREMTHFFNNGKENTEFLEKLFERIQRDPAFNNKDFYDLDYKPLRQRTFEQIGRMWSYLDELGADSPLARRFLSPFGMINPSAQTRVSVHYGLFVSALRGQGTDKQYEFWKSQGCLSLNRFYGCFGMTELGHGSNVAELETTATFDRATDEFIIHTPNTAATKWWIGGAAHSSNHTVCFARLIVDGKDYGVRNFVVPLRDPESHNLLPGIAVGDIGKKMGRDGIDNGWIQFSNVRIPRTYMLMRYSQVTPEGKVIEPPLAQLTYGALINGRVAMAYDSWVWARRFLTIALRYAAVRRQFSSTEGREESKLLDYVLHQRRLIPLLAQAIGIEAAATELYRLFDEVTHHQASLDTSDRKAVSDMVDKTKELFSLSAGLKAFSTWATVDTIDECRQACGGLGYLSATGFGQGFDDWVVNCTWEGDNNVLCLSAGRSLIQSGCKVLDGKHVTGAADYLGRIKTLRGKSLASGDLRDPKVLVGAWESVAAQAVMDAAEAYKKLRARGVSDKAAFEELSIDRFNIARLHTRCFQIKALFRKIANANPSIQKVLTNVGLLFALWSIEKNGSPFLQYGFLTSDDMNKVIDLVTFYCGEVRDQVIGITDSFNISDFFLNSPIGNYDGNAYENLMDSVTERNVPGTPCPYQDAMNAFFKRTPYEQPRLDEI
실시예 8: CiPOX1 유전자 결손균주 선별
CiPOX1 유전자의 양 말단 500bp의 상동영역(homology region)을 포함한 URA3 pop-out 벡터를 이용하여 CiPOX1 유전자 제거 카세트를 제작 후 S기로 조절된 우라실 영양요구체 균주(수탁번호: KCTC13103BP)에 형질전환을 통하여 CiPOX1 유전자 제거 카세트를 도입하였다. URA3 pop-out 벡터는 우라실 제거 배지에서 생존할 수 있도록 Candida tropicalis의 URA3(Ct.URA3) 유전자와 Ct.URA3 유전자의 제거(pop-out)를 위해 Ct.URA3 유전자의 양 말단에 bacillus subtilis 유래의 반복서열(repeated sequence)이 포함되어 있으며, 형질전환된 균주는 Ct.URA3 유전자에 의해 표 10의 우라실 제거 배지에서 선별 가능하다. 서열번호 8은 Candida tropicalis의 URA3(Ct.URA3) 서열, 서열번호 9는 bacillus subtilis 유래의 반복서열(repeated sequence)을 나타내었고, 벡터와 카세트 모식도 및 gDNA PCR를 이용한 서열 확인 결과를 도 17에 나타내었다(수탁번호: KCTC13104BP).
배지조성 g/L
Dextrose 20
YNB without amino acid 6.7
Agar 20
서열번호 8
cgggacatggggggtagagaagaagggtttgattggatcatcatgacgcctggtgtggggttggatgataaaggcgatgcgttgggccagcagtataggactgttgatgaggtggttctgactggtaccgatgtgattattgtcgggagagggttgtttggaaaaggaagagaccctgaggtggagggaaagagatacagggatgctggatggaaggcatacttgaagagaactggtcagttagaataaatattgtaataaataggtctatatacatacactaagcttctaggacgtcattgtagtcttcgaagttgtctgctagtttagttctcatgatttcgaaaaccaataacgcaatggatgtagcagggatggtggttagtgcgttcctgacaaacccagagtacgccgcctcaaaccacgtcacattcgccctttgcttcatccgcatcacttgcttgaaggtatccacgtacgagttgtaatacaccttgaagaacggcttcgtctgacccttgagcttcgcctcgttgtaatgattatacacatccaacgcttccaacctcgataaatggatcttctgcacttttgaaatcgggtactggatcgcaagcaacgagaacgccgccgatgctccggcaagcaacacaaacgaggacttcaagatc
서열번호 9
gtttaatactggttttcggagaagcgcctgtacctccgtcatagccgctgatcacaatgacatctgcagtcgctttggcaacacctgcagcgattgttcctacacctgcttttgacaccagctttacgctgattcttgcgtcacggttggcatttttcaaatcgtggatcagctgggctaaatcctcaatcgaataaatgtcatggtgtggcggaggtgagattaatccgacacctggcgttgacccacggacatcggcaacccatggatataccttgttgccaggaagctgcccgccttcacccggcttagcaccttgagccattttaatctgcagctcatcagcattgacgaggtaatggcttttgacaccaaaccgtccggatgcaatttgtttgatcgcacttcttctatcatcgccgttctcatctggaacaaagcgtttgggatcttctccgccttcaccgctgttgctttttcctccaagacggttcattgcgattgctaaagcttcgt
실시예 9: CiPOX2 유전자 결손균주 선별
CiPOX2 유전자의 양 말단 500bp의 상동영역(homology region)을 포함한 URA3 pop-out 벡터를 이용하여 CiPOX2 유전자 제거 카세트를 제작 후 S기로 조절된 우라실 영양요구체 균주(수탁번호: KCTC13103BP)에 형질전환을 통하여 CiPOX2 유전자 제거 카세트를 도입하였다. URA3 pop-out 벡터는 우라실 결손 배지에서 생존할 수 있도록 Candida tropicalis의 URA3(Ct.URA3) 유전자와 Ct.URA3 유전자의 제거(pop-out)를 위해 Ct.URA3 유전자의 양 말단에 bacillus subtilis 유래의 반복서열(repeated sequence)이 포함되어 있으며, 형질전환된 균주는 Ct.URA3 유전자에 의해 우라실 제거 배지에서 선별 가능하다. 벡터와 카세트 모식도 및 gDNA PCR를 이용한 서열 확인 결과를 도 18에 나타내었다(수탁번호: KCTC13105BP).
실시예 10: CiPOX1 및 CiPOX2 유전자 결손균주 선별
CiPOX2 유전자의 양 말단 500bp의 상동영역(homology region)을 포함한 URA3 pop-out 벡터를 이용하여 CiPOX2 유전자 제거 카세트를 제작 후 S기로 조절된 CiPOX1 및 CtURA3 제거 균주에 형질전환을 통하여 CiPOX2 유전자 제거 카세트를 도입하였다. CiPOX1 및 CtURA3 제거 균주는 CiPOX1 제거 균주(수탁번호: KCTC13104BP)로부터 Ct.URA3를 pop-out한 것이다. URA3 pop-out 벡터는 우라실 결손 배지에서 생존할 수 있도록 Candida tropicalis의 URA3(Ct.URA3) 유전자와 Ct.URA3 유전자의 제거(pop-out)를 위해 Ct.URA3 유전자의 양 말단에 bacillus subtilis 유래의 반복서열(repeated sequence)이 포함되어 있다. 형질전환된 균주는 Ct.URA3 유전자에 의해 우라실 제거 배지에서 선별 가능하다. 벡터와 카세트 모식도 및 gDNA PCR를 이용한 서열 확인 결과를 도 19에 나타내었다(수탁번호: KCTC13106BP).
실시예 11: 캔디다 인판티콜라 형질전환 균주의 디오익 산 전환 플라스크배양
본 발명의 형질전환 균주에 대한 디카복시산 생산능을 알아보기 위해서 각각의 균주를(야생형균주(수탁번호: KCTC 12820BP), POX1 유전자 제거 균주(수탁번호: KCTC13104BP), CiPOX2 유전자 제거 균주(수탁번호: KCTC13105BP), CiPOX1/CiPOX2 유전자 제거 균주(수탁번호: KCTC13106BP)) 플라스크 배양 시행하였다. 500ml baffled 플라스크를 이용하여 50ml 액체 배양을 실시하였다. 배양 조건은 YPED 배지 이용, 총 배양시간 72시간, 30, 200rpm, pH는 6 내지 7.5이다. 충분한 양의 균체 증식 확보를 위하여 글루코스를 탄소원으로 이용하여 24시간 배양 후 도데칸 1% 첨가, pH7.5 조절을 위해 인산칼륨(potassium phosphate)을 첨가하였다. 도데칸을 첨가한 시점부터 6시간 주기로 글루코스를 0.5%씩 첨가하였다. 전환된 도데칸 디오익산의 농도를 확인한 결과 72시간 기준 야생형 균주(수탁번호: KCTC 12820BP) 0g/L, POX1 유전자 제거 균주(수탁번호: KCTC13104BP) 9.39g/L, POX1 및 POX2 유전자 제거 균주(수탁번호: KCTC13106BP) 9.32g/L 로 CiPOX1이 제거된 균주가 도데칸을 탄소원으로 사용하지 않고, 도데칸 디오익산으로 92%(mol/mol)이상 전환되는 것을 확인하였으며, 결과는 도 20에 나타내었다.
실시예 12: 캔디다 인판티콜라 형질전환 균주의 디오익 산 전환 5L 발효기 배양
본 발명의 형질전환 균주에 대한 디카복시산 생산능을 알아보기 위해서 CiPOX1 및 CiPOX2 유전자 결손균주(수탁번호: KCTC13106BP)를 이용한 5L 규모의 발효기 배양을 실시하였다. 1차 배양 조건은 배양 부피 2L, pH5-6, 온도 30℃, aeration 1vvm, agitation 200rpm 이며 pH 조절을 위해 10N NaOH를 사용하였고, 배양액 내 용존 산소가 줄어듦에 따라 rpm을 조절하여 용존 산소를 30% 이상 유지시켰다. 초기 배지 내의 세포 생장을 위한 글루코스가 소모되는 시점인 12시간 이후로 디오익산의 전환을 위한 2차 배양을 위해 오메가 산화 유도 물질인 도데칸 20ml 첨가, 환원력 제공을 위해 글루코스를 4g/hr의 속도로 첨가하였으며, 배양조건은 pH7.5, aeration 0.5vvm으로 변경하였다. 2차 배양 12시간 후에 기질인 메틸 라우릴산을 1.2 내지 1.5ml/hr의 속도로 투입하여 총 48시간 배양하였다. 전환된 도데칸디오익 산은 48시간 기준 17.64g/L 생산 및 90%(mol/mol) 이상의 전환 수율을 확인하였으며, 결과는 도 21에 나타내었다.

Claims (14)

  1. 캔디다 인판티콜라(Candida infanticola) 균주를 이용하여, 탄화수소 또는 지방산을 포함하는 기질로부터 디오익 산류(dioic acids)를 생산하는 방법.
  2. 제 1항에 있어서,
    상기 디오익 산류를 생산하는 방법은
    (A) 초기 셀 매스를 확보하기 위한 탄화수소 또는 지방산을 포함하는 기질을 첨가한 효모추출물 글루코스 배지(yeast extract glucose medium; YG medium)에서 캔디다 인판티콜라 균주를 배양하는 단계;
    (B) 상기 단계 (A)의 배양액에 탄화수소, 지방산 또는 이들 유도체를 포함하는 탄소원 또는 기질을 첨가하여 오메가-산화(ω-oxidation) 반응을 유도하는 단계; 및
    (C) 상기 단계 (B)의 반응액에 탄화수소 또는 지방산을 포함하는 기질 및 글루코스를 첨가하며 배양하는 단계를 포함하는 것인 방법.
  3. 제 2항에 있어서,
    상기 단계(A)의 배양은 30±5℃, 용존산소량 10% 이상의 조건에서 20 내지 50시간 동안 진행되는 것인 방법.
  4. 제 2항에 있어서,
    상기 단계(B)의 반응 0.5 내지 5%의 탄소원으로 10 내지 30시간 동안 진행되는 것인 방법.
  5. 제 2항에 있어서,
    상기 단계(C)의 배양은 0.1 내지 10ml/L/h 의 기질 및 1 내지 3g/L/h 의 글루코스로 50 내지 100 시간 동안 진행되는 것인 방법.
  6. 제 1항에 있어서,
    상기 디오익 산류는 에탄디오익 산(ethanedioic acid), 프로판디오익 산(propanedioic acid), 부탄디오익 산(butanedioic acid), 펜탄디오익 산(pentanedioic acid), 헥산디오익 산(hexanedioic acid), 옥탄디오익 산(octanedioic acid), 노난디오익 산(nonanedioic acid), 데칸디오익 산(decanedioic acid), 언데칸디오익 산(undecanedioic acid), 도데칸디오익 산(dodecanedioic acid) 및 헥사데칸디오익 산(hexadecanedioic acid)로 이루어진 군으로부터 선택되거나 이들의 조합인 것인 방법.
  7. 제 1항에 있어서,
    상기 캔디다 인판티콜라 균주는 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP), 캔디다 인판티콜라 돌연변이 균주(Candida infanticola LC-DA01; KCTC13099BP), 캔디다 인판티콜라 형질전환 균주(Candida infanticola; KCTC13103BP, KCTC13104BP, KCTC13105BP, KCTC13106BP) 또는 이들의 조합인 것인 방법.
  8. 탄화수소 또는 지방산을 포함하는 기질로부터 디오익산(dioic acids)류를 생산하는 것인 캔디다 인판티콜라(Candida infanticola) 균주.
  9. 제8항에 있어서,
    상기 균주는 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)를 포함하는 것인 캔디다 인판티콜라 균주.
  10. 제8항에 있어서,
    상기 균주는 캔디다 인판티콜라 돌연변이 균주(Candida infanticola LC-DA01; KCTC13099BP)를 포함하는 것인 캔디다 인판티콜라 균주.
  11. 제8항에 있어서,
    상기 균주는 캔디다 인판티콜라 야생형 균주(candida infanticola DS02; KCTC 12820BP)의 URA3 유전자가 결손된 형질전환 균주(수탁번호: KCTC13103BP)를 포함하는 것인 캔디다 인판티콜라 균주.
  12. 제8항에 있어서,
    상기 균주는 캔디다 인판티콜라 야생형 균주(candida infanticola DS02; KCTC 12820BP)의 URA3 유전자 및 CiPOX1 유전자가 결손된 형질전환 균주(수탁번호: KCTC13104BP)를 포함하는 것인 캔디다 인판티콜라 균주.
  13. 제8항에 있어서,
    상기 균주는 캔디다 인판티콜라 야생형 균주(candida infanticola DS02; KCTC 12820BP)의 URA3 유전자, CiPOX1 및 CiPOX2 유전자가 결손된 형질전환 균주(수탁번호: KCTC13106BP)를 포함하는 것인 캔디다 인판티콜라 균주.
  14. 폐수처리시설로부터 캔디다 인판티콜라 야생형 균주를 분리하는 단계;
    상기 야생형 균주에 수산화요소(hydroxyurea) 처리 및 열처리(heatshock)하는 단계;
    우라실을 포함하는 배지를 사용하여 우라실 영양요구체 균주를 제작하고 선별하는 단계; 및
    베타-산화(β-oxidation) 유전자를 결손시키는 단계를 포함하는 캔디다 인판티콜라(candida infanticola) 형질전환 균주 제조방법.
PCT/KR2016/010706 2015-09-23 2016-09-23 신규한 캔디다 인판티콜라 균주, 이의 변이균주 및 형질전환균주, 및 이를 이용하여 디오익 산류를 생산하는 방법 WO2017052299A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16849024.1A EP3354743B1 (en) 2015-09-23 2016-09-23 Novel candida infanticola strain, mutant strain and transformant strain thereof, and method for producing dioic acids using same
JP2018515663A JP6577666B2 (ja) 2015-09-23 2016-09-23 新規なカンジダ・インファンティコーラ菌株、その変異菌株及び形質転換菌株、及びそれを用いてジオイック酸類を生産する方法
CN201680055333.1A CN108401434B (zh) 2015-09-23 2016-09-23 新的婴儿假丝酵母菌株及其突变体菌株和转化体菌株以及使用该菌株生产二元酸的方法
US15/762,294 US10604775B2 (en) 2015-09-23 2016-09-23 Candida infanticola strain, mutant strain and transformant strain thereof, and method for producing dioic acids using same
US16/791,141 US10837032B2 (en) 2015-09-23 2020-02-14 Candida infanticola strain, mutant strain and transformant strain thereof, and method for producing dioic acids using same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020150134598A KR101722328B1 (ko) 2015-09-23 2015-09-23 캔디다 인판티콜라 균주를 이용한 디오익 산류의 생산방법
KR10-2015-0134598 2015-09-23
KR1020160121725A KR101887272B1 (ko) 2016-09-22 2016-09-22 디오익 산류를 생산하는 캔디다 인판티콜라 형질전환 균주
KR10-2016-0121725 2016-09-22
KR10-2016-0121723 2016-09-22
KR1020160121723A KR101847731B1 (ko) 2016-09-22 2016-09-22 디오익 산류를 생산하는 캔디다 인판티콜라 균주

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/762,294 A-371-Of-International US10604775B2 (en) 2015-09-23 2016-09-23 Candida infanticola strain, mutant strain and transformant strain thereof, and method for producing dioic acids using same
US16/791,141 Division US10837032B2 (en) 2015-09-23 2020-02-14 Candida infanticola strain, mutant strain and transformant strain thereof, and method for producing dioic acids using same

Publications (1)

Publication Number Publication Date
WO2017052299A1 true WO2017052299A1 (ko) 2017-03-30

Family

ID=58386608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010706 WO2017052299A1 (ko) 2015-09-23 2016-09-23 신규한 캔디다 인판티콜라 균주, 이의 변이균주 및 형질전환균주, 및 이를 이용하여 디오익 산류를 생산하는 방법

Country Status (5)

Country Link
US (2) US10604775B2 (ko)
EP (1) EP3354743B1 (ko)
JP (1) JP6577666B2 (ko)
CN (1) CN108401434B (ko)
WO (1) WO2017052299A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628759A (zh) * 2019-09-23 2019-12-31 西南科技大学 一种耐辐射野生型丛枝菌根真菌诱变筛选富集植物共生菌新种质的方法
CN111334441A (zh) * 2020-02-24 2020-06-26 华中农业大学 一种降酸酵母菌株及其应用
CN111850060A (zh) * 2019-04-25 2020-10-30 上海凯赛生物技术股份有限公司 一种发酵生产十六碳二元酸的方法、十六碳二元酸及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230089404A1 (en) 2021-09-18 2023-03-23 Indian Oil Corporation Limited Bioassisted Process For Selective Conversion Of Alkane Rich Refinery Stream

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100221504B1 (ko) * 1992-09-30 1999-09-15 이. 에디 불포화 지방족 디카르복실산
JP2009521918A (ja) * 2005-12-30 2009-06-11 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ 長鎖ジカルボン酸の製造方法
JP2014201554A (ja) * 2013-04-05 2014-10-27 東レ株式会社 セバシン酸の製造方法
US20150044739A1 (en) * 2012-03-09 2015-02-12 Cathay Industrial Biotech Ltd. Candida sake strain for producing long chain dicarboxylic acids
KR20150078989A (ko) * 2013-12-31 2015-07-08 한화종합화학 주식회사 숙신산 생산용 재조합 효모균주 및 이를 이용한 숙신산의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843466A (en) * 1969-11-10 1974-10-22 Ajinomoto Kk Method of producing dicarboxylic acids by fermentation
US4925798A (en) * 1985-04-23 1990-05-15 Huels Aktiengesellschaft 3-hydroxydicarboxylic acids and process for their production
US6066480A (en) * 1998-09-21 2000-05-23 General Electric Company Method for high specific bioproductivity of α,ω-alkanedicarboxylic acids
CN1233658A (zh) * 1999-05-28 1999-11-03 清华大学 高产长链二元酸的假丝酵母的筛选方法
CN1292072C (zh) * 2004-05-12 2006-12-27 上海凯赛生物技术研发中心有限公司 一种正长链二元酸的生产方法
GB0603865D0 (en) * 2006-02-27 2006-04-05 Unichema Chemie Bv Methods for production of dioic acids
US8158391B2 (en) 2009-05-06 2012-04-17 Dna Twopointo, Inc. Production of an α-carboxyl-ω-hydroxy fatty acid using a genetically modified Candida strain
CN102839133B (zh) * 2011-06-21 2014-02-19 上海凯赛生物技术研发中心有限公司 一种长链二元酸生产菌株及其应用
CN102994402B (zh) * 2012-03-09 2014-04-02 上海凯赛生物技术研发中心有限公司 一种生产二元酸的菌株及其发酵方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100221504B1 (ko) * 1992-09-30 1999-09-15 이. 에디 불포화 지방족 디카르복실산
JP2009521918A (ja) * 2005-12-30 2009-06-11 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ 長鎖ジカルボン酸の製造方法
US20150044739A1 (en) * 2012-03-09 2015-02-12 Cathay Industrial Biotech Ltd. Candida sake strain for producing long chain dicarboxylic acids
JP2014201554A (ja) * 2013-04-05 2014-10-27 東レ株式会社 セバシン酸の製造方法
KR20150078989A (ko) * 2013-12-31 2015-07-08 한화종합화학 주식회사 숙신산 생산용 재조합 효모균주 및 이를 이용한 숙신산의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3354743A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850060A (zh) * 2019-04-25 2020-10-30 上海凯赛生物技术股份有限公司 一种发酵生产十六碳二元酸的方法、十六碳二元酸及其制备方法
CN110628759A (zh) * 2019-09-23 2019-12-31 西南科技大学 一种耐辐射野生型丛枝菌根真菌诱变筛选富集植物共生菌新种质的方法
CN111334441A (zh) * 2020-02-24 2020-06-26 华中农业大学 一种降酸酵母菌株及其应用
CN111334441B (zh) * 2020-02-24 2021-06-08 华中农业大学 一种降酸酵母菌株及其应用

Also Published As

Publication number Publication date
CN108401434B (zh) 2021-10-22
JP6577666B2 (ja) 2019-09-18
US20200172940A1 (en) 2020-06-04
CN108401434A (zh) 2018-08-14
EP3354743B1 (en) 2020-06-10
US10604775B2 (en) 2020-03-31
EP3354743A1 (en) 2018-08-01
EP3354743A4 (en) 2019-05-15
US10837032B2 (en) 2020-11-17
US20190040422A1 (en) 2019-02-07
JP2018527942A (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
WO2017052299A1 (ko) 신규한 캔디다 인판티콜라 균주, 이의 변이균주 및 형질전환균주, 및 이를 이용하여 디오익 산류를 생산하는 방법
WO2013162274A1 (ko) 신규한 d형 젖산 생산균주 및 그의 용도
WO2019027267A2 (ko) Atp 포스포리보실 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법
WO2016021932A1 (ko) 피드백 저항성 아세토하이드록시산 신타아제 변이체 및 이를 이용한 l-발린의 생산방법
WO2018124440A2 (ko) 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
WO2014142463A1 (ko) L-발린 생산능이 향상된 균주 및 이를 이용한 l-발린 생산방법
WO2019117398A1 (ko) 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법
WO2014003439A1 (ko) 에탄올 생산 경로가 봉쇄된 클루이베로마이세스 막시아누스 균주 및 이의 용도
CN1190434A (zh) 用不能形成芽孢的芽孢杆菌生产蛋白质的方法
WO2010104224A1 (ko) 글리세롤 산화대사경로를 차단시킨 재조합 균주를 이용한 1、3-프로판디올의 제조방법
WO2015093831A1 (ko) D(-)2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 d(-)2,3-부탄디올의 생산 방법
WO2017007159A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
WO2014148754A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2015163682A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2019235680A1 (ko) 5'-크산틸산을 생산하는 미생물 및 이를 이용한 5'-크산틸산의 제조방법
WO2015194900A1 (ko) 젖산 분해 경로가 봉쇄된 클루이베로마이세스 막시아누스 및 이의 용도
WO2020067618A1 (ko) 알파-글루코시다제의 활성이 강화된 l-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산 생산 방법
CN1314941A (zh) 丙酸杆菌载体
WO2021002630A1 (ko) 파에오닥틸룸 트리코르누툼의 신규 프로모터 hasp1와 이의 신호 펩타이드 및 이의 용도
KR101722328B1 (ko) 캔디다 인판티콜라 균주를 이용한 디오익 산류의 생산방법
WO2020166943A1 (ko) 유전자 총법을 이용한 미세조류의 교정 방법
KR101847731B1 (ko) 디오익 산류를 생산하는 캔디다 인판티콜라 균주
WO2015046978A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2020085556A1 (ko) 재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법
WO2018056794A1 (ko) 아세트산을 유일 탄소원으로 이용할 수 있는 미생물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16849024

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018515663

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016849024

Country of ref document: EP