KR101887272B1 - 디오익 산류를 생산하는 캔디다 인판티콜라 형질전환 균주 - Google Patents

디오익 산류를 생산하는 캔디다 인판티콜라 형질전환 균주 Download PDF

Info

Publication number
KR101887272B1
KR101887272B1 KR1020160121725A KR20160121725A KR101887272B1 KR 101887272 B1 KR101887272 B1 KR 101887272B1 KR 1020160121725 A KR1020160121725 A KR 1020160121725A KR 20160121725 A KR20160121725 A KR 20160121725A KR 101887272 B1 KR101887272 B1 KR 101887272B1
Authority
KR
South Korea
Prior art keywords
acid
strain
ala
leu
candida
Prior art date
Application number
KR1020160121725A
Other languages
English (en)
Other versions
KR20180032456A (ko
Inventor
신동명
김종필
박희준
이승훈
장혜란
이홍원
안정오
전우영
박규연
이희석
Original Assignee
롯데케미칼 주식회사
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사, 한국생명공학연구원 filed Critical 롯데케미칼 주식회사
Priority to KR1020160121725A priority Critical patent/KR101887272B1/ko
Priority to EP16849024.1A priority patent/EP3354743B1/en
Priority to PCT/KR2016/010706 priority patent/WO2017052299A1/ko
Priority to CN201680055333.1A priority patent/CN108401434B/zh
Priority to JP2018515663A priority patent/JP6577666B2/ja
Priority to US15/762,294 priority patent/US10604775B2/en
Publication of KR20180032456A publication Critical patent/KR20180032456A/ko
Application granted granted Critical
Publication of KR101887272B1 publication Critical patent/KR101887272B1/ko
Priority to US16/791,141 priority patent/US10837032B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/03Oxidoreductases acting on the CH-CH group of donors (1.3) with oxygen as acceptor (1.3.3)
    • C12Y103/03006Acyl-CoA oxidase (1.3.3.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01023Orotidine-5'-phosphate decarboxylase (4.1.1.23)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 캔디다 인판티콜라 균주 및 이를 이용한 디오익 산류의 생산 방법에 관한 것으로서, 디오익 산류의 생산을 위한 균주를 최적화하여 디오익 산류의 전활율을 향상시킬 수 있다.

Description

디오익 산류를 생산하는 캔디다 인판티콜라 형질전환 균주{RECOMBINANT CANDIDA INFANTICOLA SP. FOR PRODUCING DIOCIC ACIDS}
본 발명은 캔디다 인판티콜라 균주에 관한 것으로, 구체적으로는 탄소원으로부터 디오익 산류(dioic acids)를 생산하는 균주에 관한 것이다.
디오익 산(dioic acids)은 화학산업에 있어서 매우 중요한 화학물질로서 엔지니어링 수지, 자동차 부품, 스포츠 용품, 카펫 및 칫솔 등에 이용되는 석유 유래 나일론뿐만 아니라, 다른 고분자 가소제, 접착제, 윤활유, 에폭시수지, 부식방지제, 코팅제, 가공 플라스틱, 향수 및 약제품 등 다양한 산업적 용도로 사용된다. 이들 디오익 산(dioic acids) 가운데 연간 약 15,000,000,000 파운드의 도데칸 디오익 산이 석유화학 원료로부터 합성되고 있으며, 이러한 석유화학 원료들은 주로 부족한 천연 원료로서 이들 원료의 사용은 전세계적으로 환경 파괴 및 환경 변화와 밀접한 연관이 있으며, 이러한 석유화학 원료들은 가격 변동에 민감하고 환경 오염에 대한 부담을 가중시킨다.
한편, 오메가-산화(ω-oxidation)를 통한 디오익 산(dioic acids) 전환 시 야생형 균주 배양을 채택하는 경우, 오메가-산화(ω-oxidation) 및 베타-산화(β-oxidation)가 모두 반응하기 때문에 최종 산물인 디오익 산 전환 수율이 낮고, 농도가 저하된다는 문제점이 발생할 수 있다.
따라서, 지속 가능하고, 환경에 대한 부담을 줄이면서 디오익 산을 효과적으로 생산할 수 있는 최적의 균주 및 방법이 요구된다.
본 발명에서는 상기와 같은 종래 기술의 문제점을 해결하기 위하여, 캔디다 인판티콜라 균주를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위하여, 본 발명은 디오익 산류(dioic acid)를 생산하는 캔디다 인판티콜라(Candida infanticola) 형질전환 균주를 제공한다.
일구현예에 따르면, 상기 균주는 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)에 대하여 URA3 유전자가 결손된 형질전환 균주(수탁번호: KCTC13103BP)를 포함할 수 있다.
일구현예에 따르면, 상기 균주는 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)의 URA3 유전자 및 CiPOX1 유전자가 결손된 형질전환 균주(수탁번호: KCTC13104BP)를 포함할 수 있다.
일구현예에 따르면, 상기 균주는 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)의 URA3 유전자 및 CiPOX2 유전자가 결손된 형질전환 균주(수탁번호: KCTC13105BP)를 포함할 수 있다.
일구현예에 따르면, 상기 균주는 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)의 URA3 유전자, CiPOX1 및 CiPOX2 유전자가 결손된 형질전환 균주(수탁번호: KCTC13106BP)를 포함할 수 있다.
일구현예에 따르면, 상기 균주는 반수체일 수 있다.
일구현예에 따르면, 상기 디오익 산류는 에탄디오익 산(ethanedioic acid), 프로판디오익 산(propanedioic acid), 부탄디오익 산(butanedioic acid), 펜탄디오익 산(pentanedioic acid), 헥산디오익 산(hexanedioic acid), 옥탄디오익 산(octanedioic acid), 노난디오익 산(nonanedioic acid), 데칸디오익 산(decanedioic acid), 언데칸디오익 산(undecanedioic acid), 도데칸디오익 산(dodecanedioic acid), 헥사데칸디오익 산(hexadecanedioic acid) 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 포함할 수 있다.
일구현예에 따르면, 상기 균주는 열처리, 수산화요소 처리 및 이들의 조합으로부터 선택된 방법으로 처리된 것일 수 있다.
본 발명의 다른 구현예에 따르면,
폐수처리시설로부터 캔디다 인판티콜라 야생형 균주를 분리하는 단계;
상기 야생형 균주에 수산화요소(hydroxyurea) 처리 및 열처리(heatshock)하는 단계;
우라실을 포함하는 배지를 사용하여 우라실 영양요구체 균주를 제작하고 선별하는 단계; 및
베타-산화(β-oxidation) 유전자를 결손시키는 단계를 포함하는 캔디다 인판티콜라(Candida infanticola) 형질전환 균주 제조방법을 제공할 수 있다.
또한, 글루코스를 포함하는 배지에 상기 캔디다 인판티콜라(Candida infanticola) 형질전환 균주를 1차 배양하는 단계;
탄화수소, 지방산 또는 이들 유도체를 포함하는 기질을 첨가하는 단계; 및
글루코스를 첨가하여 2차 배양하는 단계를 포함하는 디오익 산류 생산방법을 제공할 수 있다.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명에 따른 캔디다 인판티콜라(Candida infanticola) 형질전환 균주에 의하면, 베타-산화(β-oxidation) 유전자를 제거함으로써 디오익 산류(dioic acids)의 생산성을 향상시킬 수 있다.
도 1은 항생제의 종류에 따른 균체생장 결과를 나타낸 사진이다.
도 2는 열처리에 따른 형질전환 결과를 나타낸 그래프이다.
도 3은 수산화요소 농도에 따른 세포의 상태를 나타낸 위상차 현미경 사진이다.
도 4는 우라실 영양요구체 균주제작 카세트 모식도 및 gDNA PCR 결과이다.
도 5는 CiPOX1 유전자 결손 균주제작 카세트 모식도 및 gDNA PCR 결과이다.
도 6은 CiPOX2 유전자 결손 균주제작 카세트 모식도 및 gDNA PCR 결과이다.
도 7은 CiPOX1 및 CiPOX2 유전자 결손 균주제작 카세트 모식도 및 gDNA PCR 결과이다.
도 8은 야생형 균주, CiPOX1, CiPOX2 및 CiPOX1/CiPOX2 유전자 결손 균주에 대한 플라스크에서 디카복시산 생산능을 나타낸 결과이다.
도 9는 CiPOX1/CiPOX2 유전자 결손 균주에 대한 5L 발효조에서 디카복시산 생산능을 나타낸 결과이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하, 본 발명의 구현예에 따른 캔디다 인판티콜라(Candida infanticola) 형질전환 균주에 대하여 보다 상세하게 설명한다.
본 발명에 사용된 용어 '결손'이란 '삭제'와 혼용될 수 있으며, 특정 부분을 제거하는 것을 의미할 수 있다.
또한, 용어 '차단'이란 '저해'와 혼용될 수 있으며, 어떤 경로 또는 반응 등을 막는 것을 의미할 수 있다.
또한, '탄화수소'는 탄소와 수소만으로 이루어져 있는 유기 화합물을 지칭할 수 있다.
또한, '지방산'은 사슬 모양의 포화 또는 불포화 모노카복시산을 지칭할 수 있다.
또한, '오메가-산화(ω-oxidation)'는 지방산의 메틸기 말단이 산화되어 디카복시산으로 되는 반응을 의미할 수 있고, '베타-산화(β-oxidation)'는 카복시기에서 β 자리의 탄소원자가 산화되어 아세틸 CoA를 방출하면서 분해되는 반응을 의미할 수 있다.
일반적으로 지방산의 산화는 카복시기 말단부터 탄소 2개 단위로 절단되는 베타-산화(β-oxidation)가 주요 반응이며, 오메가-산화(ω-oxidation)는 탄소수 10 내지 12의 중간 사슬 지방산에 대한 보조 경로로 이해되고 있다.
본 발명에 따르면, 디오익 산류(dioic acids)를 생산하는 캔디다 인판티콜라(Candida infanticola) 형질전환 균주를 제공할 수 있다. 상기 균주는 구체적으로, 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)의 베타-산화(β-oxidation) 유전자를 결손시킨 형질전환 균주를 포함할 수 있다. 또한, 캔디다 인판티콜라(Candida infanticola) 야생형 균주는 예를 들어 석유화학 공장의 폐수로부터 분리할 수 있다.
일구현예에 따르면, 상기 형질전환 균주는 URA3 및 POX 유전자가 결손된 균주를 포함할 수 있다. 상기 유전자 결손 균주는 예를 들어, 야생형 캔디다 인판티콜라 균주에 열처리(heatshock), 수산화요소(hydroxyurea) 처리 또는 이들의 조합을 적용하여 형질전환을 유도할 수 있으며, 그 순서와 횟수는 당업자에 의해 적절히 선택될 수 있다.
일구현예에 따르면, 본 발명의 형질전환 균주는 반수체일 수 있다. 예를 들어, 일반적으로 산업상 디카르복실산 생산에 주로 쓰이는 이배체인 캔디다 트로피칼리스(Candida tropicallis)에 비하여 배수성이 반수체인 캔디다 인판티콜라 균주가 유전자 조작에 있어서 유리할 수 있다.
또한, 형질전환된 균주는 알칸을 세포성장을 위한 탄소원으로 사용하지 않고 디오익 산류를 생산할 수 있다. 예를 들어, 베타-산화 유전자가 제거된 균주는 도데칸을 탄소원으로 사용하지 않으면서 도데칸디오익 산을 생산할 수 있다.
일구현예에 따르면, 본 발명에 따른 균주를 이용하여 생산할 수 있는 디오익 산류(dioic acids)는 탄소수 8 내지 14의 디오익 산을 포함할 수 있고, 예를 들어, 에탄디오익 산(ethanedioic acid), 프로판디오익 산(propanedioic acid), 부탄디오익 산(butanedioic acid), 펜탄디오익 산(pentanedioic acid), 헥산디오익 산(hexanedioic acid), 옥탄디오익 산(octanedioic acid), 노난디오익 산(nonanedioic acid), 데칸디오익 산(decanedioic acid), 언데칸디오익 산(undecanedioic acid), 도데칸디오익 산(dodecanedioic acid), 헥사데칸디오익 산(hexadecanedioic acid) 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 포함할 수 있다.
일구현예에 따르면, 본 발명의 형질전환 균주는 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)에 열처리, 전기천공법 등의 물리적 자극, 수산화요소 처리 등의 화학적 자극 등을 가하여 형질전환을 유도함으로써 제조할 수 있다. 예를 들어, 열처리(heatshock) 시 폴리에틸렌글리콜(PEG), 리튬-아세테이트, 디메틸설폭시드(DMSO) 등을 이용하여 형질전환 효율을 향상시킬 수 있다. 일반적으로 효모와 같은 진핵생물은 세포주기에 따라 상동재조합, 비상동재조합이 조절된다고 알려져 있다. 상동재조합은 DNA 복제 시 염색분체를 이용하는 S기, G2기에서 주로 발생할 수 있으며, 예를 들어 상동재조합의 확률을 증가시키기 위하여 수산화요소(hydroxyurea)를 이용하여 세포주기를 조절할 수 있다. 구체적으로, 수산화요소(hydroxyurea)는 리보뉴클레오티드 환원효소를 억제시켜 DNA 합성에 이용될 dNTP의 양을 낮춰 S기로 세포주기를 정체시키는 역할을 할 수 있어, 형질전환 시 상동성 조합의 확률을 증가시킬 수 있다.
일구현예에 따르면, 폐수처리시설로부터 캔디다 인판티콜라 야생형 균주를 분리하는 단계; 상기 야생형 균주에 열처리(heatshock) 및 수산화요소(hydroxyurea)를 처리하는 단계; 우라실 유전자를 결손을 통하여 우라실 영양요구균주를 제작하는 단계; 우라실 및 우라실 유사체(5-Fluoro orotic acid)를 포함하는 배지를 사용하여 우라실 영양요구체 균주를 선별하는 단계; 및 베타-산화(β-oxidation) 유전자를 결손시키는 단계를 포함하는 캔디다 인판티콜라(Candida infanticola) 형질전환 균주 제조방법을 제공할 수 있다.
일구현예에 따르면, 세포성장을 위한 탄소원으로서 글루코스를 포함하는 배지에 본 발명에 따른 캔디다 인판티콜라(Candida infanticola) 형질전환 균주를 1차 배양하는 단계; 디오익산의 전환을 위한 기질로서 탄화수소 또는 지방산과 환원력 공급을 위한 글루코스를 연속적으로 첨가하여 배양하는 2차 단계를 포함하는 디카복시산 생산방법을 제공할 수 있다.
기질은 예를 들어, 알칸, 지방산 또는 이들 유도체일 수 있으며, 구체적으로 도데칸 또는 메틸 라우릭산을 사용할 수 있고, 총 배지 중량에 대하여 20% 이내로 첨가할 수 있다.
본 발명에 따르면, URA 유전자 및 POX 유전자가 결손된 균주를 사용할 수 있으며, 구체적으로 POX 유전자는 POX 1, POX 2 유전자를 포함할 수 있으며, 각각의 POX 1 유전자 결손 균주, POX 2 유전자 결손 균주 및 POX 1 및 POX 2 유전자 결손 균주를 제공함으로써 디카복시산 생산을 향상시킬 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1: 선별표지 유전자 사용을 위한 항생제 선별
캔디다 인판티콜라의 유전자 조작 기술을 개발하기 위하여, 외래유전자의 도입을 확인하기 위한 선발표지 유전자의 선정을 위해 효모에서 사용되는 여러 항생제(Zeocin, G418, Blasticidin, Puromycin, Hygromycin B, Phleomycin, Nourseothricin)에 대해 농도 별 성장테스트를 시행하였다. Yeast Extract Peptone Dextrose(YPED) 배지에 항생제들을 농도별로 섞어 만든 고체 배지에 캔디다 인판티콜라(Candida infanticola DS02; KCTC 12820BP) 2x106 개의 균체를 도말하여 30℃에 3일 배양하여 균체의 생장유무를 확인한 결과 Hygromycin B 600ug/ml, Phleomycin 200ug/ml, Nourseothricin 100ug/ml의 농도에서 균체의 생장이 저해됨을 확인하였고. Hygromycin B, Phleomycin, Nourseothricin 저항성 유전자(HygR, Ble, Nat1 유전자)를 선별표지 유전자로 사용하였다. YPED 배지의 조성은 하기 표 1에 나타내었고, 항생제의 종류에 따른 균체 생장 결과는 도 1에 나타내었다.
배지조성 g/L
Dextrose 20
Peptone 20
Yeast extract 10
Agar 20
실시예 1: 형질전환방법 최적화
외래 유전자 도입을 위한 형질전환방법은 효모에서 주로 쓰이는 폴리에틸렌글리콜(PEG) 및 리튬-아세테이트 이용한 열처리(heatshock)방법을 이용하였다. YPED 고체배지에서 30℃, 20-24시간 배양 후 캔디다 인판티콜라(Candida infanticola DS02; KCTC 12820BP) 2x106 개의 균체를 취하여 50% 폴리에틸렌글리콜과 리튬-아세테이트를 섞은 버퍼에 현탁시킨 후 30℃에서 45분 반응, 42℃에서 15분 반응시키고, 상등액을 제거한 후 YPED 배지에 현탁하여 30℃에서 6시간 진탕배양 후 항생제가 포함된 YEPD 배지에 도말하여 30℃에 3일간 배양하였다. 형질전환효율을 높이기 위해 열처리(heatshock) 과정에서 디티오트레이톨(DTT) 및 디메틸설폭시드(DMSO)와 같은 화학물질을 첨가하여 효율이 가장 높은 방법을 비교한 결과 DMSO를 처리한 열처리 방법이 가장 효율이 높음을 확인하였으며, 결과는 도 2에 나타내었다.
실시예 2: 수산화요소를 이용한 세포주기 조절
DNA 복제 시 염색분체를 이용하는 S기, G2기에서 상동재조합이 주로 발생할 수 있으므로, 상동재조합의 확률을 증가시키기 위하여 수산화요소(hydroxyurea)를 이용하여 세포주기를 조절하였다. YEPD 배지에서 생장 중인 107/20ml의 캔디다 인판티콜라(Candida infanticola DS02; KCTC 12820BP) 균체에 0.2M의 수산화요소 처리 후 2시간 반응 시 S기의 세포가 가장 많이 관찰됨을 확인하였으며, 결과는 도 3에 나타내었다.
실시예 3: 우라실 영양요구체 균주 획득
S기로 세포주기가 정체된 캔디다 인판티콜라(Candida infanticola DS02; KCTC 12820BP) 균체를 이용하여 상기한 열처리 및 수산화 요소 처리 방법으로 형질전환을 시킨 결과 URA3 gene 위치에 외래 유전자가 대체된 우라실 영양요구체 균주(수탁번호: KCTC13103BP)를 획득하였다.
선별배지는 우라실 및 5-플루오로오로토산(5'-FOA)을 첨가한 미니멀배지를 사용하였으며, 우라실 영양요구체 균주제작 모식도 및 gDNA PCR을 이용한 서열 확인 결과를 도 4에 나타내었다.
5-플루오로오로토산(5-Fluoroorotic acid, 5'-FOA)는 우라실 합성과정에서 유해한 물질인 5-플루오로우라실(5-fluorouracil)로 전환되어 세포사멸에 이르게 하므로 URA3 유전자 결손 균주는 우라실, 5'-FOA이 들어간 배지에서 생장할 수 있고, 우라실이 없는 배지에서 생장할 수 없다.
실시예 4: 베타-산화(β-oxidation) 유전자 선별
베타-산화(β-oxidation)의 첫번째 단계인 지방산 아실-CoA(fatty acyl-CoA)로부터 2 trans-enoyl-CoA로 전환하는 효소인 acyl-CoA oxidase(pox gene)을 제거하기 위해서 캔디다 트로피칼리스(Candidan tropicalis) 20336의 POX4, POX5, POX2 유전자의 아미노산 서열을 비교한 결과 두개의 유전자 CINF_04670, CINF_13455의 상동성이 40% 이상으로 가장 높게 나왔으며, 이 유전자들을 CiPOX1, CiPOX2로 명하였고, 하기 표 2에 아미노산 서열을 비교하여 나타내었다. 또한, CINF_04670에 대하여 핵산 서열은 서열번호 1에, 아미노산 서열은 서열번호 2에 나타내었다.
또한, CINF_13455에 대하여 핵산 서열은 서열번호 3에, 아미노산 서열은 서열번호 4에 나타내었다.
구분 CINF_04670
(CiPOX1)
CINF_13455
(CiPOX2)
Ct.POX4 43% 40%
Ct.POX5 44% 41%
Ct.POX2 42% 41%
서열번호 1 (핵산)
ATGACCAAGTCGCTTTCGACCAACCCCGCTAACGACGTCGTCATCGACGGTAAAAAATACAATACTTTCACAGAGCCTCCTAAGGCCATGGCCGCTGAGCGCGCCAAGGCTAGCTTCCCCGTCCGCGAGATGACCTACTATCTCGACGGCGGTGAGAAGGTCACTGAGTACAACGAGGCAGTATGGGAGCAGCTTGAGCGTGCCCCTGCTTTCGACAACACCGACTATTACGATGTCTGTGGTGACCACGAGCTTTTGCGTGCCCGCACCCTTGCCAAGGTCGGCGCGATTGCTGAGATTGTGACCGACGGTCGCAGCGAGCGGGATATTCAGAAGGTTCTCTCCTTTGTTTCGGTCATTGACCCCGGCGCCATGACCCGTATTGGTGTTCACTTTGGCCTGTTCCTCAACGGTGTCCGCGGCTCGGGTACCTCCGAGCAATTCAACTACTGGGTCGGTGAGGGTGCTGCCAACCTCAGCAACTTCTTTGGCTGCTTCTGTATGACCGAGTTGGGCCACGGCTCGAACGTTGCTGGTGTCGAGACCACTGCTACCTTTGACCGCAATACCGAGGAGTTCGTTATCAACACCCCCACCATTGCTGCCTCCAAGTGGTGGATTGGTGGTGCTGCCCACACTGCCACCCACGGTCTTGTGTTTGCCCGCCTAATTGTTGATGGCAAGGACTACGGTGTCAAGAACTTTGTTGTTCCTCTCCGTGACCGCAACACATGGAACCTCATGCCCGGTGTCTCCATTGGTGACATTGGTAAGAAGATGGGCCGTGACGGTATTGACAACGGTTGGGTTCAGTTCTCGAACGTCCGCATCCCCCGTCTGTTTATGATGATGAAGTATGCCAAGGTGTCCAAGGACGGCAAGGTCACCCAGCCTCCTTTGGCTCAGCTCGCTTACGGTGCTTTGATTTCCGGTCGTGTCTCCATGGTCTACGACTCTTACACATGGGCTCGTCGCTTCCTGACTATTGCCATCCGTTACGCATGCTGCCGTCGCCAGTTCTCTTCTAGCCCTGGTGGGCTCGAGACGAAGTTGATTGACTACACTTTCCACCAGCGCCGTCTTTTGCCCCGCCTGGCCTATGCCTACGCCATGAACGCTGGCTCTGCTGAGCTCTACAAGATCTACTTTGCAGCCACCGATCGTTTGGCTAGCACCAAGCCCACCGACAAGGAGGGTCTCCAGTCTGCCATTGACGATGTCAAGGAGCTGTTCTCGGTCTCTGCCGGTCTCAAGGCCTTCTCGACCTGGGGCACTGCTCAGATCATTGACGAGTGTCGCCAGGCATGCGGTGGTCTCGGTTACTCTGGCTACAATGGCTTCGGTCAGGGTTACAACGACTGGGTTGTCCAGTGCACTTGGGAGGGTGACAACAACGTTCTTACGTTGTCCGCTGGCCGCTCTTTGATCCAGAGCGGTCTTGCTATCCGCAAGGGCGAGCACGTTGGTGCTGCTGCCAGCTACTTGAAGCGCGAGCTCAACGCCAAGCTCAATGGCCGCAGCCTCGAGGACCTCAACGTTCTTATCGACGGTTGGGAGCACGTCTCCGCCGTCGGCATTTCTCAGGCCGTCGACCGCTACGTCGAGCTCGAGAAGGAGGGCGTCTCTCAGACCGAGGCCTTTGAGCGCCTCTCCCAGCAGCGCTACGATGTCACCCGTGTGCACACCCGCATGTACCTGATCAAGTCCTTCTTTGAGAACCTCAAGACTGCCAGCCCGGCTCTGCAGCCTGTTCTCACCGACCTTGCTCTTCTGTTCGCCTTGTGGTCGATTGAGATCGACGCCAGTGTGTTCTTGCGCTACGGCTTCCTCGAGCCCAAGGACATCAGCACCATCACCGTGCTCGTCAACAAGTACACCGGCAAGGTCCGTGAGCAGGCCATCCCCCTCACTGACGCCTTCAACCAGAGCGACTTTGTTATCAACGCTCCTATTGGCAACTACAACGGCGATGTTTACAACAACTACTTCGCCAAGACCAAGGCCGCCAACCCTCCCATCAACACGCACCCTCCCTACTATGATAGTGTCATGAAGCCTTTCTTCACCCGCAAGTTCAACGACGACCCTGATCTCAGTGCTCTTGAGGAAGAGGAGGCCGAGGAGAACGAGTAA
삭제
서열번호 2 (아미노산)
MTKSLSTNPANDVVIDGKKYNTFTEPPKAMAAERAKASFPVREMTYYLDGGEKVTEYNEAVWEQLERAPAFDNTDYYDVCGDHELLRARTLAKVGAIAEIVTDGRSERDIQKVLSFVSVIDPGAMTRIGVHFGLFLNGVRGSGTSEQFNYWVGEGAANLSNFFGCFCMTELGHGSNVAGVETTATFDRNTEEFVINTPTIAASKWWIGGAAHTATHGLVFARLIVDGKDYGVKNFVVPLRDRNTWNLMPGVSIGDIGKKMGRDGIDNGWVQFSNVRIPRLFMMMKYAKVSKDGKVTQPPLAQLAYGALISGRVSMVYDSYTWARRFLTIAIRYACCRRQFSSSPGGLETKLIDYTFHQRRLLPRLAYAYAMNAGSAELYKIYFAATDRLASTKPTDKEGLQSAIDDVKELFSVSAGLKAFSTWGTAQIIDECRQACGGLGYSGYNGFGQGYNDWVVQCTWEGDNNVLTLSAGRSLIQSGLAIRKGEHVGAAASYLKRELNAKLNGRSLEDLNVLIDGWEHVSAVGISQAVDRYVELEKEGVSQTEAFERLSQQRYDVTRVHTRMYLIKSFFENLKTASPALQPVLTDLALLFALWSIEIDASVFLRYGFLEPKDISTITVLVNKYTGKVREQAIPLTDAFNQSDFVINAPIGNYNGDVYNNYFAKTKAANPPINTHPPYYDSVMKPFFTRKFNDDPDLSALEEEEAEENE
서열번호 3 (핵산)
ATGAAGGCTAACAACACAGCTAGCCTTTTGAAAGATGGCAAGGAATTGAACACCTTCACGAGACCAGCAAGCGACATGCAAGCTGAGCGTGACCGCACCTCGTTCCCCGTCCGTGAAATGACACATTTCTTCAACAATGGCAAGGAGAACACTGAATTCCTTGAGAAGCTGTTTGAGCGTATCCAGCGCGACCCTGCCTTCAACAATAAAGACTTTTACGACCTCGACTACAAGCCGCTTCGCCAGCGGACTTTTGAGCAAATCGGCCGTATGTGGTCGTACCTCGATGAGCTGGGAGCCGATTCGCCCCTAGCTCGCCGTTTCCTGTCTCCATTCGGCATGATCAACCCTAGTGCTCAGACCCGTGTTAGTGTTCACTATGGTTTGTTCGTCTCCGCCTTGCGCGGCCAGGGTACTGACAAGCAGTACGAGTTCTGGAAGAGCCAGGGCTGCCTCAGCCTCAACCGCTTCTATGGCTGCTTCGGTATGACTGAATTGGGACATGGCTCCAACGTTGCTGAGCTTGAGACCACTGCTACCTTCGACAGGGCTACTGATGAGTTCATCATCCACACCCCCAACACCGCCGCAACAAAGTGGTGGATCGGTGGTGCTGCTCACTCTTCTAACCACACCGTCTGCTTTGCTCGCCTGATTGTTGACGGAAAGGACTACGGTGTGCGCAACTTTGTCGTGCCCTTGCGTGATCCTGAGTCCCACAATCTGTTGCCGGGCATCGCTGTTGGCGATATCGGCAAGAAAATGGGCCGTGATGGTATCGACAATGGCTGGATCCAGTTCTCAAACGTCCGCATCCCCCGTACCTACATGCTGATGCGCTACTCTCAGGTCACTCCTGAAGGCAAGGTTATCGAGCCTCCGTTGGCTCAGCTCACCTACGGTGCTTTGATTAACGGTCGTGTCGCTATGGCCTATGACTCTTGGGTGTGGGCTCGCCGCTTCCTTACCATTGCCCTTCGTTACGCTGCTGTCCGTCGCCAGTTCTCTTCCACCGAGGGCCGTGAGGAGTCCAAGCTGCTTGACTACGTGTTGCACCAGCGCCGCTTGATTCCTCTGTTGGCTCAGGCTATCGGTATTGAGGCTGCTGCTACTGAGCTCTACCGCCTGTTCGACGAAGTCACCCACCACCAGGCTTCTTTGGATACTTCCGACCGCAAGGCGGTGAGCGACATGGTTGATAAGACCAAGGAGCTGTTCTCTCTTTCGGCAGGTCTCAAGGCATTCTCGACCTGGGCCACCGTTGACACTATTGATGAGTGTCGCCAGGCTTGTGGCGGTCTCGGTTACTTGAGTGCCACTGGCTTCGGTCAGGGCTTTGACGACTGGGTTGTCAACTGTACCTGGGAAGGCGACAACAACGTTTTGTGTCTCTCCGCTGGCCGGTCTTTGATCCAGAGTGGTTGCAAGGTTTTGGACGGCAAGCACGTCACCGGTGCCGCTGATTACCTGGGTAGAATCAAGACACTGCGCGGCAAGTCTCTTGCTTCCGGCGATCTCCGTGACCCCAAGGTCTTGGTTGGGGCTTGGGAGTCTGTCGCCGCCCAGGCTGTCATGGATGCCGCTGAAGCCTACAAGAAGCTGCGTGCTCGGGGCGTTTCTGACAAGGCCGCCTTTGAGGAGCTGTCTATTGACCGCTTCAACATTGCGCGCCTCCACACCCGCTGCTTCCAGATCAAGGCCCTGTTCCGCAAGATCGCCAACGCGAACCCTTCTATCCAGAAGGTCCTGACGAACGTTGGTCTTCTTTTCGCGCTGTGGTCTATTGAGAAGAACGGATCGCCCTTCCTGCAGTACGGATTCTTGACCAGCGACGACATGAACAAGGTTATTGACCTCGTAACGTTCTACTGTGGTGAAGTCCGCGACCAGGTCATTGGCATTACTGACTCGTTCAATATCAGCGACTTCTTCCTGAACTCGCCTATTGGCAACTACGACGGCAATGCCTACGAGAACCTCATGGACAGCGTAACCGAGCGCAATGTTCCGGGTACTCCGTGCCCATACCAGGACGCTATGAACGCATTCTTCAAGCGCACTCCCTATGAGCAACCCAGGCTCGATGAGATTTAA
서열번호 4 (아미노산)
MKANNTASLLKDGKELNTFTRPASDMQAERDRTSFPVREMTHFFNNGKENTEFLEKLFERIQRDPAFNNKDFYDLDYKPLRQRTFEQIGRMWSYLDELGADSPLARRFLSPFGMINPSAQTRVSVHYGLFVSALRGQGTDKQYEFWKSQGCLSLNRFYGCFGMTELGHGSNVAELETTATFDRATDEFIIHTPNTAATKWWIGGAAHSSNHTVCFARLIVDGKDYGVRNFVVPLRDPESHNLLPGIAVGDIGKKMGRDGIDNGWIQFSNVRIPRTYMLMRYSQVTPEGKVIEPPLAQLTYGALINGRVAMAYDSWVWARRFLTIALRYAAVRRQFSSTEGREESKLLDYVLHQRRLIPLLAQAIGIEAAATELYRLFDEVTHHQASLDTSDRKAVSDMVDKTKELFSLSAGLKAFSTWATVDTIDECRQACGGLGYLSATGFGQGFDDWVVNCTWEGDNNVLCLSAGRSLIQSGCKVLDGKHVTGAADYLGRIKTLRGKSLASGDLRDPKVLVGAWESVAAQAVMDAAEAYKKLRARGVSDKAAFEELSIDRFNIARLHTRCFQIKALFRKIANANPSIQKVLTNVGLLFALWSIEKNGSPFLQYGFLTSDDMNKVIDLVTFYCGEVRDQVIGITDSFNISDFFLNSPIGNYDGNAYENLMDSVTERNVPGTPCPYQDAMNAFFKRTPYEQPRLDEI
실시예 5: CiPOX1 유전자 결손균주 선별
CiPOX1 유전자의 양 말단 500bp의 상동영역(homology region)을 포함한 URA3 pop-out 벡터를 이용하여 CiPOX1 유전자 제거 카세트를 제작 후 S기로 조절된 우라실 영양요구체 균주(수탁번호: KCTC13103BP)에 형질전환을 통하여 CiPOX1 유전자 제거 카세트를 도입하였다. URA3 pop-out 벡터는 우라실 제거배지에서 생존할 수 있도록 Candida tropicalis의 URA3(Ct.URA3) 유전자와 Ct.URA3 유전자의 제거(pop-out)를 위해 Ct.URA3 유전자의 양 말단에 bacillus subtilis 유래의 반복서열(repeated sequence)이 포함되어 있으며, 형질전환된 균주는 Ct.URA3 유전자에 의해 표 3의 우라실 제거 배지에서 선별 가능하다. 서열번호 5는 Candida tropicalis의 URA3(Ct.URA3) 서열, 서열번호 6는 bacillus subtilis 유래의 반복서열(repeated sequence)을 나타내었고, 벡터와 카세트 모식도 및 gDNA PCR를 이용한 서열 확인 결과를 도 5에 나타내었다(수탁번호: KCTC13104BP).
배지조성 g/L
Dextrose 20
YNB without amino acid 6.7
Agar 20
서열번호 5
gatctggtttggattgttggagaatttcaagaatctcaagatttactctaacgacgggtacaacgagaattgtattgaattgatcaagaacatgatcttggtgttacagaacatcaagttcttggaccagactgagaatgcacagatatacaaggcgtcatgtgataaaatggatgagatttatccacaattgaagaaagagtttatggaaagtggtcaaccagaagctaaacaggaagaagcaaacgaagaggtgaaacaagaagaagaaggtaaataagtattttgtattatataacaaacaaagtaaggaatacagatttatacaataaattgccatactagtcacgtgagatatctcatccattccccaactcccaagaaaaaaaaaaagtgaaaaaaaaaatcaaacccaaagatcaacctccccatcatcatcgtcatcaaacccccagctcaattcgcaatggttagcacaaaaacatacacagaaagggcatcagcacacccctccaaggttgcccaacgtttattccgcttaatggagtccaaaaagaccaacctctgcgcctcgatcgacgtgaccacaaccgccgagttcctttcgctcatcgacaagctcggtccccacatctgtctcgtgaagacgcacatcgatatcatctcagacttcagctacgagggcacgattgagccgttgcttgtgcttgcagagcgccacgggttcttgatattcgaggacaggaagtttgctgatatcggaaacaccgtgatgttgcagtacacctcgggggtataccggatcgcggcgtggagtgacatcacgaacgcgcacggagtgactgggaagggcgtcgttgaagggttgaaacgcggtgcggagggggtagaaaaggaaaggggcgtgttgatgttggcggagttgtcgagtaaaggctcgttggcgcatggtgaatatacccgtgagacgatcgagattgcgaagagtgatcgggagttcgtgattgggttcatcgcgcagcgggacatggggggtagagaagaagggtttgattggatcatcatgacgcctggtgtggggttggatgataaaggcgatgcgttgggccagcagtataggactgttgatgaggtggttctgactggtaccgatgtgattattgtcgggagagggttgtttggaaaaggaagagaccctgaggtggagggaaagagatacagggatgctggatggaaggcatacttgaagagaactggtcagttagaataaatattgtaataaataggtctatatacatacactaagcttctaggacgtcattgtagtcttcgaagttgtctgctagtttagttctcatgatttcgaaaaccaataacgcaatggatgtagcagggatggtggttagtgcgttcctgacaaacccagagtacgccgcctcaaaccacgtcacattcgccctttgcttcatccgcatcacttgcttgaaggtatccacgtacgagttgtaatacaccttgaagaacggcttcgtctgacccttgagcttcgcctcgttgtaatgattatacacatccaacgcttccaacctcgataaatggatcttctgcacttttgaaatcgggtactggatcgcaagcaacgagaacgccgccgatgctccggcaagcaacacaaacgaggacttcaagatc
서열번호 6
cctacatcaccgagaacgacaacgctgccgccagtcatgtattcacagccgtggtcgccgatgccttctacaactacgttcacaccgctgtttcgaacggcaaagcgttcaccagcacgcccgttaatatatgcttctccgcttgtcgcaccgtaaaaagccacgttgccgataatgacattgtcatccgaagcagagttgaatccttctgatgacttgacgatgatttttccgccagaaagcccttttccgacgtaatcatttgagtctccgtccaaataaagcgtcatccctttaggaacgaaagctccaaagctttggccggctgatccggtaaagtgcagcttgattgtatcttcaggaagaccttcttctccgtaacgctttgagatttcactgccggttatcgttccggctacacgatttgtattattgatttcaatcgaaatatcagcttcttttccagattcgatggcttcttgtacggccgggagaattgttgtaatatcaagtgattgatcaattttatgattttgcggcgattggaacgtccgcaccccttcaggctgataaagaagggtagacaaatcaagctggcttgctttccagtgctcctttgcccgttcacttacatgaagtacatcagtgcggccgatcatttcatcaaatgtcttgaagcctaacgcagccatgtactcacgaacttcttcggcaatgaacagcatatagttcacaatatggtcaggatctcccatgaactttttgcgaagctctggattttgtgtcgctacaccgacagggcatgtatccaaatggcaggcacgcatcatgacacagccgagtacaactaacggagccgttgcgaaaccaaattcttcggcgccgagcaaggcagccatcacaacgtcgcggcccgtcatgagctttccatctgtttctaatacaacacggtcacgaagtccgttcagcattagtgtttgatgtgcttctgcaaggccaagctcccacggaagccctgtatgtttaatactggttttcggagaagcgcctgtacctccgtcatagccgctgatcacaatgacatctgcagtcgctttggcaacacctgcagcgattgttcctacacctgcttttgacaccagctttacgctgattcttgcgtcacggttggcatttttcaaatcgtggatcagctgggctaaatcctcaatcgaataaatgtcatggtgtggcggaggtgagattaatccgacacctggcgttgacccacggacatcggcaacccatggatataccttgttgccaggaagctgcccgccttcacccggcttagcaccttgagccattttaatctgcagctcatcagcattgacgaggtaatggcttttgacaccaaaccgtccggatgcaatttgtttgatcgcacttcttctatcatcgccgttctcatctggaacaaagcgtttgggatcttctccgccttcaccgctgttgctttttcctccaagacggttcattgcgattgctaaagcttcgt
실시예 6: CiPOX2 유전자 결손균주 선별
CiPOX2 유전자의 양 말단 500bp의 상동영역(homology region)을 포함한 URA3 pop-out 벡터를 이용하여 CiPOX2 유전자 제거 카세트를 제작 후 S기로 조절된 우라실 영양요구체 균주(수탁번호: KCTC13103BP)에 형질전환을 통하여 CiPOX2 유전자 제거 카세트를 도입하였다. URA3 pop-out 벡터는 우라실 결손 배지에서 생존할 수 있도록 Candida tropicalis의 URA3(Ct.URA3) 유전자와 Ct.URA3 유전자의 제거(pop-out)를 위해 Ct.URA3 유전자의 양 말단에 bacillus subtilis 유래의 반복서열(repeated sequence)이 포함되어 있으며, 형질전환된 균주는 Ct.URA3 유전자에 의해 우라실 제거 배지에서 선별 가능하다. 벡터와 카세트 모식도 및 gDNA PCR를 이용한 서열 확인 결과를 도 6에 나타내었다(수탁번호: KCTC13105BP).
실시예 7: CiPOX1 및 CiPOX2 유전자 결손균주 선별
CiPOX2 유전자의 양 말단 500bp의 상동영역(homology region)을 포함한 URA3 pop-out 벡터를 이용하여 CiPOX2 유전자 제거 카세트를 제작 후 S기로 조절된 CiPOX1 및 CtURA3 제거 균주에 형질전환을 통하여 CiPOX2 유전자 제거 카세트를 도입하였다. CiPOX1 및 CtURA3 제거 균주는 CiPOX1 제거 균주(수탁번호: KCTC13104BP)로부터 Ct.URA3를 pop-out한 것이다. URA3 pop-out 벡터는 우라실 결손 배지에서 생존할 수 있도록 Candida tropicalis의 URA3(Ct.URA3) 유전자와 Ct.URA3 유전자의 제거(pop-out)를 위해 Ct.URA3 유전자의 양 말단에 bacillus subtilis 유래의 반복서열(repeated sequence)이 포함되어 있다. 형질전환된 균주는 Ct.URA3 유전자에 의해 우라실 제거 배지에서 선별 가능하다. 벡터와 카세트 모식도 및 gDNA PCR를 이용한 서열 확인 결과를 도 7에 나타내었다(수탁번호: KCTC13106BP).
실시예 8: 캔디다 인판티콜라 형질전환 균주의 디오익 산 전환 플라스크배양
본 발명의 형질전환 균주에 대한 디카복시산 생산능을 알아보기 위해서 각각의 균주를(야생형균주(수탁번호: KCTC 12820BP), POX1 유전자 제거 균주(수탁번호: KCTC13104BP), CiPOX2 유전자 제거 균주(수탁번호: KCTC13105BP), CiPOX1/CiPOX2 유전자 제거 균주(수탁번호: KCTC13106BP)) 플라스크 배양 시행하였다. 500ml baffled 플라스크를 이용하여 50ml 액체 배양을 실시하였다. 배양조건은 YPED 배지 이용, 총 배양시간 72시간, 30, 200rpm, pH는 6 내지 7.5이다. 충분한 양의 균체 증식 확보를 위하여 글루코스를 탄소원으로 이용하여 24시간 배양 후 도데칸 1% 첨가, pH 7.5 조절을 위해 인산칼륨(potassium phosphate)을 첨가하였다. 도데칸을 첨가한 시점부터 6시간 주기로 글루코스를 0.5%씩 첨가하였다. 전환된 도데칸 디오익산의 농도를 확인한 결과 72시간 기준 야생형 균주(수탁번호: KCTC 12820BP) 0g/L, POX1 유전자 제거 균주(수탁번호: KCTC13104BP) 9.39g/L, POX1POX2 유전자 제거 균주(수탁번호: KCTC13106BP) 9.32g/L 로 CiPOX1이 제거된 균주가 도데칸을 탄소원으로 사용하지 않고, 도데칸 디오익산으로 92%(mol/mol)이상 전환되는 것을 확인하였으며, 결과는 도 8에 나타내었다.
실시예 9: 캔디다 인판티콜라 형질전환 균주의 디오익 산 전환 5L 발효기 배양
본 발명의 형질전환 균주에 대한 디카복시산 생산능을 알아보기 위해서 CiPOX1 및 CiPOX2 유전자 결손균주(수탁번호:KCTC13106BP)를 이용한 5L 규모의 발효기 배양을 실시하였다. 1차 배양 조건은 배양 부피 2L, pH 5-6, 온도 30℃, aeration 1vvm, agitation 200rpm 이며 pH 조절을 위해 10N NaOH를 사용하였고, 배양액 내 용존 산소가 줄어듦에 따라 rpm을 조절하여 용존 산소를 30% 이상 유지시켰다. 초기 배지 내의 세포생장을 위한 글루코스가 소모되는 시점인 12시간 이후로 디오익 산의 전환을 위한 2차 배양을 위해 오메가 산화 유도 물질인 도데칸 20ml 첨가, 환원력 제공을 위해 글루코스를 4g/hr의 속도로 첨가하였으며, 배양 조건은 pH7.5, aeration 0.5vvm으로 변경하였다. 2차 배양 12시간 후에 기질인 메틸 라우릭산을 1.2 - 1.5ml/hr의 속도로 투입하여 총 48시간 배양하였다. 전환된 도데칸 디오익산은 48시간 기준 17.64g/L 생산 및 90%(mol/mol) 이상의 전환 수율을 확인하였으며, 결과는 도 9에 나타내었다.
상기한 바와 같이, 본 발명은 탄화수소 또는 지방산을 이용해서 카복시산(diacids) 전환이 우수한 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)에 POX 등의 유전자를 넛-아웃(knock out)하여 베타-산화(β-oxidation)를 차단한 형질전환 균주를 확보함으로써, 고농도, 고수율의 카복시산(diacids)을 생산할 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
<110> LOTTE CHEMICAL CORPORATION Korea Research Institute of Bioscience and Biotechnology <120> RECOMBINANT CANDIDA INFANTICOLA SP. FOR PRODUCING DIOCIC ACIDS <130> DPA-0830 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 2133 <212> DNA <213> Candida <400> 1 atgaccaagt cgctttcgac caaccccgct aacgacgtcg tcatcgacgg taaaaaatac 60 aatactttca cagagcctcc taaggccatg gccgctgagc gcgccaaggc tagcttcccc 120 gtccgcgaga tgacctacta tctcgacggc ggtgagaagg tcactgagta caacgaggca 180 gtatgggagc agcttgagcg tgcccctgct ttcgacaaca ccgactatta cgatgtctgt 240 ggtgaccacg agcttttgcg tgcccgcacc cttgccaagg tcggcgcgat tgctgagatt 300 gtgaccgacg gtcgcagcga gcgggatatt cagaaggttc tctcctttgt ttcggtcatt 360 gaccccggcg ccatgacccg tattggtgtt cactttggcc tgttcctcaa cggtgtccgc 420 ggctcgggta cctccgagca attcaactac tgggtcggtg agggtgctgc caacctcagc 480 aacttctttg gctgcttctg tatgaccgag ttgggccacg gctcgaacgt tgctggtgtc 540 gagaccactg ctacctttga ccgcaatacc gaggagttcg ttatcaacac ccccaccatt 600 gctgcctcca agtggtggat tggtggtgct gcccacactg ccacccacgg tcttgtgttt 660 gcccgcctaa ttgttgatgg caaggactac ggtgtcaaga actttgttgt tcctctccgt 720 gaccgcaaca catggaacct catgcccggt gtctccattg gtgacattgg taagaagatg 780 ggccgtgacg gtattgacaa cggttgggtt cagttctcga acgtccgcat cccccgtctg 840 tttatgatga tgaagtatgc caaggtgtcc aaggacggca aggtcaccca gcctcctttg 900 gctcagctcg cttacggtgc tttgatttcc ggtcgtgtct ccatggtcta cgactcttac 960 acatgggctc gtcgcttcct gactattgcc atccgttacg catgctgccg tcgccagttc 1020 tcttctagcc ctggtgggct cgagacgaag ttgattgact acactttcca ccagcgccgt 1080 cttttgcccc gcctggccta tgcctacgcc atgaacgctg gctctgctga gctctacaag 1140 atctactttg cagccaccga tcgtttggct agcaccaagc ccaccgacaa ggagggtctc 1200 cagtctgcca ttgacgatgt caaggagctg ttctcggtct ctgccggtct caaggccttc 1260 tcgacctggg gcactgctca gatcattgac gagtgtcgcc aggcatgcgg tggtctcggt 1320 tactctggct acaatggctt cggtcagggt tacaacgact gggttgtcca gtgcacttgg 1380 gagggtgaca acaacgttct tacgttgtcc gctggccgct ctttgatcca gagcggtctt 1440 gctatccgca agggcgagca cgttggtgct gctgccagct acttgaagcg cgagctcaac 1500 gccaagctca atggccgcag cctcgaggac ctcaacgttc ttatcgacgg ttgggagcac 1560 gtctccgccg tcggcatttc tcaggccgtc gaccgctacg tcgagctcga gaaggagggc 1620 gtctctcaga ccgaggcctt tgagcgcctc tcccagcagc gctacgatgt cacccgtgtg 1680 cacacccgca tgtacctgat caagtccttc tttgagaacc tcaagactgc cagcccggct 1740 ctgcagcctg ttctcaccga ccttgctctt ctgttcgcct tgtggtcgat tgagatcgac 1800 gccagtgtgt tcttgcgcta cggcttcctc gagcccaagg acatcagcac catcaccgtg 1860 ctcgtcaaca agtacaccgg caaggtccgt gagcaggcca tccccctcac tgacgccttc 1920 aaccagagcg actttgttat caacgctcct attggcaact acaacggcga tgtttacaac 1980 aactacttcg ccaagaccaa ggccgccaac cctcccatca acacgcaccc tccctactat 2040 gatagtgtca tgaagccttt cttcacccgc aagttcaacg acgaccctga tctcagtgct 2100 cttgaggaag aggaggccga ggagaacgag taa 2133 <210> 2 <211> 710 <212> PRT <213> Candida <400> 2 Met Thr Lys Ser Leu Ser Thr Asn Pro Ala Asn Asp Val Val Ile Asp 1 5 10 15 Gly Lys Lys Tyr Asn Thr Phe Thr Glu Pro Pro Lys Ala Met Ala Ala 20 25 30 Glu Arg Ala Lys Ala Ser Phe Pro Val Arg Glu Met Thr Tyr Tyr Leu 35 40 45 Asp Gly Gly Glu Lys Val Thr Glu Tyr Asn Glu Ala Val Trp Glu Gln 50 55 60 Leu Glu Arg Ala Pro Ala Phe Asp Asn Thr Asp Tyr Tyr Asp Val Cys 65 70 75 80 Gly Asp His Glu Leu Leu Arg Ala Arg Thr Leu Ala Lys Val Gly Ala 85 90 95 Ile Ala Glu Ile Val Thr Asp Gly Arg Ser Glu Arg Asp Ile Gln Lys 100 105 110 Val Leu Ser Phe Val Ser Val Ile Asp Pro Gly Ala Met Thr Arg Ile 115 120 125 Gly Val His Phe Gly Leu Phe Leu Asn Gly Val Arg Gly Ser Gly Thr 130 135 140 Ser Glu Gln Phe Asn Tyr Trp Val Gly Glu Gly Ala Ala Asn Leu Ser 145 150 155 160 Asn Phe Phe Gly Cys Phe Cys Met Thr Glu Leu Gly His Gly Ser Asn 165 170 175 Val Ala Gly Val Glu Thr Thr Ala Thr Phe Asp Arg Asn Thr Glu Glu 180 185 190 Phe Val Ile Asn Thr Pro Thr Ile Ala Ala Ser Lys Trp Trp Ile Gly 195 200 205 Gly Ala Ala His Thr Ala Thr His Gly Leu Val Phe Ala Arg Leu Ile 210 215 220 Val Asp Gly Lys Asp Tyr Gly Val Lys Asn Phe Val Val Pro Leu Arg 225 230 235 240 Asp Arg Asn Thr Trp Asn Leu Met Pro Gly Val Ser Ile Gly Asp Ile 245 250 255 Gly Lys Lys Met Gly Arg Asp Gly Ile Asp Asn Gly Trp Val Gln Phe 260 265 270 Ser Asn Val Arg Ile Pro Arg Leu Phe Met Met Met Lys Tyr Ala Lys 275 280 285 Val Ser Lys Asp Gly Lys Val Thr Gln Pro Pro Leu Ala Gln Leu Ala 290 295 300 Tyr Gly Ala Leu Ile Ser Gly Arg Val Ser Met Val Tyr Asp Ser Tyr 305 310 315 320 Thr Trp Ala Arg Arg Phe Leu Thr Ile Ala Ile Arg Tyr Ala Cys Cys 325 330 335 Arg Arg Gln Phe Ser Ser Ser Pro Gly Gly Leu Glu Thr Lys Leu Ile 340 345 350 Asp Tyr Thr Phe His Gln Arg Arg Leu Leu Pro Arg Leu Ala Tyr Ala 355 360 365 Tyr Ala Met Asn Ala Gly Ser Ala Glu Leu Tyr Lys Ile Tyr Phe Ala 370 375 380 Ala Thr Asp Arg Leu Ala Ser Thr Lys Pro Thr Asp Lys Glu Gly Leu 385 390 395 400 Gln Ser Ala Ile Asp Asp Val Lys Glu Leu Phe Ser Val Ser Ala Gly 405 410 415 Leu Lys Ala Phe Ser Thr Trp Gly Thr Ala Gln Ile Ile Asp Glu Cys 420 425 430 Arg Gln Ala Cys Gly Gly Leu Gly Tyr Ser Gly Tyr Asn Gly Phe Gly 435 440 445 Gln Gly Tyr Asn Asp Trp Val Val Gln Cys Thr Trp Glu Gly Asp Asn 450 455 460 Asn Val Leu Thr Leu Ser Ala Gly Arg Ser Leu Ile Gln Ser Gly Leu 465 470 475 480 Ala Ile Arg Lys Gly Glu His Val Gly Ala Ala Ala Ser Tyr Leu Lys 485 490 495 Arg Glu Leu Asn Ala Lys Leu Asn Gly Arg Ser Leu Glu Asp Leu Asn 500 505 510 Val Leu Ile Asp Gly Trp Glu His Val Ser Ala Val Gly Ile Ser Gln 515 520 525 Ala Val Asp Arg Tyr Val Glu Leu Glu Lys Glu Gly Val Ser Gln Thr 530 535 540 Glu Ala Phe Glu Arg Leu Ser Gln Gln Arg Tyr Asp Val Thr Arg Val 545 550 555 560 His Thr Arg Met Tyr Leu Ile Lys Ser Phe Phe Glu Asn Leu Lys Thr 565 570 575 Ala Ser Pro Ala Leu Gln Pro Val Leu Thr Asp Leu Ala Leu Leu Phe 580 585 590 Ala Leu Trp Ser Ile Glu Ile Asp Ala Ser Val Phe Leu Arg Tyr Gly 595 600 605 Phe Leu Glu Pro Lys Asp Ile Ser Thr Ile Thr Val Leu Val Asn Lys 610 615 620 Tyr Thr Gly Lys Val Arg Glu Gln Ala Ile Pro Leu Thr Asp Ala Phe 625 630 635 640 Asn Gln Ser Asp Phe Val Ile Asn Ala Pro Ile Gly Asn Tyr Asn Gly 645 650 655 Asp Val Tyr Asn Asn Tyr Phe Ala Lys Thr Lys Ala Ala Asn Pro Pro 660 665 670 Ile Asn Thr His Pro Pro Tyr Tyr Asp Ser Val Met Lys Pro Phe Phe 675 680 685 Thr Arg Lys Phe Asn Asp Asp Pro Asp Leu Ser Ala Leu Glu Glu Glu 690 695 700 Glu Ala Glu Glu Asn Glu 705 710 <210> 3 <211> 2094 <212> DNA <213> Candida <400> 3 atgaaggcta acaacacagc tagccttttg aaagatggca aggaattgaa caccttcacg 60 agaccagcaa gcgacatgca agctgagcgt gaccgcacct cgttccccgt ccgtgaaatg 120 acacatttct tcaacaatgg caaggagaac actgaattcc ttgagaagct gtttgagcgt 180 atccagcgcg accctgcctt caacaataaa gacttttacg acctcgacta caagccgctt 240 cgccagcgga cttttgagca aatcggccgt atgtggtcgt acctcgatga gctgggagcc 300 gattcgcccc tagctcgccg tttcctgtct ccattcggca tgatcaaccc tagtgctcag 360 acccgtgtta gtgttcacta tggtttgttc gtctccgcct tgcgcggcca gggtactgac 420 aagcagtacg agttctggaa gagccagggc tgcctcagcc tcaaccgctt ctatggctgc 480 ttcggtatga ctgaattggg acatggctcc aacgttgctg agcttgagac cactgctacc 540 ttcgacaggg ctactgatga gttcatcatc cacaccccca acaccgccgc aacaaagtgg 600 tggatcggtg gtgctgctca ctcttctaac cacaccgtct gctttgctcg cctgattgtt 660 gacggaaagg actacggtgt gcgcaacttt gtcgtgccct tgcgtgatcc tgagtcccac 720 aatctgttgc cgggcatcgc tgttggcgat atcggcaaga aaatgggccg tgatggtatc 780 gacaatggct ggatccagtt ctcaaacgtc cgcatccccc gtacctacat gctgatgcgc 840 tactctcagg tcactcctga aggcaaggtt atcgagcctc cgttggctca gctcacctac 900 ggtgctttga ttaacggtcg tgtcgctatg gcctatgact cttgggtgtg ggctcgccgc 960 ttccttacca ttgcccttcg ttacgctgct gtccgtcgcc agttctcttc caccgagggc 1020 cgtgaggagt ccaagctgct tgactacgtg ttgcaccagc gccgcttgat tcctctgttg 1080 gctcaggcta tcggtattga ggctgctgct actgagctct accgcctgtt cgacgaagtc 1140 acccaccacc aggcttcttt ggatacttcc gaccgcaagg cggtgagcga catggttgat 1200 aagaccaagg agctgttctc tctttcggca ggtctcaagg cattctcgac ctgggccacc 1260 gttgacacta ttgatgagtg tcgccaggct tgtggcggtc tcggttactt gagtgccact 1320 ggcttcggtc agggctttga cgactgggtt gtcaactgta cctgggaagg cgacaacaac 1380 gttttgtgtc tctccgctgg ccggtctttg atccagagtg gttgcaaggt tttggacggc 1440 aagcacgtca ccggtgccgc tgattacctg ggtagaatca agacactgcg cggcaagtct 1500 cttgcttccg gcgatctccg tgaccccaag gtcttggttg gggcttggga gtctgtcgcc 1560 gcccaggctg tcatggatgc cgctgaagcc tacaagaagc tgcgtgctcg gggcgtttct 1620 gacaaggccg cctttgagga gctgtctatt gaccgcttca acattgcgcg cctccacacc 1680 cgctgcttcc agatcaaggc cctgttccgc aagatcgcca acgcgaaccc ttctatccag 1740 aaggtcctga cgaacgttgg tcttcttttc gcgctgtggt ctattgagaa gaacggatcg 1800 cccttcctgc agtacggatt cttgaccagc gacgacatga acaaggttat tgacctcgta 1860 acgttctact gtggtgaagt ccgcgaccag gtcattggca ttactgactc gttcaatatc 1920 agcgacttct tcctgaactc gcctattggc aactacgacg gcaatgccta cgagaacctc 1980 atggacagcg taaccgagcg caatgttccg ggtactccgt gcccatacca ggacgctatg 2040 aacgcattct tcaagcgcac tccctatgag caacccaggc tcgatgagat ttaa 2094 <210> 4 <211> 697 <212> PRT <213> Candida <400> 4 Met Lys Ala Asn Asn Thr Ala Ser Leu Leu Lys Asp Gly Lys Glu Leu 1 5 10 15 Asn Thr Phe Thr Arg Pro Ala Ser Asp Met Gln Ala Glu Arg Asp Arg 20 25 30 Thr Ser Phe Pro Val Arg Glu Met Thr His Phe Phe Asn Asn Gly Lys 35 40 45 Glu Asn Thr Glu Phe Leu Glu Lys Leu Phe Glu Arg Ile Gln Arg Asp 50 55 60 Pro Ala Phe Asn Asn Lys Asp Phe Tyr Asp Leu Asp Tyr Lys Pro Leu 65 70 75 80 Arg Gln Arg Thr Phe Glu Gln Ile Gly Arg Met Trp Ser Tyr Leu Asp 85 90 95 Glu Leu Gly Ala Asp Ser Pro Leu Ala Arg Arg Phe Leu Ser Pro Phe 100 105 110 Gly Met Ile Asn Pro Ser Ala Gln Thr Arg Val Ser Val His Tyr Gly 115 120 125 Leu Phe Val Ser Ala Leu Arg Gly Gln Gly Thr Asp Lys Gln Tyr Glu 130 135 140 Phe Trp Lys Ser Gln Gly Cys Leu Ser Leu Asn Arg Phe Tyr Gly Cys 145 150 155 160 Phe Gly Met Thr Glu Leu Gly His Gly Ser Asn Val Ala Glu Leu Glu 165 170 175 Thr Thr Ala Thr Phe Asp Arg Ala Thr Asp Glu Phe Ile Ile His Thr 180 185 190 Pro Asn Thr Ala Ala Thr Lys Trp Trp Ile Gly Gly Ala Ala His Ser 195 200 205 Ser Asn His Thr Val Cys Phe Ala Arg Leu Ile Val Asp Gly Lys Asp 210 215 220 Tyr Gly Val Arg Asn Phe Val Val Pro Leu Arg Asp Pro Glu Ser His 225 230 235 240 Asn Leu Leu Pro Gly Ile Ala Val Gly Asp Ile Gly Lys Lys Met Gly 245 250 255 Arg Asp Gly Ile Asp Asn Gly Trp Ile Gln Phe Ser Asn Val Arg Ile 260 265 270 Pro Arg Thr Tyr Met Leu Met Arg Tyr Ser Gln Val Thr Pro Glu Gly 275 280 285 Lys Val Ile Glu Pro Pro Leu Ala Gln Leu Thr Tyr Gly Ala Leu Ile 290 295 300 Asn Gly Arg Val Ala Met Ala Tyr Asp Ser Trp Val Trp Ala Arg Arg 305 310 315 320 Phe Leu Thr Ile Ala Leu Arg Tyr Ala Ala Val Arg Arg Gln Phe Ser 325 330 335 Ser Thr Glu Gly Arg Glu Glu Ser Lys Leu Leu Asp Tyr Val Leu His 340 345 350 Gln Arg Arg Leu Ile Pro Leu Leu Ala Gln Ala Ile Gly Ile Glu Ala 355 360 365 Ala Ala Thr Glu Leu Tyr Arg Leu Phe Asp Glu Val Thr His His Gln 370 375 380 Ala Ser Leu Asp Thr Ser Asp Arg Lys Ala Val Ser Asp Met Val Asp 385 390 395 400 Lys Thr Lys Glu Leu Phe Ser Leu Ser Ala Gly Leu Lys Ala Phe Ser 405 410 415 Thr Trp Ala Thr Val Asp Thr Ile Asp Glu Cys Arg Gln Ala Cys Gly 420 425 430 Gly Leu Gly Tyr Leu Ser Ala Thr Gly Phe Gly Gln Gly Phe Asp Asp 435 440 445 Trp Val Val Asn Cys Thr Trp Glu Gly Asp Asn Asn Val Leu Cys Leu 450 455 460 Ser Ala Gly Arg Ser Leu Ile Gln Ser Gly Cys Lys Val Leu Asp Gly 465 470 475 480 Lys His Val Thr Gly Ala Ala Asp Tyr Leu Gly Arg Ile Lys Thr Leu 485 490 495 Arg Gly Lys Ser Leu Ala Ser Gly Asp Leu Arg Asp Pro Lys Val Leu 500 505 510 Val Gly Ala Trp Glu Ser Val Ala Ala Gln Ala Val Met Asp Ala Ala 515 520 525 Glu Ala Tyr Lys Lys Leu Arg Ala Arg Gly Val Ser Asp Lys Ala Ala 530 535 540 Phe Glu Glu Leu Ser Ile Asp Arg Phe Asn Ile Ala Arg Leu His Thr 545 550 555 560 Arg Cys Phe Gln Ile Lys Ala Leu Phe Arg Lys Ile Ala Asn Ala Asn 565 570 575 Pro Ser Ile Gln Lys Val Leu Thr Asn Val Gly Leu Leu Phe Ala Leu 580 585 590 Trp Ser Ile Glu Lys Asn Gly Ser Pro Phe Leu Gln Tyr Gly Phe Leu 595 600 605 Thr Ser Asp Asp Met Asn Lys Val Ile Asp Leu Val Thr Phe Tyr Cys 610 615 620 Gly Glu Val Arg Asp Gln Val Ile Gly Ile Thr Asp Ser Phe Asn Ile 625 630 635 640 Ser Asp Phe Phe Leu Asn Ser Pro Ile Gly Asn Tyr Asp Gly Asn Ala 645 650 655 Tyr Glu Asn Leu Met Asp Ser Val Thr Glu Arg Asn Val Pro Gly Thr 660 665 670 Pro Cys Pro Tyr Gln Asp Ala Met Asn Ala Phe Phe Lys Arg Thr Pro 675 680 685 Tyr Glu Gln Pro Arg Leu Asp Glu Ile 690 695 <210> 5 <211> 1692 <212> DNA <213> Candida <400> 5 gatctggttt ggattgttgg agaatttcaa gaatctcaag atttactcta acgacgggta 60 caacgagaat tgtattgaat tgatcaagaa catgatcttg gtgttacaga acatcaagtt 120 cttggaccag actgagaatg cacagatata caaggcgtca tgtgataaaa tggatgagat 180 ttatccacaa ttgaagaaag agtttatgga aagtggtcaa ccagaagcta aacaggaaga 240 agcaaacgaa gaggtgaaac aagaagaaga aggtaaataa gtattttgta ttatataaca 300 aacaaagtaa ggaatacaga tttatacaat aaattgccat actagtcacg tgagatatct 360 catccattcc ccaactccca agaaaaaaaa aaagtgaaaa aaaaaatcaa acccaaagat 420 caacctcccc atcatcatcg tcatcaaacc cccagctcaa ttcgcaatgg ttagcacaaa 480 aacatacaca gaaagggcat cagcacaccc ctccaaggtt gcccaacgtt tattccgctt 540 aatggagtcc aaaaagacca acctctgcgc ctcgatcgac gtgaccacaa ccgccgagtt 600 cctttcgctc atcgacaagc tcggtcccca catctgtctc gtgaagacgc acatcgatat 660 catctcagac ttcagctacg agggcacgat tgagccgttg cttgtgcttg cagagcgcca 720 cgggttcttg atattcgagg acaggaagtt tgctgatatc ggaaacaccg tgatgttgca 780 gtacacctcg ggggtatacc ggatcgcggc gtggagtgac atcacgaacg cgcacggagt 840 gactgggaag ggcgtcgttg aagggttgaa acgcggtgcg gagggggtag aaaaggaaag 900 gggcgtgttg atgttggcgg agttgtcgag taaaggctcg ttggcgcatg gtgaatatac 960 ccgtgagacg atcgagattg cgaagagtga tcgggagttc gtgattgggt tcatcgcgca 1020 gcgggacatg gggggtagag aagaagggtt tgattggatc atcatgacgc ctggtgtggg 1080 gttggatgat aaaggcgatg cgttgggcca gcagtatagg actgttgatg aggtggttct 1140 gactggtacc gatgtgatta ttgtcgggag agggttgttt ggaaaaggaa gagaccctga 1200 ggtggaggga aagagataca gggatgctgg atggaaggca tacttgaaga gaactggtca 1260 gttagaataa atattgtaat aaataggtct atatacatac actaagcttc taggacgtca 1320 ttgtagtctt cgaagttgtc tgctagttta gttctcatga tttcgaaaac caataacgca 1380 atggatgtag cagggatggt ggttagtgcg ttcctgacaa acccagagta cgccgcctca 1440 aaccacgtca cattcgccct ttgcttcatc cgcatcactt gcttgaaggt atccacgtac 1500 gagttgtaat acaccttgaa gaacggcttc gtctgaccct tgagcttcgc ctcgttgtaa 1560 tgattataca catccaacgc ttccaacctc gataaatgga tcttctgcac ttttgaaatc 1620 gggtactgga tcgcaagcaa cgagaacgcc gccgatgctc cggcaagcaa cacaaacgag 1680 gacttcaaga tc 1692 <210> 6 <211> 1537 <212> DNA <213> Bacillus <400> 6 cctacatcac cgagaacgac aacgctgccg ccagtcatgt attcacagcc gtggtcgccg 60 atgccttcta caactacgtt cacaccgctg tttcgaacgg caaagcgttc accagcacgc 120 ccgttaatat atgcttctcc gcttgtcgca ccgtaaaaag ccacgttgcc gataatgaca 180 ttgtcatccg aagcagagtt gaatccttct gatgacttga cgatgatttt tccgccagaa 240 agcccttttc cgacgtaatc atttgagtct ccgtccaaat aaagcgtcat ccctttagga 300 acgaaagctc caaagctttg gccggctgat ccggtaaagt gcagcttgat tgtatcttca 360 ggaagacctt cttctccgta acgctttgag atttcactgc cggttatcgt tccggctaca 420 cgatttgtat tattgatttc aatcgaaata tcagcttctt ttccagattc gatggcttct 480 tgtacggccg ggagaattgt tgtaatatca agtgattgat caattttatg attttgcggc 540 gattggaacg tccgcacccc ttcaggctga taaagaaggg tagacaaatc aagctggctt 600 gctttccagt gctcctttgc ccgttcactt acatgaagta catcagtgcg gccgatcatt 660 tcatcaaatg tcttgaagcc taacgcagcc atgtactcac gaacttcttc ggcaatgaac 720 agcatatagt tcacaatatg gtcaggatct cccatgaact ttttgcgaag ctctggattt 780 tgtgtcgcta caccgacagg gcatgtatcc aaatggcagg cacgcatcat gacacagccg 840 agtacaacta acggagccgt tgcgaaacca aattcttcgg cgccgagcaa ggcagccatc 900 acaacgtcgc ggcccgtcat gagctttcca tctgtttcta atacaacacg gtcacgaagt 960 ccgttcagca ttagtgtttg atgtgcttct gcaaggccaa gctcccacgg aagccctgta 1020 tgtttaatac tggttttcgg agaagcgcct gtacctccgt catagccgct gatcacaatg 1080 acatctgcag tcgctttggc aacacctgca gcgattgttc ctacacctgc ttttgacacc 1140 agctttacgc tgattcttgc gtcacggttg gcatttttca aatcgtggat cagctgggct 1200 aaatcctcaa tcgaataaat gtcatggtgt ggcggaggtg agattaatcc gacacctggc 1260 gttgacccac ggacatcggc aacccatgga tataccttgt tgccaggaag ctgcccgcct 1320 tcacccggct tagcaccttg agccatttta atctgcagct catcagcatt gacgaggtaa 1380 tggcttttga caccaaaccg tccggatgca atttgtttga tcgcacttct tctatcatcg 1440 ccgttctcat ctggaacaaa gcgtttggga tcttctccgc cttcaccgct gttgcttttt 1500 cctccaagac ggttcattgc gattgctaaa gcttcgt 1537

Claims (9)

  1. 삭제
  2. 삭제
  3. 디오익 산류를 생산하는 캔디다 인판티콜라(Candida infanticola) 형질전환 균주로서, 상기 균주가 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)의 URA3 유전자 및 CiPOX1 유전자가 결손된 형질전환 균주(수탁번호: KCTC13104BP)인 것인, 캔디다 인판티콜라(Candida infanticola) 형질전환 균주.
  4. 디오익 산류를 생산하는 캔디다 인판티콜라(Candida infanticola) 형질전환 균주로서, 상기 균주가 캔디다 인판티콜라 야생형 균주(Candida infanticola DS02; KCTC 12820BP)의 URA3 유전자, CiPOX1 및 CiPOX2 유전자가 결손된 형질전환 균주(수탁번호: KCTC13106BP)인 것인, 캔디다 인판티콜라(Candida infanticola) 형질전환 균주.
  5. 제3항 또는 제4항에 있어서, 상기 균주가 반수체인 것인, 캔디다 인판티콜라(Candida infanticola) 형질전환 균주.
  6. 제3항 또는 제4항에 있어서, 상기 디오익 산류는 에탄디오익 산(ethanedioic acid), 프로판디오익 산(propanedioic acid), 부탄디오익 산(butanedioic acid), 펜탄디오익 산(pentanedioic acid), 헥산디오익 산(hexanedioic acid), 옥탄디오익 산(octanedioic acid), 노난디오익 산(nonanedioic acid), 데칸디오익 산(decanedioic acid), 언데칸디오익 산(undecanedioic acid), 도데칸디오익 산(dodecanedioic acid), 헥사데칸디오익 산(hexadecanedioic acid) 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 캔디다 인판티콜라(Candida infanticola) 형질전환 균주.
  7. 제3항 또는 제4항에 있어서, 상기 균주가 열처리, 수산화요소 처리 및 이들의 조합으로부터 선택된 방법으로 처리된 것인, 캔디다 인판티콜라(Candida infanticola) 형질전환 균주.
  8. 폐수처리시설로부터 캔디다 인판티콜라 야생형 균주를 분리하는 단계;
    상기 야생형 균주에 수산화요소(hydroxyurea) 처리 및 열처리(heatshock)하는 단계;
    우라실을 포함하는 배지를 사용하여 우라실 영양요구체 균주를 제작하고 선별하는 단계; 및
    베타-산화(β-oxidation) 유전자를 결손시키는 단계를 포함하는, 제3항 또는 제4항에 따른 캔디다 인판티콜라(Candida infanticola) 형질전환 균주의 제조방법.
  9. 글루코스를 포함하는 배지에 제3항 또는 제4항에 따른 캔디다 인판티콜라(Candida infanticola) 형질전환 균주를 1차 배양하는 단계;
    탄화수소 또는 지방산을 포함하는 기질을 첨가하는 단계; 및
    글루코스를 첨가하여 2차 배양하는 단계를 포함하는 디오익 산류의 생산방법.
KR1020160121725A 2015-09-23 2016-09-22 디오익 산류를 생산하는 캔디다 인판티콜라 형질전환 균주 KR101887272B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020160121725A KR101887272B1 (ko) 2016-09-22 2016-09-22 디오익 산류를 생산하는 캔디다 인판티콜라 형질전환 균주
EP16849024.1A EP3354743B1 (en) 2015-09-23 2016-09-23 Novel candida infanticola strain, mutant strain and transformant strain thereof, and method for producing dioic acids using same
PCT/KR2016/010706 WO2017052299A1 (ko) 2015-09-23 2016-09-23 신규한 캔디다 인판티콜라 균주, 이의 변이균주 및 형질전환균주, 및 이를 이용하여 디오익 산류를 생산하는 방법
CN201680055333.1A CN108401434B (zh) 2015-09-23 2016-09-23 新的婴儿假丝酵母菌株及其突变体菌株和转化体菌株以及使用该菌株生产二元酸的方法
JP2018515663A JP6577666B2 (ja) 2015-09-23 2016-09-23 新規なカンジダ・インファンティコーラ菌株、その変異菌株及び形質転換菌株、及びそれを用いてジオイック酸類を生産する方法
US15/762,294 US10604775B2 (en) 2015-09-23 2016-09-23 Candida infanticola strain, mutant strain and transformant strain thereof, and method for producing dioic acids using same
US16/791,141 US10837032B2 (en) 2015-09-23 2020-02-14 Candida infanticola strain, mutant strain and transformant strain thereof, and method for producing dioic acids using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160121725A KR101887272B1 (ko) 2016-09-22 2016-09-22 디오익 산류를 생산하는 캔디다 인판티콜라 형질전환 균주

Publications (2)

Publication Number Publication Date
KR20180032456A KR20180032456A (ko) 2018-03-30
KR101887272B1 true KR101887272B1 (ko) 2018-08-09

Family

ID=61900024

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160121725A KR101887272B1 (ko) 2015-09-23 2016-09-22 디오익 산류를 생산하는 캔디다 인판티콜라 형질전환 균주

Country Status (1)

Country Link
KR (1) KR101887272B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150044739A1 (en) 2012-03-09 2015-02-12 Cathay Industrial Biotech Ltd. Candida sake strain for producing long chain dicarboxylic acids

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150044739A1 (en) 2012-03-09 2015-02-12 Cathay Industrial Biotech Ltd. Candida sake strain for producing long chain dicarboxylic acids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GenBank Accession Number KM409712 (2015.07.22.)

Also Published As

Publication number Publication date
KR20180032456A (ko) 2018-03-30

Similar Documents

Publication Publication Date Title
US6429006B1 (en) Yeast strains for the production of lactic acid transformed with a gene coding for lactic acid dehydrogenase
Pöggeler et al. Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes
US10837032B2 (en) Candida infanticola strain, mutant strain and transformant strain thereof, and method for producing dioic acids using same
CN107815424B (zh) 一种产柠檬烯的解脂耶氏酵母基因工程菌及其应用
KR101187081B1 (ko) 지질생산균의 취득방법
CN111575301A (zh) 一种非从头合成的卷枝毛霉产油细胞工厂构建及其发酵技术
KR20130001103A (ko) 젖산의 고효율 생산을 위한 변형 미생물
KR101887272B1 (ko) 디오익 산류를 생산하는 캔디다 인판티콜라 형질전환 균주
KR20180036222A (ko) 디오익 산류를 생산하는 캔디다 인판티콜라 형질전환 균주
Laptev et al. New recombinant strains of the yeast Yarrowia lipolytica with overexpression of the aconitate hydratase gene for the obtainment of isocitric acid from rapeseed oil
KR100545563B1 (ko) 재조합 단백질 생산 능력이 향상된 사카로마이세스세레비지애 변이주
KR101903551B1 (ko) 중쇄 디올의 생산 방법
KR101249778B1 (ko) 저온 내성을 갖는 효모 변이체
KR101722328B1 (ko) 캔디다 인판티콜라 균주를 이용한 디오익 산류의 생산방법
KR101903552B1 (ko) 중쇄 디아민의 생산 방법
KR100947376B1 (ko) 이스트 gal80 결핍주를 이용한 재조합 단백질의 생산방법
KR101686899B1 (ko) 신규한 클루이베로마이세스 막시아누스 mj1 및 이의 용도
EP3802783A1 (en) Microorganisms and the production of fine chemicals
KR102613937B1 (ko) 갈락토스 이용에 관여하는 모든 유전자가 결손된 효모 균주 및 이를 이용한 재조합 단백질 생산방법
RU2756330C1 (ru) Трансформант дрожжей Komagataella phaffii, продуцирующий фитазу Cronobacter turicensis
CN102268431A (zh) 乳清酸核苷-5’-磷酸脱羧酶启动子及应用和构建体与载体
KR101900152B1 (ko) 캔디다 인판티콜라 균주를 이용한 디오익 산류의 생산 방법
CN101440375A (zh) 一种乳清酸核苷-5'-磷酸脱羧酶基因及其蛋白和应用
KR101847731B1 (ko) 디오익 산류를 생산하는 캔디다 인판티콜라 균주
Sánchez et al. Microbial Synthesis of Secondary Metabolites and Strain Improvement: Current Trends and Future Prospects

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right