WO2015194900A1 - 젖산 분해 경로가 봉쇄된 클루이베로마이세스 막시아누스 및 이의 용도 - Google Patents

젖산 분해 경로가 봉쇄된 클루이베로마이세스 막시아누스 및 이의 용도 Download PDF

Info

Publication number
WO2015194900A1
WO2015194900A1 PCT/KR2015/006225 KR2015006225W WO2015194900A1 WO 2015194900 A1 WO2015194900 A1 WO 2015194900A1 KR 2015006225 W KR2015006225 W KR 2015006225W WO 2015194900 A1 WO2015194900 A1 WO 2015194900A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
lactic acid
kctc
gene
dehydrogenase
Prior art date
Application number
PCT/KR2015/006225
Other languages
English (en)
French (fr)
Inventor
손정훈
김현진
배정훈
성봉현
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2015194900A1 publication Critical patent/WO2015194900A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid

Definitions

  • the invention is Kluyveromyces ( Kluyveromyces) marxianus ), and a method for producing lactic acid using the strain of the Cluiberomyces maximans strain oxidized D-lactate dehydrogenase is inactivated.
  • organic products such as lactic acid (Lactic acid, Lactate, lactate) are of industrial importance.
  • organic acids can be used to synthesize plastic materials and other products.
  • more effective and cost effective production methods are being developed.
  • One such method is to use bacteria.
  • some bacteria can produce large quantities of particular organic products under certain fermentation conditions.
  • live bacteria as producers has the disadvantage of limiting the growth of bacteria since organic products accumulate in the growth medium.
  • various product purification techniques have been used in the synthesis.
  • microorganisms other than bacteria has also been attempted.
  • Lactic acid which is one of the most representative compounds among the organic products, has been proved to function as a biodegradable polymer, and a production method using microorganisms has been researched and developed. Lactobacillus, a microorganism producing lactic acid, is already known in many kinds, but when lactic acid is produced by culturing these microorganisms, two optical isomers (L-lactate) are produced.
  • the present inventors have made diligent efforts to develop strains that improve the above disadvantages, and confirmed that strains in which oxidative D-lactate dehydrogenase is inactivated can produce D-lactic acid.
  • the present invention has been completed.
  • One object of the present invention is to provide a Cluyveromyces maximans strain which is inactivated oxidative D-lactate dehydrogenase.
  • Another object of the present invention is to provide a lactic acid production method comprising the step of culturing the strain.
  • the mutant strain in which the oxidized D-lactic acid dehydrogenase activity of the present invention is inactivated does not degrade the produced lactic acid, thereby improving lactic acid production ability.
  • 1 is a schematic diagram comparing the amino acid sequence of the DLD1 gene and KmDLD1 gene.
  • Figure 2 shows a schematic diagram of the PCR reaction for producing a KmDLD1 deletion strain using the URA3 cassette.
  • Figure 3 shows the confirmation by PCR that the DLD1 gene is deleted by the URA3 cassette.
  • Figure 4 shows a schematic diagram of the Kluyveromyces Makcianus vector for D- LDH expression.
  • Figure 5 shows the results confirmed by PCR whether the transformant transformed with D-lactic acid dehydrogenase.
  • 6 is a graphical representation of measuring D-lactic acid production and glucose consumption from glucose.
  • FIG. 7 is a graph showing the cell growth, inulin consumption, and D-lactic acid production after the batch fermentation using the inulin as a carbon source of the transformant in which the D-lactic acid dehydrogenase was introduced.
  • FIG. 9 is a graph showing the cell growth, inulin consumption, and D-lactic acid production after a fed-batch fermentation using a high concentration of inulin as a carbon source of a transformant having D-lactic acid dehydrogenase.
  • One embodiment of the present invention for achieving the above object relates to a leucomidomyces maximans strain strain in which oxidative D-lactate dehydrogenase is inactivated.
  • the parent strain of the strain strain KCTC 7001, KCTC 7118, KCTC 7149, KCTC 7150, KCTC 7155, KCTC 7524, KCTC 17212, KCTC 17544, KCTC 17555, KCTC 17631, KCTC 17694, KCTC 17725 , KCTC 17759, BY25569, BY25571 and BY25573 may be selected from the group consisting of.
  • the oxidative D-lactate dehydrogenase may be an inactivated Kluyveromyces mexanthus strain.
  • the Kluyveromyces maxianus strain of the present invention is a kind of Krebtree negative strain.
  • the crabtree is the same as the crabtree effect, meaning that the respiration of cells is suppressed by the addition of glucose.
  • the term "crebtree negative strain” refers to a strain having a trait which does not occur the Krebtri phenomenon, that is, the phenomenon that the respiration of the cell by the addition of glucose does not occur.
  • the parent strain may be Kluyveromyces marxianus .
  • Kluyveromyces maxilians are yeast strains with high growth capacity, high growth rate and low propensity to produce ethanol when exposed to excess sugar (Creptree negative type).
  • Creptree negative type because it secretes an excess of Inulin degrading enzymes, it is an excellent yeast capable of using porcine potatoes containing excessive amounts of Inulin as a nutrient source.
  • Kluyveromyces maximus has been reported a lot of strains, there is a characteristic that shows a variety of physiological characteristics depending on the strain. Even the same strains have reported different results between different study groups. Therefore, in the present invention, it is an important process to select specific strains of Cluyveromyces maximians with the required characteristics.
  • Kluyveromyces maxilianus specifically, accession number KCTC 7001, KCTC 7118, KCTC 7149, KCTC 7150, KCTC 7155, KCTC 7524, KCTC 17212, KCTC 17544, KCTC 17555, KCTC 17631, It may be one selected from the group consisting of KCTC 17694, KCTC 17724, KCTC 17725, KCTC 17759 (Daejeon Korea Institute of Biotechnology), BY25569, BY25571 and BY25573 (Yeast Genetic Resource center, Japan), more specifically KCTC It may be one selected from the group consisting of 7155, KCTC 17631, BY25569, BY25571, and BY25573, and most specifically may be BY25571, but the oxidized D-lactic acid dehydrogenase activity of the present invention is inactivated to produce D-lactic acid. Strains capable of increasing capacity can be included without limitation.
  • oxidative D-lactate dehydrogenase refers to an enzyme that oxidizes lactic acid to produce pyruvate. Therefore, the present invention can provide a strain in which lactic acid is not converted to pyruvate by inactivating the oxidized D-lactic acid dehydrogenase present in the strain.
  • the inactivation of the oxidized D-lactic acid dehydrogenase may be a strain formed by substitution, deletion or addition to the gene of the enzyme, and more specifically, may be a deletion of the gene of the oxidized D-lactic acid dehydrogenase.
  • the oxidized D-lactic acid dehydrogenase gene is not limited thereto, but may be a gene consisting of the nucleotide sequence of SEQ ID NO: 1.
  • the mutant strain is a mutant strain wherein the production of D-lactic acid is increased compared to the strain in which the oxidative D-lactate dehydrogenase is not inactivated when cultured in a medium containing sugar. Can be.
  • the KmDLD1 gene (SEQ ID NO: 1) having the activity of the oxidized D-lactic acid dehydrogenase was obtained from the Kluyveromyces maximus strain, and a mutant strain in which the gene was deleted was prepared.
  • Example 2 the KmDLD1 gene (SEQ ID NO: 1) having the activity of the oxidized D-lactic acid dehydrogenase was obtained from the Kluyveromyces maximus strain, and a mutant strain in which the gene was deleted was prepared.
  • Example 2 the KmDLD1 gene having the activity of the oxidized D-lactic acid dehydrogenase was obtained from the Kluyveromyces maximus strain, and a mutant strain in which the gene was deleted was prepared.
  • the other conditions are the same, but it was confirmed that the D-lactic acid production amount of the strain that lacks the gene encoding the oxidized D-lactic acid dehydrogenase is increased (FIGS. 2 and 5), and the oxidized type. Inactivation of D-lactic acid dehydrogenase was found to be an important factor.
  • the strain used for the production of the KmDLD1 gene deletion strain may be a strain in which the ethanol fermentation pathway is blocked by the deletion of the KmPDC1 gene encoding pyruvate decarboxylase, and the strain prepared by deleting both the KmPDC1 gene and the KmDLD1 gene.
  • KCTC Institute's Biological Resource Center
  • accession number KCTC18291P which was converted to an international deposit under the Treaty of Budapest on June 9, 2015, and was assigned accession number KCTC12839BP.
  • the mutant strain of the present invention may be an additional deletion of the pyruvate decarboxylase gene as well as the oxidized D-lactic acid dehydrogenase.
  • the mutant strain is deposited with accession number KCTC12839BP. Can be.
  • pyruvate decarboxylase refers to an enzyme that catalyzes the reaction (CH 3 COCOOH-> CH 3 CHO + CO 2 ) to act on pyruvate to produce carbonic acid and acetaldehyde. .
  • PDC1 pyruvate decarboxylase
  • the strain may be a strain in which the production of ethanol is reduced compared to the strain in which pyruvate decarboxylase is not inactivated when cultured in a medium containing sugar.
  • the inactivation of the pyruvate decarboxylase may be a strain formed by substitution, deletion or addition to the gene of the enzyme.
  • the pyruvate decarbonate enzyme is not limited thereto, but may be expressed by a gene consisting of SEQ ID NO: 12.
  • the inactivation of the gene in the strain can be produced in various forms.
  • gene expression can be reduced by alteration of the signal structure of gene expression or by antisense-RNA techniques.
  • the signal structure of gene expression can be, for example, a suppressor gene, an activator gene, an operator, a promoter, an attenuator, a ribosomal binding site, a start codon and Terminators are not limited thereto.
  • RNA interference (RNAi) method can be used.
  • a method may be employed in which a mutation through a transposon, which is a DNA sequence capable of moving to another position in the genome of a single cell, causes a function of a target gene to be blocked and inactivated. Mutations that induce changes or decreases in the catalytic activity of genetic proteins are well known in the art (Qiu & Goodman, Journal of Biological Chemistry 272: 8611 8617,1997).
  • inactivation of a gene may include mutation of a single or complex sequence, deletion of a single or complex gene, insertion of a foreign gene into a gene, deletion of the entire gene group, insertion of a inhibitory sequence of a promoter of a gene group, mutation of a promoter, Expression suppression control insertion of a gene group, RNAi introduction into a single or multiple sequences of a gene group, transposon mediated mutations, or a combination of these variants can be performed.
  • the activity of the protein expressed from the gene may be very low, and a single or complex gene may be missed, or antibiotic resistance genes or other genes that are foreign genes within the base sequence. It may be a method of inserting to prevent the expression of the complete protein. Preferably, a method may be used in which all of the nucleotide sequences of genes present in the chromosome are deleted. Or in combination with the variants by the above methods.
  • lactic acid may be produced using a strain in which exogenous genes related to lactic acid production are introduced into the Kluyveromyces maximus strain, which is blocked by the alcohol production pathway and the lactic acid degradation pathway.
  • exogenous gene refers to a gene of interest when a nucleic acid sequence that does not belong to a native strain is introduced from the outside for a certain purpose.
  • it means a gene associated with the production of a specific organic acid.
  • the lactic acid targeted by the strain may be L-lactic acid or D-lactic acid, which is an optical isomer, and more specifically, D-lactic acid.
  • the exogenous gene introduced into the strain to produce the lactic acid may specifically be a gene having a reduced Lactate Dehydrogenase (LDH) activity.
  • LDH Lactate Dehydrogenase
  • the term “reductive Lactate Dehydrogenase” refers to an enzyme that generally decomposes hydrogen from L-lactic acid or D-lactic acid to pyruvic acid using NAD + , and the corresponding final step of reverse reaction. When catalyzed is an enzyme that produces L-lactic acid or D-lactic acid by reducing pyruvic acid using NADH. That is, the lactic acid dehydrogenase of the present invention may be L-lactic acid dehydrogenase or D-lactic acid dehydrogenase, specifically, D-lactic acid dehydrogenase.
  • the gene having lactic acid dehydrogenase activity may have a homology of at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%, as well as the natural lactate dehydrogenase. It may include a gene of the enzyme having the same activity with. Mutation genes that induce mutations in the natural lactate dehydrogenase may also be included in the lactate dehydrogenase of the present invention irrespective of the sequence, as long as they have lactate dehydrogenase activity.
  • the gene having the reduced lactic acid dehydrogenase activity may be Lactobacillus rhamnosus , Lactobacillus plantarum , Lactobacillus acidophilus , or Lactococcus lactis. lactis ), but may be used without limitation as long as the gene has a reduced lactic acid dehydrogenase activity.
  • the lactic acid dehydrogenase may be identified from GenBank, etc. of NCBI, which is a known database, but is not limited thereto.
  • the lactic acid dehydrogenase may be a gene consisting of a nucleotide sequence of SEQ ID NO.
  • the lactic acid dehydrogenase in the strain of the present invention can be expressed using a TEF1 ⁇ promoter derived from Cluyveromyces macxanus.
  • a strain prepared by introducing a reduced D-lactic acid dehydrogenase gene into Accession No. KCTC18291P strain prepared by deleting the KmPDC1 gene and the KmDLD1 gene was added to the Bio Resource Center (KCTC) of the Korea Research Institute of Bioscience and Biotechnology (2014). It was deposited on June 11, 2015 and was granted accession number KCTC18290P, which was converted to an international deposit under the Treaty of Budapest on June 9, 2015, and was awarded accession number KCTC12838BP.
  • KCTC Bio Resource Center
  • the variant strain of the present invention may be that of accession number KCTC12838BP.
  • genomic DNA was extracted from Lactobacillus plantarum in order to secure a reduced D-lactic acid dehydrogenase (D-LDH) gene.
  • PCR was performed on the extracted sample to obtain a gene by cloning the amplified gene into a T-easy vector.
  • a vector inserted into the plasmid pTEFp-GAPt was constructed to express the D-LDH gene in Kluyveromyces maximus (FIG. 4).
  • the constructed vector was treated with the restriction enzyme Nhe I to make a linear DNA state and PDC1
  • a single strain was selected from the transformants by transforming the deletion strain KM 25571 ⁇ pdc1 strain with PDC1 , DLD1 deletion strain KM 25571 ⁇ pdc1 ⁇ dld1 and comparing the production of D-lactic acid according to the culture conditions, and the deletion of PDC1 , DLD1 and D-LDH introduction. It was confirmed that the strain can produce the highest concentration of D-lactic acid (Example 4).
  • the present invention relates to a composition for producing lactic acid, comprising the strain or culture thereof.
  • the strain is as described above.
  • culture refers to a cultured strain obtained by culturing the strain in a medium capable of supplying nutrients for the growth and survival of the Kluyveromyces maximans strain of the present invention in vitro, Means a medium containing its metabolites, extra nutrients, etc., but also includes a culture solution after removing the strain strain culture. Since the Kluyveromyces maxianus strain has a lactic acid producing ability using sugars, the strain or its culture may be used as a composition for producing lactic acid for producing lactic acid from sugars.
  • the present invention relates to a lactic acid production method comprising the step of culturing the strain.
  • the lactic acid production method of the present invention may include the step of culturing a transformed strain in which the ethanol production pathway is blocked in the above strains, and the growth capacity is maintained while the growth capacity is maintained.
  • Cultivation of the strain in the present invention can be carried out according to well-known methods, conditions such as culture temperature, incubation time and pH of the medium can be appropriately adjusted.
  • Suitable culture methods include fed-batch culture, batch culture, continuous culture, and the like, preferably batch culture, but are not limited thereto.
  • the culture medium used should suitably meet the requirements of the particular strain.
  • Culture media for various microorganisms are known (eg, "Manual of Methods for General Bacteriology” from American Society for Bacteriology (Washington D.C., USA, 1981)).
  • Carbon sources in the medium include sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seed oil, peanut oil and coconut oil). ), Fatty acids such as palmitic acid, stearic acid and linoleic acid, alcohols such as glycerol and ethanol, organic acids such as acetic acid, and the like.
  • sugars and carbohydrates e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose
  • fats and fats e.g. soybean oil, sunflower seed oil, peanut oil and coconut oil.
  • the strain in the present invention can be cultured in a medium containing glucose as a nutrient.
  • strain of the present invention can be cultured using a nutrient source of biomass pork potato powder that can be supplied at low cost in large quantities.
  • pig potato powder medium of the present invention is a nutrition medium containing only pork potato powder without any pretreatment. Since it is a complete medium, it cannot be used as a medium for selection.
  • inulin of the present invention is a fructose polymer
  • strain Cluyveromyces maxilianus used in the present invention is a strain that can be utilized as a carbon source by secreting inulin degrading enzymes to break down inulin to fructose.
  • the materials constituting the culture medium can be used individually or as a mixture.
  • Nitrogen sources can be nitrogen-containing organic compounds such as peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and nitrate Ammonium) can be used, and these materials can also be used individually or as a mixture.
  • Potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium containing salts can be used as the phosphorus source.
  • the culture medium may contain metal salts necessary for growth (eg, magnesium sulfate or iron sulfate), and finally, essential growth-promoting substances such as amino acids and vitamins may be used in addition to the substances mentioned above.
  • Suitable precursors may further be added to the culture medium.
  • the feed material may be added to the culture all at once or may be appropriately supplied during the culture.
  • the lactic acid produced may be L-lactic acid and D-lactic acid, which are optical isomers, and more specifically, D-lactic acid. This may vary depending on the type of lactic acid dehydrogenase introduced.
  • the Kluyveromyces marxianus (KM) gene which has homology with the amino acid sequence of the oxidized D-lactic acid dehydrogenase derived from Saccharomyces cerevisiae, was named KmDLD1 .
  • One gene (SEQ ID NO: 1) was selected. Comparing the amino acid sequence of the oxidized D-lactic acid dehydrogenase derived from Saccharomyces cerevisiae with the amino acid sequence of KmDLD1 showed 56.2% similarity (FIG. 1). The deletion gene was selected for production.
  • KmDLD1 deletion strains were prepared to confirm that the gene obtained in Example 1 is a Kluyveromyces maximans DLD1 gene that performs the same function as the DLD1 gene derived from Saccharomyces cerevisiae.
  • the strain used for the preparation of the KmDLD1 deletion strain was a strain in which the ethanol fermentation pathway was blocked due to the deletion of the Pyruvate Decarboxylase (KmPDC1) gene.
  • KmPDC1 Pyruvate Decarboxylase
  • HJ673 (SEQ ID NO: 2), HJ674 (SEQ ID NO: 3), and HJ675 ( After amplification using a pair of SEQ ID NO: 4) and HJ676 (SEQ ID NO: 5), respectively, primers Tc-f (SEQ ID NO: 6) and U200r (SEQ ID NO: 7), U200f (SEQ ID NO: 8), and Tc-r (SEQ ID NO: 8) Amplified URA3 DNA fragments and overlap extension PCR were performed using No. 9). This process is shown in the schematic diagram in FIG.
  • the strain prepared by deleting the KmPDC1 gene and the KmDLD1 gene was deposited on June 11, 2014 to the Biological Resource Center (KCTC) of the Korea Biotechnology Research Institute, an international depository organization under the Budapest Treaty, and was given accession number KCTC18291P.
  • the domestic patent deposit was converted to an international patent deposit under the Treaty of Budapest on June 9, 2015, and was granted accession number KCTC12839BP.
  • an expression vector of the D-lactic acid dehydrogenase (LDH) gene (SEQ ID NO: 13) derived from Lactobacillus plantarum was constructed (FIG. 4). ). It contains a promoter of translation elongation factor 1 ⁇ (TEF1 ⁇ ) gene derived from Kluyveromyces maximians to express the LDH gene in a strong and constitutive manner, and to terminate the transcription of LDH gene, glyceraldehyde 3-phosphate dehydrogenase ( The pTEF1 vector containing the transcription termination site of the GAP) gene was used.
  • TEZH translation elongation factor 1 ⁇
  • accession number KCTC18291P strain prepared by deleting the KmPDC1 gene and the KmDLD1 gene was transferred to the Bioresource Center (KCTC) of the Korea Biotechnology Research Institute, an international depository institution under the Budapest Treaty in 2014. Deposited June 11, accession number KCTC18290P was awarded.
  • the domestic patent deposit was converted to an international patent deposit under the Treaty of Budapest on June 9, 2015, and was granted accession number KCTC12838BP.
  • the cells were recovered by shaking culture in YPD (1% yeast extract, 2% peptone, 2% glucose) medium, and then washed twice with distilled water. Then, inoculated in YPD10 (yeast extract 1%, peptone 2%, glucose 10%) liquid medium or YPD10 liquid medium containing calcium carbonate and incubated for 72 hours.
  • YPD yeast extract 1%, peptone 2%, glucose 10%
  • the cells were cultured in 100 ml of YPD liquid medium to be activated, and then inoculated into the main culture solution and incubated at 30 ° C. for 12 hours. Thereafter, 60% glucose solution (final 15%) was supplied to the high concentration fermentation broth to perform lactic acid conversion at 35 ° C.
  • Glucose which is used as a substrate in lactic acid production, is increasing the raw material cost of lactic acid process due to the high price. Therefore, the production of lactic acid was confirmed by using the pig potato inulin, which is a renewable alternative raw material.
  • batch fermentation was carried out using a high concentration of pork potato powder.
  • 200g / L pork potato was autoclaved at 121 ° C. for 20 minutes, and then 200g / L pork potato was dissolved again in a supernatant obtained by centrifugation (230g / L inulin) to prepare a high concentration of inulin solution, and then used as a substrate for lactic acid production. It was.
  • 25571 ⁇ pdc1 / D-LpLDH strains were activated by culturing in 200 ml of YPD medium, and then inoculated into the main culture solution. The cells were recovered when the OD600nm reached 60 at 30 ° C, and then inoculated with porcine potato inulin. Lactic acid conversion was confirmed by time while incubating for 64 hours in anaerobic conditions (200rpm, 0.5vvm, 35 ° C, pH6.0).
  • the inventors again confirmed the lactic acid production through fed-batch fermentation, which additionally supplies inulin according to the concentration of fructose in the medium.
  • Example 7 Oil prices for inulin-based D-lactic acid production (120 g / L inulin) Culture Fermentation
  • the cells were incubated in 200 ml of YPD liquid medium and activated, and then inoculated in the main culture solution, and the cells were recovered when the OD600nm value reached 60 at 30 ° C., and then inoculated in porcine potato inulin for 72 hours under anaerobic conditions It was. At this time, 100g / L inulin was further supplied according to the concentration of fructose remaining in the medium.
  • Example 8 Oil Price for High Inulin-Based D-Lactic Acid Production (170g / L inulin) stomach Aquaculture fermentation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)

Abstract

본 발명은 클루이베로마이세스 막시아누스(Kluyveromyces marxianus)에 있어서, 산화형 D-젖산 탈수소효소(oxidative D-lactate dehydrogenase)가 불활성화된 클루이베로마이세스 막시아누스 변이균주 및 상기 균주를 이용하여 젖산을 생산하는 방법에 관한 것이다.

Description

젖산 분해 경로가 봉쇄된 클루이베로마이세스 막시아누스 및 이의 용도
본 발명은 클루이베로마이세스 막시아누스(Kluyveromyces marxianus)에 있어서, 산화형 D-젖산 탈수소효소(oxidative D-lactate dehydrogenase)가 불활성화된 클루이베로마이세스 막시아누스 변이균주 및 상기 균주를 이용하여 젖산을 생산하는 방법에 관한 것이다.
석유 자원의 고갈이 다가옴에 따라 석유로부터 추출되는 여러 가지 화합물을 재생 가능한 원료로부터 생산하는 신재생 에너지 및 바이오화학 분야의 연구가 경쟁적으로 진행되고 있다.
석유로부터 추출되는 여러 가지 화합물 중에서 젖산(Lactic acid, Lactate, 락테이트)과 같은 유기 생성물은 산업적으로 그 사용이 중요시되고 있다. 예를 들어, 유기산은 가소성 재료 및 다른 생성물을 합성하는데 사용될 수 있다. 이러한 유기 생성물에 대한 수요의 증대에 대응하여 더 효과적이고 비용 효율적인 생산 방법이 개발되고 있다. 이러한 방법 중 한가지는 박테리아를 이용하는 것이다. 구체적으로, 일부 박테리아는 다량의 특별한 유기 생성물을 일정 발효 조건 하에서 생성할 수 있다. 살아있는 박테리아를 생산자로 사용하는 것은 유기 생성물이 성장 배지 내에 축적되므로 박테리아의 성장에 한계를 가져오는 단점이 있었다. 해당 단점을 극복하기 위하여, 다양한 생성물 정제 기술이 합성과정에서 사용되어 왔다. 덧붙여서, 박테리아를 제외한 다른 미생물을 사용하는 것도 시도되었다.
상기 유기 생성물 중 가장 대표적인 화합물 중의 하나인 젖산은 생분해성 폴리머로서의 기능이 입증되어 미생물을 이용한 생산 방법이 연구 개발되고 있다. 젖산을 생산하는 미생물인 락토바실러스는 이미 많은 종류가 알려져 있으나 이러한 미생물을 배양하여 젖산을 생산하면 두 가지 광학이성질체 젖산(D-lactate, L-lactate)이 함께 생산되는 단점이 있었다.
이로 인하여 최근에는 본래 젖산을 생산하지 못하는 효모의 유전자를 조작하여 젖산을 생산하는 방법이 개발되고 있다. 효모에서 젖산을 생산하기 위해서는 락테이트 탈수소 효소를 선택적으로 도입하면 D- 혹은 L-젖산을 순수하게 생산할 수 있다. 열안정성이 높은 생분해성 폴리머를 제작하기 위해서는 L-젖산과 함께 동량의 D-젖산을 필요로 하지만, L-젖산에 비하여, D-젖산 생산에 관한 연구는 상대적으로 부족한 상태이다. 일반적인 효모 균주를 젖산 생산 균주로 사용하면 젖산과 함께 에탄올이 부산물로 함께 생성되어 젖산의 생산성을 감소시키는 단점이 있다.
이러한 단점을 개선하기 위하여 피루베이트 탈탄산 효소를 불활성화시켜 에탄올 경로를 차단하는 방법이 사용되고 있다. 그러나, 피루베이트 탈탄산 효소가 불활성화된 균주는 야생균주에 비하여 성장이 매우 느려지는 단점을 내포하고 있다. 따라서, 순수한 광학이성질체 젖산을 선택적으로 고농도 생산하며, 부산물로 에탄올을 생산하지 않고, 피루베이트 탈탄산 효소의 불활성화에도 성장능이 유지되며 낮은 pH에서도 생리적 특성을 유지하는 효모의 개발이 시급한 상황이다.
본 발명자들은, 상기와 같은 단점을 개선한 균주를 개발하기 위해 예의 노력한 결과, 산화형 D-젖산 탈수소효소(oxidative D-lactate dehydrogenase)가 불활성화된 균주가 D-젖산을 생산할 수 있음을 확인하여 본 발명을 완성하였다.
본 발명의 하나의 목적은 산화형 D-젖산 탈수소효소(oxidative D-lactate dehydrogenase)가 불활성화된 클루이베로마이세스 막시아누스 변이균주를 제공하는 것이다.
본 발명의 다른 목적은 상기 균주를 배양하는 단계를 포함하는, 젖산 생산 방법을 제공하는 것이다.
본 발명의 산화형 D-젖산 탈수소효소 활성이 불활성화된 돌연변이 균주는 생산된 젖산을 분해하지 않으므로, 젖산 생산능이 향상된다.
도 1은 DLD1 유전자와 KmDLD1 유전자의 아미노산 서열을 비교한 모식도이다.
도 2는 URA3 cassette를 이용하여 KmDLD1 결실 균주를 제작하기 위한 PCR반응의 모식도를 나타낸 것이다.
도 3은 URA3 cassette에 의해 DLD1 유전자가 결실된 것을 PCR을 통해 확인하여 나타낸 것이다.
도 4는 D- LDH 발현을 위한 클루이베로마이세스 막시아누스 벡터의 모식도를 나타낸 것이다.
도 5는 D-젖산 탈수소효소를 도입한 형질전환체의 형질전환여부를 PCR을 통해 확인한 결과를 나타낸 것이다.
도 6은 글루코스로부터의 D-젖산 생산량 및 글루코스 소모량을 측정하여 그래프로 나타낸 것이다.
도 7은 D-젖산 탈수소효소를 도입한 형질전환체를 이눌린을 탄소원으로 사용하는 회분식 발효를 진행한 후 세포 성장, 이눌린 소비량 및 D-젖산 생산량을 측정하여 그래프로 나타낸 것이다.
도 8은 D-젖산 탈수소효소를 도입한 형질전환체를 이눌린을 탄소원으로 사용하는 유가식 발효를 진행한 후 세포 성장, 이눌린 소비량 및 D-젖산 생산량을 측정하여 그래프로 나타낸 것이다.
도 9는 D-젖산 탈수소효소를 도입한 형질전환체를 고농도 이눌린을 탄소원으로 사용하는 유가식 발효를 진행한 후 세포 성장, 이눌린 소비량 및 D-젖산 생산량을 측정하여 그래프로 나타낸 것이다.
상기 목적을 달성하기 위한 본 발명의 일구현예는 산화형 D-젖산 탈수소효소(oxidative D-lactate dehydrogenase)가 불활성화된 클루이베로마이세스 막시아누스 변이균주에 관한 것이다. 구체적으로, 상기 변이균주의 모균주는 수탁번호 KCTC 7001, KCTC 7118, KCTC 7149, KCTC 7150, KCTC 7155, KCTC 7524, KCTC 17212, KCTC 17544, KCTC 17555, KCTC 17631, KCTC 17694, KCTC 17724, KCTC 17725, KCTC 17759, BY25569, BY25571 및 BY25573로 이루어진 군에서 선택된 것일 수 있다.
모균주인 클루이베로마이세스 막시아누스(Kluyveromyces marxianus)에 있어서, 산화형 D-젖산 탈수소효소(oxidative D-lactate dehydrogenase)가 불활성화된 클루이베로마이세스 막시아누스 변이균주일 수 있다. 본 발명의 클루이베로마이세스 막시아누스 균주는 크렙트리 음성 균주의 일종이다.
크렙트리(Crabtree)란, 글루코오스 첨가에 의해 세포의 호흡이 억제되는 현상을 뜻하는 크렙트리 효과(Crabtree effect)와 같은 의미이다. 본 발명에서 용어, "크렙트리 음성 균주"는 상기 크렙트리 현상, 곧 글루코오스 첨가에 의해 세포의 호흡이 억제되는 현상이 일어나지 않는 형질을 가지는 균주를 뜻한다.
본 발명에서 모균주는 클루이베로마이세스 막시아누스(Kluyveromyces marxianus)일 수 있다. 클루이베로마이세스 막시아누스는 고온에서의 성장 능력, 빠른 성장율 및 과량의 당에 노출되었을 때 에탄올을 생산하는 경향이 적은(크렙트리 음성형) 특성을 갖는 효모 균주이다. 특히, 과량의 이눌린(Inulin) 분해효소를 분비하기 때문에 이눌린을 과량 포함하고 있는 돼지감자를 영양원으로 사용할 수 있는 능력이 뛰어난 효모이다. 일반적인 효모 균주와 달리 클루이베로마이세스 막시아누스는 많은 strain이 보고되어 있으며, strain에 따라 매우 다양한 생리적 특성을 나타내는 특성이 있다. 심지어는 동일한 strain이라도 다른 연구 그룹간 상이한 결과가 보고되기도 하였다. 따라서, 본 발명에서는 요구하는 특성을 갖는 클루이베로마이세스 막시아누스의 특정 strain을 선별하는 것이 중요한 과정이다.
본 발명의 모균주인 클루이베로마이세스 막시아누스는, 구체적으로는 수탁번호 KCTC 7001, KCTC 7118, KCTC 7149, KCTC 7150, KCTC 7155, KCTC 7524, KCTC 17212, KCTC 17544, KCTC 17555, KCTC 17631, KCTC 17694, KCTC 17724, KCTC 17725, KCTC 17759(대전 한국생명공학연구원 소재 유전자은행), BY25569, BY25571 및 BY25573(Yeast Genetic Resource center, Japan)로 이루어진 군에서 선택된 하나일 수 있으며, 더욱 구체적으로는 KCTC 7155, KCTC 17631, BY25569, BY25571, 및 BY25573로 이루어진 군에서 선택된 하나일 수 있으며, 가장 구체적으로는 BY25571 일 수 있으나, 본 발명의 산화형 D-젖산 탈수소 효소 활성이 불활성화되어, D-젖산 생산능을 증가시킬 수 있는 균주는 제한없이 포함될 수 있다.
본 발명의 용어, "산화형 D-젖산 탈수소 효소(oxidative D-lactate dehydrogenase, DLD1)"는 젖산을 산화시켜 피루베이트를 생성하는 효소를 의미한다. 따라서, 본 발명에서 상기 균주에 존재하는 산화형 D-젖산 탈수소 효소를 불활성화시켜 젖산이 피루베이트로 전환되지 않는 균주를 제공할 수 있다.
또한, 상기 산화형 D-젖산 탈수소 효소의 불활성화는 해당 효소의 유전자에 치환, 결손, 또는 부가되어 이루어지는 균주일 수 있으며, 보다 구체적으로는 산화형 D-젖산 탈수소 효소의 유전자가 결손된 것일 수 있다. 상기 산화형 D-젖산 탈수소 효소 유전자는 이에 제한되지 않으나, 서열번호 1의 염기서열로 이루어진 유전자일 수 있다.
또한, 구체적으로 상기 변이균주는 당이 포함된 배지에서 배양시 D-젖산의 생성이 산화형 D-젖산 탈수소효소(oxidative D-lactate dehydrogenase)가 불활성화되지 않은 균주에 비해 증가된 것인 변이균주일 수 있다.
본 발명의 일 실시예에서는 클루이베로마이세스 막시아누스 균주에서 산화형 D-젖산 탈수소 효소의 활성을 갖는 KmDLD1 유전자(서열번호 1)를 얻었으며, 상기 유전자를 결실시킨 변이 균주를 제작하였다(실시예 2).
본 발명의 일 실시예에서는 다른 조건은 동일하지만 상기 산화형 D-젖산 탈수소 효소를 코딩하는 유전자가 결손된 균주의 D-젖산 생산량이 증가된 것을 확인하여(도 2 및 도 5), 상기 산화형 D-젖산 탈수소 효소의 불활성화가 중요한 요소임을 확인하였다.
KmDLD1 유전자 결실 균주 제작에 사용한 균주는 피루베이트 탈탄산 효소를 코딩하는 KmPDC1 유전자가 결실되어 에탄올 발효 경로가 봉쇄된 균주를 이용할 수 있으며, KmPDC1 유전자 및 KmDLD1 유전자를 모두 결실시켜 제조한 균주를 한국생명공학연구원의 생물자원센터(KCTC)에 2014년 6월 11일 기탁하여, 수탁번호 KCTC18291P를 부여받았고, 이를 2015년 6월 9일 부다페스트 조약 하의 국제기탁으로 전환청구하여, 기탁번호 KCTC12839BP를 부여받았다.
이에 따라, 본 발명의 변이균주는 산화형 D-젖산 탈수소효소 뿐 아니라 피루베이트 탈탄산 효소(Pyruvate Decarboxylase) 유전자가 추가로 결손된 것일 수 있으며, 구체적으로 상기 변이균주는 수탁번호 KCTC12839BP로 기탁된 것일 수 있다.
본 발명의 용어, "피루베이트 탈탄산 효소(Pyruvate Decarboxylase, PDC1)"는 피루베이트에 작용하여 탄산과 아세트 알데히드를 생성하는 반응(CH3COCOOH -> CH3CHO + CO2)를 촉매하는 효소이다. 알코올 생성과 관련해서는 알코올 발효의 한 단계에서 필수적인 효소이다. 따라서, 본 발명에서 상기 균주에 존재하는 피루베이트 탈탄산 효소를 불활성화시켜 발효에 의한 알코올 생성이 저해된 균주를 제공할 수 있다.
구체적으로는, 상기 균주는 당이 포함된 배지에서 배양시 에탄올의 생성이 피루베이트 탈탄산 효소가 불활성화되지 않은 균주에 비해 감소되는 것인 균주일 수 있다. 또한, 상기 피루베이트 탈탄산 효소의 불활성화는 해당 효소의 유전자에 치환, 결손, 또는 부가되어 이루어지는 균주일 수 있다. 상기 피루베이트 탈탄산 효소는 이에 제한되지 않으나, 서열번호 12로 이루어진 유전자에 의해 발현될 수 있다.
일반적으로 균주 내 유전자의 불활성화는 여러 가지 형태로 제작할 수 있다. 예를 들어, 유전자 발현의 신호구조의 변형 또는 안티센스(antisense)-RNA 기술에 의해 유전자 발현을 감소시킬 수 있다. 예를 들어, 유전자 발현의 신호 구조는, 예를 들어 억제(repressor) 유전자, 활성화(activator) 유전자, 작동자(operator), 프로모터, 감쇠자(attenuator), 리보솜 결합 자리, 시작 코돈(codon) 그리고 종료자(terminator) 들이며, 이에 한정되지 않는다.
또한, 목적 유전자의 mRNA와 상동인 서열을 가지는 센스 가닥과 이것과 상보적인 서열을 가지는 안티센스 가닥으로 구성되는 이중가닥 RNA(dsRNA)을 도입하여 목적유전자 mRNA의 분해를 유도함으로서 목적유전자의 발현을 억제하는 메커니즘인 RNA 간섭(RNA interference:RNAi) 방법을 사용할 수 있다. 또는, 단일 세포의 게놈 내에서 다른 위치로 이동할 수 있는 DNA 서열인 트랜스포존을 매개로 한 돌연변이를 일으켜 목적 유전자의 기능을 차단하여 불활성화하는 방법을 사용할 수도 있다. 유전자 단백질의 촉매 활성의 변화 또는 감소를 유도하는 돌연변이들은 당업계에 잘 알려져 있다(Qiu & Goodman, Journal of Biological Chemistry 272: 8611 8617,1997).
구체적으로는, 유전자의 불활성화는 단일 또는 복합 염기서열의 변이, 단일 또는 복합 유전자의 결손, 유전자 내에 외래 유전자의 삽입, 유전자군 전체의 결손, 유전자군의 프로모터의 억제 서열 삽입, 프로모터의 돌연변이, 유전자군의 발현 억제 조절 삽입, 유전자군의 단일 또는 복합 염기서열에 대한 RNAi 도입, 트랜스포존 매개 돌연변이 또는 이러한 변이체들의 조합 중 하나의 방법을 이용하여 수행될 수 있다.
상기에 기술한 방법들은 본 기술 분야에 통상의 사람에게 일반적으로 이해되어지며, Sambrook et al.(Molecular Cloning : A Laboratory Manual, Third Edition, Cold Spring Harbor Press 2001)에서 기술된 바와 같이 수행될 수 있다.
유전자의 염기 서열 중 활성 부위의 단일 또는 복합 서열을 변화하여, 유전자로부터 발현되는 단백질의 활성을 매우 낮출 수도 있고, 단일 또는 복합 유전자의 결손, 염기서열 내부에 외래 유전자인 항생제 내성 유전자나 다른 유전자를 삽입하여 완전한 단백질이 발현되지 못하게 하는 방법일 수 있다. 바람직하게는 염색체에 존재하는 유전자의 염기 서열을 모두 결손하는 방법을 사용할 수도 있다. 또는 상기 방법에 의한 변이체의 조합으로 불활성화시킬 수 있다.
또한, 본 발명의 목적은 젖산을 생성하는 특성을 갖는 균주를 제공하는데 있다. 이를 위해, 이를 위해, 상기 알코올 생산 경로와 젖산 분해경로가 봉쇄된 클루이베로마이세스 막시아누스 균주에 젖산 생성과 관련되는 외인성 유전자를 도입한 균주를 이용하여 젖산을 생산할 수 있다.
본 발명의 용어, "외인성 유전자"는 천연형 균주에 속해 있지 않았던 핵산 서열을 일정한 목적을 위해 외부에서 도입한 경우의 해당 유전자를 뜻한다. 특히, 본 발명에서는 특정 유기산의 생성과 관련되는 유전자를 의미한다.
구체적으로는, 본 발명에서는 균주의 목적이 되는 젖산은 광학이성질체인 L-젖산 혹은 D-젖산일 수 있으며, 더욱 구체적으로는 D-젖산일 수 있다.
또한, 상기 젖산을 생성하기 위해 균주에 도입되는 외인성 유전자는 구체적으로는 환원형 젖산 탈수소 효소(reductive Lactate Dehydrogenase, LDH) 활성을 갖는 유전자일 수 있다.
본 발명의 용어, "환원형 젖산 탈수소 효소(reductive Lactate Dehydrogenase)"는 일반적으로 NAD+를 이용하여 L-젖산 혹은 D-젖산에서 수소를 이탈시켜 피루브산으로 만드는 효소로, 이와는 역반응인 해당의 최종단계를 촉매할 때에는 NADH를 이용하여 피루브산을 환원하여 L-젖산 혹은 D-젖산을 생성하는 효소이다. 즉, 본 발명의 젖산 탈수소 효소는 L-젖산 탈수소 효소 또는 D-젖산 탈수소 효소일 수 있으며, 구체적으로는 D-젖산 탈수소 효소일 수 있다.
상기, 젖산 탈수소 효소 활성을 갖는 유전자는 천연형 젖산 탈수소 효소뿐 아니라, 이와 최소한 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 의 상동성을 가지는 동일한 활성을 갖는 효소의 유전자를 포함할 수 있다. 천연형 젖산 탈수소 효소에 돌연변이를 유도한 변이 유전자 또한 젖산 탈수소 효소 활성을 갖는 이상, 서열에 무관하게 본 발명의 젖산 탈수소 효소에 포함될 수 있다.
구체적으로, 상기 환원형 젖산 탈수소 효소 활성을 갖는 유전자는 락토바실러스 람노서스(Lactobacillus rhamnosus), 락토바실러스 프란타룸(Lactobacillus plantarum), 락토바실러스 아시도필루스(Lactobacillus acidophilus), 또는 락토코커스 락티스(Lactococcus lactis)로부터 유래한 것일 수 있으나, 환원형 젖산 탈수소 효소 활성을 갖는 유전자이면 제한없이 사용될 수 있다.
상기 젖산 탈수소 효소는 공지의 데이터 베이스인 NCBI의 GenBank 등에서 확인할 수 있으며 이에 제한되지 않으나, 서열번호 13의 염기서열로 이루어진 유전자일 수 있다. 또한, 본 발명의 균주에서 젖산 탈수소 효소는 클루이베로마이세스 막시아누스 유래의 TEF1α 프로모터를 이용하여 발현할 수 있다.
본 발명의 일 실시예에서는 KmPDC1 유전자 및 KmDLD1 유전자를 결실시켜 제조한 수탁번호 KCTC18291P 균주에 환원형 D-젖산 탈수소효소 유전자를 도입하여 제조한 균주를 한국생명공학연구원의 생물자원센터(KCTC)에 2014년 6월 11일 기탁하여, 수탁번호 KCTC18290P를 부여받았으며, 이를 2015년 6월 9일 부다페스트 조약 하의 국제기탁으로 전환청구하여, 기탁번호 KCTC12838BP를 수여받았다.
이에 따라, 본 발명의 변이균주는 수탁번호 KCTC12838BP인 것일 수 있다.
본 발명의 일 실시예에서는 환원형 D-젖산 탈수소효소 (D-LDH) 유전자를 확보하기 위하여 락토바실러스 플란타룸(Lactobacillus plantarum)으로부터 genomic DNA를 추출하였다. 추출된 시료를 주형으로 PCR을 수행하여 증폭된 유전자를 T-easy vector에 클로닝하여 유전자를 확보하였다. 이후, D-LDH 유전자를 클루이베로마이세스 막시아누스에서 발현하기 위해 plasmid pTEFp-GAPt에 삽입한 벡터를 구축하였다(도 4). 이후 구축된 벡터를 제한효소 NheⅠ으로 처리하여 선형 DNA 상태로 만들고 PDC1 결실 균주인 KM 25571Δpdc1 균주와 PDC1 , DLD1 결실 균주인 KM 25571Δpdc1Δdld1에 형질전환하여 형질전환체로부터 단일 균주를 선별하였으며 배양조건에 따른 D-젖산 생산량을 비교하여, PDC1 , DLD1의 결실 및 D-LDH 도입 균주가 최고농도의 D-젖산을 생산할 수 있음을 확인하였다(실시예 4).
또 다른 일구현예로서, 본 발명은 상기 균주 또는 이의 배양물을 포함하는, 젖산 생산용 조성물에 관한 것이다.
상기 균주에 대해서는 앞서 설명한 바와 같다.
본 발명의 용어 "배양물"은 본 발명의 클루이베로마이세스 막시아누스 균주가 시험관 내에서 성장 및 생존할 수 있도록 영양분을 공급할 수 있는 배지에 상기 균주를 일정기간 배양하여 얻는, 배양된 균주, 이의 대사물, 여분의 영양분 등을 포함하는 배지를 의미하나, 균주 배양 후 균주를 제거한 배양액도 포함한다. 상기 클루이베로마이세스 막시아누스 균주는 당류를 이용하는 젖산 생산능을 가지는 균주이므로, 상기 균주 또는 이의 배양물은 당류로부터 젖산을 생성하기 위한 젖산 생산용 조성물로 이용될 수 있다.
또 다른 일구현예로서, 본 발명은 상기 균주를 배양하는 단계를 포함하는, 젖산 생산 방법에 관한 것이다.
본 발명의 젖산 생산 방법은, 상기의 균주 중에서 에탄올 생성 경로가 봉쇄되고, 성장능이 유지되면서 젖산의 생산능이 높게 유지되는 형질전환 균주를 배양하는 단계를 포함할 수 있다.
본 발명에서 상기 균주의 배양은 널리 공지된 방법에 따라서 수행될 수 있고, 배양 온도, 배양 시간 및 배지의 pH 등의 조건은 적절하게 조절될 수 있다. 적절한 배양 방법으로는 유가식 배양(fed-batch culture), 회분식 배양(batch culture) 및 연속식 배양(continuous culture) 등이 가능하며, 바람직하게는 회분식 배양이지만, 이에 제한되는 것은 아니다.
사용되는 배양 배지는 특정한 균주의 요구 조건을 적절하게 충족시켜야 한다. 다양한 미생물에 대한 배양 배지는 공지되어 있다(예를 들면, "Manual of Methods for General Bacteriology" from American Society for Bacteriology (Washington D.C., USA, 1981)). 배지 내 탄소 공급원은 당 및 탄수화물(예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방(예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산(예: 팔미트산, 스테아르산 및 리놀레산), 알코올(예: 글리세롤 및 에탄올) 및 유기산(예: 아세트산) 등을 이용할 수 있다.
구체적으로, 본 발명에서 상기 균주는 글루코스를 영양원으로 하는 배지에서 배양할 수 있다.
본 발명의 일 실시예에서는 글루코스에서 D-젖산의 생산량을 확인한 결과, KmDLD1 유전자가 결실된 균주의 생산량이 우수한 것을 확인하였다(실시예 4 내지 5).
또한, 본 발명의 상기 균주는 저가로 대량공급이 가능한 바이오매스인 돼지감자 분말을 영양원으로 이용하여 배양할 수 있다.
본 발명의 용어, "돼지감자 분말 배지"는 일체의 전처리를 하지 않고 돼지감자 분말만을 포함하는 영양 배지이다. 완전 배지이기 때문에 선별을 위한 배지로는 사용될 수는 없다.
본 발명의 일 실시예에서는 고농도 돼지감자 분말을 이용하여 회분식 발효 및 유가식 발효를 통한 젖산 생산을 수행하여, 돼지감자 이눌린을 탄소원으로 활용할 수 있음을 확인하였다(실시예 6 내지 8).
본 발명의 용어, "이눌린(inulin)"은 과당중합체이며, 본 발명에서 사용한 클루이베로마이세스 막시아누스 균주는 이눌린 분해효소를 분비하여 이눌린을 과당으로 분해함으로써 탄소원으로 활용할 수 있는 균주이다.
상기 배양 배지를 이루는 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 질소 공급원은 질소-함유 유기 화합물(예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물(예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄)을 이용할 수 있으며, 이들 물질 또한 개별적으로 또는 혼합물로서 사용될 수 있다. 인 공급원으로서 인산이수소칼륨 또는, 인산수소이칼륨 또는 상응하는 나트륨 함유 염을 이용할 수 있다. 또한, 배양 배지는 성장에 필수적인 금속염(예: 황산마그네슘 또는 황산철)을 함유할 수 있으며, 최종적으로, 아미노산 및 비타민과 같은 필수 성장-촉진 물질을 상기 언급한 물질 외에 사용할 수 있다. 적합한 전구체를 상기 배양 배지에 추가로 가할 수 있다. 상기 공급 물질은 배양물에 한번에 모두 가하거나, 배양중 적절하게 공급할 수 있다.
구체적으로는 상기 생산되는 젖산은 광학이성질체인 L-젖산과 D-젖산일 수 있으며, 더욱 구체적으로는 D-젖산일 수 있다. 이는 도입하는 젖산 탈수소 효소의 종류에 따라 달라질 수 있다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
실시예 1. 클루이베로마이세스 막시아누스 유래의 KmDLD1 (oxidative D-lactate dehydrogenase ) 유전자의 확인
사카로마이세스 세레비지에 유래의 산화형 D-젖산 탈수소 효소의 아미노산 서열과 상동성(homology)이 있는 클루이베로마이세스 막시아누스(Kluyveromyces marxianus, KM) 유전자를 선별하고자 노력한 결과, KmDLD1으로 명명한 유전자(서열번호 1)를 선별하였다. 상기 KmDLD1의 아미노산 서열과 사카로마이세스 세레비지에 유래의 산화형 D-젖산 탈수소 효소의 아미노산 서열을 비교한 결과 56.2%의 유사성을 나타내는 것을 확인하여(도 1), 상기 유전자를 본 발명의 균주 제작을 위한 결실 유전자로 선별하였다.
실시예 2. KmDLD1 유전자 결실 균주 제작
상기 실시예 1에서 얻은 유전자가 사카로마이세스 세레비지에 유래의 DLD1 유전자와 동일한 기능을 수행하는 클루이베로마이세스 막시아누스 DLD1 유전자임을 확인하기 위하여 KmDLD1 결실 균주를 제작하였다.
KmDLD1 결실 균주 제작에 사용한 균주는 KmPDC1(Pyruvate Decarboxylase) 유전자가 결실되어 에탄올 발효 경로가 봉쇄된 균주를 이용하였다. KmDLD1 유전자를 불활성하기 위하여 BY25571 genomic DNA를 주형으로 하여 KmDLD1 ORF의 업스트림(upstream)과 다운스트림(downstream)에서 각 300 bp의 DNA 절편을 HJ673(서열번호 2) 및 HJ674(서열번호 3), HJ675(서열번호 4) 및 HJ676(서열번호 5) 프라이머 쌍을 각각 이용하여 증폭한 후, 프라이머 Tc-f(서열번호 6) 및 U200r(서열번호 7), U200f(서열번호 8) 및 Tc-r(서열번호 9)을 이용하여 증폭된 URA3 DNA 절편과 overlap extension PCR을 수행하였다. 이러한 과정은 도 2에 모식도로 나타내었다.
각 유전자 절편을 혼합한 후 이 혼합액을 주형으로 하여 두 절편을 연결하였고, overlap extension PCR 산물은 BY25571Δpdc1 균주(수탁번호 KCTC12225BP)에 형질전환시키고, PCR 단편이 도입된 균주를 우라실(uracil)이 없는 선택배지에서 선별하였다. 형질전환 여부를 프라이머 HJ673 및 HJ677(서열번호 10), U200f 및 HJ677를 이용하여 PCR을 통해 확인한 결과 예상되는 위치에서 PCR 밴드를 확인하였다. KmDLD1 유전자가 남아있는지 확인하기 위해 HJ678(서열번호 11) 및 HJ676 프라이머를 이용하여 확인한 결과 URA3 cassette에 의해 KmDLD1 유전자가 결실되었음을 확인하였다(도 3).
Figure PCTKR2015006225-appb-T000001
이후 URA3 cassette에 존재하는 URA3 유전자를 제거하기 위해 YPD 배지에서 4~6시간 배양 후 5-FOA 배지에서 선별하였다. HJ673(서열번호 2)및 HJ677(서열번호 10) 프라이머를 이용하여, PCR을 통해 URA3 유전자 pop-out 여부를 확인한 결과 URA3 유전자가 제거된 균주 BY25571Δpdc1Δdld를 얻을 수 있었다.
또한, KmPDC1 유전자 및 KmDLD1 유전자를 결실시켜 제조한 균주를 부다페스트 조약 하의 국제기탁기관인 한국생명공학연구원의 생물자원센터(KCTC)에 2014년 6월 11일 기탁하여, 수탁번호 KCTC18291P를 부여받았다. 상기 국내특허기탁을 원균주로 하여 2015년 6월 9일자에 부다페스트 조약 하의 국제특허기탁으로 전환하여, 수탁번호 KCTC12839BP를 부여받았다.
실시예 3.환원형 D-젖산 탈수소효소( LDH ) 유전자의 도입 및 발현 확인
D-LDH 유전자를 클루이베로마이세스 막시아누스에서 발현하기 위해 락토바실러스 플란타룸(Lactobacillus plantarum) 유래의 D-젖산 탈수소효소 (LDH) 유전자(서열번호 13)의 발현 벡터를 구축하였다(도 4). LDH 유전자를 강력하고 구성적으로 발현하기 위하여 클루이베로마이세스 막시아누스 유래의 translation elongation factor 1 α(TEF1α) 유전자의 프로모터를 포함하고 있으며, LDH 유전자의 전사를 종결하기 위하여 glyceraldehyde 3-phosphate dehydrogenase(GAP) 유전자의 전사종결 부위를 포함하고 있는 pTEF1 벡터를 사용하였다. 구축된 벡터를 제한효소 NheⅠ으로 처리하여 선형 DNA 상태로 만들고 KmPDC1 변이 균주인 KM 25571Δpdc1 균주 및 KmPDC1, KmDLD1 변이 균주인 KM 25571Δpdc1Δdld1 균주에 각각 형질전환하여 형질전환체로부터 단일 균주를 선별하였으며, 도입한 벡터가 염색체로 도입되었음을 HJ594(서열번호 14) 및 HJ595(서열번호 15) 프라이머를 이용하여, PCR을 통하여 확인하였다(도 5).
이 중 KmPDC1 유전자 및 KmDLD1 유전자를 결실시켜 제조한 수탁번호 KCTC18291P 균주에 환원형 D-젖산 탈수소효소 유전자를 도입한 균주를 부다페스트 조약 하의 국제기탁기관인 한국생명공학연구원의 생물자원센터(KCTC)에 2014년 6월 11일 기탁하여, 수탁번호 KCTC18290P를 수여받았다. 상기 국내특허기탁을 원균주로 하여 2015년 6월 9일자에 부다페스트 조약 하의 국제특허기탁으로 전환하여, 수탁번호 KCTC12838BP를 부여받았다.
실시예 4. 글루코스(Glucose)로부터의 D-젖산 생산 확인
상기 실시예 3에서 제조한 형질전환체의 젖산 생산능을 확인하기 위하여, YPD(효모추출물 1%, 펩톤 2%, 포도당 2%) 배지에서 진탕배양하여 세포를 회수한 후, 증류수로 2회 세척한 다음 YPD10(효모추출물 1%, 펩톤 2%, 포도당 10%) 액체배지 또는 칼슘 카보네이트를 함유하는 YPD10 액체배지에 접종하여 72시간 동안 배양하였다.
이후 HPLC를 통하여 D-젖산 생산량을 확인한 결과 KmDLD1 유전자가 결실된 균주(25571Δpdc1Δdld/D-LDH)의 경우 pH를 조절하는 조건과 pH를 조절하지 않는 조건 모두 KmDLD1 유전자가 결실되지 않은 25571Δpdc1/D-LpLDH보다 젖산 생산량이 각각 26%, 30% 증가한 것을 확인하였다(표 2).
Figure PCTKR2015006225-appb-T000002
실시예 5. 고농도의 D-젖산 생산 확인
상기 실시예 4에서 젖산 생산량이 증가된 것으로 확인된 KmDLD1 유전자가 결실된 균주인 25571Δpdc1Δdld/D-LpLDH를 이용하여, 글루코스로부터 고농도의 젖산을 생산하기 위해 회분식 배양을 수행하였다.
본 배양에 들어가기 전에 100ml의 YPD 액체배지에 배양하여 활성화시킨 후 본 배양액에 접종하여 30℃에서 12시간 동안 배양하였다. 이후 고농도 발효액에 60%의 포도당 용액(final 15%)을 공급하여 35℃에서 젖산 전환 반응을 수행하였다.
HPLC를 통하여 젖산 생산량을 확인한 결과 25571Δpdc1/D-LpLDH 균주는 99.8 g/l 의 D-젖산이 생성되어 83.3%의 전환율을 나타내었고, 25571Δpdc1Δdld1/D-LpLDH 균주는 108.8 g/l 의 D-젖산이 생산되어 86.1%의 전환율을 나타내는 것을 확인하였다. 상기 결과로부터 KmDLD1 결실로 인해 10% 이상 생산능이 개선된 것을 확인할 수 있었다(도 6).
실시예 6. 이눌린 기반 D-젖산 생산을 위한 회분식 발효
젖산 생산시 기질로 사용하는 글루코스는 높은 가격으로 인하여 젖산 공정 원료비를 높이고 있다. 따라서 재생 가능한 대체 원료인 돼지감자 이눌린을 이용하여 젖산 생산을 확인하였다.
젖산 생산성을 높이기 위해, 고농도 돼지감자 분말을 이용하여 회분식 발효를 수행하였다. 먼저 200g/L 돼지감자를 121℃에서 20분간 고압 멸균후 원심분리하여 얻은 상층액에 200g/L 돼지감자를 다시 녹여(230g/L inulin) 고농도 이눌린 용액을 제조한 후 젖산 생산을 위한 기질로 사용하였다.
본 배양에 들어가기 전 200ml의 YPD 액체배지에 25571Δpdc1/D-LpLDH 균주를 배양하여 활성화시킨 후 본 배양액에 접종하여 30℃에서 OD600nm 값이 60에 도달할 때 세포를 회수한 후 돼지감자 이눌린에 접종하여 혐기성 조건(200rpm, 0.5vvm, 35℃, pH6.0)에서 64시간 동안 배양하면서 시간별로 젖산 전환율을 확인하였다.
그 결과, 배양 64시간동안 120g/L 이눌린을 소모하여 90g/L 젖산을 생산했고 75%의 낮은 전환율을 보였다(표 3, 도 7).
이에, 본 발명자들은 배지 내 과당의 농도에 따라 이눌린을 추가 공급해주는 유가식 발효를 통해 젖산 생산량을 다시 확인하였다.
Figure PCTKR2015006225-appb-T000003
실시예 7. 이눌린 기반 D-젖산 생산(120g/L inulin)을 위한 유가 배양식 발효
고농도 이눌린 배지를 제조하기 위해 먼저 100g/L 돼지감자를 121℃에서 20분간 고압 멸균 후 원심분리하여 얻은 상층액에 100g/L 돼지감자를 녹여(120g/L inulin) D-젖산 생산을 위한 기질로 사용하였다.
본 배양에 들어가기전 200ml의 YPD 액체배지에 배양하여 활성화시킨 후 본 배양액에 접종하여 30℃에서 OD600nm 값이 60에 도달할 때 세포를 회수한 후 돼지감자 이눌린에 접종하여 혐기성 조건에서 72시간 동안 배양하였다. 이때 배지에 남아있는 과당의 농도에 따라 100g/L 이눌린을 추가 공급하였다.
그 결과, 배양 32시간 까지는 과당의 소모에 따라 젖산의 생산량도 증가하였으나, 이눌린을 추가 공급해준 32시간 이후부터 젖산 생산량이 증가하지 않아 최종적으로 배양 72시간동안 115g/L 젖산이 생산되었다(표 4, 도 8).
이와 같은 결과는 배지에 남아있는 높은 농도의 과당에 의해 이눌린 분해효소 생산이 저해 받아 이눌린을 분해하지 못한 것으로 보여, 배지 내 과당 농도를 20~30g/L로 유지하고 기질인 이눌린과 균체 농도를 높여 다시 유가식 발효를 통한 젖산 생산량을 확인하였다.
Figure PCTKR2015006225-appb-T000004
실시예 8. 고농도 이눌린 기반 D-젖산 생산(170g/L inulin)을 위한 유가 양식 발효
유가식 발효를 위한 배양조건은 상기 실시예 7에 서술된 방법과 동일하게 수행되었으며 170g/L 이눌린이 기질로 사용되었다.
세포배양은 OD 600nm 값이 80에 도달 했을 때 회수하여 사용했으며 혐기성 조건에서 76시간 동안 배양하면서 젖산 전환율을 확인하였다. 이때 배지에 남아있는 과당 농도에 따라 100g/L 이눌린을 추가 공급하였다.
그 결과, 상기 실시예 7의 유가식 발효와 비슷하게 이눌린을 추가 공급해준 44시간 이후부터 젖산 생산이 증가하지 않았지만 초기 고농도 균체 농도에 의해 최종 생산량은 증가하였다. 최종적으로 배양 76시간 동안 156.7g/L 과당을 소모하여 136.9g/L 젖산을 생산했고 87%의 전환율을 보였다(표 5, 도 9).
Figure PCTKR2015006225-appb-T000005
상기와 같은 결과들은 D-젖산 생산을 증가시키기 위한 활성을 결손시키는 역할을 하는 단백질이 산화형 D-젖산 탈수소 효소임을 시사하는 것으로서, 본 발명자들은 상기 산화형 D-젖산 탈수소 효소의 활성을 불활성화시켜 젖산 생산량을 증가시킬 수 있는 균주를 개발하였다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2015006225-appb-I000001
Figure PCTKR2015006225-appb-I000002

Claims (18)

  1. 산화형 D-젖산 탈수소효소(oxidative D-lactate dehydrogenase)가 불활성화된 클루이베로마이세스 막시아누스 변이균주.
  2. 제1항에 있어서, 상기 변이균주의 모균주는 수탁번호 KCTC 7001, KCTC 7118, KCTC 7149, KCTC 7150, KCTC 7155, KCTC 7524, KCTC 17212, KCTC 17544, KCTC 17555, KCTC 17631, KCTC 17694, KCTC 17724, KCTC 17725, KCTC 17759, BY25569, BY25571 및 BY25573로 이루어진 군에서 선택된 것인, 변이균주.
  3. 제2항에 있어서, 상기 모균주는 BY25571인 것인, 변이균주.
  4. 제1항에 있어서,
    상기 변이균주는 당이 포함된 배지에서 배양시 D-젖산의 생성이 산화형 D-젖산 탈수소효소(oxidative D-lactate dehydrogenase)가 불활성화되지 않은 균주에 비해 증가되는 것인, 변이균주.
  5. 제1항에 있어서,
    상기 불활성화는 산화형 D-젖산 탈수소효소 유전자가 결손된 것인, 변이균주.
  6. 제5항에 있어서, 상기 산화형 D-젖산 탈수소효소 유전자는 서열번호 1의 염기서열로 이루어진 것인, 변이균주.
  7. 제1항에 있어서,
    상기 변이균주는 피루베이트 탈탄산 효소(Pyruvate Decarboxylase)가 추가로 불활성화된 것인, 변이균주.
  8. 제7항에 있어서,
    상기 변이균주는 수탁번호 KCTC12839BP인, 변이균주.
  9. 제1항에 있어서,
    상기 변이균주는 환원형 젖산 탈수소 효소(reductive lactate dehydrogenase) 활성이 도입된, 변이균주.
  10. 제9항에 있어서,
    상기 환원형 젖산 탈수소 효소 활성을 갖는 유전자는 락토바실러스 람노서스(Lactobacillus rhamnosus), 락토바실러스 프란타룸(Lactobacillus plantarum), 락토바실러스 아시도필루스(Lactobacillus acidophilus), 또는 락토코커스 락티스(Lactococcus lactis)로부터 유래한 것인, 변이균주.
  11. 제10항에 있어서,
    상기 환원형 젖산 탈수소 효소 활성을 갖는 유전자는 서열번호 13의 염기서열로 이루어진 것인, 변이균주.
  12. 제9항에 있어서,
    상기 환원형 젖산 탈수소 효소는 클루이베로마이세스 막시아누스 유래의 TEF1a(translation elongation factor 1a) 프로모터를 이용하여 발현하는 것인, 변이균주.
  13. 제9항에 있어서,
    상기 변이균주는 수탁번호 KCTC12838BP인, 변이균주.
  14. 제1항 내지 제13항 중 어느 한 항의 균주 또는 이의 배양물을 포함하는, 젖산 생산용 조성물.
  15. 제1항의 균주를 배양하는 단계를 포함하는, 젖산 생산 방법.
  16. 제15항에 있어서,
    상기 균주를 배양하는 단계는 글루코스(Glucose)를 영양원으로 하는 것인, 방법.
  17. 제15항에 있어서, 상기 젖산은 D-젖산인, 방법.
  18. 제15항에 있어서,
    상기 균주를 배양하는 단계는 이눌린(Inulin)를 영양원으로 하는 것인, 방법.
PCT/KR2015/006225 2014-06-20 2015-06-19 젖산 분해 경로가 봉쇄된 클루이베로마이세스 막시아누스 및 이의 용도 WO2015194900A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0075460 2014-06-20
KR20140075460 2014-06-20

Publications (1)

Publication Number Publication Date
WO2015194900A1 true WO2015194900A1 (ko) 2015-12-23

Family

ID=54935808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006225 WO2015194900A1 (ko) 2014-06-20 2015-06-19 젖산 분해 경로가 봉쇄된 클루이베로마이세스 막시아누스 및 이의 용도

Country Status (2)

Country Link
KR (1) KR101689004B1 (ko)
WO (1) WO2015194900A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159011A2 (en) 2018-02-16 2019-08-22 Ptt Global Chemical Public Company Limited Microorganisms and processes for lactic acid production
US20220411745A1 (en) * 2019-08-19 2022-12-29 Ptt Global Chemical Public Company Limited Yeast having improvement of lactic acid tolerance and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102361618B1 (ko) * 2018-01-08 2022-02-09 주식회사 엘지화학 2-하이드록시부티레이트 및 3-하이드록시부티레이트의 공중합체 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090253189A1 (en) * 2005-11-23 2009-10-08 Matthew Miller Lactic Acid-Producing Yeast Cells Having Nonfunctional L- or D-Lactate:Ferricytochrome C Oxidoreductase Cells
US7700332B1 (en) * 1999-05-21 2010-04-20 Cargill Inc. Methods for the synthesis of lactic acid using crabtree-negative yeast transformed with the lactate dehydrogenase gene
KR20130001121A (ko) * 2011-06-24 2013-01-03 성균관대학교산학협력단 젖산의 고효율 생산을 위한 변형 미생물
KR20130001509A (ko) * 2011-06-27 2013-01-04 삼성전자주식회사 3-하이드록시프로피온산의 생산을 위한 유전자 조작
KR20140001165A (ko) * 2012-06-26 2014-01-06 한국생명공학연구원 에탄올 생산 경로가 봉쇄된 클루이베로마이세스 막시아누스 균주 및 이의 용도
KR20140026208A (ko) * 2012-08-24 2014-03-05 성균관대학교산학협력단 유기산 생산을 위한 재조합 미생물 및 이를 이용한 유기산 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700332B1 (en) * 1999-05-21 2010-04-20 Cargill Inc. Methods for the synthesis of lactic acid using crabtree-negative yeast transformed with the lactate dehydrogenase gene
US20090253189A1 (en) * 2005-11-23 2009-10-08 Matthew Miller Lactic Acid-Producing Yeast Cells Having Nonfunctional L- or D-Lactate:Ferricytochrome C Oxidoreductase Cells
KR20130001121A (ko) * 2011-06-24 2013-01-03 성균관대학교산학협력단 젖산의 고효율 생산을 위한 변형 미생물
KR20130001509A (ko) * 2011-06-27 2013-01-04 삼성전자주식회사 3-하이드록시프로피온산의 생산을 위한 유전자 조작
KR20140001165A (ko) * 2012-06-26 2014-01-06 한국생명공학연구원 에탄올 생산 경로가 봉쇄된 클루이베로마이세스 막시아누스 균주 및 이의 용도
KR20140026208A (ko) * 2012-08-24 2014-03-05 성균관대학교산학협력단 유기산 생산을 위한 재조합 미생물 및 이를 이용한 유기산 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159011A2 (en) 2018-02-16 2019-08-22 Ptt Global Chemical Public Company Limited Microorganisms and processes for lactic acid production
US20220411745A1 (en) * 2019-08-19 2022-12-29 Ptt Global Chemical Public Company Limited Yeast having improvement of lactic acid tolerance and use thereof

Also Published As

Publication number Publication date
KR20150145727A (ko) 2015-12-30
KR101689004B1 (ko) 2016-12-23

Similar Documents

Publication Publication Date Title
WO2014003439A1 (ko) 에탄올 생산 경로가 봉쇄된 클루이베로마이세스 막시아누스 균주 및 이의 용도
CN107709540B (zh) 库德里阿兹威氏毕赤酵母ng7微生物及其用途
Nguyen et al. Production of L-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli
WO2013162274A1 (ko) 신규한 d형 젖산 생산균주 및 그의 용도
WO2014142463A1 (ko) L-발린 생산능이 향상된 균주 및 이를 이용한 l-발린 생산방법
AU2006243052B2 (en) Thermophilic microorganisms with inactivated lactate dehydrogenase gene (LDH) for ethanol production
WO2016021932A1 (ko) 피드백 저항성 아세토하이드록시산 신타아제 변이체 및 이를 이용한 l-발린의 생산방법
WO2013105802A2 (ko) 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2011139040A2 (ko) 신규 트라우스토키트리드계 미세조류 및 이를 이용한 바이오오일의 제조방법
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2015186990A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2019203436A1 (ko) 에탄올 생산 경로가 억제된 내산성 효모 및 이를 이용한 젖산의 제조방법
CN88100523A (zh) 生产酮古洛糖酸的方法
WO2012030130A2 (ko) 수크로오즈와 글리세롤을 동시에 이용하는 신규 숙신산 생성 변이 미생물 및 이를 이용한 숙신산 제조방법
KR20100061460A (ko) 에탄올 생산을 위한 호열성 미생물
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2015194900A1 (ko) 젖산 분해 경로가 봉쇄된 클루이베로마이세스 막시아누스 및 이의 용도
JP2010504747A (ja) エタノール生成のための好熱性微生物
WO2017052299A1 (ko) 신규한 캔디다 인판티콜라 균주, 이의 변이균주 및 형질전환균주, 및 이를 이용하여 디오익 산류를 생산하는 방법
WO2022270708A1 (ko) 카프로익산 생산 미생물군집 제조방법 및 이의 용도
KR101320059B1 (ko) 재조합 벡터, 상기 벡터를 포함하는 재조합 효모 및 상기 효모를 이용한 글루코스 옥시다아제의 대량 생산 방법
KR100652186B1 (ko) 신규 미생물 바실러스 서브틸리스 서브스페시스 서브틸리스a-53 및 이를 이용한 섬유소 분해효소의 제조방법
WO2019143089A1 (ko) 1,3-프로판디올 생성능을 가지는 변이미생물 및 이를 이용한 1,3-pdo의 제조방법
WO2016195439A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2020085556A1 (ko) 재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810550

Country of ref document: EP

Kind code of ref document: A1