WO2020085556A1 - 재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법 - Google Patents

재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법 Download PDF

Info

Publication number
WO2020085556A1
WO2020085556A1 PCT/KR2018/012950 KR2018012950W WO2020085556A1 WO 2020085556 A1 WO2020085556 A1 WO 2020085556A1 KR 2018012950 W KR2018012950 W KR 2018012950W WO 2020085556 A1 WO2020085556 A1 WO 2020085556A1
Authority
WO
WIPO (PCT)
Prior art keywords
glutamicum
cadaverine
corynebacterium glutamicum
strain
recombinant
Prior art date
Application number
PCT/KR2018/012950
Other languages
English (en)
French (fr)
Inventor
김일권
송봉근
주정찬
김희택
강경희
박시재
Original Assignee
대상 주식회사
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사, 한국화학연구원 filed Critical 대상 주식회사
Publication of WO2020085556A1 publication Critical patent/WO2020085556A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)
    • C12Y207/11013Protein kinase C (2.7.11.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01018Lysine decarboxylase (4.1.1.18)

Definitions

  • the present invention relates to a recombinant Corynebacterium glutamicum strain and a method of producing cadaverine using the same, more specifically, the lysE locus of the Corynebacterium glutamicum PKC plasmid pK19-mobsacB-lysEF It relates to a recombinant Corynebacterium glutamicum strain transformed with / B and a method of producing cadaverine comprising culturing using the strain.
  • Cadaverine also known as 1,5-diaminopentane
  • 1,5-diaminopentane is an important base chemical for many industrial applications and is a component of polymers such as polyamides or polyurethanes, chelating agents or other It can be used as an additive.
  • cadaverine can be directly formed by lysine decarboxylase, which catalyzes the decarbonation reaction of L-lysine, and lysine decarboxylase is a plant and E. coli, such as lactic acid bacteria. It is known to exist in bacteria (non-patent document 1, non-patent document 2).
  • Patent Document 1 Japanese Patent Publication No. 2002-223770
  • Patent Document 2 International Publication Patent WO2008 / 092720
  • Patent Document 3 International Publication Patent WO2012 / 077744
  • Non-Patent Document 1 Biochem. Biophys. Res. Com. vol.34, (1969), 34-39
  • Non-Patent Document 2 Int. J. Food Microbiol. vol.11, (1990), 73-84
  • the present invention is to solve the problems of the prior art as described above, the object of the present invention is the overexpression of a gene encoding lysine decarboxylase during the production of cadaverine by direct fermentation, recombination with improved productivity of cadaverine To provide a strain of Corynebacterium glutamicum.
  • Another object of the present invention is to provide a method for producing cadaverine in high yield using the recombinant Corynebacterium glutamicum strain.
  • Corynebacterium glutamicum ( Corynebacterium glutamicum ) PKC (ACS Sustainable Chem. Eng., 2018, 6 (4), pp 5296-5305) pp lysE locus plasmid pK19
  • the present invention provides a method of producing cadaverine comprising culturing using the recombinant Corynebacterium glutamicum strain.
  • Recombinant Corynebacterium glutamicum strain according to the present invention is transformed with ldcC Ha gene encoding lysine decarboxylase derived from Hafnia alvei , and cultured using the strain
  • the conversion rate from lysine to cadaverine can be increased to increase the production efficiency of cadaverine.
  • Figure 1 shows a cleavage map of the plasmid pK19-mobsacB-lysEF / B according to an embodiment of the present invention.
  • FIG 2 shows a schematic diagram for the industrial production of cadaverine using a recombinant C.
  • glutamicum strain according to an embodiment of the present invention
  • ldc C is lysine decarboxylase
  • lys E is lysine exporter
  • OAA is Oxaloacetate
  • TCA cycle means tricarboxylic acid cycle
  • ASP means L-aspartate.
  • Figure 3 shows the production of cadaverine by the recombinant strain C. glutamicum PKC containing different amino acid decarboxylase under the strong promoters P H30 and P H36 .
  • Figure 4 is a comparison of cell growth, glucose consumption, lysine concentration, cadaverine production of recombinant C. glutamicum strains during batch fermentation, (a) C. glutamicum H30EcLDC, (b) is C. glutamicum H36EcLDC, (c) is C. glutamicum H30HaLDC, (d) shows the results of C. glutamicum H36HaLDC.
  • Figure 5 is a recombinant C. glutamicum H30EcLDC (a) and C. glutamicum during fed-batch fermentation Cell growth, glucose consumption, lysine concentration, and cadaverine production of H30HaLDC (b) are compared.
  • Figure 6 is a recombinant C. glutamicum during batch fermentation (a) and fed-batch fermentation (b) It shows the time profile of cell growth, glucose consumption, lysine concentration and cardiberine production of H30HaLDC.
  • plasmid refers to any nucleic acid that contains a competent nucleotide sequence that is inserted into a host cell, recombined with the host cell genome and inserted therein, or spontaneously replicates as an episome.
  • vectors include linear nucleic acids, plasmids, phagemids, cosmids, RNA vectors, and viral vectors.
  • “Recombinant strain” in the present invention includes individual cells that may be or are receptors for any recombinant vector (s), recombinant plasmid (s) or isolated polynucleotides of the present invention.
  • the host cell can be a progeny of a single host cell, and the progeny need not be completely identical to the original parent cell due to natural, accidental or artificial mutations and / or changes.
  • Recombinant strains include cells transfected, transformed or infected with a plasmid or polynucleotide of the invention in vivo or in vitro.
  • the recombinant strain comprising the plasmid of the present invention is a recombinant host cell, recombinant cell, recombinant microorganism or mutant microorganism.
  • the term "transformation" means that by introducing the DNA into the host, the DNA can be replicated as an extrachromosomal factor or by insertion into the chromosome.
  • primer hybridizes to a complementary RNA or DNA target polynucleotide and functions as a starting point for stepwise synthesis of polynucleotides from mononucleotides, for example, by the action of nucleotide diyltransferases that occur in polymerase chain reactions. Oligonucleotide sequence.
  • “functional” and “functional” means biological or enzymatic functions.
  • “increased”, “increased” or “enhanced” is a given product or molecule (eg, general purpose chemical, biofuel or intermediates thereof) compared to a control microorganism, such as an unmodified microorganism or a differently modified microorganism. Means the ability of one or more recombinant host cells to produce larger amounts.
  • the present invention can be implemented by culturing a recombinant microorganism transformed by inserting a gene encoding a specific enzyme into a basic vector using standard cloning techniques and conventional methods known to those skilled in the art. Accordingly, the present invention includes all methods of gene cloning, recombinant microorganisms, and microbial systems related thereto.
  • the present invention Corynebacterium glutamicum ( Corynebacterium glutamicum ) as a recombinant Corynebacterium glutamicum strain in which the lysE locus of PKC (ACS Sustainable Chem. Eng., 2018, 6 (4), pp 5296-5305) was transformed with the plasmid pK19-mobsacB-lysEF / B, The plasmid pK19-mobsacB-lysEF / B is in the plasmid pK19-mobsacB, in the presence of the P H30 promoter and terminator, Hafnia alvei ) and a recombinant Corynebacterium glutamicum strain in which the plasmid pCES208: P H30 ldcC Ha expressing the ldcC Ha gene encoding lysine decarboxylase is inserted.
  • the plasmid pK19-mobsacB-lysEF / B may have a cleavage map of FIG. 1.
  • the ldcC Ha gene may be composed of the nucleotide sequence of SEQ ID NO: 1.
  • the P H30 promoter may be composed of the nucleotide sequence of SEQ ID NO: 2.
  • the recombinant Corynebacterium glutamicum strain may be Corynebacterium glutamicum G-H30HaLDC KCTC13668BP.
  • the recombinant Corynebacterium glutamicum strain may overexpress the ldcC Ha gene encoding lysine decarboxylase.
  • the recombinant Corynebacterium glutamicum strain produces 125-130 g / L, preferably 125-126 g / L of cadaverine from glucose. You can.
  • the plasmid pK19-mobsacB-lysEF / B can be cloned or sutured to the genome itself, after transformation into a suitable host cell, as well as coryneform bacteria, regardless of the genome of the host cell.
  • the suitable host cell is a vector capable of replicating, and may include a replication origin, which is a specific nucleic acid sequence in which replication is initiated.
  • the plasmid pK19-mobsacB-lysEF / B may include a selection marker, wherein the selection marker is for selecting transformants transformed with a plasmid (recombinant strain), Since only cells expressing the selection marker can survive in the medium treated with the selection marker, selection of transformed cells is possible.
  • selection marker examples include kanamycin, streptomycin, chloramphenicol, and the like, and kanamycin may be used in the present invention.
  • the present invention relates to a method of producing cadaverine comprising culturing using the recombinant Corynebacterium glutamicum strain.
  • the culture of the recombinant Corynebacterium glutamicum strain can be cultured by batch fermentation or fed-batch fermentation, but productivity of cadaverine In view of this, fed-batch culture is preferred.
  • the culture of the recombinant Corynebacterium glutamicum strain may be carried out according to conventional methods known in the art to which the present invention pertains. These known culture methods are described in Qian et al., Biotechnol. Bioeng. ., 2011: 108 (1) 93; Kim et al., J. Micobiol. Biotechnol., 2015: 25 (7) 1108).
  • the medium used for cultivation must satisfy the requirements of a specific strain in an appropriate manner, but the culture medium for the Corynebacterium glutamicum strain may use a known medium. , But is not limited thereto.
  • sugars that can be used for culture include sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, starch, and cellulose, soybean oil, sunflower oil, castor oil, and coconut oil. Oils and fats, etc., fatty acids such as palmitic acid, stearic acid and linoleic acid, alcohols such as glycerol and ethanol, and organic acids such as acetic acid. These materials can be used individually or as a mixture.
  • nitrogen sources that can be used for culture include peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds, such as ammonium sulfate, ammonium chloride, phosphoric acid Ammonium, ammonium carbonate and ammonium nitrate. Nitrogen sources can also be used individually or as a mixture.
  • personnel capable of being used for culture may include, but are not limited to, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or a corresponding sodium-containing salt.
  • the culture medium may contain a metal salt such as magnesium sulfate or iron sulfate necessary for growth.
  • a metal salt such as magnesium sulfate or iron sulfate necessary for growth.
  • essential growth materials such as amino acids and vitamins may be used in addition to the materials.
  • precursors suitable for the culture medium may be used.
  • the raw materials may be added batchwise or continuously in an appropriate manner to the culture during the culture process.
  • the pH of the culture can be adjusted by using a basic compound such as sodium hydroxide, potassium hydroxide, and ammonia, or an acid compound such as phosphoric acid or sulfuric acid in an appropriate manner.
  • a basic compound such as sodium hydroxide, potassium hydroxide, and ammonia
  • an acid compound such as phosphoric acid or sulfuric acid in an appropriate manner.
  • anti-foaming agents such as fatty acid polyglycol esters can be used to suppress the formation of bubbles, and oxygen or oxygen-containing gas (eg, air) can be injected into the culture to maintain aerobic conditions.
  • oxygen or oxygen-containing gas eg, air
  • the culture temperature is 30 ° C to 40 ° C, preferably 35 ° C to 38 ° C, more preferably 36.5 ° C to 37.5 ° C
  • the culture time is 10 to 160 hours, preferably Is achieved at 20 to 140 hours, more preferably at 50 to 120 hours.
  • the method of producing the cadaverine of the present invention may further include a method of recovering the cadaverine produced in the culturing step.
  • the method of recovering the cadaverine can separate cadaverine from a cell or culture medium by a method well known in the art.
  • examples of the cadaverine recovery method include filtration, ion exchange chromatography, crystallization and HPLC, but are not limited to these examples.
  • E. coli XL1-Blue (Stratagene, La Jolla, CA, USA) was used as a host for general gene cloning studies.
  • Suicide vector plasmid pK19-mobsacB is capable of chromosomal integration of ldc H a through homologous recombination and kanamycin resistance and SacB system as described in previous studies (ACS Sustain Chem Eng. 2018; 6: 5296-5305). Used for two-stage colony screening.
  • PCR was performed using a C1000 Thermal Cycler (Bio-Rad, Hercules, CA, USA).
  • the primers of Table 3 used in this experiment were synthesized in Bioneer (Daejeon, Korea).
  • Target gene 3 5′-AAGCTT AGAGGGTTCCCGCGCC 5 ′ area of lysE 4 5′-CTGCAG GTGGATTTTCGCCGCTG 5 5′-GGATCC GACCTGTAATGAAGATTTCCAT 3 ′ area of lysE 6 5′-GAATTC TAGCTTCACGGGTTACCGC 7 5′-GGATCC ATGAATATCATTGCCATCATGA H. alvei ldcC operon 8 5′-GCGGCCGC TTATGACTTCTTCGCCGCTG
  • E. coli (cadAEc and ldcCEc), Lactobacillus saerimneri (odcLs and ldcLs), Streptomyces coelicolor (ldcSc), Selemonas ruminantium (ldcSr), Hafnia alvei (cadAHa and ldcCHa) and Vibrio
  • the amino acid decarboxylase of vulnoficus (ldcVv) was synthesized from Bioneer (Daejeon, Korea).
  • pCES208 P H30 cadAEc
  • pCES208 P H36 cadAEc
  • pCES208 P H30 ldcCEc
  • pCES208 P H36 ldcCEc
  • pCES208 P H30 odcLs
  • pCES208 P H36 odcLs
  • pCES208 P H30 ldcLs
  • pCES208 P H36 ldcLs
  • pCES208 P H36 ldcLs
  • pCES208 P H30 ldcSc
  • pCES208 P H36l dcSc
  • pCES208 P H30 ldcSr
  • pCES208 P H36 ldcSr
  • pCES208 P H30l dcVv
  • pCES208 P H36 cadAHa
  • pCES208 P H36 cadAHa
  • pCES208 P H36 cadAHa
  • pCES208 P H36 cad
  • the plasmid pK19mobsacB-lysEFB was prepared by continuously inserting the 5'- and 3'-regions of lysE, which are C. glutamicum PKC gDNA at the HindIII / PstI and BamHI / EcoRI sites. It was amplified using the primer of Table 3 above.
  • the plasmid pK19-mobsacB-lysEF / B was constructed by insertion of a plasmid pCES208: P H30 ldcC Ha containing expression of ldcCHa under the P H30 promoter and terminator.
  • the constructed plasmid pK19-mobsacB-lysEF / B is shown in FIG. 1.
  • E. coli XL1-Blue used as a gene cloning host was cultured in LB medium at 37 ° C. Recombinant C. glutamicum strains were cultured in rich RG medium for overnight culture.
  • the composition of the RG medium is 10 g / L of glucose, 30 g / L of D-sorbitol, 10 g / L of beef extract and 40 g / L of brain heart infusion.
  • the flask culture of the recombinant C. glutamicum strain was performed at 30 ° C. and 250 rpm in CG50 medium.
  • Semi-defined CG50 medium is 50 g / L glucose, 30 g / L yeast extract, NH 4 SO 4 ⁇ 7H 2 O 30 g / L, KH 2 PO 4 0.5 g / L, MgSO 4 ⁇ 7H 2 O 0.5 g / L, MnSO 4 ⁇ H 2 O 0.01 g / L, FeSO ⁇ 7H 2 O containing 20 ⁇ g / L of kanamycin (Km) 0.01 g / L.
  • the CG100 medium is 100 g / L glucose, 30 g / L yeast extract, 30 g / L (NH 4 ) 2 SO 4 ⁇ 7H 2 O, 0.5g KH 2 PO 4 , 0.5g MgSO 4 ⁇ 7H 2 O, 0.01 g MnSO 4 ⁇ H 2 O, 0.01 g FeSO 4 ⁇ 7H 2 O, 0.5 mg biotin and 0.3 mg thiamine-HCl.
  • Fed-batch fermentation was performed at 30 ° C., 600 rpm and 6 vvm in a 2.5 L letter permanent containing 500 mL of CG100 medium.
  • the glucose concentration contains 0.5 g / L of MgSO 4 ⁇ 7H 2 O with 700 g / L of glucose, (NH 4 ) 2 SO 4 ⁇ 7H 2 O 270 g / L and 20 ⁇ g / L of kanamycin (Km).
  • the feed solution was supplemented with 20 ⁇ g / L to maintain a glucose concentration of 10-40 g / L.
  • the pH was adjusted by automatically adding a 28% (v / v) ammonia solution and maintained at 6.9.
  • Antifoam 204 was added periodically to prevent foam formation, and cell growth was measured by a UV spectrophotometer with an OD 600 .
  • the concentrations of glucose and organic acids were analyzed using high performance liquid chromatography (HPLC, Agilent Infinity 1260 (Agilent Technologies, Santa Clara, CA, USA)) equipped with an Aminex HPX-76H column.
  • the concentrations of lysine and cadaverine were determined using a DEEMM method (J Mol Catal B: Enzym. 2015; 115: 151-154) using a Chemstation HPLC system (Agilent Technologies) equipped with an Optimapak C18 column (150x4.6 mm) (Bio-Rad). , Santa Clara, CA, USA).
  • VWD variable wavelength detector
  • An efficient in vivo enzyme expression system consisting of lysine decarboxylase with effective activity and a suitable promoter system for efficient expression is a key factor in establishing efficient conversion of lysine to cadaverine in recombinant C. glutamicum strains.
  • This enzyme expression system was transformed with the industrial lysine overproduction strain C. glutamicum PKC (ACS Sustain Chem Eng. 2018; 6: 5296-5305).
  • C. glutamicum P-H30 and P-H36 with plasmid-based expression of the previously developed recombinant strain ldcCEc were also included for comparison (ACS Sustain Chem Eng. 2018; 6: 5296-5305).
  • the recombinant strain C. glutamicum PKC strains expressing ldcC Ec (9.7-12.5 g / L) and ldc Ha (11.4-11.5 g / L) are the highest compared to other strains expressing LDC It could be produced with titers.
  • cadA Ec produced a low titer of cadaverine, but was reported to have enzyme kinetic properties similar to ldcCEc. This may be because ldcCEc (pH 7) is more active at neutral pH, which is the optimal condition for maintaining cell viability in flask culture compared to cadAEc.
  • Recombinant strains expressing lysine decarboxylase from L. saerimneri (odc Ls and ldc Ls ), S. coelicolor (ldc Sc ), S. ruminantium (ldc Sr ) and V. vulnoficus (ldc Vv ) are cadaverine ( 1.1 g / L)
  • This enzyme retains at least one of the desired properties for expression in an active C. glutamicum host at optimal pH (7) or temperature (30 ° C.), but locally low amounts of carda during flask culture Berine (1.1-6.4 g / L) was produced (see Figure 3).
  • ldcC Ec of E. coli and ldc Ha of H. alvei were selected as candidate genes for further development of a cadaverine production system that determines an optimal LDC expression system using batch and fed-batch fermentation experiments.
  • C. glutamicum H30HaLDC produced the highest concentration of cadaverine at 30.8 g / L, and the C. glutamicum H36HaLDC strain produced 28.4 g / L of cadaverine, which was the second of the four strains tested.
  • C. glutamicum H30EcLDC strain (12.5 g / L) that produces the most cadaverine during flask culture is cadaverine (26 g / L) during batch fermentation
  • C. glutamicum H30EcLDC strain and The C. glutamicum H36EcLDC strain produced cadaverine at 25.7 g / L and 19.4 g / L, respectively.
  • the profile of cadaverine production was altered between flask culture and batch fermentation. For example, when the cadaverine production capacity between C. glutamicum H30EcLDC and C. glutamicum H30HaLDC is compared according to the cultivation method, the cadaverine is 8.3% higher in Cavitation than C. glutamicum H30HaLDC (11.5 g / L) in flask culture. Berin was produced. On the other hand, during batch culture, C. glutamicum H30HaLDC (30.8 g / L) was able to produce 18% more cadaverine than C. glutamicum H30EcLDC (25.7 g / L).
  • the maximum cell growth of all recombinant strains showed similar values ranging from 91 to 100 (OD 600 ).
  • the cell growth trend (OD 600 ) is similar to cadaverine production, suggesting that cadaverine production is related to growth rate. Similar observations of lysine production have already been reported, and lysine production can be altered by regulation of growth rates (Biotechnol Progr. 1991; 7: 501-509).
  • C. glutamicum yield of H30HaLDC (44.6% cadaverine mol / mol glucose) was higher than C. glutamicum-H30 P (38.6% cadaverine mol / mol glucose) and 14%.
  • C. glutamicum H30HaLDC 64 hours produced cadaverine for a longer period than C. glutamicum P-H30 (56 hours).
  • C. glutamicum H30EcLDC strain During fed-batch fermentation, the measured cell growth of the C. glutamicum H30EcLDC strain reached 139 at 27 hours and maintained 44 hours from 145 to 150.
  • C. glutamicum cell growth H30HaLDC strain C. glutamicum slower initially than H30EcLDC strains, cell growth was increased steadily from 99.7 (26 hours) to 149 (64 hours) when fermentation is complete.
  • C. glutamicum P-H30 peaked rapidly at 140 after 30 hours, and then maintained at 145 to 150 for a relatively long period.
  • the cell growth of C. glutamicum H30HaLDC slowly peaked at 118 after 28 hours, and gradually increased to 154 after 59 hours. Reduced cell growth is due to C. glutamicum It occurred earlier than C. glutamicum P-H30 (56 hours) compared to H30HaLDC (61 hours).
  • C. glutamicum P-H30 achieved maximum cell growth and titer of cadaverine after a short period of time.
  • C. glutamicum H30HaLDC grew gradually and continued to grow, producing cadaverine continuously until the end of the culture.
  • C. glutamicum H30HaLDC affects cadaverine production in the same way as previously reported changes in lysine production profile (Biotechnol Progr. 1991; 7: 501-509). You can. Finally, C. glutamicum H30HaLDC was selected as the optimal enzyme expression system capable of increasing the level of cadaverine.
  • plasmid-based expression systems To develop industrial strains for chemical production, the use of plasmid-based expression systems is limited because it often exhibits low yield biochemical production caused by plasmid instability and metabolic burden.
  • chromosomal integration of lysine decarboxylase for genome-based expression of the optimal LDC expression system is the best way to develop a robust and stable industrial strain for cadaverine production.
  • C. glutamicum G-H30HaLDC was able to generate a high titer of cadaverine (30.1 g / L).
  • the molar yield (cadaverine mol / glucose mol) of C. glutamicum G-H30HaLDC (44.6%) was also higher than that of C. glutamicum G-H30 (38.6%).
  • the productivity of C. glutamicum G-H30HaLDC (1.46 g / L / h) was similar to that of C. glutamicum G-H30 (150 at 52 hours).
  • C. glutamicum G-H30HaLDC fed-batch fermentation was performed using C. glutamicum G-H30HaLDC (see FIG. 6 (b)).
  • the trend of cell growth observed for C. glutamicum G-H30HaLDC was similar to the measured growth of H30HaLDC (see Figure 5 (b) and Figure 6 (b)).
  • Recombinant strain C. glutamicum The G-H30HaLDC strain produced 125.3 g / L of cadaverine from glucose, the highest concentration reported to date. This value is higher than 33.7% of C. glutamicum H30HaLDC (93.7 g / L) with ldc Ha expression based on plasmid.
  • the titer achieved by C. glutamicum G-H30HaLDC in this experiment was the previous results using the recombinant strain C. glutamicum G-H30 expressing ldcC Ec (104 g / L) ((ACS Sustain Chem Eng. 2018; 6: 5296-5305).
  • the productivity of glutamicum G-H30HaLDC was high.
  • the cadaverine (125.3 g / L) produced by C. glutamicum G-H30HaLDC during fed-batch fermentation is the highest titer of cadaverine to date.
  • the LDC expression system is composed of various promoters (P H30 and P H36 ) and 9 different combinations to select the optimal LDC expression system through in vivo enzyme screening. I tried.
  • the enzyme for lysine decarboxylation is C. glutamicum Introduced into the strain.
  • the optimal plasmid-based LDC expression system was chosen by batch and fed-batch fermentation experiments.
  • genome-based LDC expression was investigated by batch and fed-batch fermentation.
  • C. glutamicum GH30HaLDC was identified as a candidate substance as an industrial strain, and fed-batch fermentation of C. glutamicum G-H30HaLDC produced 125.3 g / L, the highest titer of cadaverine in glucose reported to date.
  • Recombinant Corynebacterium glutamicum strain according to the present invention is transformed with ldcC Ha gene encoding lysine decarboxylase derived from Hafnia alvei , and cultured using the strain Since the conversion rate from lysine to cadaverine can be increased, the production efficiency of cadaverine can be increased, and thus can be usefully applied to the technical field to which the present invention pertains.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PKC의 lysE 유전자좌가 플라스미드 pK19-mobsacB-lysEF/B로 형질전환된 재조합 코리네박테리움 글루타미쿰 균주 및 상기 균주를 이용하여 배양하는 단계를 포함하는 카다베린의 생산방법에 관한 것이다.

Description

재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법
본 발명은 재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법에 관한 것으로, 보다 상세하게는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PKC의 lysE 유전자좌가 플라스미드 pK19-mobsacB-lysEF/B로 형질전환된 재조합 코리네박테리움 글루타미쿰 균주 및 상기 균주를 이용하여 배양하는 단계를 포함하는 카다베린의 생산방법에 관한 것이다.
1,5-디아미노펜탄(1,5-diaminopentane)으로 알려진 카다베린(cadaverine)은 많은 산업적 응용에 있어서 중요한 기반 화학물질로서, 폴리아마이드나 폴리우레탄과 같은 고분자의 구성요소, 킬레이팅제 또는 다른 첨가제로 사용될 수 있다.
카다베린은 일부 미생물에서는 L-라이신의 탈탄산 반응을 촉매하는 라이신 디카르복실라아제(lysine decarboxylase)에 의해서 직접 형성될 수 있으며, 라이신 디카르복실라아제는 식물 및 E. coli, 젖산균과 같은 박테리아에 존재한다고 알려져 있다(비특허문헌 1, 비특허문헌 2).
산업적으로 카다베린 생산을 위해서는 대표적으로 널리 이용되는 산업용 균주인 코리네 균주를 이용한 사례가 많이 보고되고 있으며, 특히 카다베린 생산을 위한 중요한 전구체인 라이신의 대량 생산능을 가진 변이 코리네박테리움 글루타미쿰을 사용하였다 (특허문헌 1 내지 특허문헌 3).
그러나, 상기 종래기술 등과 같이 카다베린 생산을 위한 균주를 개발하는 최근의 기술 진보에도 불구하고, 카다베린 생산의 이론적인 최대 수율은 달성되지 못하였고, 또한 재조합 코리네박테리움 글루타미쿰 균주를 이용하여 카다베린을 생산하기 위한 최적의 효소 발현 시스템에 대한 연구는 아직 완전히 이루어지지 않고 있는 실정이다.
{선행기술문헌}
{특허문헌}
(특허문헌 1) 일본공개특허 제2002-223770호
(특허문헌 2) 국제공개특허 WO2008/092720호
(특허문헌 3) 국제공개특허 WO2012/077744호
{비특허문헌}
(비특허문헌 1) Biochem. Biophys. Res. Com. vol.34, (1969), 34-39
(비특허문헌 2) Int. J. Food Microbiol. vol.11, (1990), 73-84
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 직접 발효법에 의한 카다베린 생산시 라이신 디카르복실라아제를 코딩하는 유전자가 과발현됨으로써, 카다베린의 생산성이 향상된 재조합 코리네박테리움 글루타미쿰 균주를 제공하는 것이다.
본 발명의 다른 목적은 상기의 재조합 코리네박테리움 글루타미쿰 균주를 이용하여 카다베린을 고수율로 생산하는 방법을 제공하는 것이다.
본 발명은 상기와 같은 목적을 달성하기 위하여, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PKC(ACS Sustainable Chem. Eng., 2018, 6 (4), pp 5296-5305)의 lysE 유전자좌가 플라스미드 pK19-mobsacB-lysEF/B로 형질전환된 재조합 코리네박테리움 글루타미쿰 균주로서, 상기 플라스미드 pK19-mobsacB-lysEF/B가 플라스미드 pK19-mobsacB에, PH30 프로모터 및 터미네이터 존재하에서, 하프니아 알베이(Hafnia alvei) 유래의 유전자로서 라이신 디카르복실라아제를 코딩하는 ldcCHa 유전자가 발현되는 플라스미드 pCES208:PH30ldcCHa이 삽입되어 있는 재조합 코리네박테리움 글루타미쿰 균주를 제공한다.
또한, 본 발명은 상기 재조합 코리네박테리움 글루타미쿰 균주를 이용하여 배양하는 단계를 포함하는 카다베린의 생산방법을 제공한다.
본 발명에 의한 재조합 코리네박테리움 글루타미쿰 균주는 하프니아 알베이(Hafnia alvei) 유래의 라이신 디카르복실라아제를 코딩하는 ldcCHa 유전자로 형질전환되어 있어, 상기 균주를 이용하여 배양하는 경우 라이신으로부터 카다베린으로의 전환률이 증가되어 카다베린의 생산 효율이 증가될 수 있다.
도 1은 본 발명의 일 실시예에 따른 플라스미드 pK19-mobsacB-lysEF/B의 개열지도를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 재조합 C. glutamicum 균주를 이용한 카다베린의 산업 생산에 대한 개략도를 나타낸 것으로서, 도 2에서 ldcC는 라이신 디카르복실라제, lysE는 라이신 익스포터, OAA는 옥살로아세테이트, TCA cycle은 트리카복실산 회로, ASP는 L- 아스파르테이트를 의미한다.
도 3은 강력한 프로모터 PH30, PH36 하에서 다른 아미노산 디카르복실라제를 포함하는 재조합 균주 C. glutamicum PKC에 의한 카다베린 생산을 나타낸 것이다.
도 4는 회분식 발효시의 재조합 C. glutamicum 균주의 세포 성장, 글루코스 소비, 라이신 농도, 카다베린 생산을 비교한 것으로서, (a)는 C. glutamicum H30EcLDC, (b)는 C. glutamicum H36EcLDC, (c)는 C. glutamicum H30HaLDC, (d)는 C. glutamicum H36HaLDC의 결과를 나타낸 것이다.
도 5는 유가식 발효시의 재조합 C. glutamicum H30EcLDC(a)와 C. glutamicum H30HaLDC(b)의 세포 성장, 글루코스 소비, 라이신 농도, 카다베린 생산을 비교한 것이다.
도 6은 회분식 발효(a) 및 유가식 발효(b)시의 재조합 C. glutamicum H30HaLDC의 세포 성장, 글루코스 소비, 라이신 농도 및 카디베린 생산의 타임 프로파일(time profile)을 나타낸 것이다.
본 발명에서 "플라스미드"라는 용어는 숙주 세포에 삽입되어 숙주 세포 게놈과 재조합되고 이에 삽입되거나, 또는 에피좀으로서 자발적으로 복제하는 컴피턴트 뉴클레오티드 서열을 포함하는 임의의 핵산을 의미한다. 이러한 벡터로는 선형 핵산, 플라스미드, 파지미드, 코스미드, RNA 벡터, 바이러스 벡터 등이 있다.
본 발명에서 "재조합 균주"는 본 발명의 임의의 재조합 벡터(들), 재조합 플라스미드(들) 또는 단리된 폴리뉴클레오티드의 수용체일 수 있거나, 수용체인 개별 세포를 포함한다. 숙주 세포는 단일 숙주 세포의 자손일 수 있으며, 자손은 자연적, 우발적 또는 인공 돌연변이 및/또는 변화로 인해 원래의 모 세포와 완전히 동일하지 않아도 된다.
재조합 균주는 생체내 또는 시험관내에서 본 발명의 플라스미드 또는 폴리뉴클레오티드로 형질감염되거나, 형질전환되거나 또는 감염된 세포를 포함한다. 본 발명의 플라스미드를 포함하는 재조합 균주는 재조합 숙주 세포, 재조합 세포, 재조합 미생물 또는 변이 미생물이다.
본 발명에서 "형질전환"이라는 용어는, DNA를 숙주로 도입하여 DNA가 염색체외의 인자로서, 또는 염색체로의 삽입에 의해 복제 가능하게 되는 것을 의미한다.
본 발명에서 "프라이머"는 상보성 RNA 또는 DNA 표적 폴리뉴클레오티드에 혼성화하고 예를 들어 폴리머라제 연쇄 반응에서 발생하는 뉴클레오티딜트랜스퍼라제의 작용에 의해 모노뉴클레오티드로부터 폴리뉴클레오티드의 단계적 합성을 위한 출발점으로 기능하는 올리고뉴클레오티드 서열을 의미한다.
본 발명에서 "기능" 및 "기능성" 등은 생물학적 또는 효소적 기능을 의미한다. "증가된", "증가" 또는 "향상" 이라는 것은 비변형 미생물 또는 상이하게 변형된 미생물과 같은 대조 미생물에 비해 주어진 산물 또는 분자(예를 들면, 범용 화학물질, 바이오 연료 또는 이들의 중간체 산물)를 더 많은 양으로 생산할 수 있는 하나 이상의 재조합 숙주세포의 능력을 의미한다.
본 발명은 당해 분야에 통상의 기술을 가진 자에게 공지된 표준 클로닝 기술 및 통상적인 방법을 이용하여, 특정 효소를 코딩하는 유전자를 기본 벡터에 삽입하여 형질전환 시킨 재조합 미생물을 배양함으로써 구현할 수 있다. 따라서, 본 발명은 이와 관련되는 유전자 클로닝 방법, 재조합 미생물 및 미생물 시스템을 모두 포함한다.
본 발명은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum ) PKC(ACS Sustainable Chem. Eng., 2018, 6 (4), pp 5296-5305)의 lysE 유전자좌가 플라스미드 pK19-mobsacB-lysEF/B로 형질전환된 재조합 코리네박테리움 글루타미쿰 균주로서, 상기 플라스미드 pK19-mobsacB-lysEF/B는 플라스미드 pK19-mobsacB에, PH30 프로모터 및 터미네이터 존재하에서, 하프니아 알베이(Hafnia alvei) 유래의 유전자로서 라이신 디카르복실라아제를 코딩하는 ldcCHa 유전자가 발현되는 플라스미드 pCES208:PH30ldcCHa이 삽입되어 있는 재조합 코리네박테리움 글루타미쿰 균주에 관한 것이다.
본 발명에 의한 상기 재조합 코리네박테리움 글루타미쿰 균주에서, 상기 플라스미드 pK19-mobsacB-lysEF/B는 도 1의 개열지도를 갖는 것일 수 있다.
본 발명에 의한 상기 재조합 코리네박테리움 글루타미쿰 균주에서, 상기 ldcCHa 유전자는 서열번호 1의 염기서열로 이루어진 것일 수 있다.
본 발명에 의한 상기 재조합 코리네박테리움 글루타미쿰 균주에서, 상기 PH30 프로모터는 서열번호 2의 염기서열로 이루어진 것일 수 있다.
본 발명에 의한 상기 재조합 코리네박테리움 글루타미쿰 균주에서, 상기 재조합 코리네박테리움 글루타미쿰 균주는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) G-H30HaLDC KCTC13668BP일 수 있다.
본 발명에 의한 상기 재조합 코리네박테리움 글루타미쿰 균주에서, 상기 재조합 코리네박테리움 글루타미쿰 균주는 라이신 디카르복실라아제를 코딩하는 ldcCHa 유전자가 과발현될 수 있다.
본 발명에 의한 상기 재조합 코리네박테리움 글루타미쿰 균주에서, 상기 재조합 코리네박테리움 글루타미쿰 균주는 글루코스로부터 125~130 g/L, 바람직하게는 125~126 g/L의 카다베린을 생산할 수 있다.
본 발명에 의한 상기 플라스미드 pK19-mobsacB-lysEF/B는 코리네형 세균 뿐만 아니라, 적합한 숙주세포 내로 형질전환된 후, 숙주세포의 게놈과 무관하게 복제 가능하거나 게놈 그 자체에 봉합될 수 있다. 이 때, 상기 적합한 숙주세포는 벡터가 복제가능 한 것으로서, 복제가 개시되는 특정 핵산서열인 복제 원점을 포함할 수 있다.
또한, 본 발명에 의한 상기 플라스미드 pK19-mobsacB-lysEF/B는 선택 마커(selection marker)를 포함할 수 있는데, 상기 선택 마커는 플라스미드로 형질전환된 형질전환체(재조합 균주)를 선별하기 위한 것으로서, 상기 선택 마커가 처리된 배지에서 선택 마커를 발현하는 세포만 생존할 수 있기 때문에, 형질전환된 세포의 선별이 가능하다.
상기 선택 마커의 대표적인 예로서, 카나마이신, 스트렙토마이신, 클로람페니콜 등이 있으며, 본 발명에서는 카나마이신을 사용할 수 있다.
또한, 본 발명은 상기 재조합 코리네박테리움 글루타미쿰 균주를 이용하여 배양하는 단계를 포함하는 카다베린의 생산방법에 관한 것이다.
본 발명의 상기 카다베린의 생산방법에서, 상기 재조합 코리네박테리움 글루타미쿰 균주의 배양은 회분식 배양(batch fermentation) 또는 유가식 배양(fed-batch fermentation)으로 배양할 수 있으나, 카다베린의 생산성 면에서 유가식 배양이 바람직하다.
또한, 상기 재조합 코리네박테리움 글루타미쿰 균주의 배양은 본 발명이 속하는 기술분야에서 공지된 통상적인 방법에 따라 실시될 수도 있는데, 이들 공지된 배양 방법은 문헌(Qian et al., Biotechnol. Bioeng., 2011:108(1)93; Kim et al., J. Micobiol. Biotechnol., 2015:25(7)1108)에 기술되어 있다.
본 발명의 상기 카다베린의 생산방법에서, 배양에 사용되는 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 하는데, 코리네박테리움 글루타미쿰 균주에 대한 배양배지는 공지되어 있는 배지를 사용할 수도 있으나, 이에 한정되는 것은 아니다.
본 발명의 상기 카다베린의 생산방법에서, 배양에 사용될 수 있는 당원으로는 글루코스, 수크로오스, 락토오스, 프럭토오스, 말토오스, 전분, 셀룰로오스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다.
본 발명의 상기 카다베린의 생산방법에서, 배양에 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두박 및 요소 또는 무기 화합물, 예를 들면 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄이 포함된다. 질소원도 개별적으로 또는 혼합물로서 사용할 수 있다.
본 발명의 상기 카다베린의 생산방법에서, 배양에 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 상기 카다베린의 생산방법에서, 배양배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있다. 또한, 상기 물질에 추가적으로 아미노산 및 비타민과 같은 필수 성장물질이 사용될 수 있다.
또한, 배양배지에 적절한 전구체들이 사용될 수 있다. 상기 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있다.
본 발명의 상기 카다베린의 생산방법에서, 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물, 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다.
또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있고, 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다.
본 발명의 상기 카다베린의 생산방법에서, 배양 온도는 30℃ 내지 40℃, 바람직하게는 35℃ 내지 38℃, 보다 바람직하게는 36.5℃ 내지 37.5℃이고, 배양 시간은 10 내지 160 시간, 바람직하게는 20 내지 140 시간, 보다 바람직하게는 50 내지 120 시간에서 달성된다.
또한, 본 발명의 상기 카다베린의 생산방법은 상기 배양하는 단계에서 생성되는 카다베린을 회수하는 방법을 추가로 포함할 수 있다.
본 발명의 상기 카다베린의 생산방법에서, 상기 카다베린을 회수하는 방법은 당업계에 널리 알려져 있는 방법으로 세포 또는 배양 배지로부터 카다베린을 분리해 낼 수 있다.
본 발명의 상기 카다베린의 생산방법에서, 상기 카다베린 회수 방법의 예로서, 여과, 이온 교환 크로마토그래피, 결정화 및 HPLC 등의 방법이 있으나, 이들 예에 한정되는 것은 아니다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 실시하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<실시예>
1. 실험 방법
(1). 박테리아 균주 및 플라스미드
본 실험에서 사용된 모든 박테리아 균주 및 플라스미드는 하기 표 1(박테리아 균주) 및 표 2(플라스미드)에 열거되어 있다. 일반적인 유전자 클로닝 연구를 위한 숙주로서 대장균 XL1-Blue (Stratagene, La Jolla, CA, USA)를 사용하였다.
대상(주)(군산, 대한민국)의 C. glutamicum PKC를 카다베린 생산을 위한 숙주 균주로 사용하였다. 강력한 프로모터(PH30, PH36) 하에서 상이한 라이신 디카르복실라제의 발현에 사용된 골격 플라스미드는 pCES208H30GFP 및 pCES208H36GFP(Biotechnol Bioeng. 2013;110:2959-2971)이었다.
자살 벡터 플라스미드 pK19-mobsacB는 상동성 재조합을 통한 ldcHa의 염색체 통합(chromosomal integration) 및 이전 연구(ACS Sustain Chem Eng. 2018; 6:5296-5305)에서 기술된 바와 같은 카나마이신 내성 및 SacB 시스템을 이용한 2 단계 콜로니 선별을 위해 사용되었다.
[규칙 제91조에 의한 정정 03.12.2018] 
Figure WO-DOC-TABLE-1
[규칙 제91조에 의한 정정 03.12.2018] 
Figure WO-DOC-TABLE-2
상기 표 1 및 표 2에서, Reference 20은 ACS Sustain Chem Eng. 2018; 6:5296-5305이고, Reference 41은 Biotechnol Bioeng. 2013;110:2959-2971이다.
(2). 플라스미드 구축
모든 DNA 조작은 표준 절차(Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, vol. 3. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001)에 따라 수행되었다.
C1000 Thermal Cycler(Bio-Rad, Hercules, CA, USA)를 사용하여 PCR을 수행하였다. 본 실험에서 사용된 하기 표 3의 프라이머는 Bioneer(대전, 대한민국)에서 합성되었다.
서열번호 염기서열 (5′ to 3′) 타겟 유전자
3 5′-AAGCTT AGAGGGTTCCCGCGCC 5′ 영역 of lysE
4 5′-CTGCAG GTGGATTTTCGCCGCTG
5 5′-GGATCC GACCTGTAATGAAGATTTCCAT 3′ 영역 of lysE
6 5′-GAATTC TAGCTTCACGGGTTACCGC
7 5′-GGATCC ATGAATATCATTGCCATCATGA H. alvei ldcC 오페론
8 5′-GCGGCCGC TTATGACTTCTTCGCCGCTG
E. coli(cadAEc 및 ldcCEc), Lactobacillus saerimneri(odcLs 및 ldcLs), Streptomyces coelicolor(ldcSc), Selemonas ruminantium(ldcSr), Hafnia alvei(cadAHa 및 ldcCHa) 및 Vibrio vulnoficus(ldcVv)의 아미노산 디카르복실라제는 Bioneer(대전, 대한민국)에서 합성하였다.
플라스미드 기반의 LDC 발현을 위해, ff, constructs: pCES208:PH30cadAEc, pCES208:PH36cadAEc, pCES208:PH30ldcCEc, pCES208:PH36ldcCEc, pCES208:PH30odcLs, pCES208:PH36odcLs, pCES208:PH30ldcLs, pCES208:PH36ldcLs, pCES208:PH30ldcSc, pCES208:PH36ldcSc, pCES208:PH30ldcSr, pCES208:PH36ldcSr, pCES208:PH30ldcVv, pCES208:PH36ldcVv, pCES208:PH36cadAHa, pCES208:PH36cadAHa, pCES208:PH30ldcCHa 및 pCES208:PH36ldcCHa가 pCES208:PH30GFP 및 pCES208:PH36GFP의 gfp 유전자를 각각 BamHI 및 NotI 부위에서 상응하는 라이신 디카르복실라제 유전자로 대체함으로써 개발되었다.
lysC 부위에 ldcCHa의 염색체 통합을 위해, 플라스미드 pK19mobsacB-lysEFB는 lysE의 5'-영역 및 3'-영역을 연속적으로 삽입함으로써 제조되었으며, 이는 HindIII/PstI 및 BamHI/EcoRI 사이트에서 C. glutamicum PKC gDNA의 상기 표 3의 프라이머를 사용하여 증폭되었다.
플라스미드 pK19-mobsacB-lysEF/B는 PH30 프로모터 및 터미네이터 하에서 ldcCHa의 발현을 포함하는 플라스미드, pCES208:PH30ldcCHa의 삽입에 의해 구축되었다. 상기 구축된 플라스미드 pK19-mobsacB-lysEF/B를 도 1에 나타내었다.
(3). 배양 조건
유전자 클로닝 숙주로 사용된 E. coli XL1-Blue를 LB 배지에서 37℃에서 배양하였다. 재조합 C. glutamicum 균주를 밤새 배양을 위해 풍부한 RG 배지에서 배양 하였다. 상기 RG 배지의 조성은 글루코스 10 g/L, D-솔비톨 30 g/L, 비프 익스트랙트 10 g/L 및 뇌심장 침출액(brain heart infusion) 40 g/L이다.
재조합 C. glutamicum 균주의 플라스크 배양을 CG50 배지에서 30℃ 및 250 rpm으로 수행하였다. semi-defined CG50 배지는 글루코스 50 g/L, 효모 추출물 30 g/L, NH4SO4·7H2O 30 g/L, KH2PO4 0.5 g/L, MgSO4·7H2O 0.5 g/L, MnSO4·H2O 0.01 g/L, 20 μg/L의 카나마이신(Km)을 포함하는 FeSO·7H2O 0.01 g/L을 함유한다.
회분식 발효는 500 mL CG100 배지를 포함하는 2.5 자 퍼멘터(jar fermenter)에서 30℃, 600 rpm 및 6 vvm에서 수행하였다. 상기 CG100 배지는 100 g/L 글루코스, 30 g/L 효모 추출물, 30 g/L (NH4)2SO4·7H2O, 0.5g KH2PO4, 0.5g MgSO4·7H2O, 0.01g MnSO4·H2O, 0.01g FeSO4·7H2O, 0.5 mg의 바이오틴 및 0.3 mg의 티아민-HCl을 함유한다.
유가식 발효는 CG100 배지 500 mL가 들어 있는 2.5 L 자 퍼멘터에서 30℃, 600 rpm 및 6 vvm으로 수행되었다. 글루코스 농도는 글루코스 700 g/L, (NH4) 2SO4·7H2O 270 g/L 및 20 μg/L의 카나마이신(Km)을 포함하는 MgSO4·7H2O 0.5 g/L를 함유하는 공급 용액을 20 μg/L로 보충하여 10~40 g/L의 글루코스 농도가 유지되었다.
pH는 28 %(v/v) 암모니아 용액을 자동으로 첨가하여 조절하였고, 6.9로 유지하였다. 거품 형성을 방지하기 위해 antifoam 204를 주기적으로 첨가하였고, 세포 성장은 UV 분광 광도계로 OD600으로 측정하였다.
(4). 분석 방법
글루코스와 유기산의 농도는 Aminex HPX-76H 컬럼이 장착된 고성능 액체 크로마토그래피(HPLC, Agilent Infinity 1260 (Agilent Technologies, Santa Clara, CA, USA))를 사용하여 분석하였다.
라이신과 카다베린의 농도는 DEEMM 방법(J Mol Catal B: Enzym.2015;115:151-154)을 사용하여 Optimapak C18 컬럼(150x4.6mm) (Bio-Rad)이 장착된 Chemstation HPLC 시스템(Agilent Technologies, Santa Clara, CA, USA)을 사용하여 결정하였다.
분리를 위해, 100% 아세토니트릴 및 25mM 아세트산 나트륨 완충액(pH 4.8)을 각각 이동상 A 및 B로 사용 하였다. 유속은 1 ml/min이었다. 분석하는 동안 이동상 조성은 다음과 같은 그래디언트 프로그램으로 변경되었다. 0~2 분, 20~25% A; 2~32 분, 25~60% A; 32~40 분, 60~20% A.
가변 파장 검출기(VWD)를 사용하여 284 nm에서 검출하였다. 증류 생성물의 순도는 RTX 5-Amine 컬럼(30 m x 0.25 mm x 0.5 μm; Restek)이 장착된 Agilent 7890A 시스템을 사용하여 결정하였다. 헬륨(순도 99.999%)을 1.7 mL/분의 유속에서 캐리어 가스로 사용하였다. 입구 온도는 250℃이고, 검출기의 온도는 300℃이었다.
2. 실험 결과
(1). 재조합 C. glutamicum PKC를 이용하여 향상된 카다베린 생산을 위한 최적의 LDC 발현 시스템의 생체내 스크리닝
효과적인 활성을 갖는 라이신 디카르복실라제 및 효율적인 발현을 위한 적합한 프로모터 시스템으로 구성된 효율적인 생체내 효소 발현 시스템은 재조합 C. glutamicum 균주에서 라이신의 카다베린으로의 효율적인 전환을 확립하는 주요 인자이다.
그러나, 최근의 재조합 C. glutamicum을 이용한 카다베린 생산기술의 발전에도 불구하고, CadAEc, LdcCEc 및 LdcHa와 같은 세 가지 효소만이 재조합 C. glutamicum 균주에서 시험하였다. 또한, 카다베린에 대한 글루코스의 이론적 최대 전환율은 달성되지 않았다. 최대 수율 53.5% mol/mol은 현재까지 보고된 최고의 실험 수율이다 (ACS Sustain Chem Eng. 2018; 6:5296-5305).
카다베린 생산을 위한 최적의 프로모터 시스템인 강력한 프로모터 시스템(PH30, PH36) 하에서 cadAEc, odcLs ldcLs, ldcSc, ldcSr, cadAHa, ldcCHa 및 ldcVv와 같은 라이신 디카르복실화를 위한 9 가지 효소가 구축되었다 (도 2 및 표 1 참조).
이러한 효소 발현 시스템은 산업적 라이신 과생산 균주인 C. glutamicum PKC(ACS Sustain Chem Eng. 2018; 6:5296-5305)로 형질전환되었다. 이전에 개발된 재조합 균주인 ldcCEc의 플라스미드 기반 발현을 하는 C. glutamicum P-H30 및 P-H36 또한 비교를 위해 포함되었다(ACS Sustain Chem Eng. 2018; 6:5296-5305).
도 3에 나타낸 바와 같이, ldcCEc(9.7~12.5 g/L) 및 ldcHa(11.4~11.5 g/L)를 발현하는 재조합 균주 C. glutamicum PKC 균주는 다름 LDC를 발현하는 다른 균주에 비해 가장 높은 역가로 생성할 수 있었다.
강력한 합성 프로모터 PH30(0.9~12.5 g/L) 하에서 LDC의 발현을 갖는 균주에 의한 카다베린 생산은 PH36 프로모터(0.68~11.4 g/L)를 갖는 균주와 비교하여 더 좋았다. C. glutamicum P-H30(12.5 g/L)과 H30HaLDC(11.5 g/L)는 P-H36(9.7 g/L)과 H36HaLDC(11.4 g/L)에 비해 높은 역가를 나타냈다.
반면에, C. glutamicum H30EcCADA(0.98 g/L), H36EcCADA(0.68 g/L), H30HaCADA(1.2 g/L) 및 H36HaCADA(1.7 g/L)에서의 cadAEc 및 cadAHa의 발현은 현저히 낮은 양의 카다베린이 각각 ldcCEc와 ldcHa를 발현하는 균주와 비교하였다.
cadAEc의 사용은 카다베린의 낮은 역가를 생산했지만, ldcCEc와 유사한 효소 카이네틱 특성을 가지고 있다고 보고되었다. 이는 ldcCEc(pH 7)가 cadAEc에 비해 플라스크 배양에서 세포 생존력을 유지하기 위한 최적 조건인 중성 pH에서 보다 활성적이기 때문일 수 있다.
L. saerimneri(odcLs 및 ldcLs), S. coelicolor(ldcSc), S. ruminantium(ldcSr) 및 V. vulnoficus (ldcVv)로부터의 라이신 디카르복실라제를 발현하는 재조합 균주는 카다베린(1.1 g/L)이 효소는 최적 pH(7) 또는 온도(30℃)에서 활성적인 C. glutamicum 숙주에서의 발현에 대해 원하는 성질 중 적어도 하나를 보유하고 있지만, 플라스크 배양 동안 현지히 낮은 양의 카다베린(1.1~6.4 g/L)을 생산하였다(도 3 참조).
이러한 결과는 생체내 효소의 선별이 우수한 효소 카이네틱 특성으로 보고 된 특정 효소라 할지라도 케미칼의 생화학적 생산을 위한 조작된 산업 균주의 개발에서 중요한 단계임을 나타낸다. 그러므로, 이용 가능한 LDC 레파토리의 지속적인 보안(security) 및 스크리닝은 카다베린의 생산 증대를 위한 재조합 균주를 개발하기 위한 단서를 제공하는데 필수적이다.
이러한 결과를 바탕으로, ldcCEc와 ldcHa는 본 실험에서 시험된 라이신 디카르복실라화를 위한 모든 효소 중에서 카다베린의 생산에 가장 좋은 효소임이 입증되었다(도 3 참조).
따라서, E. coli의 ldcCEcH. alvei의 ldcHa를 회분식 및 유가식 발효 실험을 이용하여 최적의 LDC 발현 시스템을 결정하는 카다베린 생산 시스템의 추가적인 개발을 위한 후보 유전자로 선별하였다.
(2). 회분식 및 유가식 배양에서 ldcCEc 및 ldcHa를 발현하는 재조합 C. glutamicum PKC 균주에 의한 향상된 카다베린 생산 조사
본 발명자들의 이전 연구에서 강력한 프로모터 PH30 및 PH36 하에서 플라스미드 기반의 ldcCEc 발현을 갖는 재조합 C. glutamicum P-H30 및 C. glutamicum P-H36에 의한 카다베린 생산은 배양 방법에 따른 산소 전달의 변화에 의해 플라스크 배양과 회분식 발효 사이에 유의한 차이가 있음이 관찰되었다 (ACS Sustain Chem Eng. 2018; 6:5296-5305).
따라서, 산업적인 카다베린 생산을 위한 최적의 LDC 발현 시스템을 성공적으로 결정하기 위하여, 강력한 프로모터 PH30 및 PH36 하에서 ldcCEc 및 ldcHa를 발현하는 재조합 C. glutamicum P-H30, C. glutamicum P-H36, C. glutamicum H30HaLDC 및 C. glutamicum H36HaLDC를 사용하여 회분식 발효 및 유가식 배양을 수행하였다.
C. glutamicum H30HaLDC는 30.8 g/L에서 가장 높은 농도의 카다베린을 생성하였고, C. glutamicum H36HaLDC 균주는 28.4 g/L의 카다베린을 생산하였으며, 이는 시험된 4 가지 균주 중 두 번째로 나타났다.
도 3에 나타낸 바와 같이, 플라스크 배양시에 카다베린을 가장 많이 생산하는 C. glutamicum H30EcLDC 균주(12.5 g/L)는 회분식 발효 중 카다베린(26 g/L), 한편, C. glutamicum H30EcLDC 균주 및 C. glutamicum H36EcLDC 균주는 각각 25.7 g/L 및 19.4 g/L의 카다베린을 생산하였다.
카다베린 생산의 프로파일은 플라스크 배양과 회분식 발효 사이에 변경되었다. 예를 들어 C. glutamicum H30EcLDC와 C. glutamicum H30HaLDC 사이의 카다베린 생산 능력이 배양 방법에 따라 비교할 때, 플라스크 배양시 C. glutamicum H30HaLDC(11.5 g/L) 보다 카다베린이 8.3% 더 많은 양의 카다베린을 생산하였다. 한편, 회분식 배양시 C. glutamicum H30HaLDC(30.8 g/L)는 C. glutamicum H30EcLDC(25.7 g/L)보다 18% 더 많은 양의 카다베린을 생산할 수 있었다.
ldcCEc의 염색체 통합과 재조합 균주에 의한 카다베린 생산의 가장 좋은 역가는 C. glutamicum G-H36을 사용한 플라스크 배양에서 12 g/L이었고, C. glutamicum G-H30(ACS Sustain Chem Eng. 2018; 6:5296-5305)을 사용한 배치 발효에서 104 g/L이었다.
PH30 프로모터 하에서 ldcHa의 발현(30.8 g/L은 PH36 프로모터의 사용(28.4 g/L)에 비하여 더 높은 카다베린의 역가를 생산하였다. 재조합 균주에 의한 글루코스의 소비는 C. glutamicum H36HaLDC 균주(27 시간)를 제외하고 24 시간 이내에 완료되었다(도 4 참조).
모든 재조합 균주의 최대 세포 성장은 91~100(OD600)에 이르는 유사한 값을 보였다. 세포 성장 경향(OD600)은 카다베린 생산과 유사하여 카다베린 생산이 성장률과 관련이 있음을 암시한다. 라이신 생산에 관한 비슷한 관찰이 이미 보고되었는데, 라이신 생산은 성장률의 조절에 의해 변경될 수 있다 (Biotechnol Progr. 1991; 7: 501-509).
4 개의 모든 균주(23~27 시간)의 배치 발효가 끝날 때 L-Lysine의 축적이 검출되지 않았다 (도 4 참조). 이러한 결과에 기초하여, C. glutamicum H30HaLDC 균주는 추후 실험을 위해 선택되었고 C. glutamicum P-H30은 이전의 연구(ACS Sustain Chem Eng. 2018; 6:5296-5305)에서 사용된 ldcCEc의 플라즈미드 기반 발현과 함께 가장 좋은 균주였다.
유가식 발효에서 C. glutamicum H30HaLDC 균주의 성능을 비교한 결과인 도 5에 도시된 바와 같이, C. glutamicum H30HaLDC(93.7 g/L)를 사용한 유가식 배양 에 의한 카다베린의 최종 생산은 C. glutamicum P-H30(82.2 g/L)보다 13% 높았다.
C. glutamicum H30HaLDC(44.6% 카다베린 mol/글루코스 mol)의 수율은 14%로 C. glutamicum P-H30 (38.6% 카다베린 mol/글루코스 mol) 보다 높았다 . C. glutamicum H30HaLDC(64 시간)는 C. glutamicum P-H30(56 시간)보다 더 긴 기간 동안 카다베린을 생산하였다.
유가식 발효 중, C. glutamicum H30EcLDC 균주의 측정된 세포 성장은 27 시간에 139에 도달하여 145~150까지 44 시간을 유지하였다. C. glutamicum H30HaLDC 균주의 세포 성장은 C. glutamicum H30EcLDC 균주에 비해 초기에 느리지만, 발효가 끝날 때 세포 성장은 99.7(26 시간)에서 149(64 시간)까지 꾸준히 증가하였다.
유가식 발효 실험에서 라이신의 축적량은 두 균주 모두 1 g/L 미만이었다 (도 5 참조). C. glutamicum에 의한 세포 성장과 카다베린 생산 C. glutamicum H30HaLDC는 배치 발효 과정에서 관찰된 것과 동일한 방식으로 점진적으로 진행되었다(도 4 참조). 유가식 발효 중 C. glutamicum H30HaLDC에 의한 카다베린의 보다 높은 생산은 성장 프로파일의 차이로 인한 것일 수 있다.
C. glutamicum P-H30의 측정된 세포 성장은 30 시간 후 140에서 급격히 피크를 보였으며, 이후 비교적 오랜 기간 동안 145~150을 유지하였다. 한편, C. glutamicum H30HaLDC의 세포 성장은 28 시간 후 118에서 천천히 최고조에 도달했고, 59 시간 후에 154로 서서히 증가하였다. 감소된 세포 성장은 C. glutamicum H30HaLDC(61 시간)에 비해 C. glutamicum P-H30(56 시간)에 앞서 일찍 발생하였다.
두 균주 모두에 의한 카다베린 생산의 주요 차이점은 세포 성장률이다. C. glutamicum P-H30은 짧은 기간 후에 카다베린의 최대 세포 성장 및 역가를 달성하였다. 반면, C. glutamicum H30HaLDC는 점차적으로 자라며 계속 성장하여 배양이 끝날 때까지 계속적으로 카다베린을 생산하였다.
이러한 결과에 따르면, C. glutamicum H30HaLDC의 성장 속도가 늦어지는 것이 이전에 보고된 라이신 생산 프로파일 변화(Biotechnol Progr. 1991; 7: 501-509)와 동일한 방법으로 카다베린 생산에 영향을 미친 것으로 추측될 수 있다. 마지막으로 C. glutamicum H30HaLDC가 카다베린의 수준을 높일 수 있는 최적의 효소 발현 시스템으로 선택되었다.
(3). C. glutamicum G- H30HaLDC 균주를 이용한 회분식 유가식 발효에 의한 높은 수준의 카다베린 생산배치 및 유가 배치 발효
화학적 생산을 위한 산업 균주를 개발하기 위하여, 플라스미드 기반 발현 시스템의 사용은 종종 플라스미드 불안정성(plasmid instability) 및 대사 부하(metabolic burden)에 의해 야기되는 낮은 수율의 생화학적 생산을 나타내기 때문에 제한적이다.
시스템을 유지하기 위한 항생제의 추가 비용 때문에 대량 생산에 사용하는 것도 비실용적이다. 따라서 최적의 LDC 발현 시스템의 게놈 기반 발현을 위한 라이신 디카르복실라제의 염색체 통합은 카다베린 생산을 위한 강력하고 안정적인 산업 균주를 개발하는 최선의 방법이다.
본 실험에서 C. glutamicum PKC의 lysE 유전자좌(locus)에서 강한 PH30 프로모터 하에서 ldcHa의 염색체 통합에 의해 C. glutamicum G-H30HaLDC가 성공적으로 개발되었다. 상기 개발된 C. glutamicum G-H30HaLDC 균주는 2018년 10월 23일에 한국생명공학연구원의 생물자원센터에 KCTC 13668BP로 기탁되었다.
또한, 산업적 카다베린 생산을 위한 C. glutamicum G-H30HaLDC의 적용은 회분식 발효에 의해 처음으로 연구되었다.
도 6의 (a)에 나타낸 바와 같이, C. glutamicum G-H30HaLDC는 카다베린(30.1 g/L)의 높은 역가를 생성할 수 있었다. C. glutamicum G-H30HaLDC(44.6%)의 몰 수율(카다베린 mol/글루코스 mol)도 C. glutamicum G-H30(38.6%)보다 높았다. C. glutamicum G-H30HaLDC(1.46 g/L/h)의 생산성은 C. glutamicum G-H30(52 시간에서 150)의 생산성과 유사하였다.
C. glutamicum G-H30HaLDC를 이용한 회분식 글루코스 소비는 C. glutamicum G-H30에 비해 7시간 지연되었다. 그러나, 상기 지연된 글루코스의 소비가 C. glutamicum G-H30HaLDC의 세포 증식 및 카다베린 생산에 악영향을 미치지는 않았다.
회분식 발효시, C. glutamicum G-H30HaLDC(59 시간에서 154)와 C. glutamicum G-H30 (52 시간에서 150)의 최대 세포 성장은 비슷하였다 ((ACS Sustain Chem Eng. 2018; 6:5296-5305). 또한 C. glutamicum G-H30HaLDC(30.1 g/L)에 의한 카다베린 생산은 C. glutamicum G-H30EcLDC(23.8 g/L)보다 23% 더 높았다 (도 6의 (a) 참조). 또한 C. glutamicum G-H30HaLDC(30.1 g/L)에 의한 카다베린 생산은 C. glutamicum G-H30EcLDC(23.8 g/L)보다 23% 더 높았다(도 6의 (a) 참조).
C. glutamicum G-H30HaLDC에 의한 카다베린 생산 및 세포 성장의 경향은 플라스미드에 기초한 ldcHa 발현 재조합 균주의 회분식 발효시에 관찰된 경향과 유사 하였다 (도 4 및 도 5 참조). 모든 발효 실험에서 L-라이신의 유의한 축적은 관찰되지 않았다. 검출된 L-라이신의 양은 발효 전체 기간 동안 항상 1 g/L 미만이었다.
카다베린 수율이 글루코스의 지속적인 보충에 의해 향상될 수 있는지를 평가하기 위하여, C. glutamicum G-H30HaLDC를 이용한 유가식 발효가 수행되었다 (도 6의 (b) 참조). C. glutamicum G-H30HaLDC에 대해 관찰된 세포 성장의 경향은 H30HaLDC의 측정된 성장과 유사하였다 (도 5의 (b) 및 도 6의 (b) 참조).
세포 성장은 49 시간에서 156까지 점차적으로 증가하였고, 그 후 58 시간까지 150~158 범위에서 머물렀다(도 6의 (b) 참조). 유가식 발효의 전체 기간 동안 라이신의 축적은 발견되지 않았다(도 6의 (b) 참조).
재조합 균주 C. glutamicum G-H30HaLDC 균주는 현재까지 보고된 최고 농도 인 글루코스로부터의 카다베린 125.3 g/L를 생성하였다. 이 값은 플라스미드에 기초한 ldcHa 발현을 갖는 C. glutamicum H30HaLDC(93.7 g/L)의 33.7%보다 높다. 또한, 본 실험에서 C. glutamicum G-H30HaLDC에 의해 달성된 역가는 ldcCEc(104 g/L) 를 발현하는 재조합 균주 C. glutamicum G-H30을 사용한 이전의 결과((ACS Sustain Chem Eng. 2018; 6:5296-5305)와 비교하여 20.7% 더 높다.
C. glutamicum H30HaLDC(44.6% mol/mol) 및 C. glutamicum G-H30(53.5%)보다 각각 30% 및 12% 더 높은 C. glutamicum G-H30HaLDC 균주의 수율은 60.2%(mol/mol)이다. 회분식 발효에서 C. glutamicum H30HaLDC(1.46 g/L/h) 및 C. glutamicum G-H30 (1.59 g/L/h)에 의해 달성된 것보다 유가식 배양(1.79 g/L/h)에서 C. glutamicum G-H30HaLDC의 생산성이 높았다.
유가식 발효시 C. glutamicum G-H30HaLDC에 의해 생산된 카다베린(125.3 g/L)은 현재까지의 카다베린 중 가장 높은 역가(titer)이다.
3. 결론
본 실험에서는 효율적인 카다베린 생산이 가능한 재조합 균주를 개발하기 위해 LDC 발현 시스템을 다양한 프로모터(PH30과 PH36)와 9 가지 다른 조합으로 구성한 in vivo 효소 스크리닝을 통하여 최적의 LDC 발현 시스템을 선별하기 위해 노력하였다.
라이신 디카르복실화를 위한 효소가 C. glutamicum 균주에 도입되었다. 최적의 플라스미드 기반 LDC 발현 시스템은 회분식 및 유가식 발효 실험에 의해 선택되었다. 산업 균주의 개발과 산업적 적용 가능성을 검증하기 위해, 회분식 및 유가 식 발효에 의해 게놈 기반의 LDC 발현을 조사하였다.
그 결과, C. glutamicum GH30HaLDC가 산업 균주로서 후보 물질로 밝혀졌고, C. glutamicum G-H30HaLDC의 유가식 발효는 현재까지 보고된 글루코스에서 카다베린의 최고 역가인 125.3 g/L를 생산하였다.
상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 기술자라면 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
본 발명에 의한 재조합 코리네박테리움 글루타미쿰 균주는 하프니아 알베이(Hafnia alvei) 유래의 라이신 디카르복실라아제를 코딩하는 ldcCHa 유전자로 형질전환되어 있어, 상기 균주를 이용하여 배양하는 경우 라이신으로부터 카다베린으로의 전환률이 증가되어 카다베린의 생산 효율이 증가될 수 있기 때문에, 본 발명이 속하는 기술분야에 유용하게 적용될 수 있다.
서열목록 전자파일 첨부
{수탁번호}
기탁기관명 : 한국생명공학연구원
수탁번호 : KCTC13668BP
수탁일자 : 20181023

Claims (9)

  1. 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PKC의 lysE 유전자좌가 플라스미드 pK19-mobsacB-lysEF/B로 형질전환된 재조합 코리네박테리움 글루타미쿰 균주로서,
    상기 플라스미드 pK19-mobsacB-lysEF/B는 플라스미드 pK19-mobsacB에, PH30 프로모터 및 터미네이터 존재하에서, 하프니아 알베이(Hafnia alvei) 유래의 유전자로서 라이신 디카르복실라아제를 코딩하는 ldcCHa 유전자가 발현되는 플라스미드 pCES208:PH30ldcCHa이 삽입되어 있는, 재조합 코리네박테리움 글루타미쿰 균주.
  2. 제1항에 있어서, 상기 플라스미드 pK19-mobsacB-lysEF/B가 도 1의 개열지도를 갖는 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰 균주.
  3. 제1항에 있어서, 상기 ldcCHa 유전자는 서열번호 1의 염기서열로 이루어진 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰 균주.
  4. 제1항에 있어서, 상기 PH30 프로모터는 서열번호 2의 염기서열로 이루어진 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰 균주.
  5. 제1항에 있어서, 상기 재조합 코리네박테리움 글루타미쿰 균주가 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) G-H30HaLDC KCTC13668BP인 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰 균주.
  6. 제1항에 있어서, 상기 재조합 코리네박테리움 글루타미쿰 균주는 라이신 디카르복실라아제를 코딩하는 ldcCHa 유전자가 과발현되는 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰 균주.
  7. 제1항에 있어서, 상기 재조합 코리네박테리움 글루타미쿰 균주는 글루코스로부터 125~130 g/L의 카다베린을 생산하는 것을 특징으로 하는 재조합 코리네박테리움 글루타미쿰 균주.
  8. 제1항 내지 제7항 중 어느 한 항의 재조합 코리네박테리움 글루타미쿰 균주를 이용하여 배양하는 단계를 포함하는 카다베린의 생산방법.
  9. 제1항에 있어서, 상기 배양은 회분식 배양 또는 유가식 배양인 것을 특징으로 하는 카다베린의 생산방법.
PCT/KR2018/012950 2018-10-25 2018-10-29 재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법 WO2020085556A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0127885 2018-10-25
KR1020180127885A KR102127996B1 (ko) 2018-10-25 2018-10-25 재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법

Publications (1)

Publication Number Publication Date
WO2020085556A1 true WO2020085556A1 (ko) 2020-04-30

Family

ID=70330621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012950 WO2020085556A1 (ko) 2018-10-25 2018-10-29 재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법

Country Status (2)

Country Link
KR (1) KR102127996B1 (ko)
WO (1) WO2020085556A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110039313A1 (en) * 2007-02-01 2011-02-17 Stefan Verseck Method for the fermentative production of cadaverine
KR101481142B1 (ko) * 2013-03-04 2015-01-15 한국과학기술원 코리네박테리아 발현용 합성프로모터

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553394B2 (ja) 2001-02-01 2014-07-16 東レ株式会社 カダベリンの製造方法
BR112013014196A2 (pt) 2010-12-08 2020-09-24 Toray Industries, Inc. método para produzir cadaverina

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110039313A1 (en) * 2007-02-01 2011-02-17 Stefan Verseck Method for the fermentative production of cadaverine
KR101481142B1 (ko) * 2013-03-04 2015-01-15 한국과학기술원 코리네박테리아 발현용 합성프로모터

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM, HEE TAEK ET AL.: "Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopoly amide 510", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, vol. 6, no. 4, 28 February 2018 (2018-02-28), pages 5296 - 5305, XP055710922 *
OH, YOUNG HOON ET AL.: "Microbial production of cadaverine using engineered Corynebacterium glutamicum expressing a lysine decarboxylase from Hafnia alvei", THE KOREAN SOCIETY FOR BIOTECHNOLOGY AND BIOENGINEERING CONFERENCE, 2015, pages 486 *
WANG, CHEN ET AL.: "Directed evolution and mutagenesis of lysine decarboxylase from Hafnia alvei AS1.1009 to improve its activity toward efficient cadaverine production", BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, vol. 20, no. 3, 2015, pages 439 - 446, XP035516780 *

Also Published As

Publication number Publication date
KR20200046551A (ko) 2020-05-07
KR102127996B1 (ko) 2020-06-29

Similar Documents

Publication Publication Date Title
KR100838038B1 (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용한 l-라이신 생산 방법
WO2013105802A2 (ko) 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
KR100789271B1 (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용하여 l-라이신을 생산하는 방법
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2014142463A1 (ko) L-발린 생산능이 향상된 균주 및 이를 이용한 l-발린 생산방법
KR100789270B1 (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용하여 l-라이신을 생산하는 방법
WO2013162274A1 (ko) 신규한 d형 젖산 생산균주 및 그의 용도
WO2016021932A1 (ko) 피드백 저항성 아세토하이드록시산 신타아제 변이체 및 이를 이용한 l-발린의 생산방법
WO2013105827A2 (ko) 퓨트레신 생산능이 향상된 재조합 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
WO2016024771A1 (ko) O-포스포세린 생산 미생물 및 이를 이용한 o-포스포세린 또는 l-시스테인 생산 방법
WO2013103268A2 (ko) L-아미노산을 생산할 수 있는 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
KR20090107665A (ko) 트랜스포존을 이용한 형질전환용 벡터, 상기 벡터로형질전환된 미생물 및 이를 이용한 l-라이신 생산방법
WO2015186990A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2019203436A1 (ko) 에탄올 생산 경로가 억제된 내산성 효모 및 이를 이용한 젖산의 제조방법
KR100837844B1 (ko) L-글루탐산 생산능이 향상된 코리네박테리움 속 미생물 및이를 이용한 l-글루탐산 생산 방법
WO2012030130A2 (ko) 수크로오즈와 글리세롤을 동시에 이용하는 신규 숙신산 생성 변이 미생물 및 이를 이용한 숙신산 제조방법
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2016129812A1 (ko) 신규 라이신 디카르복실라제 및 이를 이용하여 카다베린을 생산하는 방법
WO2015156583A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
KR100564805B1 (ko) 프락토키나제 유전자에 의하여 형질전환된 코리네박테리움종 및 그를 이용한 l-라이신의 제조방법
WO2020067618A1 (ko) 알파-글루코시다제의 활성이 강화된 l-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2020085556A1 (ko) 재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법
WO2022191357A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2015194900A1 (ko) 젖산 분해 경로가 봉쇄된 클루이베로마이세스 막시아누스 및 이의 용도
WO2021254927A1 (en) Methods for producing biotin in genetically modified microorganisms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937996

Country of ref document: EP

Kind code of ref document: A1