WO2010104224A1 - 글리세롤 산화대사경로를 차단시킨 재조합 균주를 이용한 1、3-프로판디올의 제조방법 - Google Patents

글리세롤 산화대사경로를 차단시킨 재조합 균주를 이용한 1、3-프로판디올의 제조방법 Download PDF

Info

Publication number
WO2010104224A1
WO2010104224A1 PCT/KR2009/001236 KR2009001236W WO2010104224A1 WO 2010104224 A1 WO2010104224 A1 WO 2010104224A1 KR 2009001236 W KR2009001236 W KR 2009001236W WO 2010104224 A1 WO2010104224 A1 WO 2010104224A1
Authority
WO
WIPO (PCT)
Prior art keywords
propanediol
glycerol
gene
variant
culturing
Prior art date
Application number
PCT/KR2009/001236
Other languages
English (en)
French (fr)
Inventor
김철호
서정우
오백록
허선연
서미영
최민호
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to EP09841538.3A priority Critical patent/EP2407544A4/en
Priority to PCT/KR2009/001236 priority patent/WO2010104224A1/ko
Priority to CN2009801562408A priority patent/CN102388141A/zh
Priority to US13/148,307 priority patent/US8338148B2/en
Publication of WO2010104224A1 publication Critical patent/WO2010104224A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/32Processes using, or culture media containing, lower alkanols, i.e. C1 to C6
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/012021,3-Propanediol dehydrogenase (1.1.1.202)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01029Glycerone kinase (2.7.1.29), i.e. dihydroxyacetone kinase

Definitions

  • the present invention relates to a method for producing 1,3-propanediol by culturing a recombinant strain blocking the glycerol oxidation metabolism path, more specifically, to a recombinant strain blocking the oxidation metabolism path that produces a by-product from the glycerol metabolism path 2 It relates to a method for producing 1,3-propanediol, characterized in that the step culture.
  • 1,3-propanediol is a material that can be used as a synthetic raw material such as polyester, polyether, or polyurethanes. Fiber and plastic films such as high-performance clothing, carpets and automobile fabrics It is used for various purposes such as.
  • polytrimethylene terephtalate (PTT) produced by the polymerization reaction of 1,3-propanediol and terephtalic acid has excellent physical properties and has a lower point than polyethylene terephthalate (PET) at 228 ° C. It is attracting attention as a next-generation textile material that can replace PET in the future due to its substantial utility.
  • plastics and polymers made of 1,3-propanediol as monomers have better optical stability than products made of butanediol and ethylene glycol.
  • 1,3-propanediol can be used as a polyglycol-type lubricant and solvent, its commercial value is higher than that of glycerol.
  • 1,3-propanediol can be produced by chemical synthesis and microbial fermentation.
  • Chemical production methods include converting ethylene oxide to 1,3-propanediol by hydroformylation (US Pat. No. 3,687,981) and converting acrolein to 1,3-propanediol by hydration. (US Pat. No. 5,015,789).
  • these chemical processes require high temperature or high pressure during the production of 1,3-propanediol, the production cost is high and there is a problem of generating waste oil containing environmental pollutants.
  • Bakteo facultative anaerobic strains in the sheet in a biological method (Citrobacter), Clostridium (Clostridium), Enterobacter bakteo (Enterobacter), keurep when Ella (Klebsiella), Lactobacillus (Lactobacillus) 1,3- microorganisms, such as from the use of glycerol
  • a biological method (Citrobacter), Clostridium (Clostridium), Enterobacter bakteo (Enterobacter), keurep when Ella (Klebsiella), Lactobacillus (Lactobacillus) 1,3- microorganisms, such as from the use of glycerol
  • There is a method for producing propanediol (US Pat. No. 5,254,467).
  • 2,3-butanediol is a glycerol oxidative metabolite and has a similar boiling point to 1,3-propanediol, which acts as a big constraint in the purification process.
  • a glycerol metabolic pathway using genetic recombination techniques to develop microorganisms that produce only 1,3-propanediol without generating metabolic byproducts, including 2,3-butanediol in glycerol metabolism by metabolic methods.
  • the present inventors have made efforts to improve the productivity of 1,3-propanediol in the culture of recombinant strains that block the oxidative metabolic pathways that produce by-products in the glycerol metabolic pathways, and thus, the primary without glycerol added to the medium.
  • two-step culturing divided into a culturing and a secondary culturing added glycerol it was confirmed that the yield of 1,3-propanediol was increased and the present invention was completed.
  • an object of the present invention is to improve the productivity of 1,3-propanediol by improving the culturing method of recombinant strains that block the oxidative metabolic pathway to produce by-products in the glycerol metabolic pathway, the production of 1,3-propanediol To provide a method.
  • the present invention comprises the steps of (a) culturing the microbial variants in a glycerol-free medium to grow the cells; (b) adding glycerol to the culture medium in which the cells have been grown and secondly culturing to produce 1,3-propanediol; And (c) a gene or dihydroxy encoding a transcriptional activator in a microorganism having the ability to produce 1,3-propanediol using glycerol as a carbon source, comprising recovering the generated 1,3-propanediol.
  • a method for producing 1, 3-propanediol by culturing a microbial variant in which the gene encoding acetone kinase is deleted or disabled.
  • the present invention also comprises the steps of (a) culturing the microbial variants in a glycerol-free medium to grow the cells; (b) adding glycerol to the culture medium in which the cells have been grown and secondly culturing to produce 1,3-propanediol; And (c) glycerol dehydrogenase gene (DhaD), transcriptional activator gene (DhaR), 1,3-propanediol oxidoreductase gene comprising the step of recovering the produced 1,3-propanediol ( DhaT) and glycerol dehydratase reactivator II gene (DhaBA2) containing genes encoding 1,3-propanediol oxidoreductase in the Krebsciella pneumoniae variant (AK strain)
  • DhaD glycerol dehydrogenase gene
  • DhaR transcriptional activator gene
  • DhaBA2 glycerol dehydratase re
  • the present invention also comprises the steps of (a) culturing the microbial variants in a glycerol-free medium to grow the cells; (b) adding glycerol to the culture medium in which the cells have been grown and secondly culturing to produce 1,3-propanediol; And (c) glycerol dehydrogenase gene (DhaD), transcriptional activator gene (DhaR), 1,3-propanediol oxidoreductase gene comprising the step of recovering the produced 1,3-propanediol ( DhaT) and glycerol di- and genes encoding 1,3-propanediol oxidoreductase in Krebssiella pneumoniae variants (AK strains) that lack the glycerol dehydratase reactivator II gene (DhaBA2)
  • DhaD glycerol dehydrogenase gene
  • DhaR transcriptional activator gene
  • AK strain a method for producing 1,3-propanediol by culturing a variant having 1,3-propanediol generating ability by using glycerol as a carbon source inserted into a chromosome of a variant (AK strain).
  • the present invention also comprises the steps of (a) culturing the microbial variants in a glycerol-free medium to grow the cells; (b) adding glycerol to the culture medium in which the cells have been grown and secondly culturing to produce 1,3-propanediol; And (c) recovering the generated 1,3-propanediol, a transcriptional activator gene (DhaR), a 1,3-propanediol oxidoreductase gene (DhaT) and glycerol dehydratase ash.
  • DhaR transcriptional activator gene
  • DhaT 1,3-propanediol oxidoreductase gene
  • a vector containing a gene encoding 1,3-propanediol oxidoreductase is introduced into a Krebs.
  • Erythropneumoniae variant lacking an activator II gene (DhaBA2), or 1,3- 1,3-propanediol was prepared by culturing a variant having 1,3-propanediol-producing ability using glycerol as a carbon source, in which a gene encoding propanediol oxidoreductase was inserted into the chromosome of the variant (AR strain).
  • DhaBA2 activator II gene
  • the present invention also comprises the steps of (a) culturing the microbial variants in a glycerol-free medium to grow the cells; (b) adding glycerol to the culture medium in which the cells have been grown and secondly culturing to produce 1,3-propanediol; And (c) recovering the generated 1,3-propanediol, a transcriptional activator gene (DhaR), a 1,3-propanediol oxidoreductase gene (DhaT) and glycerol dehydratase ash.
  • DhaR transcriptional activator gene
  • DhaT 1,3-propanediol oxidoreductase gene
  • a vector containing the gene is introduced or a gene encoding 1,3-propanediol oxidoreductase and a gene encoding a glycerol dehydratase reactivator are inserted into the chromosome of the variant (AR strain).
  • the present invention provides a method for producing 1,3-propanediol by culturing a variant having 1,3-propanediol generating ability using glycerol as a carbon source.
  • 1 is a schematic diagram showing a reduction pathway for producing 1,3-propanediol and an oxidation pathway for producing byproducts during glycerol metabolism.
  • Figure 2 illustrates a method for producing a variant according to the invention using the structure of the dha regulator.
  • Figure 3 is a method for producing a plasmid DNA is linked to the amino terminal (dhaB ') -LacZ promoter (P lacZ ) -Apramycin resistance gene -DhaK gene amino terminal (dhaK') of the DhaB gene for producing an AK strain according to the present invention It is shown.
  • Figure 4 is a method for producing a plasmid DNA is linked to the amino terminal (dhaB ')-LacZ promoter (P lacZ ) -Apramycin resistance gene-DhaR gene of the DhaB gene for preparing the AR strain according to the present invention (dhaR') It is shown.
  • FIG. 5 shows a method for preparing plasmid DNA containing the DhaT gene and DhaB reactivating enzyme gene of Krebssiella pneumoniae downstream of the lacZ promoter.
  • Figure 6 shows a method for producing plasmid DNA containing only the DhaT gene of Krebssiella pneumoniae downstream of the lacZ promoter.
  • Figure 7 shows the production of plasmid DNA containing the 1,3-propanediol oxidoreductase active YqhD (E) gene ( E. coli ) and DhaB reactivating enzyme gene derived from E. coli downstream of the lacZ promoter.
  • E 1,3-propanediol oxidoreductase active YqhD
  • Figure 8 shows the construction of plasmid DNA containing only 1,3-propanediol oxidoreductase active YqhD (E) gene ( E. coli ) derived from E. coli downstream of the lacZ promoter.
  • E 1,3-propanediol oxidoreductase active YqhD
  • FIG. 10 shows a method for preparing plasmid DNA containing only 1,3-propanediol oxidoreductase active YqhD (K) ( K. pneumoniae ) gene derived from Krebssiella pneumoniae downstream of the lacZ promoter.
  • K 1,3-propanediol oxidoreductase active YqhD
  • 11 is a graph showing the components of the culture medium cultured in one step the recombinant strain used in the present invention.
  • Figure 12 shows the residual glycerol concentration and the concentration of 1,3-propanediol produced in the culture medium after the two-step culture of the recombinant strain used in the present invention.
  • Figure 13 shows the culture characteristics according to the glycerol concentration of the recombinant strain used in the present invention.
  • Figure 14 shows the culture characteristics according to the aeration degree of the recombinant strain used in the present invention.
  • Figure 15 shows the culture characteristics according to the pH of the recombinant strain used in the present invention.
  • Figure 16 shows the culture characteristics according to the cell mass of the recombinant strain used in the present invention.
  • the present invention comprises the steps of: (a) culturing the microbial variants in a glycerol-free medium to grow cells; (b) adding glycerol to the culture medium in which the cells have been grown and secondly culturing to produce 1,3-propanediol; And (c) a gene or dihydroxy encoding a transcriptional activator in a microorganism having the ability to produce 1,3-propanediol using glycerol as a carbon source, comprising recovering the generated 1,3-propanediol.
  • the present invention relates to a method for producing 1,3-propanediol by culturing a microbial variant in which a gene encoding acetone kinase is deleted or inactivated.
  • Glycerol metabolism is metabolized through two oxidative and reductive metabolic pathways (FIG. 1).
  • DHA dehydroxyacetone
  • NAD + dependent glycerol dehydrogenase to produce NADH
  • DHA kinase It is converted into dehydroxyacetone phosphate (DHAP) and then metabolized through glycolysis and used as carbon and energy source for growth.
  • DHAP dehydroxyacetone phosphate
  • 2,3-butanediol, acetic acid, ethanol, lactic acid And by-products such as succinic acid are produced.
  • glycerol In reductive metabolism, glycerol is converted to 3-hydroxypropionaldehyde by the action of dehyratase and then 1,3- by NADH-dependent oxidoreductase. NAD + is formed while reducing to propanediol.
  • Variants cultured to produce 1,3-propanediol in the present invention by deleting or disabling the gene encoding the protein responsible for the oxidation pathway during the glycerol metabolism, 2,3-butanediol, ethanol, lactic acid, succinic acid, etc. It is a strain that produces only 1, 3-propanediol through a reduction pathway without producing by-products of.
  • Oxidation and reduction metabolic pathways of glycerol are closely related to each other to maintain intracellular NAD + -NADH balance, genes encoding the four enzymes-glycerol dehyratase ( dhaB ), 1 , 3-propanediol oxidoreductase (1,3-propanediol reducatse, dhaT ), glycerol dehydrogenase ( dhaD ), dehydroxyacetone kinase ( dhaK ) -are usually clusters on chromosomes ( clusters) and regulated to the same regulon by co-existing transcriptional regulator DhaR.
  • the microorganism having the ability to produce the 1,3-propanediol is a sheet bakteo (Citrobacter), Clostridium (Clostridium), Enterobacter bakteo (Enterobacter), keurep when Ella (Klebsiella) and Lactobacillus (Lactobacillus A strain selected from the group consisting of) may be used, and it is preferable to use Klebsiella pneumoniae.
  • the transcriptional activator gene is DhaR
  • the dihydroxyacetone kinase gene may be characterized in that it is selected from the group consisting of DhaK, DhaL, DhaM and DhaK '. .
  • the protein responsible for the glycerol oxidation pathway of the variant may be characterized in that the glycerol dehydrogenase, transcriptional activator and dihydroxyacetone kinase.
  • the present invention is a recombinant microorganism blocked glycerol oxidation pathway used in one aspect is the glycerol dehydrogenase gene (DhaD), transcriptional activator gene (DhaR), 1,3-propane in the chromosome of Krebssiella pneumoniae strain Deletion of the diol oxidoreductase gene (DhaT) and glycerol dehydratase reactivator II gene (DhaBA2) to prepare Krebssiella pneumoniae variant (AK strain), and the glycerol reduction pathway in the deleted gene Transforming with a recombinant vector comprising a 1,3-propanediol oxidoreductase gene (DhaT) and a glycerol dehydratase reactivating factor II gene (DhaBA2), which are genes responsible for As a result, only the glycerol dehydrogenase gene (DhaD) and the transcriptional activator gene (DhaR)
  • the variant used in one embodiment of the present invention may be characterized in that the glycerol dehydrogenase gene (DhaD) and the transcriptional activator gene (DhaR) are deleted or disabled.
  • DhaD glycerol dehydrogenase gene
  • DhaR transcriptional activator gene
  • the lacZ promoter (P lacZ ) is inserted upstream of the gene so that the reduction pathway genes are no longer controlled by the DhaR regulator, so that the expression of the gene can be artificially controlled using an inducer.
  • Recombinant microorganisms are blocked in the glycerol oxidation pathway used in another embodiment is the transcriptional activator gene (DhaR), 1,3-propanediol oxidoreductase gene (DhaT) and in the chromosome of the Krebsiella pneumoniae strain 1,3-propane, a gene that is responsible for the glycerol reduction pathway among the deleted genes, was prepared with a Krebssiella pneumoniae variant (AR strain) lacking the glycerol dehydratase reactivation factor II gene (DhaBA2).
  • DhaR transcriptional activator gene
  • DhaT 1,3-propanediol oxidoreductase gene
  • DhaBA2 glycerol dehydratase reactivation factor II gene
  • the variant used in another embodiment of the present invention may be characterized in that the transcriptional activator gene (DhaR) is deleted or disabled.
  • DhaR transcriptional activator gene
  • the present invention comprises the steps of (a) culturing the microbial variant in a glycerol-free medium to grow the cells; (b) adding glycerol to the culture medium in which the cells have been grown and secondly culturing to produce 1,3-propanediol; And (c) recovering the produced 1,3-propanediol using a glycerol as a carbon source, a glycerol dehydrogenase gene (DhaD), a transcriptional activator gene (DhaR), 1,3-propanediol oxy Encoding 1,3-propanediol oxidoreductase to Krebssiella pneumoniae variants (AK strains) that lack the doriductase gene (DhaT) and glycerol dehydratase reactivator II gene (DhaBA2) Culturing a variant having a 1,3-propanediol-producing ability in which a vector containing the gene
  • the present invention provides a Klebsiella pneumoniae strain in which a glycerol dehydrogenase gene (DhaD) and a transcriptional activator gene (DhaR) are deleted and a transcriptional activator gene (DhaR).
  • the strain produces 1,3-propanediol without producing other by-products of the oxidation pathway, except for a small amount of acetic acid in a medium containing glycerol, but the ability of 1,3-propanediol to produce 1,3-propanediol is comparable to that of wild-type parent strains.
  • the recombinant strain was first cultured in a medium containing no glycerol to grow the cells, and the second culture in a medium containing glycerol in a high yield without the formation of byproducts. , 3-propanediol can be produced.
  • the glycerol-1,3-propanediol conversion rate is 35% (mol / mol) when the two-step culture of the parent strain Krebsiella pneumoniae Cu strain is used, using the recombinant strain When cultured in two stages, glycerol-1,3-propanediol conversion was 70% (mol / mol), which showed a very improved conversion.
  • the glycerol in the two-stage culture may be characterized in that it is added at a concentration of 5 ⁇ 50 g / L, preferably 5 ⁇ 20 g / L, most preferably 10 It is recommended to add in g / L.
  • glycerol was hardly consumed when Aeration was not performed in the culture process, and glycerol consumption and 1,3-propanediol productivity were similar at 0.2 vvm, 0.5 vvm and 1.0 vvm.
  • pH 6 when the pH of the culture solution was maintained at 5, 6, 7, and 8 until the end of the culture, the highest 1,3-propanediol productivity was shown at pH 6.
  • the strains grown about the OD 600 value is the case given to respectively 0, 0.5, 1, 2, and the final concentration of glycerol as three days was added so that 20 g / L, as shown in Figure 12, the higher the OD 600 value The higher the productivity of 1,3-propanediol was confirmed.
  • the variant used in one embodiment of the present invention is a dha regonlon by homologous recombination method using the parent strain of the Krebsella pneumoniae MGH78578 strain (hereinafter referred to as "Cu") cured plasmid DNA.
  • Cu Krebsella pneumoniae MGH78578 strain
  • the plasmid DNA is a gene having a DhaB reactivation enzyme gene ( orfW ) -orfX DNA fragment and 1,3-propanediol oxidoreductase activity ⁇ dhaT , yqhD (from E. coli ), or yqhD homology gene ( Krepsi Ella pneumoniae) ⁇ was amplified and inserted into the lacZ promoter downstream of the pGEM TEasy vector to prepare a recombinant strain for production of 1,3-propanediol transformed with the plasmid DNA for repairing the glycerol reduction pathway.
  • orfW DhaB reactivation enzyme gene
  • yqhD from E. coli
  • Krepsi Ella pneumoniae Krepsi Ella pneumoniae
  • the present invention provides a Klebsiella pneumoniae strain in which a glycerol dehydrogenase gene (DhaD) and a transcriptional activator gene (DhaR) are deleted and a transcriptional activator gene (DhaR).
  • DhaD glycerol dehydrogenase gene
  • DhaR transcriptional activator gene
  • DhaR transcriptional activator gene
  • the homologous recombination method is used to prepare the above-described variant, wherein the plasmid DNA is cured Krebsiella pneumoniae MGH78578 strain (hereinafter referred to as "Cu") as a parent strain.
  • Cu Krebsiella pneumoniae MGH78578 strain
  • the dha LES gyulron of DhaB enzyme reactivation factor, DhaT gene and DhaR regulatory elements, to thereby prepare a recombinant strain replaced with the apramycin resistance gene (named AR) was replaced by preparing the oxidation, the reduced path are all deficient recombinant strain (hereinafter Referred to as the "AR" strain.
  • the glycerol reduction pathway recovery plasmid prepared in one embodiment of the present invention is transformed into an AR strain, and has a 1,3-propanediol generating ability without generating a by-product. Variants were prepared.
  • the recovery of 1,3-propanediol from the culture medium of the mutant may use a conventional separation technique, for example, distillation, electrodialysis, pervaporation, chromatography, solvent extraction, reaction extraction, etc. Typically, these can be used in combination to separate substances of high purity.
  • deletion of a gene means a state in which the gene is deleted on a chromosome or a plasmid to be unable to produce a protein encoded by the gene
  • disabling of the gene means that the gene is inserted, translocated, By some deletion, it means a state in which the gene cannot be encoded.
  • the method for inserting the gene on the chromosome of the host cell in the present invention can be used a commonly known genetic engineering method, for example retrovirus vector, adenovirus vector, adeno-associated virus vector, herpes simplex virus vector , Poxvirus vectors, lentiviral vectors or non-viral vectors.
  • retrovirus vector for example retrovirus vector, adenovirus vector, adeno-associated virus vector, herpes simplex virus vector , Poxvirus vectors, lentiviral vectors or non-viral vectors.
  • the variant was prepared by blocking all of the glycerol redox pathway of the crab forla pneumoniae strain, and having the 1,3-propanediol production capacity without producing by-products by restoring the glycerol reduction pathway again.
  • a variant was prepared and used, by blocking only the glycerol oxidation pathway of a microorganism having 1,3-propanediol generating ability from glycerol, a variant having 1,3-propanediol producing ability was produced and cultured without producing a by-product. It will be apparent to those skilled in the art that equivalent results can be obtained.
  • the embodiment used a strain transformed with a vector containing the glycerol reduction pathway gene to restore the glycerol reduction pathway again in the variant that blocked all glycerol redox pathway, but in addition to the chromosome insertion method commonly used It will be apparent to those skilled in the art that similar results can be obtained by using a strain in which the glycerol reduction pathway gene is inserted into the chromosome of the variant by using a.
  • recombinant strains were prepared that completely blocked the metabolic circuits from glycerol in Krebsiella pneumoniae MGH 78578 (ATCC 700721).
  • DhaB enzyme reactivation factor, DhaT gene, DhaR regulator of dha regulators (FIG. 2) by homologous recombination method using the homologous recombination method with the plasmid DNA cured Krebsiella pneumoniae MGH78578 strain (named Cu) And by replacing the DhaD gene with apramycin resistance gene to prepare a recombinant strain AK lacking both oxidation and reduction pathways.
  • a recombinant strain AR was prepared in which the DhaB enzyme reactivation factor, DhaT gene and DhaR regulator were substituted with apramycin resistance gene.
  • the DhaR-dependent self-promoter upstream of the DhaB gene was replaced with an artificially controlable lacZ promoter.
  • DNA fragments for preparing plasmid for homologous recombination using the chromosomal DNA of the Krebsiella pneumoniae MGH78578 strain as a template were amplified by PCR using the following primer sets (FIG. 2).
  • the amplified DNA fragment was cloned using a pGEM TEasy vector to confirm the nucleotide sequence, and then plasmid DNA was prepared as shown in FIGS. 3 and 4.
  • the plasmid was treated with BamHI-BglII , and the DNA fragments recovered were introduced into the Klebsiella pneumoniae Cu strain by electroshock method, and recombinant strains forming colonies were isolated in apramycin-added medium.
  • a recombinant strain AK strain was removed, in which the DhaB enzyme reactivation factor, DhaT gene, DhaR regulator and DhaD gene of the dha regulator were removed and the lacZ promoter and apramycin resistance gene were inserted.
  • recombinant strain AR in which the DhaR regulator was removed and the lacZ promoter and apramycin resistance gene were inserted.
  • FIGS. 7 and FIG. 8 is a plasmid DNA containing only a 1,3-propanediol oxidoreductase-activated YqhD (E) gene and a DhaB reactivating enzyme gene or YqhD (E) gene downstream from the lacZ promoter. The process is shown.
  • 9 and 10 are plasmids or YqhD (K) genes containing a 1,3-propanediol oxidoreductase active YqhD (K) gene and dhaB reactivating enzyme gene derived from Krebsiella pneumoniae downstream of the lacZ promoter. Only the plasmid DNA containing the process was produced.
  • Example 3 1,3-propanediol production by fermentation of Krebssiella pneumoniae Cu, AK-VOT, AK-VOQ and AK-VOK
  • a 5L fermenter was used to investigate the extent of propagation of the Klebsiella pneumoniae Cu, AK-VOT, AK-VOQ and AK-VOK strains, and at the same time, the residual amount of glycerol and the metabolism including 1,3-propanediol in the culture supernatant.
  • the amount of products produced was analyzed by chromatography.
  • Medium composition is as follows: 20 g / l glycerol, 3.4 g / l K 2 HPO 4 , 1.3 g / l KH 2 PO 4 , 0.2 g / l MgSO 4 , 0.002 g / l CaCl 2 2H 2 O, 1 g / l yeast extract, 1 ml iron solution [5 g / l FeSO 4 7H 2 O, 4 ml HCl (37%, w / v)] and 1 ml trace element solution [70 mg / l ZnCl 2, 100 mg / l MnCl 2 4H 2 O, 60 mg / l H 3 BO 3 , 200 mg / l CoCl 2 4H 2 O, 20 mg / l CuCl 2 2H 2 O, 25 mg / l NiCl 2 6H 2 O, 35 mg / l Na 2 MoO 4 2H 2 O, 4 ml HCl (37%, w /
  • the effective volume of 5 L fermenter was 2 L, the final concentration was IPTG 0.5 mM, tetracycline 10 ⁇ g / L, inoculation amount 1%, incubation temperature 37 ° C., stirring speed 200 rpm, air injection rate was 0.5 vvm. .
  • AK-VOT, AK-VOQ and AK-VOK strains retained more than 5 g / L of glycerol even after 30 hours of culture and produced 6 g / L of 1,3-PD, but unlike Cu, they produced no metabolic byproducts. Did not do it.
  • Cu strains were more than 1 g / L more than AK-VOT, AK-VOQ, and AK-VOK strains, but the conversion rate was about 10% lower.
  • Two-step fermentation was performed to improve low 1,3-PD productivity of the AK-VOT strain.
  • the effective volume of 5L fermenter was 2L, the final concentration was IPTG 0.5 mM, tetracycline 10 ⁇ g / L, the inoculation amount was 1% of the medium, the culture temperature is 37 ° C, the stirring speed is 200 rpm, air injection rate was set to 0.5 vvm.
  • Strains pre-cultured in LB medium were inoculated in 2 L of LB medium (1%), followed by primary fermentation (strain culture step), and glycerol was added at a concentration of 20 g / L at 12 hours, followed by secondary fermentation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 글리세롤 산화대사경로를 차단시킨 재조합 균주를 배양하여 1,3-프로판디올을 제조하는 방법에 관한 것으로, 더욱 자세하게는 글리세롤 대사경로에서 부산물을 생성하는 산화대사경로를 차단시킨 재조합 균주를 2단계 배양하는 것을 특징으로 하는 1,3-프로판디올의 제조방법에 관한 것이다. 본 발명에 따라 글리세롤 대사경로에서 부산물을 생성하는 산화대사경로를 차단시킨 재조합 균주를 2단계 배양하면, 정제과정에서 비용 상승을 초래하는 부산물의 생성 없이, 향상된 수율로 1, 3-프로판디올을 생산할 수 있다.

Description

글리세롤 산화대사경로를 차단시킨 재조합 균주를 이용한 1、3-프로판디올의 제조방법
본 발명은 글리세롤 산화대사경로를 차단시킨 재조합 균주를 배양하여 1,3-프로판디올을 제조하는 방법에 관한 것으로, 더욱 자세하게는 글리세롤 대사경로에서 부산물을 생성하는 산화대사경로를 차단시킨 재조합 균주를 2단계 배양하는 것을 특징으로 하는 1,3-프로판디올의 제조방법에 관한 것이다.
1,3-프로판디올은 폴리에스터(polyester), 폴리에테르(polyether), 혹은 폴리우레탄(polyurethanes) 등의 합성원료로 사용될 수 있는 물질로, 고기능성 의류, 카펫, 자동차직물 등의 섬유와 플라스틱 필름 등의 다양한 용도로 쓰이고 있다. 특히 1,3-프로판디올과 테레프탈릭산(terephtalic acid)의 중합반응에 의해 생성되는 폴리트리메틸렌 테레프탈레이트(polytrimethylene terephtalate, PTT)는 물성이 우수하고 유점이 228℃로 폴리에틸렌 테레프탈레이트(PET) 보다 낮아 실질적인 효용성이 높아 향후 PET를 대체할 수 있는 차세대 섬유재료로서 주목을 받고 있다. 또한, 1,3-프로판디올을 단량체로 하여 만든 플라스틱과 중합체는 부탄디올, 에틸렌 글리콜(ethylene glycol)로 만든 제품보다 더 우수한 광학 안정성을 가지는 특성을 나타낸다. 또한 1,3-프로판디올은 폴리글리콜 형태(polyglycol-type)의 윤활제와 용매로 사용될 수 있어 글리세롤에 비해 그 상업적 가치를 높게 평가 받고 있다.
1,3-프로판디올은 화학적 합성 및 미생물 발효에 의하여 생산할 수 있다. 화학적 생산방법에는 에틸렌옥사이드(ethylene oxide)를 hydroformylation에 의해 1,3-프로판디올로 전환하는 방법(미국특허 제3,687,981호)과 아크롤레인(acrolein)을 hydration에 의해 1,3-프로판디올로 전환하는 방법(미국특허 제5,015,789호)이 있다. 하지만 이러한 화학공정들은 1,3-프로판디올의 생산 과정중 고온 또는 고압과정을 필요로 하기 때문에 생산 비용이 높고, 환경 오염물질을 함유한 폐유를 발생시키는 문제점이 있다.
생물학적 방법으로 통성 혐기성 균주인 시트로박터(Citrobacter), 클로스트리디움(Clostridium), 엔테로박터(Enterobacter), 크렙시엘라(Klebsiella), 락토바실러스(Lactobacillus) 등의 미생물들을 이용 글리세롤로부터 1,3-프로판디올을 생성하는 방법(미국특허 제 5,254,467호)이 있다.
상기의 미생물을 이용하여 글리세롤의 1,3-프로판디올로 전환하는 대사과정에서 다양한 종류의 산화대사산물들이 다량 생산된다. 특히, 2,3-부탄디올(2,3-butanediol)은 글리세롤 산화대사산물로서 1,3-프로판디올과 유사한 비점을 지녀 정제 과정에서 큰 제약으로 작용한다. 본 발명자들은 대사공학적 방법에 의해 글리세롤 대사에서 2,3-부탄디올을 비롯한 산화대사 부산물들을 생성하지 않고, 1,3-프로판디올만을 생산하는 미생물을 개발하기 위하여, 유전자 재조합 기술을 이용하여 글리세롤 대사경로에서 부산물을 생성하는 산화대사경로를 차단시키고, 1,3-프로판디올을 생성하는 환원대사경로만을 갖는 변이체를 제작하였으나(대한민국 특허출원 10-2008-0122166), 상기 변이체는 일반적인 회분식 배양에서 부산물을 생산하지 않았으나, 1,3-프로판디올의 생산성은 떨어지는 것으로 확인되었다.
이에, 본 발명자들은 글리세롤 대사경로에서 부산물을 생성하는 산화대사경로를 차단시킨 재조합 균주의 배양에 있어서, 1,3-프로판디올의 생산성을 개선하고자 예의 노력한 결과, 배지에 글리세롤을 첨가하지 않은 1차 배양과 글리세롤을 첨가하는 2차 배양으로 나누어 2단계 배양하는 경우, 1,3-프로판디올의 수율이 증가하는 것을 확인하고 본 발명을 완성하게 되었다.
발명의 요약
결국, 본 발명의 목적은 글리세롤 대사경로에서 부산물을 생성하는 산화대사경로를 차단시킨 재조합 균주의 배양방법을 개선하여, 1,3-프로판디올의 생산성을 향상시킨, 1,3-프로판디올의 제조방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 글리세롤 부재 배지에서 상기 미생물 변이체를 1차 배양하여 균체를 증식시키는 단계; (b) 상기 균체가 증식된 배양액에 글리세롤을 첨가하고 2차 배양하여 1,3-프로판디올을 생산하는 단계; 및 (c) 상기 생성된 1,3-프로판디올을 회수하는 단계를 포함하는 글리세롤을 탄소원으로하여 1,3-프로판디올을 생산하는 능력을 가지는 미생물에서 전사 활성인자를 코딩하는 유전자 또는 디하이드록시아세톤키나아제를 코딩하는 유전자가 결실 또는 불능화되어 있는 미생물 변이체를 배양하여 1, 3-프로판디올을 제조하는 방법을 제공한다.
본 발명은 또한, (a) 글리세롤 부재 배지에서 상기 미생물 변이체를 1차 배양하여 균체를 증식시키는 단계; (b) 상기 균체가 증식된 배양액에 글리세롤을 첨가하고 2차 배양하여 1,3-프로판디올을 생산하는 단계; 및 (c) 상기 생성된 1,3-프로판디올을 회수하는 단계를 포함하는 글리세롤 디하이드로게나아제 유전자(DhaD), 전사 활성인자 유전자(DhaR), 1,3-프로판디올 옥시도리덕타아제 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)가 결실되어 있는 크렙시엘라 뉴모니아 변이체(AK 균주)에 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자를 함유하는 벡터가 도입되어 있거나, 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자가 상기 변이체(AK 균주)의 염색체에 삽입되어 있는, 글리세롤을 탄소원으로하여 1,3-프로판디올 생성능을 가지는 변이체를 배양하여 1, 3-프로판디올을 제조하는 방법을 제공한다.
본 발명은 또한, (a) 글리세롤 부재 배지에서 상기 미생물 변이체를 1차 배양하여 균체를 증식시키는 단계; (b) 상기 균체가 증식된 배양액에 글리세롤을 첨가하고 2차 배양하여 1,3-프로판디올을 생산하는 단계; 및 (c) 상기 생성된 1,3-프로판디올을 회수하는 단계를 포함하는 글리세롤 디하이드로게나아제 유전자(DhaD), 전사 활성인자 유전자(DhaR), 1,3-프로판디올 옥시도리덕타아제 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)가 결실되어 있는 크렙시엘라 뉴모니아 변이체(AK 균주)에 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자와 글리세롤 디하이드라타아제 재활성화인자를 코딩하는 유전자를 함유하는 벡터가 도입되어 있거나, 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자와 글리세롤 디하이드라타아제 재활성화인자를 코딩하는 유전자가 상기 변이체(AK 균주)의 염색체에 삽입되어 있는, 글리세롤을 탄소원으로하여 1,3-프로판디올 생성능을 가지는 변이체를 배양하여 1, 3-프로판디올을 제조하는 방법을 제공한다.
본 발명은 또한, (a) 글리세롤 부재 배지에서 상기 미생물 변이체를 1차 배양하여 균체를 증식시키는 단계; (b) 상기 균체가 증식된 배양액에 글리세롤을 첨가하고 2차 배양하여 1,3-프로판디올을 생산하는 단계; 및 (c) 상기 생성된 1,3-프로판디올을 회수하는 단계를 포함하는 전사 활성인자 유전자(DhaR), 1,3-프로판디올 옥시도리덕테이즈 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)가 결실되어 있는 크렙시엘라 뉴모니아 변이체(AR 균주)에 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자를 함유하는 벡터가 도입되어 있거나, 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자가 상기 변이체(AR 균주)의 염색체에 삽입되어 있는, 글리세롤을 탄소원으로하여 1,3-프로판디올 생성능을 가지는 변이체를 배양하여 1, 3-프로판디올을 제조하는 방법을 제공한다.
본 발명은 또한, (a) 글리세롤 부재 배지에서 상기 미생물 변이체를 1차 배양하여 균체를 증식시키는 단계; (b) 상기 균체가 증식된 배양액에 글리세롤을 첨가하고 2차 배양하여 1,3-프로판디올을 생산하는 단계; 및 (c) 상기 생성된 1,3-프로판디올을 회수하는 단계를 포함하는 전사 활성인자 유전자(DhaR), 1,3-프로판디올 옥시도리덕테이즈 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)가 결실되어 있는 크렙시엘라 뉴모니아 변이체(AR 균주)에 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자와 글리세롤 디하이드라타아제 재활성화인자를 코딩하는 유전자를 함유하는 벡터가 도입되어 있거나, 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자와 글리세롤 디하이드라타아제 재활성화인자를 코딩하는 유전자가 상기 변이체(AR 균주)의 염색체에 삽입되어 있는, 글리세롤을 탄소원으로하여 1,3-프로판디올 생성능을 가지는 변이체를 배양하여 1, 3-프로판디올을 제조하는 방법을 제공한다.
본 발명의 다른 특징 및 구현예는 다음의 상세한 설명 및 첨부된 특허청구범위로부터 더욱 명백해 질 것이다.
도 1은 글리세롤 대사과정에서 1,3-프로판디올을 생산하는 환원경로와 부산물을 생산하는 산화경로를 나타낸 모식도이다.
도 2는 본 발명에 따른 변이체의 제조 방법을 dha 레귤론의 구조를 이용하여 나타낸 것이다.
도 3은 본 발명에 따른 AK 균주를 제조하기 위한 DhaB 유전자의 아미노 말단(dhaB’)-LacZ promoter(PlacZ)-Apramycin 내성 유전자-DhaK 유전자의 아미노말단(dhaK’)이 연결된 플라스미드 DNA의 제작방법을 나타낸 것이다.
도 4는 본 발명에 따른 AR 균주를 제조하기 위한 DhaB 유전자의 아미노 말단(dhaB’)-LacZ promoter(PlacZ)-Apramycin 내성 유전자-DhaR 유전자의 아미노말단(dhaR’)이 연결된 플라스미드 DNA의 제작방법을 나타낸 것이다.
도 5는 lacZ 프로모터 하류에 크렙시엘라 뉴모니아의 DhaT 유전자와 DhaB 재활성화 효소 유전자가 포함된 포함된 플라스미드 DNA의 제작방법을 나타낸 것이다.
도 6은 lacZ 프로모터 하류에 크렙시엘라 뉴모니아의 DhaT 유전자만이 포함된 플라스미드 DNA의 제작방법을 나타낸 것이다.
도 7은 lacZ 프로모터 하류에 대장균 유래의 1,3-프로판디올 옥시도리덕타제 활성 YqhD(E) 유전자 (E. coli)와 DhaB 재활성화 효소 유전자가 포함된 플라스미드 DNA의 제작과정을 나타낸 것이다.
도 8은 lacZ 프로모터 하류에 대장균 유래의 1,3-프로판디올 옥시도리덕타제 활성 YqhD(E) 유전자 (E. coli)만이 포함된 플라스미드 DNA의 제작과정을 나타낸 것이다.
도 9는 lacZ 프로모터 하류에 크렙시엘라 뉴모니아 유래의 1,3-프로판디올 옥시도리덕타제 활성 YqhD(K) (K. pneumoniae) 유전자와 DhaB 재활성화 효소 유전자가 포함된 플라스미드 DNA의 제작방법을 나타낸 것이다.
도 10은 lacZ 프로모터 하류에 크렙시엘라 뉴모니아 유래의 1,3-프로판디올 옥시도리덕타제 활성 YqhD(K) (K. pneumoniae) 유전자만이 포함된 플라스미드 DNA의 제작방법을 나타낸 것이다.
도 11은 본 발명에서 사용된 재조합 균주를 1단계 배양한 배양액의 성분을 나타낸 그래프이다.
도 12는 본 발명에서 사용된 재조합 균주를 2단계 배양한 후의 배양액의 잔존 글리세롤 농도 및 생산된 1,3-프로판디올의 농도를 나타낸 것이다.
도 13은 본 발명에서 사용된 재조합 균주의 글리세롤 농도에 따른 배양특성을 나타낸 것이다.
도 14는 본 발명에서 사용된 재조합 균주의 aeration 정도에 따른 배양특성을 나타낸 것이다.
도 15는 본 발명에서 사용된 재조합 균주의 pH에 따른 배양특성을 나타낸 것이다.
도 16은 본 발명에서 사용된 재조합 균주의 균체량에 따른 배양특성을 나타낸 것이다.
발명의 상세한 설명 및 구체적인 구현예
본 발명은 일 관점에서, (a) 글리세롤 부재 배지에서 상기 미생물 변이체를 1차 배양하여 균체를 증식시키는 단계; (b) 상기 균체가 증식된 배양액에 글리세롤을 첨가하고 2차 배양하여 1,3-프로판디올을 생산하는 단계; 및 (c) 상기 생성된 1,3-프로판디올을 회수하는 단계를 포함하는 글리세롤을 탄소원으로하여 1,3-프로판디올을 생산하는 능력을 가지는 미생물에서 전사 활성인자를 코딩하는 유전자 또는 디하이드록시아세톤키나아제를 코딩하는 유전자가 결실 또는 불능화되어 있는 미생물 변이체를 배양하여 1, 3-프로판디올을 제조하는 방법에 관한 것이다.
글리세롤 대사경로는 산화적, 환원적 두 대사경로를 통해 대사가 이루어진다 (도 1). 먼저, 산화적 대사과정에서, 글리세롤은 NAD+ 의존적 글리세롤 디히드로게나제(dehydrogenase)의 작용에 의해 디히드록시아세톤(dehydroxyacetone, DHA)으로 산화되면서 NADH가 생산되고, DHA 키나제(kinase)의 작용에 의해 디히드록시아세톤포스페이트(dehydroxyacetone phosphate, DHAP)로 전환되어진 후 해당과정을 통해 대사되면서 성장에 필요한 탄소원과 에너지원으로 이용되며, 상기 산화적 대사과정에서, 2,3-부탄디올, 아세트산, 에탄올, 젖산, 숙신산 등의 부산물들이 생성된다.
한편, 환원적 대사과정에서, 글리세롤은 디히드라타제(dehyratase)의 작용에 의해 3-히드록시프로피온알데히드(3-hydroxypropionaldehyde)로 전환된 후 NADH 의존적 옥시도리덕타제(oxidoreductase)에 의해 1,3-프로판디올로 환원되면서 NAD+가 형성된다.
본 발명에서 1,3-프로판디올을 생성시키기 위하여 배양되는 변이체는 상기 글리세롤 대사과정 중 산화경로를 담당하는 단백질을 코딩하는 유전자를 결실 또는 불능화시켜, 2,3-부탄디올, 에탄올, 젖산, 숙신산 등의 부산물을 생성하지 않으면서, 환원경로를 통하여 1, 3-프로판디올만을 생산하는 균주이다.
상기 글리세롤의 산화, 환원 대사경로는 세포내의 NAD+-NADH 밸런스를 유지하기 위해 서로 밀접하게 연관이 되어 있으며, 상기의 네 가지 효소를 코드하는 유전자들-글리세롤 디히드라타제(glycerol dehyratase, dhaB), 1,3-프로판디올 옥시도리덕타제(1,3-propanediol reducatse, dhaT), 글리세롤 디히드로게나제(glycerol dehydrogenase, dhaD), 디히드록시아세톤 키나제(dehydroxyacetone kinase, dhaK)-은 통상 염색체상에서 클러스터(cluster)로 존재하고, 공존하는 전사 조절인자인 DhaR에 의해 동일한 레귤론(regulon)으로 조절된다.
본 발명에서, 상기 1,3-프로판디올을 생산하는 능력을 가지는 미생물은 시트로박터(Citrobacter), 클로스트리디움(Clostridium), 엔테로박터(Enterobacter), 크렙시엘라(Klebsiella) 및 락토바실러스(Lactobacillus)로 구성된 군에서 선택되는 균주를 사용할 수 있으며, 바람직하게는 크렙시엘라 뉴모니아를 사용하는 것이 바람직하다.
본 발명의 변이 미생물이 크렙시엘라 뉴모니아인 경우, 상기 전사 활성인자 유전자는 DhaR이며, 디하이드록시아세톤키나아제 유전자는 DhaK, DhaL, DhaM 및 DhaK’로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 변이체의 글리세롤 산화경로를 담당하는 단백질은 글리세롤 디하이드로게나아제, 전사 활성인자 및 디하이드록시아세톤 키나아제인 것을 특징으로 할 수 있다.
본 발명은 일 양태에서 사용되는 글리세롤 산화경로가 차단된 재조합 미생물은 크렙시엘라 뉴모니아 균주의 염색체에서 글리세롤 디하이드로게나아제 유전자(DhaD), 전사 활성인자 유전자(DhaR), 1,3-프로판디올 옥시도리덕타아제 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)를 결실시켜 크렙시엘라 뉴모니아 변이체(AK 균주)를 제작하고, 상기 결실된 유전자 중 글리세롤 환원경로를 담당하는 유전자인 1,3-프로판디올 옥시도리덕타아제 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)를 포함하는 재조합벡터로 형질전환시켜, 환원경로를 복구시키고, 결과적으로, 글리세롤 디하이드로게나아제 유전자(DhaD) 및 전사 활성인자 유전자(DhaR)만을 결실시켜 제작하였다 (도 2).
따라서, 본 발명의 일양태에서 사용된 상기 변이체는 글리세롤 디하이드로게나아제 유전자(DhaD) 및 전사 활성인자 유전자(DhaR)가 결실 또는 불능화되어 있는 것을 특징으로 할 수 있다.
이 과정에서 환원경로 유전자들이 더 이상 DhaR 조절 인자의 조절을 받지 않도록 유전자의 상류에 lacZ 프로모터(PlacZ)를 삽입하여 유전자의 발현을 유도인자를 이용하여 인위적으로 조절할 수 있도록 하였다.
본 발명은 다른 양태에서 사용되는 글리세롤 산화경로가 차단된 재조합 미생물은 크렙시엘라 뉴모니아 균주의 염색체에서 전사 활성인자 유전자(DhaR), 1,3-프로판디올 옥시도리덕테이즈 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)가 결실된 크렙시엘라 뉴모니아 변이체(AR 균주)를 제작하고, 상기 결실된 유전자 중 글리세롤 환원경로를 담당하는 유전자인 1,3-프로판디올 옥시도리덕타아제 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)를 포함하는 재조합벡터로 형질전환시켜, 환원경로를 복구시키고, 결과적으로, 전사 활성인자 유전자(DhaR)만이 결실된 변이체를 제작하였다 (도 2).
따라서, 본 발명 다른 양태에서 사용된 상기 변이체는 전사 활성인자 유전자(DhaR)가 결실 또는 불능화되어 있는 것을 특징으로 할 수 있다.
다른 관점에서, 본 발명은 (a) 글리세롤 부재 배지에서 상기 미생물 변이체를 1차 배양하여 균체를 증식시키는 단계; (b) 상기 균체가 증식된 배양액에 글리세롤을 첨가하고 2차 배양하여 1,3-프로판디올을 생산하는 단계; 및 (c) 상기 생성된 1,3-프로판디올을 회수하는 단계를 포함하는 글리세롤을 탄소원으로하여 글리세롤 디하이드로게나아제 유전자(DhaD), 전사 활성인자 유전자(DhaR), 1,3-프로판디올 옥시도리덕타아제 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)가 결실되어 있는 크렙시엘라 뉴모니아 변이체(AK 균주)에 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자를 함유하는 벡터가 도입되어 있거나, 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자가 상기 변이체(AK 균주)의 염색체에 삽입되어 있는 1,3-프로판디올 생성능을 가지는 변이체를 배양하여 1, 3-프로판디올을 제조하는 방법에 관한 것이다.
본 발명은 일 양태에서, 글리세롤 디하이드로게나아제 유전자(DhaD) 및 전사 활성인자 유전자(DhaR)가 결실된 클랩시엘라 뉴모니아 균주와 전사 활성인자 유전자(DhaR)가 결실된 크렙시엘라 뉴모니아 균주는 글리세롤을 함유하는 배지에서 소량의 아세트산을 제외하고는 산화경로의 다른 부산물을 생산하지 않고, 1,3-프로판디올을 생산하지만, 1,3-프로판디올의 생성능이 야생형 모균주에 비하여 떨어지는 는 것을 확인하였으며, 이를 극복하기 위하여, 상기 재조합 균주를 글리세롤을 함유하지 않는 배지에서 1차 배양하여 균체를 증식시킨 후, 글리세롤을 함유하는 배지에서 2차 배양하면 부산물의 생성 없이 높은 수율로 1,3-프로판디올을 생성시킬 수 있다.
본 발명의 일 양태에서, 모균주인 크렙시엘라 뉴모니아 Cu 균주를 2단계 배양한 경우의 글리세롤-1,3-프로판디올 전환율이 35%(mol/mol)인데 비하여, 상기 재조합 균주를 이용하여 2단계 배양한 경우, 글리세롤-1,3-프로판디올 전환율은 70%(mol/mol)로 매우 향상된 전환율을 나타내었다.
본 발명에 있어서, 상기 2단계 배양에서 글리세롤은 5~50 g/L의 농도로 첨가되는 것을 특징으로 할 수 있으며, 바람직하게는 5~20 g/L로 첨가할 수 있으며, 가장 바람직하게는 10 g/L로 첨가하는 것이 좋다.
본 발명의 일 양태에서, 배양과정에서 Aeration을 하지 않은 경우 글리세롤을 거의 소모하지 못했으며, 0.2 vvm, 0.5 vvm 및 1.0 vvm에서는 거의 비슷한 글리세롤 소모성과 1,3-프로판디올 생산성을 보였다. 또한, 본 발명의 일 양태에서, 배양액의 pH를 각각 5, 6, 7 및 8로 배양이 끝날 때까지 유지한 경우, pH 6에서 가장 높은 1,3-프로판디올 생산성을 보였다. 또한, 균주 성장 정도가 OD600 수치가 각각 0, 0.5, 1, 2 및 3일 때 글리세롤을 최종농도가 20 g/L가 되게 첨가해 준 경우, 도 12에 나타난 바와 같이, OD600 수치가 높을수록 1,3-프로판디올 생산성이 높은 것으로 확인되었다.
본 발명의 일 양태에서 사용된 변이체는 플라스미드 DNA가 큐어링된 크렙시엘라 뉴모니아 MGH78578 균주(이하, "Cu"라 함)를 모균주로 하여 상동성 재조합 (homologous recombination) 방법으로 dha 레귤론의 DhaB 효소 재활성화 인자, DhaT 유전자, DhaR 조절인자 및 DhaD 유전자를 apramycin 내성 유전자로 치환하여 산화, 환원 경로가 모두 결손된 기본 재조합 균주(이하, "AK" 균주라 함)를 제조하고, 글리세롤 환원 경로를 복구하기 위하여, 글리세롤 환원 경로 복구용 플라스미드를 제조하였다. 상기 플라스미드 DNA는 DhaB 재활성화 효소 유전자(orfW)-orfX DNA 단편과 1,3-프로판디올 옥시도리덕타제 활성을 지닌 유전자{dhaT, yqhD(E. coli 유래), 혹은 yqhD 상동성 유전자(크렙시엘라 뉴모니아 유래)}를 증폭하고, pGEM TEasy 벡터의 lacZ 프로모터 하류에 삽입하여 제작하고, 상기 글리세롤 환원 경로 복구용 플라스미드 DNA가 형질전환된 1, 3-프로판디올 생산용 재조합 균주를 제조하였다.
본 발명은 일 양태에서, 글리세롤 디하이드로게나아제 유전자(DhaD) 및 전사 활성인자 유전자(DhaR)가 결실된 클랩시엘라 뉴모니아 균주와 전사 활성인자 유전자(DhaR)가 결실된 크렙시엘라 뉴모니아 균주는 글리세롤을 함유하는 배지에서 소량의 아세트산을 제외하고는 산화경로의 다른 부산물을 생산하지 않고, 1,3-프로판디올을 생산하는 것을 확인하였다.
본 발명의 일양태에서는 상기 변이체를 제조하기 위하여, 플라스미드 DNA가 큐어링된 크렙시엘라 뉴모니아 MGH78578 균주(이하, "Cu"라 함)를 모균주로 하여 상동성 재조합 (homologous recombination) 방법으로 dha 레귤론의 DhaB 효소 재활성화 인자, DhaT 유전자 및 DhaR 조절인자를 apramycin 내성 유전자로 치환한 재조합 균주를 제조하였다(AR로 명명) 치환하여 산화, 환원 경로가 모두 결손된 재조합 균주를 제조하였다(이하 "AR" 균주라 함). 상기 AR 균주의 글리세롤 환원 경로를 복구하기 위하여, 상기 본 발명의 일양태에서 제조된 글리세롤 환원 경로 복구용 플라스미드를 AR 균주에 형질전환시켜, 부산물을 생성하시 않으면서 1,3-프로판디올 생성능을 가지는 변이체를 제조하였다.
본 발명에 있어서, 상기 변이체의 배양액으로부터의 1,3-프로판디올의 회수는 통상적인 분리 기술, 예를 들어 증류, 전기투석, 투과증발, 크로마토그라피, 용매추출, 반응추출 등을 이용할 수 있으며, 통상적으로 순도가 높은 물질을 분리하기 위하여 이들을 조합하여 이용할 수 있다.
본 발명에 있어서, 유전자의 "결실"이란 상기 유전자가 염색체상 또는 플라스미드 상에서 삭제되어 상기 유전자가 코딩하는 단백질을 생산할 수 없게된 상태를 의미하고, 유전자의 "불능화"란 상기 유전자가 삽입, 전좌, 일부결실 등에 의하여, 유전자가 코딩하는 단백질을 생산하지 못하게 된 상태를 의미한다.
본 발명에서 상기 유전자를 숙주세포의 염색체상에 삽입하는 방법으로는 통상적으로 알려진 유전자조작방법을 사용할 수 있으며, 일례로는 레트로바이러스 벡터, 아데노바이러스 벡터, 아데노-연관 바이러스 벡터, 헤르페스 심플렉스 바이러스 벡터, 폭스바이러스 벡터, 렌티바이러스 벡터 또는 비바이러스성 벡터를 이용하는 방법을 들 수 있다.
실시예
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
이하, 실시예에서는 크랩시엘라 뉴모니아 균주의 글리세롤 산화환원경로를 모두 차단한 변이체를 제조하고, 글리세롤 환원경로를 다시 복구시켜 부산물을 생성하지 않으면서, 1,3-프로판디올 생산능을 가지는 변이체를 제조하여 사용하였으나, 글리세롤로부터 1,3-프로판디올 생성능을 가지는 미생물의 글리세롤 산화경로만을 차단시킴으로, 부산물을 생성하지 않으면서, 1,3-프로판디올 생산능을 가지는 변이체를 제조하여 배양하여도 동일성 있는 결과를 얻을 수 있다는 것은 당업자에 있어서 자명할 것이다.
또한, 실시예에서는 글리세롤 산화환원경로를 모두 차단한 변이체에서 글리세롤 환원경로를 다시 복구시키는 데에, 글리세롤 환원경로 유전자를 함유하는 벡터로 형질전환된 균주를 사용하였으나, 이외에 통상적으로 사용되는 염색체 삽입방법을 이용하여 글리세롤 환원경로 유전자를 상기 변이체의 염색체에 삽입한 균주를 사용하여도 동일성 있는 결과를 얻을 수 있다는 것은 당업자에 있어서 자명할 것이다.
실시예 1: 글리세롤 산화-환원 대사경로가 차단된 재조합 균주의 제조
글리세롤 대사회로 재설계를 위하여 크렙시엘라 뉴모니아 MGH 78578(ATCC 700721)에서 글리세롤로부터 대사회로를 완전히 차단한 재조합 균주(AK 및 AR)를 제조하였다.
플라스미드 DNA가 큐어링된 크렙시엘라 뉴모니아 MGH78578 균주(Cu로 명명)를 모균주로 하여 상동성재조합 방법으로 dha 레귤론(도 2)의 한 DhaB 효소 재활성화 인자, DhaT 유전자, DhaR 조절인자 및 DhaD 유전자를 apramycin 내성 유전자로 치환하여 산화, 환원 경로가 모두 결손된 재조합 균주 AK를 제조하였다. 동시에 DhaB 효소 재활성화 인자, DhaT 유전자 및 DhaR 조절인자를 apramycin 내성 유전자로 치환한 재조합 균주 AR을 제조하였다. 이때 DhaB 유전자 상류의 DhaR 의존적 자체 프로모터를 인위적으로 조절이 가능한 lacZ 프로모터로 교체하였다.
크렙시엘라 뉴모니아 MGH78578을 항생제를 첨가하지 않은 액상 배지에서 수회 반복 배양한 후, 테트라사이클린이 첨가된 혹은 첨가되지 않은 배지에 접종하여, 플라스미드 DNA가 소실되어, 테트라사이클린이 첨가된 배지에서 증식하지 못하는 콜로니를 선별하여, 크렙시엘라 뉴모니아 MGH78578 Cu라 명명하고, 재조합 균주 제조를 위한 모균주로 이용하였다.
크렙시엘라 뉴모니아 MGH78578 균주의 염색체 DNA를 주형으로 하여 상동성 재조합(homologous recombination) 용 플라스미드를 제조하기 위한 DNA 단편들을 하기의 프라이머 세트들을 사용하여 PCR로 증폭하였다 (도 2).
dhaBI 유전자 단편 증폭용 프라이머
서열번호 1 : 5’-TCTAGAATGAAAAGATCAAAACGATTT-3’(dhaBI XbaI-480bpF)
서열번호 2 : 5’-GGATCCGTCAGCGGCAATCTGCAC-3’(dhaBI BamHI-480bpR)
dhaK 유전자 단편 증폭용 프라이머
서열번호 3 : 5’-AAGCTTCATGCTCTCCGGCGCCTGTC-3’(dhaK HindIII-200-700 bpF)
서열번호 4 : 5’-AGATCTATTTGGTCCAGCGAGCTGAAGC-3’(dhaK BglII-200-700bpR)
dhaR 유전자 단편 증폭용 프라이머
서열번호 5 : 5’-AGATCTCCTGGGATTTCGCGACGGCA-3’(dhaR bglII-200-700bpF)
서열번호 6 : 5’-AAGCTTTCGACAATCGGTTTTAAGGTG-3’(dhaR HindIII-200-700bpR)
Apr 유전자 단편 증폭용 프라이머
서열번호 7 : 5’-GTTAACCTGACGCCGTTGGATACACC-3’ Apr HpaI F
서열번호 8 : 5’-AGATCTAAAAGCTTATGAGCTCAGCCAATCGA-3’ Apr HindIII-BglIIR
증폭된 DNA 단편을 pGEM TEasy 벡터를 이용하여 클로닝하여 염기서열을 확인한 후, 도 3 및 도 4에 나타낸 바와 같이 플라스미드 DNA를 제작하였다.
도 3에 나타낸 방법으로, AK 균주를 제조하기 위한 DhaB 유전자의 아미노 말단(dhaB’)-LacZ promoter(PlacZ)-Apramycin 내성 유전자-DhaK 유전자의 아미노말단(dhaK’)이 연결된 플라스미드 DNA를 제작하였으며, 도 4에 나타낸 방법으로, AR 균주를 제조하기 위한 DhaB 유전자의 아미노 말단(dhaB’)-LacZ promoter(PlacZ)-Apramycin 내성 유전자-DhaR 유전자의 아미노말단(dhaR’)이 연결된 플라스미드 DNA를 제작하였다.
상기 플라스미드를 BamHI-BglII로 처리하여 회수한 DNA 단편을 전기충격법으로 크렙시엘라 뉴모니아 Cu 균주에 도입한 후 apramycin이 첨가된 배지에서 콜로니를 형성하는 재조합 균주들을 분리하였다. 그 결과, dha 레귤론의 DhaB 효소 재활성화 인자, DhaT 유전자, DhaR 조절인자 및 DhaD 유전자가 제거되고 lacZ 프로모터와 apramycin 내성 유전자가 삽입된 재조합 균주 AK 균주를 수득하였으며, DhaB 효소 재활성화 인자, DhaT 유전자 및 DhaR 조절인자가 제거되고 lacZ 프로모터와 apramycin 내성 유전자가 삽입된 재조합 균주 AR을 수득 제작하였다.
실시예 2: 글리세롤 환원 경로 복구 균주의 제조
(1)글리세롤 환원 경로 복구을 위한 플라스미드 DNA의 제조
하기의 프라이머 서열을 사용하여 DhaB 재활성화 효소 유전자(orfW)-orfX DNA 단편과 1,3-프로판디올 옥시도리덕타제 활성을 지닌 유전자{dhaT, yqhD(E. coli 유래), 혹은 yqhD 상동성 유전자(크렙시엘라 뉴모니아 유래)}를 증폭, pGEM TEasy 벡터로 클로닝하여 염기서열을 확인한 후 도 5에 나타낸 바와 같이 플라스미드 DNA를 제조하였다.
서열번호 9 : 5’-AGATCTATGAGCTATCGTATGTTTGA-3’(dhaT-BglII F)
서열번호 10 : 5’-CTCGAGAAGCTTCAGAATGCCTGGCGGAAAAT-3’(dhaT-HindIII/XhoI R)
서열번호 11 : 5’-AGATCTATGAACAACTTTAATCTGCAC-3’(yqhD-BglII F)
서열번호 12 : 5’-AGATCTATGAATAATTTCGACCTGCA-3’(yqhD-HindIII/XhoI R)
서열번호 13 : 5’-AGATCTATGAATAATTTCGACCTGCA-3’(yqhD Kle BglII F)
서열번호 14 : 5’-CTCGAGAAGCTTAGCGTGCAGCCTCGTAAAT-3’(yqhD Kle HindIII, XhoI R)
도 5 및 도 6은 lacZ 프로모터 하류에 크렙시엘라 뉴모니아의 DhaT 유전자와 DhaB 재활성화 효소 유전자가 포함된 플라스미드 혹은 DhaT 유전자만이 포함된 플라스미드 DNA를 제작하는 과정을 나타낸 것이고, 도 7 및 도 8은 lacZ 프로모터 하류에 대장균 유래의 1,3-프로판디올 옥시도리덕타제 활성 YqhD(E) 유전자와 DhaB 재활성화 효소 유전자가 포함된 플라스미드 혹은 YqhD(E) 유전자만이 포함된 플라스미드 DNA를 제작하는 과정을 나타낸 것이다. 도 9 및 도 10은 lacZ 프로모터 하류에 크렙시엘라 뉴모니아 유래의 1,3-프로판디올 옥시도리덕타제 활성 YqhD(K) 유전자와 dhaB 재활성화 효소 유전자가 포함된 플라스미드 혹은 YqhD(K) 유전자만이 포함된 플라스미드 DNA를 제작하는 과정을 내타낸 것이다.
(2)글리세롤 환원경로가 복구된 재조합 균주의 제조
상기에서 제작된 6종류의 1,3-프로판디올 옥시도리덕타제 활성 효소를 코드하는 유전자를 포함하는 플라스미드 DNA와 대조구로 pBR322 및 DhaB 재활성화효소 유전자를 포함하는 플라스미드 DNA를 전기 충격법으로 글리세롤 혐기대사회로가 폐쇄된 AK, AR 균주로 도입하여 글리세롤 환원 경로가 복구된 재조합 균주들을 제조하였다 (표 1). 모균주인 Cu 균주에 각각의 플라스미드가 도입된 재조합 균주가 대조구로 이용되었다. 본 실시예에서 제작한 제조합 균주는 한국생명공학연구원 내 유전자원센터에 기탁하였다 (표 2).
표 1
Figure PCTKR2009001236-appb-T000001
표 2
Figure PCTKR2009001236-appb-T000002
실시예 3: 크렙시엘라 뉴모니아 Cu, AK-VOT, AK-VOQ 및 AK-VOK의 발효에 의한 1,3-프로판디올 생산
5L 발효조를 이용하여 크렙시엘라 뉴모니아 Cu, AK-VOT, AK-VOQ 및 AK-VOK 균주의 증식 정도를 조사하고, 동시에 배양 상등액의 글리세롤의 잔존량과 1,3-프로판디올을 비롯한 대사산물들의 생성량을 크로마토그래피법으로 분석하였다. 배지조성은 다음과 같다: 20 g/l 글리세롤, 3.4 g/l K2HPO4, 1.3 g/l KH2PO4, 0.2 g/l MgSO4, 0.002 g/l CaCl22H2O, 1 g/l 효모추출물, 1 ml 철 용액 [5 g/l FeSO47H2O, 4 ml HCl(37%,w/v)] 및 1 ml 미량원소용액 [70 mg/l ZnCl2, 100 mg/l MnCl24H2O, 60 mg/l H3BO3, 200 mg/l CoCl24H2O, 20 mg/l CuCl22H2O, 25 mg/l NiCl26H2O, 35 mg/l Na2MoO42H2O, 4 ml HCl(37%,w/v)].
5L 발효조에 유효용적을 2 L로하고, 최종농도가 IPTG 0.5 mM, 테트라사이클린 10 μg/L으로 하였으며, 접종량 1%, 배양온도 37°C, 교반속도 200 rpm, 공기 주입속도는 0.5 vvm으로 하였다.
그 결과, 도 11에 나타난 바와 같이, 대조구인 Cu 균주가 타균주에 비해 다소 빠른 증식 속도를 보이기는 하였지만, 최종 OD600 값은 4 정도로 모든 균주에서 유사하게 나타났다. 잔존 글리세롤을 살펴보면 Cu의 경우 배양 12 시간째에 2% 글리세롤을 모두 소모하고, 7.63 g/L의 1,3-PD를 생산하였으며, 동시에 산화대사산물인 2,3-부탄디올 (2.35 g/L), 에탄올 (1 g/L), 젖산 (1 g/L), 아세트산 (0.4 g/L), 숙신산 (0.3 g/L)를 생산하였다. AK-VOT, AK-VOQ 및 AK-VOK 균주는 배양 30 시간 이후에도 5 g/L 이상의 글리세롤이 잔존하였으며, 6 g/L의 1,3-PD를 생산하였지만, Cu와 달리 산화대사 부산물들은 전혀 생산하지 않았다. 1,3-PD의 생산량 측면에서는 Cu 균주가 AK-VOT, AK-VOQ, AK-VOK 균주에 비해 1 g/L 이상 많았지만, 전환율 면에서는 반대로 10% 정도 낮은 것으로 나타났다.
표 3
Figure PCTKR2009001236-appb-T000003
실시예 4: 2단계 발효에 의한 1,3-프로판디올 생산
AK-VOT 균주의 낮은 1,3-PD 생산성을 개선하기 위하여 2단계 발효(two-step fermentation)을 수행하였다. 5L 발효조에 유효용적을 2L로하고, 최종농도가 IPTG 0.5 mM, 테트라사이클린 10 μg/L으로 하였으며, 균주접종량은 배지의 1%, 배양온도는 37°C, 교반속도는 200 rpm, 공기 주입속도는 0.5 vvm으로 하였다. LB 배지에서 전배양한 균주를 2 L의 LB 배지에 접종하여(1%), 1차 발효(균주 배양 단계)를 수행한 후 12 시간째에 글리세롤을 20 g/L 농도로 첨가해주어 2차 발효(1,3-PD 생산 단계)를 실시하여 글리세롤 대사를 유도하였으며, 그 결과 1단계 발효(one-step fermentation)와 비교하여 1,3-PD 전환율은 52%에서 70%로, 생산성은 0.26 g/Lh에서 0.56 g/Lh로 두 배 이상의 향상된 결과를 얻었다 (도 12 및 표 4).
표 4
Figure PCTKR2009001236-appb-T000004
실시예 5: 글리세롤 농도에 따른 영향
실시예 2와 동일한 조건으로 1단계 및 2단계 배양을 수행하였으며, 균주 성장 정도가 OD600 2일 때, 최종농도가 각각 5 g/L, 10 g/L, 15 g/L 및 20 g/L가 되도록 글리세롤을 첨가해 주었다. 배양 7시간 후에 1,3-PD 생산량을 비교했을 때 초기 글리세롤 농도가 10 g/L 일 때 가장 많은 4.94 g/L을 생산했으며, 전환율 역시 70%으로 가장 높은 전환율을 보였다 (도 13 및 표 5).
표 5
Figure PCTKR2009001236-appb-T000005
실시예 6: Aeration 정도에 따른 영향
실시예 2와 동일한 조건으로 1단계 및 2단계 배양을 수행하였으며, 균주 성장 정도가 OD600 2일 때, 글리세롤을 최종농도가 20 g/L가 되게 첨가해 주었으며, 각각의 areation 조건을 각각 0.0 vvm, 0.2 vvm, 0.5 vvm 및 1.0 vvm으로 달리하여 배양하였다. 그 결과, 도 14에 나타난 바와 같이, Aeration을 하지 않은 0.0 vvm의 경우 글리세롤을 거의 소모하지 못했으며, 0.2 vvm, 0.5 vvm 및 1.0 vvm에서는 거의 비슷한 글리세롤 소모성과 1,3-PD 생산성을 보였다.
실시예 7: pH에 따른 영향
실시예 2와 동일한 조건으로 1단계 및 2단계 배양을 수행하였으며, 균주 성장 정도가 OD600 2일 때, 글리세롤을 최종농도가 20 g/L가 되게 첨가해 주었으며, 배양액의 pH를 각각 5, 6, 7 및 8로 배양이 끝날 때까지 유지하였다. 그 결과, 도 15에 나타난 바와 같이, pH 6에서 가장 높은 1,3-PD 생산성을 나타내었다
실시예8: 균체량에 따른 영향
실시예 2와 동일한 조건으로 1단계 및 2단계 배양을 수행하였으며, 균주 성장 정도가 OD600 수치가 각각 0, 0.5, 1, 2 및 3일 때 글리세롤을 최종농도가 20 g/L가 되게 첨가해 주었다. 그 결과, 도 16에 나타난 바와 같이, OD600 수치가 높을수록 1,3-PD 생산성이 높은 것을 확인하였다.
이상 상세히 설명한 바와 같이, 본 발명에 따라 글리세롤 대사경로에서 부산물을 생성하는 산화대사경로를 차단시킨 재조합 균주를 2단계 배양하면, 정제과정에서 비용 상승을 초래하는 부산물의 생성 없이, 향상된 수율로 1, 3-프로판디올을 생산할 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
전자파일 첨부하였음.

Claims (14)

  1. 다음 단계를 포함하는, 글리세롤을 탄소원으로하여 1,3-프로판디올을 생산하는 능력을 가지는 미생물에서 전사 활성인자를 코딩하는 유전자 또는 디하이드록시아세톤키나아제를 코딩하는 유전자가 결실 또는 불능화되어 있는 미생물 변이체를 배양하여 1, 3-프로판디올을 제조하는 방법:
    (a) 글리세롤 부재 배지에서 상기 미생물 변이체를 1차 배양하여 균체를 증식시키는 단계;
    (b) 상기 균체가 증식된 배양액에 글리세롤을 첨가하고 2차배양하여 1,3-프로판디올을 생산하는 단계; 및
    (c) 상기 생성된 1,3-프로판디올을 회수하는 단계.
  2. 제1항에 있어서, 1,3-프로판디올을 생산하는 능력을 가지는 미생물은 시트로박터(Citrobacter), 클로스트리디움(Clostridium), 엔테로박터(Enterobacter), 크렙시엘라(Klebsiella) 및 락토바실러스(Lactobacillus)로 구성된 군에서 선택되는 것을 특징으로 하는 방법.
  3. 제1항에 있어서, 미생물 변이체는 추가적으로 글리세롤 디하이드로게나아제를 코딩하는 유전자가 결실 또는 불능화되어 있는 것을 특징으로 하는 방법.
  4. 제2항에 있어서, 1,3-프로판디올을 생산하는 능력을 가지는 미생물은 크렙시엘라 뉴모니아이고, 전사 활성인자 유전자는 DhaR이며, 디하이드록시아세톤 키나아제 유전자는 DhaK, DhaL, DhaM 및 DhaK'로 구성된 군에서 선택되는 것을 특징으로 하는 방법.
  5. 제4항에 있어서, 미생물 변이체는 글리세롤 디하이드로게나아제 유전자(DhaD) 및 전사 활성인자 유전자(DhaR)가 결실 또는 불능화되어 있는 것을 특징으로 하는 방법.
  6. 제4항에 있어서, 미생물 변이체는 전사 활성인자 유전자(DhaR)가 결실 또는 불능화되어 있는 것을 특징으로 하는 방법.
  7. 다음 단계를 포함하는, 글리세롤 디하이드로게나아제 유전자(DhaD), 전사 활성인자 유전자(DhaR), 1,3-프로판디올 옥시도리덕타아제 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)가 결실되어 있는 크렙시엘라 뉴모니아 변이체(AK 균주)에 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자를 함유하는 벡터가 도입되어 있거나, 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자가 상기 변이체(AK 균주)의 염색체에 삽입되어 있는, 글리세롤을 탄소원으로하여 1,3-프로판디올 생성능을 가지는 변이체를 배양하여 1, 3-프로판디올을 제조하는 방법:
    (a) 글리세롤 부재 배지에서 상기 미생물 변이체를 1차 배양하여 균체를 증식시키는 단계;
    (b) 상기 균체가 증식된 배양액에 글리세롤을 첨가하고 2차 배양하여 1,3-프로판디올을 생산하는 단계; 및
    (c) 상기 생성된 1,3-프로판디올을 회수하는 단계.
  8. 제7항에 있어서, 상기 글리세롤은 5~50 g/L의 농도로 첨가되는 것을 특징으로 하는 방법.
  9. 다음 단계를 포함하는, 글리세롤 디하이드로게나아제 유전자(DhaD), 전사 활성인자 유전자(DhaR), 1,3-프로판디올 옥시도리덕타아제 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)가 결실되어 있는 크렙시엘라 뉴모니아 변이체(AK 균주)에 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자와 글리세롤 디하이드라타아제 재활성화인자를 코딩하는 유전자를 함유하는 벡터가 도입되어 있거나, 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자와 글리세롤 디하이드라타아제 재활성화인자를 코딩하는 유전자가 상기 변이체(AK 균주)의 염색체에 삽입되어 있는, 글리세롤을 탄소원으로하여 1,3-프로판디올 생성능을 가지는 변이체를 배양하여 1, 3-프로판디올을 제조하는 방법:
    (a) 글리세롤 부재 배지에서 상기 미생물 변이체를 1차 배양하여 균체를 증식시키는 단계;
    (b) 상기 균체가 증식된 배양액에 글리세롤을 첨가하고 2차배양하여 1,3-프로판디올을 생산하는 단계; 및
    (c) 상기 생성된 1,3-프로판디올을 회수하는 단계.
  10. 제9항에 있어서, 상기 글리세롤은 5~50 g/L의 농도로 첨가되는 것을 특징으로 하는 방법.
  11. 다음 단계를 포함하는, 글리세롤을 탄소원으로하여 전사 활성인자 유전자(DhaR), 1,3-프로판디올 옥시도리덕테이즈 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)가 결실되어 있는 크렙시엘라 뉴모니아 변이체(AR 균주)에 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자를 함유하는 벡터가 도입되어 있거나, 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자가 상기 변이체(AR 균주)의 염색체에 삽입되어 있는, 글리세롤을 탄소원으로하여 1,3-프로판디올 생성능을 가지는 변이체를 배양하여 1, 3-프로판디올을 제조하는 방법:
    (a) 글리세롤 부재 배지에서 상기 미생물 변이체를 1차 배양하여 균체를 증식시키는 단계;
    (b) 상기 균체가 증식된 배양액에 글리세롤을 첨가하고 2차 배양하여 1,3-프로판디올을 생산하는 단계; 및
    (c) 상기 생성된 1,3-프로판디올을 회수하는 단계.
  12. 제11항에 있어서, 상기 글리세롤은 5~50 g/L의 농도로 첨가되는 것을 특징으로 하는 방법.
  13. 다음 단계를 포함하는, 글리세롤을 탄소원으로하여 전사 활성인자 유전자(DhaR), 1,3-프로판디올 옥시도리덕테이즈 유전자(DhaT) 및 글리세롤 디하이드라타아제 재활성화인자II 유전자(DhaBA2)가 결실되어 있는 크렙시엘라 뉴모니아 변이체(AR 균주)에 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자와 글리세롤 디하이드라타아제 재활성화인자를 코딩하는 유전자를 함유하는 벡터가 도입되어 있거나, 1,3-프로판디올 옥시도리덕타아제를 코딩하는 유전자와 글리세롤 디하이드라타아제 재활성화인자를 코딩하는 유전자가 상기 변이체(AR 균주)의 염색체에 삽입되어 있는, 글리세롤을 탄소원으로하여 1,3-프로판디올 생성능을 가지는 변이체를 배양하여 1, 3-프로판디올을 제조하는 방법:
    (a) 글리세롤 부재 배지에서 상기 미생물 변이체를 1차 배양하여 균체를 증식시키는 단계;
    (b) 상기 균체가 증식된 배양액에 글리세롤을 첨가하고 2차 배양하여 1,3-프로판디올을 생산하는 단계; 및
    (c) 상기 생성된 1,3-프로판디올을 회수하는 단계.
  14. 제13항에 있어서, 상기 글리세롤은 5~50 g/L의 농도로 첨가되는 것을 특징으로 하는 방법.
PCT/KR2009/001236 2009-03-12 2009-03-12 글리세롤 산화대사경로를 차단시킨 재조합 균주를 이용한 1、3-프로판디올의 제조방법 WO2010104224A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09841538.3A EP2407544A4 (en) 2009-03-12 2009-03-12 PREPARATION PROCESS FOR 1,3-PROPANEDIOL USING A RECOMBINANT MICROBIAL STRAIN WITH BLOCKED GLYCERINE OXIDIZING FLUID CHANGE
PCT/KR2009/001236 WO2010104224A1 (ko) 2009-03-12 2009-03-12 글리세롤 산화대사경로를 차단시킨 재조합 균주를 이용한 1、3-프로판디올의 제조방법
CN2009801562408A CN102388141A (zh) 2009-03-12 2009-03-12 使用丙三醇氧化途径被阻断的重组菌株生产1,3-丙二醇的方法
US13/148,307 US8338148B2 (en) 2009-03-12 2009-03-12 Method of producing 1,3-propanediol using recombinant Klebsiella strain in which glycerol oxidative pathway has been blocked

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/001236 WO2010104224A1 (ko) 2009-03-12 2009-03-12 글리세롤 산화대사경로를 차단시킨 재조합 균주를 이용한 1、3-프로판디올의 제조방법

Publications (1)

Publication Number Publication Date
WO2010104224A1 true WO2010104224A1 (ko) 2010-09-16

Family

ID=42728495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001236 WO2010104224A1 (ko) 2009-03-12 2009-03-12 글리세롤 산화대사경로를 차단시킨 재조합 균주를 이용한 1、3-프로판디올의 제조방법

Country Status (4)

Country Link
US (1) US8338148B2 (ko)
EP (1) EP2407544A4 (ko)
CN (1) CN102388141A (ko)
WO (1) WO2010104224A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130095541A1 (en) * 2010-05-25 2013-04-18 Korea Research Institute Of Bioscience And Biotech Method for preparing 3-hydroxypropionic acid from glycerol in high yield
CN106906248A (zh) * 2017-03-28 2017-06-30 清华大学 一种利用重组微生物发酵生产1,3‑丙二醇的方法
CN114806981A (zh) * 2021-01-18 2022-07-29 中国科学院上海高等研究院 克雷伯氏菌工程菌在生产1,3-丙二醇中的应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2248904A1 (en) * 2009-05-05 2010-11-10 Metabolic Explorer Continuous culture for 1,3-propanediol production using high glycerine concentration
WO2011052819A1 (ko) * 2009-10-29 2011-05-05 한국생명공학연구원 글리세롤로부터 3-하이드록시프로피온산을 생산하는 새로운 방법
CN104919039A (zh) * 2012-10-18 2015-09-16 阿尔吉诺生物技术有限责任公司 在蓝藻中生产1,3-丙二醇
KR101532736B1 (ko) 2014-02-24 2015-07-09 한국생명공학연구원 2,3-부탄디올 합성 유전자가 결실된 미생물 변이체를 이용한 1,3-프로판디올의 제조방법
CN104726505A (zh) * 2015-03-31 2015-06-24 上海交通大学 一种利用基因工程蓝藻生产三碳化合物的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687981A (en) 1968-01-17 1972-08-29 Du Pont Process for making a dioxane
US5015789A (en) 1989-08-08 1991-05-14 Degussa Aktiengesellschaft Method of preparing 1,3-propanediol
US5254467A (en) 1988-09-01 1993-10-19 Henkel Kommanditgesellschaft Auf Aktien Fermentive production of 1,3-propanediol
WO1993025696A1 (fr) * 1992-06-15 1993-12-23 Institut National De La Recherche Agronomique Procede pour l'obtention de produits a activite bacterienne, capables de transformer le glycerol en 1,3-propanediol, souches correspondantes et application a la production industrielle de 1,3-propanediol
KR20050088072A (ko) * 2002-10-04 2005-09-01 이 아이 듀폰 디 네모아 앤드 캄파니 고수율을 갖는 1,3-프로판디올의 생물학적 제조 방법
KR20060123490A (ko) * 2004-01-12 2006-12-01 메타볼릭 익스플로러 1,2-프로판디올을 생산하기 위하여 진화된 미생물
KR20070121282A (ko) * 2006-06-21 2007-12-27 한국과학기술원 1,2―프로판디올 고생성능을 가지는 변이체 및 이를이용한 1,2―프로판디올의 제조방법
WO2008052595A1 (en) * 2006-10-31 2008-05-08 Metabolic Explorer Process for the biological production of 1,3-propanediol from glycerol with high yield

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024843A (zh) * 1999-08-18 2007-08-29 纳幕尔杜邦公司 用于生产高效价1,3-丙二醇的生物学方法
EP2428573A3 (en) 2002-10-04 2012-06-27 Genecor International, Inc. Improved production of bacterial strains cross reference to related applications
US20050079617A1 (en) 2003-10-03 2005-04-14 Cervin Marguerite A. Glucose transport mutants for production of biomaterial
EP1731604A4 (en) * 2004-03-26 2007-04-04 Nippon Catalytic Chem Ind PROCESS FOR THE PREPARATION OF 1,3-PROPANEL AND / OR 3-HYDROXYPROPIONIC ACID
WO2010064744A1 (en) * 2008-12-03 2010-06-10 Korea Research Institute Of Bioscience And Biotechnology Mutant blocked in glycerol oxidaion pathway for producing 1,3-propanediol

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687981A (en) 1968-01-17 1972-08-29 Du Pont Process for making a dioxane
US5254467A (en) 1988-09-01 1993-10-19 Henkel Kommanditgesellschaft Auf Aktien Fermentive production of 1,3-propanediol
US5015789A (en) 1989-08-08 1991-05-14 Degussa Aktiengesellschaft Method of preparing 1,3-propanediol
WO1993025696A1 (fr) * 1992-06-15 1993-12-23 Institut National De La Recherche Agronomique Procede pour l'obtention de produits a activite bacterienne, capables de transformer le glycerol en 1,3-propanediol, souches correspondantes et application a la production industrielle de 1,3-propanediol
KR20050088072A (ko) * 2002-10-04 2005-09-01 이 아이 듀폰 디 네모아 앤드 캄파니 고수율을 갖는 1,3-프로판디올의 생물학적 제조 방법
KR20060123490A (ko) * 2004-01-12 2006-12-01 메타볼릭 익스플로러 1,2-프로판디올을 생산하기 위하여 진화된 미생물
KR20070121282A (ko) * 2006-06-21 2007-12-27 한국과학기술원 1,2―프로판디올 고생성능을 가지는 변이체 및 이를이용한 1,2―프로판디올의 제조방법
WO2008052595A1 (en) * 2006-10-31 2008-05-08 Metabolic Explorer Process for the biological production of 1,3-propanediol from glycerol with high yield

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2407544A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130095541A1 (en) * 2010-05-25 2013-04-18 Korea Research Institute Of Bioscience And Biotech Method for preparing 3-hydroxypropionic acid from glycerol in high yield
US8951763B2 (en) * 2010-05-25 2015-02-10 Korea Research Institute Of Bioscience And Biotechnology Method for preparing 3-hydroxypropionic acid from glycerol in high yield
CN106906248A (zh) * 2017-03-28 2017-06-30 清华大学 一种利用重组微生物发酵生产1,3‑丙二醇的方法
CN114806981A (zh) * 2021-01-18 2022-07-29 中国科学院上海高等研究院 克雷伯氏菌工程菌在生产1,3-丙二醇中的应用
CN114806981B (zh) * 2021-01-18 2023-05-23 中国科学院上海高等研究院 克雷伯氏菌工程菌在生产1,3-丙二醇中的应用

Also Published As

Publication number Publication date
US20120045808A1 (en) 2012-02-23
CN102388141A (zh) 2012-03-21
EP2407544A4 (en) 2014-01-22
EP2407544A1 (en) 2012-01-18
US8338148B2 (en) 2012-12-25
EP2407544A9 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2010104224A1 (ko) 글리세롤 산화대사경로를 차단시킨 재조합 균주를 이용한 1、3-프로판디올의 제조방법
US7691620B2 (en) Ethanol production
KR101145405B1 (ko) 글리세롤 산화경로가 차단된 1、3―프로판디올 생산 변이체
WO2013162274A1 (ko) 신규한 d형 젖산 생산균주 및 그의 용도
WO2019203436A1 (ko) 에탄올 생산 경로가 억제된 내산성 효모 및 이를 이용한 젖산의 제조방법
US20130177956A1 (en) Microorganisms for 1,3-propanediol production using high glycerine concentration
WO2020075986A2 (ko) 알코올 생성이 억제된 재조합 내산성 효모 및 이를 이용한 젖산의 제조방법
WO2012030130A2 (ko) 수크로오즈와 글리세롤을 동시에 이용하는 신규 숙신산 생성 변이 미생물 및 이를 이용한 숙신산 제조방법
US10947547B2 (en) Recombinant microorganism having enhanced 2,3-butanediol producing ability and method for producing 2,3-butanediol using the same
CN113528362A (zh) 甘油产生受到抑制的重组耐酸酵母和使用其生产乳酸的方法
KR101189187B1 (ko) 글리세롤 산화대사경로를 차단시킨 재조합 균주를 이용한 1、3―프로판디올의 제조방법
WO2015093832A1 (ko) 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법
WO2017052299A1 (ko) 신규한 캔디다 인판티콜라 균주, 이의 변이균주 및 형질전환균주, 및 이를 이용하여 디오익 산류를 생산하는 방법
WO2019225865A1 (ko) 1,3-pdo 생성능을 가지고 3-hp 생성능이 저해된 재조합 코리네박테리움 및 이를 이용한 1,3-pdo의 제조방법
WO2013012293A9 (ko) 글리세롤 발효 미생물 변이체를 이용하여 디올화합물을 고수율로 생산하는 방법
WO2015126112A1 (ko) 2,3-부탄디올 합성 유전자가 결실된 미생물 변이체를 이용한 1,3-프로판디올의 제조방법
WO2010064744A1 (en) Mutant blocked in glycerol oxidaion pathway for producing 1,3-propanediol
WO2010093150A2 (ko) 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물 및 이를 이용한 숙신산의 제조방법
WO2019143089A1 (ko) 1,3-프로판디올 생성능을 가지는 변이미생물 및 이를 이용한 1,3-pdo의 제조방법
WO2022215800A1 (ko) 신규한 분지쇄아미노산 투과효소 변이체 및 이를 이용한 l-발린 생산 방법
WO2016129895A1 (ko) 다이올 생산용 재조합 미생물
Bengelsdorf et al. Host organisms: Clostridium acetobutylicum/Clostridium beijerinckii and related organisms
WO2015046978A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
KR101246877B1 (ko) 2,3―부탄다이올 생산수율이 우수한 라울텔라 sp. B6
WO2024117834A1 (ko) 1,3-propanediol과 3-hydroxypropionic acid를 동시 생산하는 미생물 및 이의 용도

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156240.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009841538

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13148307

Country of ref document: US