WO2017047596A1 - 液晶配向剤、液晶配向膜および液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜および液晶表示素子 Download PDF

Info

Publication number
WO2017047596A1
WO2017047596A1 PCT/JP2016/077012 JP2016077012W WO2017047596A1 WO 2017047596 A1 WO2017047596 A1 WO 2017047596A1 JP 2016077012 W JP2016077012 W JP 2016077012W WO 2017047596 A1 WO2017047596 A1 WO 2017047596A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
aligning agent
crystal aligning
Prior art date
Application number
PCT/JP2016/077012
Other languages
English (en)
French (fr)
Inventor
加名子 鈴木
勇太 川野
耕平 後藤
雅章 片山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020187009817A priority Critical patent/KR20180053331A/ko
Priority to CN201680053714.6A priority patent/CN108027537B/zh
Priority to JP2017539921A priority patent/JP6750627B2/ja
Priority to US15/758,380 priority patent/US10761375B2/en
Publication of WO2017047596A1 publication Critical patent/WO2017047596A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • C08G73/127Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • C09K19/588Heterocyclic compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133719Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films with coupling agent molecules, e.g. silane

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.
  • a liquid crystal display element is generally constructed from constituent members such as a liquid crystal, a liquid crystal alignment film, an electrode, and a substrate, and various driving methods are adopted depending on the application. For example, in order to realize a wide viewing angle of the liquid crystal display element, an IPS (registered trademark) (In-Plane-Switching) driving method using a lateral electric field, and an FFS (Fringe-Field-Switching) driving method, which is an improved version thereof, are used. Etc. are adopted.
  • a liquid crystal display element is an element that performs display by driving liquid crystal molecules whose arrangement is controlled by voltage, and a polyimide-based liquid crystal alignment film is widely used as a film for controlling the alignment state of the liquid crystal molecules. (For example, see Patent Documents 1 and 2).
  • the function of controlling the alignment of the liquid crystal is imparted by performing an alignment process on the organic film formed on the substrate.
  • a so-called rubbing method is known in which an organic film is rubbed with a cloth wound around a roller.
  • the rubbing method is widely used because it can easily realize relatively stable liquid crystal alignment.
  • the rubbing method sometimes has a problem of yield reduction due to generation of dust or static electricity.
  • the surface of the liquid crystal alignment film cannot be uniformly rubbed with a cloth, and the alignment of the liquid crystal May become non-uniform.
  • a photo-alignment method has been actively studied as another method for aligning the liquid crystal alignment film without rubbing.
  • photo-alignment methods There are various photo-alignment methods. Generally, anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy. is there.
  • the main photo-alignment materials those utilizing the photodecomposition of polyimide are known, but the liquid crystal alignment film obtained by the photo-alignment method is more anisotropic with respect to the alignment direction of the polymer film than that by rubbing. There is a problem that is small.
  • liquid crystal display elements of IPS drive type and FFS drive type Conventionally, positive type liquid crystal is used for liquid crystal display elements of IPS drive type and FFS drive type.
  • negative type liquid crystal By using negative type liquid crystal, it is possible to reduce the transmission loss at the upper part of the electrode and improve the contrast. It is.
  • a liquid crystal alignment film obtained by a photo-alignment method is used for an IPS driving type or FFS driving type liquid crystal display element using negative liquid crystal, it is expected to have higher display performance than a conventional liquid crystal display element.
  • an object of the present invention is to provide a liquid crystal alignment method for a photo-alignment method in order to obtain a liquid crystal alignment film for a photo-alignment method that does not generate a bright spot even when a negative type liquid crystal is used and a good afterimage characteristic is obtained. It is in providing the liquid crystal display element which comprises an agent, the liquid crystal aligning film obtained from this liquid crystal aligning agent, and this liquid crystal aligning agent.
  • the gist of the present invention is as follows.
  • the polyimide precursor is represented by the following formula (I): [Where: R 1 , independently of one another, is a hydrogen atom, a methyl group or a fluorine atom, and at least one of R 1 is a methyl group or a fluorine atom; R 2 independently of one another is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; X 1 represents the following formulas (X1-1) to (X1-9): (Wherein R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 2 to A group selected from the group consisting of 6 alkynyl groups or phenyl groups; Z 1 is independently of each other a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or
  • X 1 represents the following formula (X1-1): (Wherein R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 2 to 6 is an alkynyl group or a phenyl group)
  • the liquid crystal aligning agent as described in said [1] or [2] which is group represented by these.
  • a liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of the above [1] to [4] on a substrate and performing photo-alignment treatment.
  • a liquid crystal display device comprising the liquid crystal alignment film according to [5] or [6].
  • liquid crystal aligning agent of the present invention it is possible to suppress the bright spots due to the decomposition products derived from the liquid crystal alignment film generated during the photo-alignment treatment, and the irradiation sensitivity is high, and excellent liquid crystal alignment is obtained. This makes it possible to provide a highly reliable liquid crystal display without display defects.
  • liquid crystal aligning agent contains the polyimide or polyimide precursor containing the structural unit derived from a specific diamine.
  • the liquid crystal aligning agent of the present invention has the following formula (1): (Wherein X 1 is a tetravalent organic group) And a tetracarboxylic dianhydride represented by the following formula (2): (Where R 1 , independently of one another, is a hydrogen atom, a methyl group or a fluorine atom, and at least one of R 1 is a methyl group or a fluorine atom; Z 1 is independently of each other a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms or an aralkyl group having 2 to 6 carbon atoms. Yes; and n 1 is 1 or 2)
  • the polyimide or polyimide precursor obtained by reaction with the diamine component containing diamine represented by these is contained.
  • the liquid crystal aligning agent of the present invention has the following formula (I): [Where: R 1 , independently of one another, is a hydrogen atom, a methyl group or a fluorine atom, and at least one of R 1 is a methyl group or a fluorine atom; R 2 independently of one another is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; X 1 represents the following formulas (X1-1) to (X1-9): (Wherein R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 2 to A group selected from the group consisting of 6 alkynyl groups or phenyl groups; Z 1 is independently of each other a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to
  • the tetracarboxylic dianhydride component of the polyimide or polyimide precursor according to the present invention is represented by the following formula (1): (Wherein X 1 is a tetravalent organic group) The tetracarboxylic dianhydride represented by these, or its derivative (s).
  • the derivative of tetracarboxylic dianhydride means a dihalide of tetracarboxylic acid or a diester that is a ring-opened product thereof, and includes, for example, the following formula (1 ′): (Wherein X 1 is a tetravalent organic group, R ′ is a halogen atom or a hydroxy group, and R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) It is represented by
  • tetravalent organic group for example, an aromatic compound having 6 to 20 carbon atoms (eg, benzene, indene, naphthalene, fluorene, etc.) or a partially saturated compound thereof (eg, tetralin, etc.) )
  • a tetravalent group of an aliphatic compound having 2 to 20 carbon atoms eg, butane, cyclobutane, cyclopentane, cyclohexane, bicyclooctane, tetrahydrofuran, etc.
  • Two or more of the above compounds may be directly or a cross-linking member (wherein the cross-linking member means —O—, —CO—, —COO—, —OCO—, —SO 2 —, —S—, —CH 2 -, - C (CH 3 ) 2 - and -C (CF 3) 2 -
  • the compound is one selected from an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a halogen atom. You may have the above substituent.
  • alkyl group having 1 to 6 carbon atoms means a monovalent group of a linear, branched or cyclic aliphatic saturated hydrocarbon having 1 to 6 carbon atoms. Specific examples include methyl group, ethyl group, propyl group, butyl group, t-butyl group, hexyl group, cyclopentyl group, cyclohexyl group, bicyclohexyl group and the like.
  • the “alkenyl group having 2 to 6 carbon atoms” is a monovalent linear, branched or cyclic aliphatic unsaturated hydrocarbon having 2 to 6 carbon atoms having one or more carbon-carbon double bonds.
  • Means the group of Specific examples include vinyl group, allyl group, 1-propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, A cyclohexenyl group etc. are mentioned.
  • “Alkynyl group having 2 to 6 carbon atoms” is a monovalent of a linear, branched or cyclic aliphatic unsaturated hydrocarbon having 2 to 6 carbon atoms having one or more carbon-carbon triple bonds.
  • Means group. Specific examples include ethynyl group, 1-propynyl group, 2-propynyl group and the like.
  • Alkoxy group having 1 to 6 carbon atoms means a group —OR (wherein R is the alkyl group having 1 to 6 carbon atoms). Specific examples include methoxy group, ethoxy group, propoxy group, butoxy group, t-butoxy group, hexyloxy group, cyclopentyloxy group, cyclohexyloxy group and the like.
  • the substituent in the “optionally substituted alkyl group having 1 to 6 carbon atoms, alkenyl group having 2 to 6 carbon atoms or aralkyl group having 2 to 6 carbon atoms” is used as the liquid crystal aligning agent of the present invention.
  • Halogen atoms means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • Examples of the tetracarboxylic dianhydride component represented by the formula (1) include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2, 3-trimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 2,4,5-tricarboxycyclopentylacetic acid dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetraca Boronic acid dianhydride
  • 1,2,3,4-cyclobutanetetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1, 2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3-trimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic Acid dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 2,4,5-tricarboxycyclopentylacetic acid dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,4-dicarboxy Consists of 1,2,
  • X 1 preferred embodiments of the tetravalent organic group (ie, X 1 ) include the following formulas (X1-1) to (X1-9): (Wherein R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 2 to 6 is an alkynyl group or a phenyl group).
  • X 1 is represented by the following formula (X1-1): (Wherein R 3 , R 4 , R 5 and R 6 have the same meanings as described above), and a particularly preferred embodiment is that X 1 is represented by the formula (X1-1).
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • one or more tetracarboxylic dianhydrides represented by the formula (1) or derivatives thereof may be used.
  • the diamine component of the polyimide or polyimide precursor according to the present invention is represented by the following formula (2): (Where R 1 , independently of one another, is a hydrogen atom, a methyl group or a fluorine atom, and at least one of R 1 is a methyl group or a fluorine atom; Z 1 is independently of each other a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms or an aralkyl group having 2 to 6 carbon atoms. Yes; and n 1 is 1 or 2) It contains the diamine represented by these.
  • a preferred embodiment is one in which Z 1 is independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Examples of the diamine represented by the formula (2) include bis (4-amino-2-methylphenoxy) methane, bis (4-amino-2-fluorophenoxy) methane, 4- [2- (4-amino- 2-fluorophenyl) methoxy] aniline, 4- [2- (4-amino-2-methylphenyl) methoxy] aniline, 1,2-bis (4-amino-2-methylphenoxy) ethane, 1,2-bis (4-amino-2-fluorophenoxy) ethane, 4- [2- (4-amino-2-fluorophenyl) ethoxy] aniline or 4- [2- (4-amino-2-methylphenyl) ethoxy] aniline Can be mentioned.
  • diamines are commercially available, are produced by methods described in known literature, or are produced according to the description of the synthesis examples in this specification.
  • one or more diamines represented by the formula (2) may be used.
  • the proportion of the diamine represented by formula (2) in the total diamine component is preferably 20 mol% or more, more preferably 50 to 100 mol%, still more preferably 70 to 100 mol%, and more preferably 85 to 100 mol%. Particularly preferred. Therefore, in the liquid crystal aligning agent of the present invention, the proportion of the structural unit represented by the formula (I) in all the structural units is preferably 20 mol% or more, more preferably 50 to 100 mol%, and more preferably 70 to 100 mol%. Is more preferable, and 85 to 100 mol% is particularly preferable.
  • the diamine component of the polyimide or polyimide precursor according to the present invention may include one or more diamines other than the diamine represented by the formula (2).
  • Such diamine is not particularly limited as long as the properties as the liquid crystal aligning agent of the present invention are not impaired, but typically, the following formula (3): (Where Y is a divalent organic group; Z 2 is independently of each other a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an aralkyl group having 2 to 6 carbon atoms. ) The diamine represented by these.
  • the divalent organic group for example, an aromatic compound having 6 to 20 carbon atoms (for example, benzene, indene, naphthalene, fluorene, furan, pyrrole, etc.) or a partially saturated compound thereof (for example, , Tetralin, etc.) or a divalent group of an aliphatic compound having 2 to 20 carbon atoms (eg, ethane, butane, cyclobutane, cyclopentane, cyclohexane, bicyclooctane, tetrahydrofuran, etc.), or the same Or two or more of the above-mentioned compounds, which may be different from each other, are directly or a cross-linking member (wherein the cross-linking member means —O—, —CO—, —COO—, —OCO—, —SO 2 —, — S -, - CH 2 -, - C (CH
  • compounds linked to each other by e.g., biphenyls, shea B hexyl benzene, may be mentioned diphenyl ether, benzophenone, a divalent group of diphenylmethane and the like).
  • the compound is one selected from an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a halogen atom. You may have the above substituent.
  • examples of the diamine represented by the formula (3) include Y as the following formulas (Y-1) to (Y-49) and (Y-57) And diamine which is a group selected from the group consisting of (Y-118).
  • n are each independently an integer of 1 to 11, but m + n is an integer of 2 to 12.
  • j is an integer of 0 to 3.
  • h is an integer of 1 to 3.
  • j is an integer of 0 to 3.
  • the polyamic acid which is a polyimide precursor used in the present invention, is produced by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually carried out in an organic solvent.
  • the organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the organic solvent used for reaction below is given, it is not limited to these examples. Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done.
  • the solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3].
  • An organic solvent can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D-2 represents an alkyl group having 1 to 3 carbon atoms
  • the formula [D-3 D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced
  • the concentration of the polyamic acid in the reaction system is preferably 1 to 30% by mass, more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • Polyimide Precursor-Polyamic Acid Ester which is a polyimide precursor used in the present invention can be produced by the following production method (i), (ii) or (iii).
  • Polyamic acid ester can be manufactured by esterifying the polyamic acid manufactured as mentioned above. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be manufactured.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • organic solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl- Examples include imidazolidinone.
  • solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the above formulas [D-1] to [D-3]
  • the indicated solvents can be used.
  • solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
  • the concentration at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • Polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be produced by reacting.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone from the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be produced by polycondensation of tetracarboxylic acid diester and diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can manufacture by making it react for time.
  • the condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazi Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base added is preferably 2 to 4 times the mol of the diamine component from the viewpoint that it can be easily removed and a high molecular weight product can be easily obtained.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the production method (i) or (ii) is particularly preferred.
  • the polymer solution can be precipitated by injecting the polyamic acid ester solution obtained as described above into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyimide used for this invention can be manufactured by imidating an above described polyamic acid ester or polyamic acid.
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature during the imidation reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
  • Chemical imidation can be performed by stirring a polyamic acid to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is carried out several times, washed with a poor solvent, and then purified at room temperature or by heating and drying to obtain a purified polyimide powder.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning agent of this invention contains the polyimide or polyimide precursor containing the structural unit derived from a specific diamine.
  • the molecular weight of the polyimide or polyimide precursor is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. 000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but it is 1 weight from the viewpoint of forming a uniform and defect-free coating film. % From the viewpoint of storage stability of the solution, and preferably 10% by weight or less.
  • the organic solvent for dissolving the polymer (hereinafter also referred to as a good solvent) contained in the liquid crystal aligning agent used in the present invention is not particularly limited as long as the polymer is uniformly dissolved.
  • a good solvent for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and the like.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and ⁇ -butyrolactone are preferably used.
  • a solvent represented by the above formula [D-1] to formula [D-3] is preferable to use.
  • the good solvent in the liquid crystal aligning agent of the present invention is preferably 20% by mass to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 20% by mass to 90% by mass is preferable. More preferred is 30% by mass to 80% by mass.
  • the liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied.
  • a solvent also referred to as a poor solvent
  • it can be used.
  • a poor solvent is given to the following, it is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propaned
  • 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether is preferably used.
  • These poor solvents are preferably 1% by mass to 80% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 10% by mass to 80% by mass is preferable. More preferred is 20% by mass to 70% by mass.
  • liquid crystal aligning agent of the present invention in addition to the above, as long as the effects of the present invention are not impaired, a polymer other than the polymer described in the present invention, the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, etc.
  • Dielectric or conductive material for changing characteristics, silane coupling agent for improving adhesion between liquid crystal alignment film and substrate, crosslinkability for increasing hardness and density of liquid crystal alignment film When firing the compound, and further, the coating film, an imidization accelerator for the purpose of efficiently proceeding imidization by heating of the polyimide precursor may be added.
  • silane coupling agent which can be used for the liquid crystal aligning agent of this invention is not limited to this.
  • the silane coupling agent is added for the purpose of improving the adhesion between the polymer and the substrate. If the addition amount of the silane coupling agent is too large, unreacted ones may adversely affect the liquid crystal orientation. If the addition amount is too small, the effect on the adhesion does not appear.
  • the content is preferably from 01 to 5.0% by mass, and more preferably from 0.1 to 1.0% by mass.
  • D in the above formulas (I-1) to (I-17) is each independently a t-butoxycarbonyl group, a 9-fluorenylmethoxycarbonyl group, or a carbobenzoxy group.
  • D in (I-14) to (I-17) there are a plurality of D in one formula, but these may be the same or different.
  • the content of the imidization accelerator is not particularly limited as long as the effect of promoting thermal imidation of the polyimide precursor is obtained. If the lower limit is shown, it is preferably 0.01 mol or more, more preferably 0.05 mol or more, still more preferably 0.1 mol with respect to 1 mol of the amic acid or its ester moiety contained in the polyimide precursor. The above is mentioned.
  • the upper limit of the polyimide precursor of the present invention is Preferably, the imidization accelerator is 2 moles or less, more preferably 1 mole or less, and even more preferably 0.5 moles or less with respect to 1 mole of the amic acid or ester site contained.
  • imidization accelerator since imidization may proceed by heating, it is preferably added after dilution with a good solvent and a poor solvent.
  • the liquid crystal aligning agent of the present invention has at least one substitution selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. It is preferable to introduce a crosslinkable compound having a group or a crosslinkable compound having a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-amin
  • the crosslinkable compound having an oxetane group is a compound having at least two oxetane groups represented by the following formula [4A]. Specific examples include crosslinkable compounds represented by the formulas [4a] to [4k] published on pages 58 to 59 of International Publication No. WO2011 / 132751 (published on October 27, 2011).
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5A]. Specific examples include crosslinkable compounds represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication No. WO2012 / 014898 (published on 2.2.2.2012).
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol
  • Examples of the melamine derivative or benzoguanamine derivative include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5.8 methoxymethyl groups per triazine ring.
  • MX-750 which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5.8 methoxymethyl groups per triazine ring.
  • MW-30 manufactured by Sanwa Chemical Co., Ltd.
  • Methoxymethylated ethoxyme Benzomethylamine methoxymethyl butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxymethyl-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide).
  • glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
  • Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol. More specifically, the crosslinkable compounds of the formulas [6-1] to [6-48] described on pages 62 to 66 of International Publication No. WO2011 / 132751 (published 10.27.2011) can be mentioned.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Rudi (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl
  • E 1 represents a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring; 2 represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
  • the above is an example of a crosslinkable compound, but is not limited thereto.
  • the crosslinkable compound used for the liquid crystal aligning agent of this invention may be 1 type, or may combine 2 or more types.
  • the content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components.
  • the amount is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the polymer component. More preferred is 1 to 50 parts by mass.
  • the liquid crystal aligning agent of the present invention can use a compound that improves the uniformity of the film thickness and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied.
  • the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the amount of the surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent.
  • the liquid crystal aligning agent is published on pages 69 to 73 of International Publication No. WO2011 / 132751 (published on 10.27.2011) as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of the device. It is also possible to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156].
  • the amine compound may be added directly to the liquid crystal aligning agent, but it is preferable to add the amine compound after forming a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass. This solvent is not particularly limited as long as it dissolves the polyimide or polyimide precursor of the present invention.
  • the liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate on which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode or the like is formed.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can also be used.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • drying is performed at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baking is performed at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes.
  • the thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 100 nm.
  • the photo-alignment treatment method there is a method of imparting liquid crystal alignment ability by irradiating the coating film surface with radiation deflected in a certain direction, and further subjecting to a temperature of 150 to 250 ° C. in some cases.
  • the radiation ultraviolet rays and visible rays having a wavelength of 100 nm to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 nm to 400 nm are preferable, and those having a wavelength of 200 nm to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 to 250 ° C.
  • Dose of the radiation is preferably 1 ⁇ 10,000mJ / cm 2, particularly preferably 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
  • a higher extinction ratio of polarized ultraviolet rays is preferable because higher anisotropy can be imparted.
  • the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
  • the film irradiated with polarized radiation may then be contact-treated with a solvent containing at least one selected from water and an organic solvent.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated by light irradiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, and cyclohexyl acetate. Two or more of these solvents may be used in combination.
  • At least one selected from the group consisting of water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate is more preferable.
  • Water, 2-propanol, and a mixed solvent of water and 2-propanol are particularly preferable.
  • the contact treatment between the film irradiated with polarized radiation and the solution containing the organic solvent is a treatment such that the film and the liquid are preferably sufficiently in contact with each other, such as immersion treatment or spraying treatment.
  • a method of immersing the film in a solution containing an organic solvent preferably 10 seconds to 1 hour, more preferably 1 to 30 minutes is preferable.
  • the contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably 20 to 50 ° C.
  • a means for enhancing contact such as ultrasonic waves can be applied as necessary.
  • the film subjected to the contact treatment with the solvent may be heated at 150 ° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film.
  • the heating temperature is preferably 150 to 300 ° C. The higher the temperature, the more reorientation of the molecular chain is promoted. However, if the temperature is too high, the molecular chain may be decomposed.
  • the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C. If the heating time is too short, the effect of reorientation of the molecular chain may not be obtained, and if it is too long, the molecular chain may be decomposed, and is preferably 10 seconds to 30 minutes. More preferred is ⁇ 10 minutes.
  • the liquid crystal display element of this invention comprises the liquid crystal aligning film obtained by the manufacturing method of the said liquid crystal aligning film.
  • a liquid crystal cell is produced by a known method, and a liquid crystal cell is used. This is a display element.
  • the liquid crystal display element may be an active matrix structure in which switching elements such as TFTs (Thin Film Transistors) are provided in each pixel portion constituting the image display.
  • switching elements such as TFTs (Thin Film Transistors) are provided in each pixel portion constituting the image display.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • the liquid crystal alignment film of the present invention is formed on each substrate.
  • the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealing material.
  • spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealing material is provided. A part of the sealing material is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the sealant for example, a resin that is cured by ultraviolet irradiation or heating having a reactive group such as an epoxy group, an acryloyl group, a methacryloyl group, a hydroxyl group, an allyl group, or an acetyl group is used.
  • a cured resin system having reactive groups of both an epoxy group and a (meth) acryloyl group.
  • An inorganic filler may be blended in the sealing agent of the present invention for the purpose of improving adhesiveness and moisture resistance.
  • the inorganic filler that can be used is not particularly limited.
  • spherical silica, fused silica, crystalline silica titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, Calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc.
  • Two or more of the above inorganic fillers may be mixed and used.
  • the viscosity of the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) at a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), and a temperature of 25 ° C. .
  • Solid content Calculation of the solid content concentration of the polyamic acid solution was performed as follows. About 1.1 g of the solution was weighed in an aluminum cup No. 2 with a handle (manufactured by ASONE), heated in an oven DNF400 (manufactured by Yamato) at 200 ° C. for 2 hours, and then allowed to stand at room temperature for 5 minutes to remain in the aluminum cup. The solid content was weighed. The solid content concentration was calculated from the solid content weight and the original solution weight value.
  • the molecular weight of the polyamic acid is measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight (hereinafter also referred to as Mw) as polyethylene glycol and polyethylene oxide converted values. Calculated.
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000,
  • the tetracarboxylic dianhydride component, diamine component and additives used for the preparation of the liquid crystal aligning agent of the present invention are as follows.
  • Additive A N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine
  • the liquid crystal aligning agent of the present invention was prepared as follows. ⁇ Example 1> In a 100 mL four-necked flask containing a stir bar, 1.35 g (12.5 mmol) of (Z-1) and 3.28 g (12.5 mmol) of (Z-3) were taken, and N-methyl-2-pyrrolidone was added. 65.7 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.32 g (23.8 mmol) of (Y-1) was added, and further 7.30 g of N-methyl-2-pyrrolidone was added, followed by stirring at 40 ° C. for 12 hours under a nitrogen atmosphere. A polyamic acid solution was obtained.
  • Example 2 In a 100 mL four-necked flask containing a stir bar, 1.35 g (12.5 mmol) of (Z-1) and 3.40 g (12.5 mmol) of (Z-4) were taken, and N-methyl-2-pyrrolidone 66.5 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.32 g (23.8 mmol) of (Y-1) was added, and 7.39 g of N-methyl-2-pyrrolidone was further added, followed by stirring at 40 ° C. for 12 hours under a nitrogen atmosphere. A polyamic acid solution was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C.
  • ⁇ Comparative example 2> Take 8.52 g (38.0 mmol) of (Y-1) in a 100 mL four-necked flask containing a stir bar, add 82.0 g of N-methyl-2-pyrrolidone, and dissolve by stirring while feeding nitrogen. It was. While stirring this acid dianhydride solution, 3.90 g (36.1 mmol) of (Z-1) was added, and further 9.11 g of N-methyl-2-pyrrolidone was added, and the mixture was added at 40 ° C. for 12 hours under a nitrogen atmosphere. A polyamic acid solution was obtained by stirring. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 368 mPa ⁇ s.
  • This polyamic acid solution (17.2 g) was dispensed into a 100 mL Erlenmeyer flask containing a stir bar, N-methyl-2-pyrrolidone (15.5 g), butyl cellosolve (8.23 g), and additive A (0.29 g) were added. And stirred for 2 hours to obtain a liquid crystal aligning agent.
  • a liquid crystal cell having a configuration of an FFS liquid crystal display element was produced as follows. First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm. On the substrate, an IZO electrode having a solid pattern constituting a counter electrode as a first layer is formed. On the counter electrode of the first layer, a SiN (silicon nitride) film formed by the CVD method is formed as the second layer. The second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent. The width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m.
  • each pixel Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different.
  • the electrode element of the pixel electrode in the first region of the pixel, is formed to form an angle of + 10 ° (clockwise), and the second region of the pixel Then, the electrode elements of the pixel electrode are formed so as to form an angle of ⁇ 10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • Example 2 After filtering the liquid crystal aligning agent obtained in Example 1 with a 1.0 micrometer filter, it apply
  • Liquid crystal ML-7026 manufactured by Merck & Co., Inc.
  • the injection port was sealed to obtain an FFS liquid crystal cell.
  • the obtained liquid crystal cell was heated at 110 ° C. for 30 minutes and allowed to stand overnight at 23 ° C., and then used for each of the following evaluations. The results are shown in Table 1.
  • Example 4 A liquid crystal cell was obtained in the same manner as in Example 3 except that the liquid crystal aligning agent obtained in Example 1 was replaced with the liquid crystal aligning agent obtained in Example 2, and this was subjected to the following evaluations. The results are shown in Table 1.
  • Example 5 A liquid crystal cell was obtained in the same manner as in Example 3 except that the liquid crystal aligning agent obtained in Example 1 was replaced with the liquid crystal aligning agent obtained in Comparative Example 2, and this was subjected to the following evaluations. The results are shown in Table 1.
  • Example 6 A liquid crystal cell was obtained in the same manner as in Example 3 except that the liquid crystal aligning agent obtained in Example 1 was replaced with the liquid crystal aligning agent obtained in Comparative Example 2 and the ultraviolet irradiation amount was changed from 200 mJ to 800 mJ. Was attached to each of the following evaluations. The results are shown in Table 1.
  • Example 7 A liquid crystal cell was obtained in the same manner as in Example 3 except that the liquid crystal aligning agent obtained in Example 1 was replaced with the liquid crystal aligning agent obtained in Comparative Example 3 and the ultraviolet irradiation amount was changed from 200 mJ to 400 mJ. Was attached to each of the following evaluations. The results are shown in Table 1.
  • the liquid crystal cell was applied with an AC voltage of 150% at a frequency of 30 Hz in a constant temperature environment of 60 ° C. for 150 hours. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day. After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as the angle ⁇ Angle.
  • the second region and the first region were compared, and a similar angle ⁇ Angle was calculated.
  • the average value of the angle ⁇ Angle values of the first pixel and the second pixel was calculated as the angle ⁇ Angle of the liquid crystal cell. The smaller the ⁇ Angle value, the better the liquid crystal alignment.
  • the liquid crystal cell was observed with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation), and the bright spot was evaluated. Specifically, the liquid crystal cell was placed between two polarizing plates arranged so that the polarization axes were orthogonal to each other, and the liquid crystal cell was observed with a polarizing microscope with a magnification of 5 (observation region: about 2500 ⁇ m ⁇ 2500 ⁇ m) . In the case where the number of bright spots is 100 or more, xx, in the case of 10 or more and less than 100, x, and in the case of less than 10, ⁇ .
  • liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal alignment film for a photo-alignment method that does not generate a bright spot and can obtain good afterimage characteristics even when a negative type liquid crystal is used. Therefore, it can be used in a liquid crystal display element that requires high display quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

ネガ型液晶を用いた場合でも、輝点が発生せず、良好な残像特性が得られる光配向法用の液晶配向膜を得るための光配向法用の液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向剤を具備する液晶表示素子を提供する。 下記式(1):(式中、Xは、本明細書に記載のとおりである)で表されるテトラカルボン酸二無水物またはその誘導体と、下記式(2):(式中、R、Zおよびnは、本明細書に記載のとおりである) で表されるジアミンを含有するジアミン成分との反応により得られる、ポリイミドまたはポリイミド前駆体を含有する液晶配向剤を提供する。

Description

液晶配向剤、液晶配向膜および液晶表示素子
 本発明は、液晶配向剤、液晶配向膜および液晶表示素子に関する。
 液晶表示素子は、デジタルカメラ、ノートパソコン、モバイル携帯端末等の表示素子として、現在、広く使用されている。液晶表示素子は、一般に、液晶、液晶配向膜、電極、基板等の構成部材から構築されており、またその用途等に応じて種々の駆動方式が採用されている。例えば、液晶表示素子の広視野角化を実現するために、横電界を用いたIPS(登録商標)(In Plane Switching)駆動方式や、さらにその改良型であるFFS(Fringe-Field Switching)駆動方式等が採用されている。
 液晶表示素子は、配列を制御された液晶分子が電圧により駆動することで表示を行う素子であるが、その液晶分子の配列状態を制御するための膜として、ポリイミド系液晶配向膜が広く用いられている(例えば、特許文献1、2参照)。
 液晶の配向を制御する機能は、基板上に形成された有機膜に配向処理を施すことで付与される。この液晶の配向処理法として、従来からローラーに巻き付けた布で有機膜を擦る、所謂ラビング法が知られている。ラビング法は、簡便に比較的安定した液晶の配向を実現できるため広く利用されている。しかしながら、ラビング法は、発塵や静電気の発生による歩留まり低下が問題となることがあった。また、近年の液晶表素子の高精細化や、対応する基板上の電極や液晶駆動用のTFT素子による凹凸のため、液晶配向膜の表面を布で均一に擦ることができず、液晶の配向が不均一となることがあった。
 そこで、ラビングを行わない液晶配向膜の別の配向処理方法として、光配向法が盛んに検討されている。光配向法には様々な方法があるが、直線偏光またはコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる方法が一般的である。主な光配向材料として、ポリイミドの光分解を利用したものが知られているが、光配向法により得られる液晶配向膜は、ラビングによるものに比べて、高分子膜の配向方向に対する異方性が小さいという問題がある。異方性が小さいと充分な液晶配向性が得られず、液晶表示素子とした場合に、残像が発生するなどの問題が発生する。これに対して、光配向法により得られる液晶配向膜の異方性を高める方法として、光照射後に、光照射によって前記ポリイミドの主鎖が切断されて生成した低分子量成分を除去することが提案されている。
特開平10-123532号公報 国際公開第2004/053583号公報
 IPS駆動方式やFFS駆動方式の液晶表示素子には、従来ポジ型液晶が用いられているが、ネガ型液晶を用いることで、電極上部での透過損失を小さくし、コントラストを向上させることが可能である。光配向法で得られる液晶配向膜を、ネガ型液晶を用いたIPS駆動方式やFFS駆動方式の液晶表示素子に用いると、従来の液晶表示素子より高い表示性能を有することが期待される。しかし、本願発明者が検討した結果、光照射よるポリマーの分解により異方性を出し液晶を配向させる、所謂光分解型液晶配向膜と、ネガ液晶を用いて液晶表示素子を作製した場合、偏光紫外線照射によって生じる液晶配向膜を構成するポリマーの分解生成物に由来する表示不良(輝点)の発生率が高いことが分かった。従って、本発明の課題は、ネガ型液晶を用いた場合でも、輝点が発生せず、良好な残像特性が得られる光配向法用の液晶配向膜を得るための光配向法用の液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向剤を具備する液晶表示素子を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、本発明を完成するに至った。すなわち、本発明の要旨は以下に示す通りである。
[1] 下記式(1):
Figure JPOXMLDOC01-appb-C000006

(式中、Xは、4価の有機基である)
で表されるテトラカルボン酸二無水物またはその誘導体と、下記式(2):
Figure JPOXMLDOC01-appb-C000007

(式中、
は、互いに独立して、水素原子、メチル基またはフッ素原子であり、Rの少なくとも1つは、メチル基又はフッ素原子であり;
は、互いに独立して、水素原子、あるいは置換基を有していてもよい、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアラルキル基であり;そして
は、1または2である)
で表されるジアミンを含有するジアミン成分との反応により得られる、ポリイミドまたはポリイミド前駆体を含有する液晶配向剤。
[2] ポリイミド前駆体が、下記式(I):
Figure JPOXMLDOC01-appb-C000008

[式中、
は、互いに独立して、水素原子、メチル基またはフッ素原子であり、Rの少なくとも1つは、メチル基又はフッ素原子であり;
は、互いに独立して、水素原子または炭素数1~6のアルキル基であり;
は、下記式(X1-1)~(X1-9):
Figure JPOXMLDOC01-appb-C000009

(式中、R、R、RおよびRは、互いに独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基またはフェニル基である)からなる群より選択される基であり;
は、互いに独立して、水素原子、あるいは置換基を有してもよい、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアラルキル基であり;そして
は、1または2である]
で表される構造単位を含む、上記[1]に記載の液晶配向剤。
[3] Xが、下記式(X1-1):
Figure JPOXMLDOC01-appb-C000010

(式中、R、R、RおよびRは、互いに独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基またはフェニル基である)
で表される基である、上記[1]または[2]に記載の液晶配向剤。
[4] ポリイミド前駆体が、式(I)で表される構造単位を、全構造単位中に20モル%以上含む、上記[2]または[3]に記載の液晶配向剤。
[5] 上記[1]~[4]のいずれかに記載の液晶配向剤を用いて得られる液晶配向膜。
[6] 上記[1]~[4]のいずれかに記載の液晶配向剤を基板上に塗布し、光配向処理して得られる液晶配向膜。
[7] 上記[5]又は[6]に記載の液晶配向膜を具備する液晶表示素子。
 本発明の液晶配向剤を用いることで、光配向処理時に発生する液晶配向膜由来の分解物による輝点を抑制でき、且つ照射感度が高く、優れた液晶配向性が得られる。これにより、表示不良がなく、信頼性の高い液晶表示を提供することが可能となる。
 以下に本発明を詳細に説明する。
≪液晶配向剤≫
<ポリイミドまたはポリイミド前駆体>
 本発明の液晶配向剤は、特定のジアミン由来の構造単位を含む、ポリイミドまたはポリイミド前駆体を含有する。具体的態様において、本発明の液晶配向剤は、下記式(1):
Figure JPOXMLDOC01-appb-C000011

(式中、Xは、4価の有機基である)
で表されるテトラカルボン酸二無水物またはその誘導体と、下記式(2):
Figure JPOXMLDOC01-appb-C000012

(式中、
は、互いに独立して、水素原子、メチル基またはフッ素原子であり、Rの少なくとも1つは、メチル基又はフッ素原子であり;
は、互いに独立して、水素原子、あるいは置換基を有していてもよい、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアラルキル基であり;そして
は、1または2である)
で表されるジアミンを含有するジアミン成分との反応により得られる、ポリイミドまたはポリイミド前駆体を含有する。
 さらに具体的態様において、本発明の液晶配向剤は、下記式(I): 
Figure JPOXMLDOC01-appb-C000013

[式中、
は、互いに独立して、水素原子、メチル基またはフッ素原子であり、Rの少なくとも1つは、メチル基又はフッ素原子であり;
は、互いに独立して、水素原子または炭素数1~6のアルキル基であり;
は、下記式(X1-1)~(X1-9):
Figure JPOXMLDOC01-appb-C000014

(式中、R、R、RおよびRは、互いに独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基またはフェニル基である)からなる群より選択される基であり;
は、互いに独立して、水素原子、あるいは置換基を有してもよい、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアラルキル基であり;そして
は、1または2である]
で表される構造単位を含む、ポリイミド前駆体を含有する。
(テトラカルボン酸二無水物成分)
 本発明に係るポリイミドまたはポリイミド前駆体のテトラカルボン酸二無水物成分は、下記式(1):
Figure JPOXMLDOC01-appb-C000015

(式中、Xは、4価の有機基である)
で表されるテトラカルボン酸二無水物またはその誘導体である。ここで、テトラカルボン酸二無水物の誘導体とは、その開環体であるテトラカルボン酸またはそのジエステルのジハライド等を意味し、例えば、下記式(1′):
Figure JPOXMLDOC01-appb-C000016

(式中、Xは、4価の有機基であり、R′は、ハロゲン原子またはヒドロキシ基であり、Rは、水素原子または炭素数1~6のアルキル基である)
で表される。
 ここで、4価の有機基(すなわち、X)としては、例えば、炭素数6~20の芳香族化合物(例えば、ベンゼン、インデン、ナフタレン、フルオレン等)もしくはその部分飽和化合物(例えば、テトラリン等)の4価の基、または炭素数2~20の脂肪族化合物(例えば、ブタン、シクロブタン、シクロペンタン、シクロヘキサン、ビシクロオクタン、テトラヒドロフラン等)の4価の基、あるいは同一であっても異なっていてもよい、2つ以上の前記化合物が、直接もしくは架橋員(ここで架橋員とは、-O-、-CO-、-COO-、-OCO-、-SO-、-S-、-CH-、-C(CH-及び-C(CF-等からなる群から選択される)により相互に連結された化合物(例えば、ビフェニル、シクロヘキシルベンゼン、ジフェニルエーテル、ベンゾフェノン、ジフェニルメタン等)の4価の基を挙げることができる。また前記化合物は、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基若しくは炭素数1~6のアルコキシ基、又はハロゲン原子から選択される1つ以上の置換基を有していてもよい。
 本明細書において、「炭素数1~6のアルキル基」は、炭素数1~6の、直鎖状、分岐状又は環状の脂肪族飽和炭化水素の1価の基を意味する。具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基等が挙げられる。
 「炭素数2~6のアルケニル基」は、1つ以上の炭素-炭素二重結合を有する、炭素数2~6の、直鎖状、分岐状又は環状の脂肪族不飽和炭化水素の1価の基を意味する。具体例としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
 「炭素数2~6のアルキニル基」は、1つ以上の炭素-炭素三重結合を有する、炭素数2~6の、直鎖状、分岐状又は環状の脂肪族不飽和炭化水素の1価の基を意味する。具体例としては、エチニル基、1-プロピニル基、2-プロピニル基等が挙げられる。
 「炭素数1~6のアルコキシ基」は、基-OR(ここで、Rは、前記炭素数1~6のアルキル基である)を意味する。具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、t-ブトキシ基、ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等が挙げられる。
 また「置換基を有してもよい、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアラルキル基」における置換基は、本発明の液晶配向剤としての性質を損なわない限り特に限定はないが、例としては、ハロゲン原子、水酸基、チオール基、ニトロ基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アリール基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
 「ハロゲン原子」は、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。
 式(1)で表されるテトラカルボン酸二無水物成分の例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3-トリメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、2,4,5-トリカルボキシシクロペンチル酢酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、3,4-ジカルボキシ-6-メチル-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、ピロメリット酸二無水物、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物、2,2′,3,3′-ビフェニルテトラカルボン酸二無水物、2,3,3′,4′-ビフェニルテトラカルボン酸二無水物、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物、2,3,3′,4′-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物等が挙げられる。
 これらのうち、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3-トリメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、2,4,5-トリカルボキシシクロペンチル酢酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、3,4-ジカルボキシ-6-メチル-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物からなる群から選ばれる少なくとも一種類のテトラカルボン酸二無水物またはその誘導体を用いることが好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物またはその誘導体を用いることが特に好ましい。これらのテトラカルボン酸二無水物またはその誘導体は、市販されているか、公知の文献に記載の方法により製造されるか、または当業者に公知の方法に従い製造される。
 したがって、4価の有機基(すなわち、X)の好ましい態様は、下記式(X1-1)~(X1-9):
Figure JPOXMLDOC01-appb-C000017

(式中、R、R、RおよびRは、互いに独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基またはフェニル基である)からなる群より選択される基である。より好ましい態様は、Xが、下記式(X1-1):
Figure JPOXMLDOC01-appb-C000018

(式中、R、R、RおよびRは、上記と同義である)で表される基であり、特に好ましい態様は、Xが、式(X1-1)で表される基であり、R、R、RおよびRは、互いに独立して、水素原子または炭素数1~6のアルキル基であるものである。
 本発明に係るポリイミドまたはポリイミド前駆体には、式(1)で表されるテトラカルボン酸二無水物またはその誘導体を1種または2種以上用いてもよい。
(ジアミン成分)
 本発明に係るポリイミドまたはポリイミド前駆体のジアミン成分は、下記式(2):
Figure JPOXMLDOC01-appb-C000019

(式中、
は、互いに独立して、水素原子、メチル基またはフッ素原子であり、Rの少なくとも1つは、メチル基又はフッ素原子であり;
は、互いに独立して、水素原子、あるいは置換基を有していてもよい、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアラルキル基であり;そして
は、1または2である)
で表されるジアミンを含有することを特徴とする。好ましい態様は、Zが、互いに独立して、水素原子または炭素数1~6のアルキル基であるものである。
 式(2)で表されるジアミンの例としては、ビス(4-アミノ-2-メチルフェノキシ)メタン、ビス(4-アミノ-2-フルオロフェノキシ)メタン、4-[2-(4-アミノ-2-フルオロフェニル)メトキシ]アニリン、4-[2-(4-アミノ-2-メチルフェニル)メトキシ]アニリン、1,2-ビス(4-アミノ-2-メチルフェノキシ)エタン、1,2-ビス(4-アミノ-2-フルオロフェノキシ)エタン、4-[2-(4-アミノ-2-フルオロフェニル)エトキシ]アニリンまたは4-[2-(4-アミノ-2-メチルフェニル)エトキシ]アニリンが挙げられる。これらのジアミンは、市販されているか、公知の文献に記載の方法により製造されるか、または本明細書の合成例の記載に従い製造される。
 本発明に係るポリイミドまたはポリイミド前駆体には、式(2)で表されるジアミンを1種または2種以上用いてもよい。
 全ジアミン成分の中で、式(2)で表されるジアミンの占める割合としては、20モル%以上が好ましく、50~100mol%がより好ましく、70~100mol%がさらに好ましく、85~100mol%が特に好ましい。
 したがって、本発明の液晶配向剤において、全構造単位中の式(I)で表される構造単位の占める割合としては、20モル%以上が好ましく、50~100mol%がより好ましく、70~100mol%がさらに好ましく、85~100mol%が特に好ましい。
 本発明に係るポリイミドまたはポリイミド前駆体のジアミン成分は、式(2)で表されるジアミン以外のジアミンを1種以上含んでもよい。そのようなジアミンは、本発明の液晶配向剤としての性質を損なわない限り特に限定はないが、典型的には、下記式(3):
Figure JPOXMLDOC01-appb-C000020

(式中、
Yは、2価の有機基であり;
は、互いに独立して、水素原子、あるいは置換基を有していてもよい、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアラルキル基ある)
で表されるジアミンを意味する。
 ここで、2価の有機基(すなわち、Y)としては、例えば、炭素数6~20の芳香族化合物(例えば、ベンゼン、インデン、ナフタレン、フルオレン、フラン、ピロール等)もしくはその部分飽和化合物(例えば、テトラリン等)の2価の基、または炭素数2~20の脂肪族化合物(例えば、エタン、ブタン、シクロブタン、シクロペンタン、シクロヘキサン、ビシクロオクタン、テトラヒドロフラン等)の2価の基、あるいは同一であっても異なっていてもよい、2つ以上の前記化合物が、直接もしくは架橋員(ここで架橋員とは、-O-、-CO-、-COO-、-OCO-、-SO-、-S-、-CH-、-C(CH-または-C(CF-等である)により相互に連結された化合物(例えば、ビフェニル、シクロヘキシルベンゼン、ジフェニルエーテル、ベンゾフェノン、ジフェニルメタン等)の2価の基を挙げることができる。また前記化合物は、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基若しくは炭素数1~6のアルコキシ基、又はハロゲン原子から選択される1つ以上の置換基を有していてもよい。
本発明に係るポリイミドまたはポリイミド前駆体のジアミン成分において、式(3)で表されるジアミンの例としては、Yが、下記式(Y-1)~(Y-49)および(Y-57)~(Y-118)からなる群より選択される基であるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036

 式(Y-109)中、mおよびnは、互いに独立して、1から11の整数であるが、m+nは2から12の整数である。また式(Y-111)中、jは0から3の整数である。さらに式(Y-114)中、hは1~3の整数である。
Figure JPOXMLDOC01-appb-C000037

式(Y-111)及び(Y-117)中、jは0から3の整数である。
 これらのジアミンは、市販されているか、公知の文献に記載の方法により製造されるか、または当業者に公知の方法に従い製造される。
(製造方法)
1)ポリイミド前駆体-ポリアミック酸の製造
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下の方法により製造される。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる有機溶媒の具体例を挙げるが、これらの例に限定されるものではない。例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドまたは1,3-ジメチル-イミダゾリジノンが挙げられる。
 また、ポリイミド前駆体の溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノンまたは下記の式[D-1]~式[D-3]で示される有機溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000038

(式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。)
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
 反応系中におけるポリアミック酸の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
2)ポリイミド前駆体-ポリアミック酸エステルの製造
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(i)、(ii)又は(iii)の製法で製造することができる。
(i)ポリアミック酸から製造する場合
 ポリアミック酸エステルは、前記のように製造されたポリアミック酸をエステル化することによって製造できる。具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。
 有機溶剤としては、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドまたは1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は前記式[D-1]~式[D-3]で示される溶媒を用いることができる。
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。
(ii)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから製造することができる。具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの製造に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
(iii)テトラカルボン酸ジエステルとジアミンから製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより製造することができる。具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって製造することができる。
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N′-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N′,N′-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N′,N′-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
 上記3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(i)又は上記(ii)の製法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
3.ポリイミドの製造
 本発明に用いられるポリイミドは、前記したポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。
 ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたいポリアミック酸を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリイミドの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
<液晶配向剤の調製>
 本発明の液晶配向剤は、特定のジアミン由来の構造単位を含む、ポリイミドまたはポリイミド前駆体を含有する。ポリイミドまたはポリイミド前駆体の分子量は、好ましくは、重量平均分子量で2,000~500,000であり、より好ましくは、5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
 本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1重量%以上であることが好ましく、溶液の保存安定性の点からは10重量%以下とすることが好ましい。
 本発明に用いられる液晶配向剤に含有される、重合体を溶解させる有機溶媒(以下、良溶媒ともいう)は、重合体が均一に溶解するものであれば特に限定されない。
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンまたは4-ヒドロキシ-4-メチル-2-ペンタノンなどを挙げることができる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトンを用いることが好ましい。さらに、本発明の重合体の溶媒への溶解性が高い場合は、前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。
本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20質量%~99質量%であることが好ましい。なかでも、20質量%~90質量%が好ましい。より好ましいのは、30質量%~80質量%である。
 本発明の液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルまたは前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルまたはジプロピレングリコールジメチルエーテルを用いることが好ましい。
 これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1質量%~80質量%であることが好ましい。なかでも、10質量%~80質量%が好ましい。より好ましいのは20質量%~70質量%である。
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、本発明に記載の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
 以下にシランカップリング剤の具体例を挙げるが、本発明の液晶配向剤に使用可能なシランカップリング剤はこれに限定されるものではない。
 3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-アミノプロピルジエトキシメチルシラン等のアミン系シランカップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、ビニルトリアセトキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、p-スチリルトリメトキシシラン等のビニル系シランカップリング剤;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ系シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等のメタクリル系シランカップリング剤;3-アクリロキシプロピルトリメトキシシラン等のアクリル系シランカップリング剤;3-ウレイドプロピルトリエトキシシラン等のウレイド系シランカップリング剤;ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド等のスルフィド系シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-オクタノイルチオ-1-プロピルトリエトキシシラン等のメルカプト系シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン等のイソシアネート系シランカップリング剤;トリエトキシシリルブチルアルデヒド等のアルデヒド系シランカップリング剤;トリエトキシシリルプロピルメチルカルバメート、(3-トリエトキシシリルプロピル)-t-ブチルカルバメート等のカルバメート系シランカップリング剤。
 シランカップリング剤はポリマーと基板との密着性を向上させる目的で添加する。シランカップリング剤の添加量は、多すぎると未反応のものが液晶配向性に悪影響を及ぼすことがあり、少なすぎると密着性への効果が現れないため、ポリマーの固形分に対して0.01~5.0質量%が好ましく、0.1~1.0質量%がより好ましい。
 以下にポリイミド前駆体を含有する液晶配向剤に使用可能なイミド化促進剤の具体例を挙げるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000039
 上記式(I-1)~(I-17)におけるDは、それぞれ独立してt-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基、カルボベンゾキシ基である。なお、(I-14)~(I-17)には、ひとつの式に複数のDが存在するが、これらは互いに同一であっても異なってもよい。
 ポリイミド前駆体の熱イミド化を促進する効果が得られる範囲であれば、イミド化促進剤の含有量は特に制限されるものではない。あえてその下限を示すならば、ポリイミド前駆体に含まれるアミック酸又はそのエステル部位1モルに対して、好ましくは0.01モル以上、より好ましくは0.05モル以上、更に好ましくは0.1モル以上が挙げられる。また、焼成後の膜中に残留するイミド化促進剤自体が、液晶配向膜の諸特性に及ぼす悪影響を最小限に留めるという観点から、あえてその上限を示すならば、本発明のポリイミド前駆体に含まれるアミック酸又はそのエステル部位1モルに対して、好ましくはイミド化促進剤が2モル以下、より好ましくは1モル以下、更に好ましくは0.5モル以下が挙げられる。
 イミド化促進剤を添加する場合は、加熱することでイミド化が進行する可能性があるため、良溶媒及び貧溶媒で希釈した後に加えるのが好ましい。
 さらに本発明の液晶配向剤には、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を導入することが好ましい。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン又は1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。
 オキセタン基を有する架橋性化合物は、下記式[4A]で示されるオキセタン基を少なくとも2個有する化合物である。
Figure JPOXMLDOC01-appb-C000040

 具体的には、国際公開公報WO2011/132751号(2011.10.27公開)の58~59頁に掲載される式[4a]~式[4k]で示される架橋性化合物が挙げられる。
 シクロカーボネート基を有する架橋性化合物としては、下記式[5A]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000041

 具体的には、国際公開公報WO2012/014898号(2012.2.2公開)の76~82頁に掲載される式[5-1]~式[5-42]で示される架橋性化合物が挙げられる。
 ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂又はエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基又はアルコキシメチル基又はその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。このメラミン誘導体又はベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。
 上記のメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリルなど、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。
 ヒドロキシル基又はアルコキシル基を有するベンゼン又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン又は2,6-ジヒドロキシメチル-p-tert-ブチルフェノールが挙げられる。
 より具体的には、国際公開公報WO2011/132751号(2011.10.27公開)の62~66頁に掲載される、式[6-1]~式[6-48]の架橋性化合物が挙げられる。
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン又はグリセリンポリグリシジルエーテルポリ(メタ)アクリレートなどの重合性不飽和基を分子内に3個有する架橋性化合物、更に、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート又はヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル又はN-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物等が挙げられる。
 更に、下記式[7A]で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000042

(式[7A]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環又はフェナントレン環からからなる群から選ばれる基を示し、Eは下記式[7a]又は式[7b]から選ばれる基を示し、nは1~4の整数を示す)。
Figure JPOXMLDOC01-appb-C000043

 上記は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向剤に用いる架橋性化合物は、1種類でも、2種類以上組み合わせてもよい。
 本発明の液晶配向剤における、架橋性化合物の含有量は、全ての重合体成分100質量部に対して、0.1~150質量部が好ましい。なかでも、架橋反応が進行し目的の効果を発現させるためには、の重合体成分100質量部に対して、0.1~100質量部が好ましい。より好ましいのは、1~50質量部である。
 本発明の液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。
 界面活性剤の使用量は、液晶配向剤に含有される全ての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 更に、液晶配向剤には、液晶配向膜中の電荷移動を促進して素子の電荷抜けを促進させる化合物として、国際公開公報WO2011/132751号(2011.10.27公開)の69~73頁に掲載される、式[M1]~式[M156]で示される窒素含有複素環アミン化合物を添加することもできる。このアミン化合物は、液晶配向剤に直接添加しても構わないが、濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。この溶媒は、本発明のポリイミドまたはポリイミド前駆体を溶解させるならば特に限定されない。
≪液晶配向膜≫
 本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
 本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃~120℃で1分~10分間乾燥させ、その後150℃~300℃で5分~120分間焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~100nmである。
光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100nm~800nmの波長を有する紫外線および可視光線を用いることができる。このうち、100nm~400nmの波長を有する紫外線が好ましく、200nm~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmが特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
 偏光された放射線を照射した膜は、次いで水及び有機溶媒から選ばれる少なくとも1種を含む溶媒で接触処理してもよい。
 接触処理に使用する溶媒としては、光照射によって生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルなどが挙げられる。これらの溶媒は2種以上を併用してもよい。
 汎用性や安全性の点から、水、2-プロパノール、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種がより好ましい。水、2-プロパノール、及び水と2-プロパノールの混合溶媒が特に好ましい。
 本発明において、偏光された放射線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが好ましくは十分に接触するような処理で行なわれる。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒~1時間、より好ましくは1~30分浸漬処理する方法が好ましい。接触処理は常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて超音波などの接触を高める手段を施すことができる。
 上記接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってよい。
 さらに、上記で溶媒による接触処理をした膜は、溶媒の乾燥、膜中の分子鎖の再配向を目的に150℃以上で加熱してもよい。加熱の温度としては、150~300℃が好ましい。温度が高いほど、分子鎖の再配向も促進されるが、温度が高すぎると分子鎖の分解を伴う恐れがある。そのため、加熱温度としては、180~250℃がより好ましく、200~230℃が特に好ましい。加熱する時間は、短すぎると分子鎖の再配向の効果が得られない可能性があり、長すぎると分子鎖が分解してしまう可能性があるため、10秒~30分が好ましく、1分~10分がより好ましい。
≪液晶表示素子≫
 本発明の液晶表示素子は、前記液晶配向膜の製造方法によって得られた液晶配向膜を具備することを特徴とする。
 本発明の液晶表示素子は、本発明の液晶配向剤から前記液晶配向膜の製造方法によって液晶配向膜付きの基板を得た後、公知の方法で液晶セルを作製し、それを使用して液晶表示素子としたものである。
 液晶セル作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
 まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。
 次に、各基板の上に、本発明の液晶配向膜を形成する。次に、一方の基板に他方の基板を互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサーを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
 次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。
 本発明において、シール剤としては、例えば、エポキシ基、アクリロイル基、メタアクリロイル基、ヒドロキシル基、アリル基、アセチル基などの反応性基を有する紫外線照射や加熱によって硬化する樹脂が用いられる。特に、エポキシ基と(メタ)アクリロイル基の両方の反応性基を有する硬化樹脂系を用いるのが好ましい。
 本発明のシール剤には接着性、耐湿性の向上を目的として無機充填剤を配合してもよい。使用しうる無機充填剤としては特に限定されないが、具体的には球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられ、好ましくは球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムである。前記の無機充填剤は2種以上を混合して用いても良い。
 以下に合成例、実施例、比較例を挙げ、本発明をさらに詳しく説明するが、これらに限定されるものではない。
≪本発明のジアミン化合物の合成≫
 本発明のジアミン化合物の合成で採用した分析装置および分析条件は、下記の通りである。
H-NMRの測定)
 装置:Varian NMR System 400NB(400MHz)(Varian製)
 測定溶媒:CDCl(重水素化クロロホルム),DMSO-d(重水素化ジメチルスルホキシド)
 基準物質:TMS(テトラメチルシラン)(δ:0.0ppm,H),CDCl(δ:77.0ppm,13C)
 本発明のジアミン化合物の合成は、以下のとおり実施した。
<合成例1>
 4-[2-(4-アミノ-2-フルオロフェニル)エトキシ]アニリン(Z-3)の合成
(工程1)
Figure JPOXMLDOC01-appb-C000044

 4-ニトロフルオロベンゼン(141g,1000mmol)とエチレングリコール(1220g,20mol)のTHF(テトラハイドロフラン)溶液(848g)に、60%水素化ナトリウム(44.0g,1100mmol)を加え、室温にて24時間反応させた。この溶液に水(1000g)を加え、室温で2時間撹拌した後に、酢酸エチル(4000g)を加え、水(1500g)で3回洗浄した。得られた有機相を硫酸マグネシウムで乾燥させ、ろ過により硫酸マグネシウムを除去した後、濃縮することで粗物を得た。得られた粗物をトルエン(500g)と酢酸エチル(400g)を用いて再結晶を行うことで、白色固体としてM1を得た。(収量:48.8g,26%)
エチレングリコール誘導体(M1):
 H-NMR(DMSO,δppm):8.23-8.19(m,2H),7.18-7.14(m,2H),5.00-4.97(m,1H),4.16-4.14(m,2H),3.78-3.74(m,2H).
(工程2)
Figure JPOXMLDOC01-appb-C000045

 M1(23.8g,130mmol)と3,4-ジフルオロニトロベンゼン(24.8g,156mmol)のDMF(ジメチルホルムアミド)溶液(119g)に、60%水素化ナトリウム(7.8g,195mmol)を加え、室温で1時間反応させた。この溶液を水(1000g)に注ぎ、室温で2時間撹拌した後、ろ過により粗物を回収した。得られた粗物にアセトニトリル(200g)を用いて再結晶を行うことで、白色固体としてM2を得た。(収量:36.7g,88%)
ジニトロ化合物(M2):
 H-NMR(DMSO,δppm):8.25-8.14(m,4H),7.53-7.48(m,1H),7.25-7.21(m,2H),4.65-4.56(m,4H).
(工程3)
Figure JPOXMLDOC01-appb-C000046
 THF(184g)に、M2(36.7g,114mmol)と5%白金カーボン(3.67g,10wt%)を加え、水素雰囲気下、室温にて24時間撹拌した。得られた反応液にろ過を行うことで白金カーボンを除去した後、濃縮することで粗物を得た。得られた粗物に酢酸エチル(108g)を用いて、リパルプ洗浄を行うことで、Z-3を得た。(収量:18.1g,61%)
ジアミン誘導体(Z-3):
 H-NMR(DMSO,δppm):6.86(t,1H),6.70-6.66(m,2H),6.53-6.49(m,2H),6.43-6.38(m,1H),6.31-6.28(m,1H),4.96(s,2H),4.63(s,2H),4.14-4.06(m,4H).
<合成例2>
 1,2-ビス(4-アミノ-2-メチルフェノキシ)エタン(Z-4)の合成
(工程1)
Figure JPOXMLDOC01-appb-C000047
 4-ニトロ-o-クレゾール(48.2g,315mmol)とジブロモエタン(28.2g,150mmol)、炭酸カリウム(49.8g,360mmol)を加えたDMF溶液(282g)を、75℃で17時間撹拌した。得られた反応液を水(1500g)に注ぎ、ろ過により粗物を回収した。得られた粗物をメタノール(80g)によりリパルプ洗浄を行うことで、白色固体としてM3を得た。(収量:20.7g,42%)
ジニトロ化合物(M3):
 H-NMR(DMSO,δppm):8.15-8.11(m,4H),7.27(d,2H),4.57(s,4H),2.21(s,6H).
(工程2)
Figure JPOXMLDOC01-appb-C000048
 M3(20.7g,62.4mmol)とパラジウムカーボン(2.72g,10wt%)を加えたDMF溶液を、水素雰囲気下、室温にて2日撹拌した。得られた反応液に濾過を行うことでパラジウムカーボンを除去した後、濃縮することで粗物を得た。得られた粗物にアセトニトリル(60g)を用いて再結晶を行うことで、Z-4を得た。(収量:13.5g,80%)
ジアミン化合物(Z-4):
 H-NMR(DMSO,δppm):6.65-6.63(m,2H),6.36-6.30(m,4H),4.51(s,4H),4.04(s,4H),2.02(s,6H).
≪本発明の液晶配向剤の調製≫
 本発明の液晶配向剤の調製で採用した分析装置および分析条件は、下記の通りである。
[粘度]
 ポリアミック酸溶液の粘度はE型粘度計TVE-22H(東機産業株式会社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[固形分濃度]
 ポリアミック酸溶液の固形分濃度の算出は以下のようにして行った。
 持手付アルミカップNo.2(アズワン社製)に溶液をおよそ1.1g量り取り、オーブンDNF400(Yamato社製)で200℃、2時間加熱した後に室温5分間放置し、アルミカップ内に残った固形分の重量を計量した。この固形分重量、および元の溶液重量の値から固形分濃度を算出した。
[分子量]
 ポリアミック酸の分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:(株)Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw)約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、および150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に行った。
 本発明の液晶配向剤の調製に用いたテトラカルボン酸二無水物成分、ジアミン成分および添加剤は以下のとおりである。
(テトラカルボン酸二無水物成分)
Y-1:1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000049
(ジアミン成分)
Z-1:p-フェニレンジアミン
Z-2:1,2-ビス(4-アミノフェノキシ)エタン
Z-3:4-[2-(4-アミノ-2-フルオロフェニル)エトキシ]アニリン(合成例1参照)
Z-4:1,2-ビス(4-アミノ-2-メチルフェノキシ)エタン(合成例2参照)
Z-5:N-メチル-2-(4-アミノフェニル)エチルアミン
Figure JPOXMLDOC01-appb-C000050
(添加剤)
添加剤A :N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジン
 本発明の液晶配向剤の調製は、以下のとおり実施した。
<実施例1> 
 撹拌子を入れた100mLの四つ口フラスコに(Z-1)を1.35g(12.5mmol)、(Z-3)を3.28g(12.5mmol)取り、N-メチル-2-ピロリドン65.7gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら(Y-1)を5.32g(23.8mmol)添加し、更にN-メチル-2-ピロリドンを7.30g加え、窒素雰囲気下、40℃で12時間撹拌してポリアミック酸溶液を得た。このポリアミック酸溶液の温度25℃における粘度は285mPa・sであった。また、このポリアミック酸の分子量はMn=12,300、Mw=28,300であった。
 このポリアミック酸溶液19.4gを撹拌子の入った100mL三角フラスコに分取し、N-メチル-2-ピロリドン17.5g、ブチルセロソルブ9.31g、更に添加剤Aを0.33g加え、マグネチックスターラーで2時間撹拌して液晶配向剤を得た。
<実施例2>
 撹拌子を入れた100mLの四つ口フラスコに(Z-1)を1.35g(12.5mmol)、(Z-4)を3.40g(12.5mmol)取り、N-メチル-2-ピロリドン66.5gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら(Y-1)を5.32g(23.8mmol)添加し、更にN-メチル-2-ピロリドンを7.39g加え、窒素雰囲気下、40℃で12時間撹拌してポリアミック酸溶液を得た。このポリアミック酸溶液の温度25℃における粘度は318mPa・sであった。また、このポリアミック酸の分子量はMn=13,300、Mw=31,400であった。
 このポリアミック酸溶液18.5gを撹拌子の入った100mL三角フラスコに分取し、N-メチル-2-ピロリドン16.7g、ブチルセロソルブ8.87g、更に添加剤Aを0.31g加え、マグネチックスターラーで2時間撹拌して液晶配向剤を得た。
<比較例1>
 撹拌子を入れた100mLの四つ口フラスコに(Z-1)を1.73g(16.0mmol)、(Z-2)を3.91g(16.0mmol)取り、N-メチル-2-ピロリドン81.7gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら(Y-1)を6.74g(30.2mmol)添加し、更にN-メチル-2-ピロリドンを9.08g加え、窒素雰囲気下、40℃で12時間撹拌してポリアミック酸溶液を得た。このポリアミック酸溶液の温度25℃における粘度は316mPa・sであった。また、このポリアミック酸の分子量はMn=12,300、Mw=27,700であった。
 このポリアミック酸溶液18.7gを撹拌子の入った100mL三角フラスコに分取し、N-メチル-2-ピロリドン16.9g、ブチルセロソルブ8.96g、更に添加剤Aを0.31g加え、マグネチックスターラーで2時間撹拌して液晶配向剤を得た。
<比較例2>
 撹拌子を入れた100mLの四つ口フラスコに(Y-1)を8.52g(38.0mmol)取り、N-メチル-2-ピロリドン82.0gを加え、窒素を送りながら撹拌して溶解させた。この酸二無水物溶液を撹拌しながら(Z-1)を3.90g(36.1mmol)添加し、更にN-メチル-2-ピロリドンを9.11g加え、窒素雰囲気下、40℃で12時間撹拌してポリアミック酸溶液を得た。このポリアミック酸溶液の温度25℃における粘度は368mPa・sであった。また、このポリアミック酸の分子量はMn=13,000、Mw=27,000であった。
 このポリアミック酸溶液17.3gを撹拌子の入った100mL三角フラスコに分取し、N-メチル-2-ピロリドン15.6g、ブチルセロソルブ8.29g、更に添加剤Aを0.29g加え、マグネチックスターラーで2時間撹拌して液晶配向剤を得た。
<比較例3>
 撹拌子を入れた100mLの四つ口フラスコに(Y-1)を3.81g(17.0mmol)取り、N-メチル-2-ピロリドン39.4gを加え、窒素を送りながら撹拌して溶解させた。この酸二無水物溶液を撹拌しながら(Z-1)を0.88g(8.16mmol)、(Z-5)を1.28g(8.50mmol)添加し、更にN-メチル-2-ピロリドンを4.39g加え、窒素雰囲気下、40℃で12時間撹拌してポリアミック酸溶液を得た。このポリアミック酸溶液の温度25℃における粘度は357mPa・sであった。また、このポリアミック酸の分子量はMn=12,200、Mw=24,000であった。
 このポリアミック酸溶液17.2gを撹拌子の入った100mL三角フラスコに分取し、N-メチル-2-ピロリドン15.5g、ブチルセロソルブ8.23g、更に添加剤Aを0.29g加え、マグネチックスターラーで2時間撹拌して液晶配向剤を得た。
≪本発明の液晶配向膜を具備する液晶セルの作製≫
 本発明の液晶配向膜を具備する液晶セルの作製は、以下のとおり実施した。
<実施例3>
 FFS方式の液晶表示素子の構成を備えた液晶セルを、以下のように作製した。
 初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素および第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の偏光紫外線照射方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
次に、実施例1で得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で120秒間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmのポリイミド膜を得た。このポリイミド膜に偏光板を介して直線偏光した紫外線を照射(波長:254nm、照射量:200mJ、照射方向:3層目IZO櫛歯電極に対して10°傾いた方向)した。その後、230℃の熱風循環式オーブンで30分間焼成して液晶配向膜付き基板を得た。
 また、対向基板として裏面にITO電極が形成されている高さ4μmの柱状スペーサーを有するガラス基板にも、上記と同様にしてポリイミド膜を形成し、上記と同様の手順で配向処理が施された液晶配向膜付き基板を得た。これら2枚の液晶配向膜付き基板を1組とし、基板上に液晶注入口を残した形でシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い紫外線照射方向が平行になるようにして張り合わせた後、シール剤を硬化させてセルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶ML-7026(メルク株式会社製)を注入し、注入口を封止して、FFS方式の液晶セルを得た。その後、得られた液晶セルを110℃で30分加熱し、23℃で一晩放置してから下記の各評価に使用した。結果を表1に示す。
<実施例4>
 実施例1で得られた液晶配向剤を実施例2で得られた液晶配向剤に代えた他は、実施例3と同様にして液晶セルを得て、これを下記の各評価に付した。結果を表1に示す。
<比較例4>
 実施例1で得られた液晶配向剤を比較例1で得られた液晶配向剤に代えた他は、実施例3と同様にして液晶セルを得て、これを下記の各評価に付した。結果を表1に示す。
<比較例5>
 実施例1で得られた液晶配向剤を比較例2で得られた液晶配向剤に代えた他は、実施例3と同様にして液晶セルを得て、これを下記の各評価に付した。結果を表1に示す。
<比較例6>
 実施例1で得られた液晶配向剤を比較例2で得られた液晶配向剤に代え、紫外線照射量を200mJから800mJとした他は、実施例3と同様にして液晶セルを得て、これを下記の各評価に付した。結果を表1に示す。
<比較例7>
 実施例1で得られた液晶配向剤を比較例3で得られた液晶配向剤に代え、紫外線照射量を200mJから400mJとした他は、実施例3と同様にして液晶セルを得て、これを下記の各評価に付した。結果を表1に示す。
≪液晶セルの評価≫
 本発明の液晶配向膜を具備する液晶セルの評価で採用した分析装置および分析条件は、下記の通りである。
[液晶配向性]
 液晶セルを、60℃の恒温環境下、周波数30Hzで相対透過率が100%となる交流電圧を150時間印加した。
 その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度ΔAngleとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度ΔAngleを算出した。そして、第1画素と第2画素の角度ΔAngle値の平均値を液晶セルの角度ΔAngleとして算出した。ΔAngle値が小さいほど、液晶配向性が良好である。
[輝点観察]
 液晶セルを偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察し、輝点評価を実施した。具体的には、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、倍率を5倍にした偏光顕微鏡で液晶セルを観察した(観察領域:約2500μm×2500μm)。輝点の数が100個以上の場合は××、10個以上100個未満の場合は×、10個未満の場合は○とした。
Figure JPOXMLDOC01-appb-T000051
 本発明の液晶配向剤を用いることにより、ネガ型液晶を用いた場合でも、輝点が発生せず、良好な残像特性が得られる光配向法用の液晶配向膜を得ることができる。そのため、高い表示品位が求められる液晶表示素子における利用が可能である。

Claims (7)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001

    (式中、Xは、4価の有機基である)
    で表されるテトラカルボン酸二無水物またはその誘導体と、下記式(2):
    Figure JPOXMLDOC01-appb-C000002

    (式中、
    は、互いに独立して、水素原子、メチル基またはフッ素原子であり、Rの少なくとも1つは、メチル基又はフッ素原子であり;
    は、互いに独立して、水素原子、あるいは置換基を有していてもよい、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアラルキル基であり;そして
    は、1または2である)
    で表されるジアミンを含有するジアミン成分との反応により得られる、ポリイミドまたはポリイミド前駆体を含有する液晶配向剤。
  2.  ポリイミドまたはポリイミド前駆体が、下記式(I):
    Figure JPOXMLDOC01-appb-C000003

    [式中、
    は、互いに独立して、水素原子、メチル基またはフッ素原子であり、Rの少なくとも1つは、メチル基又はフッ素原子であり;
    は、互いに独立して、水素原子または炭素数1~6のアルキル基であり;
    は、下記式(X1-1)~(X1-9):
    Figure JPOXMLDOC01-appb-C000004

    (式中、R、R、RおよびRは、互いに独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基またはフェニル基である)からなる群より選択される基であり;
    は、互いに独立して、水素原子、あるいは置換基を有してもよい、炭素数1~6のアルキル基、炭素数2~6のアルケニル基または炭素数2~6のアラルキル基であり;そして
    は、1または2である]
    で表される構造単位を含む、請求項1に記載の液晶配向剤。
  3.  Xが、下記式(X1-1):
    Figure JPOXMLDOC01-appb-C000005

    (式中、R、R、RおよびRは、互いに独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基またはフェニル基である)
    で表される基である、請求項1または2に記載の液晶配向剤。
  4.  ポリイミドまたはポリイミド前駆体が、式(I)で表される構造単位を、全構造単位中に20モル%以上含む、請求項2または3に記載の液晶配向剤。
  5.  請求項1~4のいずれかに記載の液晶配向剤を用いて得られる液晶配向膜。
  6.  請求項1~4のいずれかに記載の液晶配向剤を基板上に塗布し、光配向処理して得られる液晶配向膜。
  7.  請求項5又は6に記載の液晶配向膜を具備する液晶表示素子。
PCT/JP2016/077012 2015-09-16 2016-09-13 液晶配向剤、液晶配向膜および液晶表示素子 WO2017047596A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187009817A KR20180053331A (ko) 2015-09-16 2016-09-13 액정 배향제, 액정 배향막 및 액정 표시 소자
CN201680053714.6A CN108027537B (zh) 2015-09-16 2016-09-13 液晶取向剂、液晶取向膜和液晶表示元件
JP2017539921A JP6750627B2 (ja) 2015-09-16 2016-09-13 液晶配向剤、液晶配向膜および液晶表示素子
US15/758,380 US10761375B2 (en) 2015-09-16 2016-09-13 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015182745 2015-09-16
JP2015-182745 2015-09-16

Publications (1)

Publication Number Publication Date
WO2017047596A1 true WO2017047596A1 (ja) 2017-03-23

Family

ID=58288673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077012 WO2017047596A1 (ja) 2015-09-16 2016-09-13 液晶配向剤、液晶配向膜および液晶表示素子

Country Status (6)

Country Link
US (1) US10761375B2 (ja)
JP (1) JP6750627B2 (ja)
KR (1) KR20180053331A (ja)
CN (1) CN108027537B (ja)
TW (1) TWI715629B (ja)
WO (1) WO2017047596A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186055A1 (ja) * 2017-04-04 2018-10-11 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体、並びに化合物
WO2019013339A1 (ja) * 2017-07-14 2019-01-17 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
CN111602088A (zh) * 2018-01-19 2020-08-28 日产化学株式会社 液晶取向剂、液晶取向膜及使用其的液晶表示元件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7448891B2 (ja) * 2018-12-10 2024-03-13 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154436A (ja) * 2003-11-05 2005-06-16 Chisso Corp 新規ジアミンおよびそれを原料とするポリマー
WO2013157586A1 (ja) * 2012-04-18 2013-10-24 日産化学工業株式会社 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169062B2 (ja) 1996-07-11 2001-05-21 日産化学工業株式会社 液晶セル用配向処理剤
CN100394278C (zh) 2002-12-11 2008-06-11 日产化学工业株式会社 液晶定向剂及使用了该液晶定向剂的液晶显示元件
KR101158382B1 (ko) * 2004-02-26 2012-06-22 닛산 가가쿠 고교 가부시키 가이샤 광 배향용 액정 배향제 및 그것을 사용한 액정 표시 소자
JP4844721B2 (ja) * 2006-03-22 2011-12-28 Jsr株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP2008176304A (ja) * 2006-12-22 2008-07-31 Jsr Corp 液晶配向剤、液晶配向膜、液晶表示素子および光学部材
JP5488798B2 (ja) * 2009-08-10 2014-05-14 Jsr株式会社 液晶配向剤
JP5556396B2 (ja) * 2009-08-28 2014-07-23 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、化合物及びこの化合物の製造方法
TWI510508B (zh) * 2010-03-31 2015-12-01 Nissan Chemical Ind Ltd Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154436A (ja) * 2003-11-05 2005-06-16 Chisso Corp 新規ジアミンおよびそれを原料とするポリマー
WO2013157586A1 (ja) * 2012-04-18 2013-10-24 日産化学工業株式会社 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186055A1 (ja) * 2017-04-04 2018-10-11 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体、並びに化合物
KR20190103397A (ko) * 2017-04-04 2019-09-04 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 그의 제조 방법, 액정 소자, 중합체, 그리고 화합물
CN110383156A (zh) * 2017-04-04 2019-10-25 Jsr株式会社 液晶取向剂、液晶取向膜及其制造方法、液晶元件、聚合物及化合物
JPWO2018186055A1 (ja) * 2017-04-04 2019-11-07 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体、並びに化合物
KR102269265B1 (ko) * 2017-04-04 2021-06-24 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 그의 제조 방법, 액정 소자, 그리고 중합체
JP7028241B2 (ja) 2017-04-04 2022-03-02 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、並びに液晶素子
WO2019013339A1 (ja) * 2017-07-14 2019-01-17 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
KR20200027967A (ko) * 2017-07-14 2020-03-13 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
JPWO2019013339A1 (ja) * 2017-07-14 2020-05-21 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7093059B2 (ja) 2017-07-14 2022-06-29 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
KR102572922B1 (ko) 2017-07-14 2023-08-30 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
CN111602088A (zh) * 2018-01-19 2020-08-28 日产化学株式会社 液晶取向剂、液晶取向膜及使用其的液晶表示元件

Also Published As

Publication number Publication date
TW201727338A (zh) 2017-08-01
US20180267367A1 (en) 2018-09-20
US10761375B2 (en) 2020-09-01
JP6750627B2 (ja) 2020-09-02
KR20180053331A (ko) 2018-05-21
TWI715629B (zh) 2021-01-11
CN108027537A (zh) 2018-05-11
CN108027537B (zh) 2021-06-08
JPWO2017047596A1 (ja) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6669161B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP2019194720A (ja) 液晶配向剤、液晶配向膜、及び液晶配向素子
JP5930237B2 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
JPWO2015072554A1 (ja) 液晶配向剤及びそれを用いた液晶表示素子
WO2015060358A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2017061575A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2015060366A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2015060360A1 (ja) 熱脱離性基を有するポリイミド前駆体及び/又はポリイミドを含む液晶配向剤
WO2016047774A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP2017146595A (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP6750627B2 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
JP6079627B2 (ja) 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
JP6652739B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2015141598A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP5950137B2 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
JP7001063B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2015152014A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2013146589A1 (ja) 液晶表示素子およびその製造方法
WO2018181566A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
TWI726965B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
JP6776897B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187009817

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15758380

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16846467

Country of ref document: EP

Kind code of ref document: A1