WO2017043123A1 - X線検査方法及びx線検査装置 - Google Patents

X線検査方法及びx線検査装置 Download PDF

Info

Publication number
WO2017043123A1
WO2017043123A1 PCT/JP2016/064223 JP2016064223W WO2017043123A1 WO 2017043123 A1 WO2017043123 A1 WO 2017043123A1 JP 2016064223 W JP2016064223 W JP 2016064223W WO 2017043123 A1 WO2017043123 A1 WO 2017043123A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
ray
ray inspection
container
time delay
Prior art date
Application number
PCT/JP2016/064223
Other languages
English (en)
French (fr)
Inventor
雄太 浦野
開鋒 張
吉毅 的場
明弘 竹田
Original Assignee
株式会社日立ハイテクサイエンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクサイエンス filed Critical 株式会社日立ハイテクサイエンス
Priority to US15/744,223 priority Critical patent/US10823686B2/en
Priority to EP16843989.1A priority patent/EP3348997A4/en
Priority to CN201680042496.6A priority patent/CN108307656B/zh
Publication of WO2017043123A1 publication Critical patent/WO2017043123A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/10Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being confined in a container, e.g. in a luggage X-ray scanners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/16Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a moving sheet or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials

Definitions

  • the present invention relates to an X-ray inspection method and an X-ray inspection apparatus for irradiating a sample with X-rays and inspecting the sample based on an intensity distribution of X-rays transmitted through the sample.
  • Patent Document 1 describes an X-ray inspection apparatus that can detect foreign matter with high sensitivity even when the output of the X-ray generated by the X-ray generator is low.
  • This publication states that “an X-ray detector 10 for synthesizing detection data obtained from each detection element for each stage of a plurality of detection element arrays 101 to 108 by time delay integration and outputting combined data; and an X-ray detector And a determination unit 44 that determines the presence / absence of a foreign substance in the inspection object W based on the composite data output by the X.
  • the X-ray detector 10 performs the determination according to the thickness information of the inspection object W. It is provided with a stage number setting unit 46 for setting the number of detection element arrays to be subjected to time delay integration.
  • Patent Document 1 describes an X-ray inspection apparatus that can detect foreign matter with high sensitivity even when the output of X-rays generated by an X-ray generator is low.
  • the X-ray inspection apparatus described in Patent Document 1 when the thickness of the object to be inspected is large, the number of detection element arrays to be subjected to time delay integration is set to be small, so that the X-ray inspection apparatus is compared with the case where the thickness is small. As a result, the detection output is low, and it is difficult to detect highly sensitive foreign matter.
  • An object of the present invention is to provide an X-ray inspection method and an X-ray inspection apparatus capable of performing detection by time delay integration without degrading spatial resolution even for a thick inspection object. is there.
  • an X-ray inspection apparatus includes an X-ray source that generates X-rays, a transport unit that transports a sample, and an X-ray source that is transported by the transport unit.
  • a detection unit with a time delay integration type detector that detects X-rays that have passed through the sample and a signal obtained by detecting the X-rays that have passed through the sample with the time delay integration type detector of the detection unit
  • a defect determination unit that determines a defect in the sample, and the conveyance unit rotates the sample in synchronization with the conveyance when the sample passes in front of the time delay integration type detector of the detection unit. It was made to convey while letting.
  • X-rays generated from an X-ray source are irradiated to a sample transported by a transport unit, and X-rays transmitted through the sample irradiated with X-rays are irradiated.
  • an X-ray inspection method for detecting a defect in a sample by processing a signal obtained by detecting an X-ray detected by a time delay integration type detector and detecting the X-ray transmitted through the sample by a time delay integration type detector.
  • a fine defect can be obtained without degrading the spatial resolution even for a thick inspection object. Can be detected with high sensitivity.
  • FIG. 1 is a configuration diagram of an X-ray inspection apparatus according to a first embodiment of the present invention. It is a block diagram which shows the relationship between the focus of a X-ray source, a container, and a TDI camera in the sample conveyance apparatus which concerns on 1st Example of this invention. It is a top view which shows the structure of the TDI camera used with the sample conveyance apparatus which concerns on 1st Example of this invention. It is a top view of the sample conveyance part which concerns on 1st Example of this invention. It is a front view of the sample conveyance part which concerns on 1st Example of this invention. It is a top view of the sample conveyance part of another system which concerns on 1st Example of this invention.
  • sample conveyance part shows the state which is conveying while rotating the container which accommodated the sample with the perpendicular
  • sample conveyance part shows the state which is conveying while rotating the container which stored the sample in the inclined attitude
  • an X-ray inspection apparatus includes an X-ray source that generates X-rays from a focal point in a radial ray direction and irradiates the sample, and a TDI (time) that detects X-rays emitted from the X-ray source and transmitted through the sample.
  • a delay integration type detector, and a defect detection unit for detecting a defect based on an X-ray transmission image detected by the X-ray TDI detector, and an arbitrary time within the integration time by the TDI type detector In the above, the relative direction of the sample with respect to the X-ray beam direction is made substantially equal.
  • an example of an X-ray inspection apparatus that irradiates a sample with X-rays and inspects the sample based on the intensity distribution of X-rays transmitted through the sample will be described.
  • FIG. 1 is an example of a configuration diagram of an X-ray inspection apparatus 100 of the present embodiment.
  • the X-ray inspection apparatus 100 includes an X-ray tube 1, a sample transport unit 3, a TDI camera 4, an X-ray shielding unit 5, a defect determination unit 7, a control unit 8, a display unit 9, and an input unit 10.
  • the X-ray tube 1 irradiates the sample S with X-rays.
  • the X-ray tube 1 incorporates a target (anode), and X-rays are generated when electrons are accelerated and collide with the target.
  • a region on the target where the electrons collide, that is, a region where X-rays are generated is defined as a focal point 2.
  • the X-ray irradiated to the sample S passes through the sample S and is detected as an X-ray transmission image by the TDI camera 4.
  • the TDI camera 4 as a detector, an X-ray transmission image of the sample S continuously transported by the sample transport unit 3 is continuously acquired.
  • the storage time can be increased by the number of stages of TDI, and an image with a high S / N ratio can be obtained by increasing the amount of X-ray light. improves.
  • the TDI camera 4 has a configuration in which a fiber optic plate having a scintillator layer formed on the surface is coupled to an image sensor.
  • a TDI (Time Delay Integration) type CCD sensor as an image sensor, X-ray TDI imaging can be performed.
  • the X-ray shielding unit 5 shields X-rays emitted from the X-ray tube 1 and reflected / scattered X-ray components thereby, isolates the space irradiated with X-rays, and allows a human hand or the like to enter the space. Is to prevent.
  • the interlock is activated, and the X-ray irradiation by the X-ray source 1 is stopped.
  • the defect determination unit 7 determines a defect existing in the sample based on the X-ray transmission image detected by the TDI camera 4, and outputs the presence / absence, the number, position, or size of the existence.
  • the defect include foreign substances (metal, glass, resin, rubber, insect, hair, etc.) mixed in liquid medicine vials, freeze-drying agent vials, tablets, and foods.
  • high-functional materials such as CFRP (carbon fiber reinforced plastic), ceramics, and composite materials
  • scratches, chips, holes, and the like can be given.
  • a minute metal foreign matter mixed in the lithium ion battery or a flaw or a hole in a constituent member can be mentioned.
  • the X-ray transmission image is a statistical pattern corresponding to the background pattern due to the thickness of the sample and material distribution, fixed pattern noise of the X-ray TDI camera 4, thermal and electrical noise of the output circuit, and the number of X-ray photons. Randomly generated shot noise is added as noise. If there is a defect, local light and dark features appear at the position of the defect. When the defect is a foreign substance, it is locally dark with respect to the surroundings, and when the defect is a chip or a hole, it is locally bright with respect to the surroundings. In the defect determination unit 7, after performing a filtering process or a difference process to attenuate the background pattern and noise on the detected image, a threshold setting is performed so as not to substantially detect the remaining background pattern and noise. Defects are detected by determining a portion exceeding the threshold as a defect.
  • the defect determination unit 7 measures the center of the spatial spread of the light or dark pattern determined as a defect (the position where the brightness difference with the background is the maximum, or the barycentric position of the brightness difference) as the defect position. Further, the size of the defect is measured from the difference in brightness from the background of the defect portion and the spatial spread of the brightness.
  • the defect determination unit 7 or the control includes the defect image including the defect part and the surrounding background, the defect position information, and the information associated with the defect (defect size and type) so that the above defect determination result can be confirmed after the inspection.
  • the data is stored in a memory built in the unit 8.
  • the control unit 8 receives signals from the input unit 10 or each of the above-described components, and controls the X-ray source 1 and the X-ray TDI camera 4 and sets and controls parameters of the defect determination unit 7.
  • the parameter setting values, states, inspection conditions, and defect determination results (defect number, position, defect size, defect image) of each component described above are displayed on the display unit 9.
  • the input unit 10 receives an external input such as an input from the user and is sent to the control unit 8.
  • the input values input from the input unit 10 include setting parameters for each constituent requirement, setting values for inspection conditions, information on the sample, and the like.
  • the present invention is not limited to this, and when the sample S is an individual, the transport is necessarily performed in the container 6.
  • the sample S may be held and transported directly by the sample transport unit 3.
  • the sample S to be inspected is stored in the container 6, and the container 6 is held by the sample transport unit 3 or placed and transported.
  • the line rate of the TDI camera 4 is set in accordance with the sample conveyance speed by the X-ray tube 1 and the sample conveyance unit 3, and imaging synchronized with the sample conveyance speed is performed.
  • the sample transport unit 3 outputs information such as transport speed or transport distance necessary for timing synchronization of the TDI camera 4 to the control unit 8.
  • the X-ray inspection apparatus 100 when the X-ray inspection apparatus 100 is installed and used in an environment in which the sample is transported at a substantially constant speed in the sample manufacturing process or the like, the X-ray inspection apparatus itself needs to include the sample transport unit 3.
  • the TDI camera 4 may be set and operated so as to synchronize with the transport system that is preliminarily installed in the sample manufacturing process.
  • measure the output of the transport system such as the sample manufacturing process or the position measurement value, angle measurement value, or speedometer obtained by measuring the transported sample or transport system with the encoder.
  • the obtained velocity measurement value and angular velocity measurement value are input to the control unit 8 and used as information used for synchronization.
  • FIG. 2A explains the principle of the rotation method of the container 6 containing the sample S in this embodiment.
  • the principle of the method of rotating the container 6 containing the sample S in the present embodiment is described as follows using FIG. 2A from the viewpoint of the moving speed in the X direction of the container 6 containing the sample S.
  • the rotation center position of the rotation of the container 6 containing the sample S by the sample transport unit 3 is C, and the distance from the focal point to the rotation center is L0.
  • the position of the object in the sample S stored in the container 6 is represented by polar coordinates (r, ⁇ ) with the rotation center as a reference.
  • h is the distance in the thickness direction of the sample S stored in the container 6 from the center of rotation to the object. Since the magnification of the image is L / (L0 ⁇ h), the moving speed of the image of the object is obtained as L (v ⁇ h) / (L0 ⁇ h).
  • the thickness direction of the sample S stored in the container 6 is the Z direction in FIG. 3, and is a direction connecting the focal point 2 and the center of the light receiving region of the TDI sensor 4.
  • FIG. 2B shows a plan view of the TDI sensor 4.
  • the TDI sensor 4 is formed by arranging a plurality of one-dimensional pixel arrays 42 formed by arranging a plurality of pixels 41 in the Y direction in the X direction.
  • the container 6 moves in the X direction and the X-ray image transmitted through a certain position of the sample S inside the container 6 sequentially moves the one-dimensional pixel row 42 in the X direction
  • the TDI sensor 4 The detection signals of the pixels 41 at the same position are transferred in the Y direction of each pixel column 42 in synchronization with the movement in the X direction 6 and sequentially added. Thereby, a weak image signal from the sample S can be detected.
  • the relative direction of the sample with respect to the X-ray beam direction becomes substantially equal at an arbitrary time within the integration time by the TDI type detector, and the center position of the defect is determined. It was made possible to determine the presence or absence of defects without causing a shift.
  • the sample transport unit 3 includes a linear motion mechanism 201, a rotation mechanism 202, and a sample holder 203 as shown in the plan view of FIG. 3A and the front view of FIG. 3B.
  • the sample holding unit 203 holds the sample S, and rotates the sample holding unit 203 about the fixed rotation center C where the rotation mechanism 202 is located as the rotation axis.
  • the linear motion mechanism 201 linearly moves the rotation mechanism 202 parallel to the integration direction of the TDI sensor 4.
  • 3A and 3B show an example of a pharmaceutical vial in which a freeze-drying agent is sealed in a cylindrical bottle as an example of the container 6 that stores the sample S.
  • the container 6 that stores the sample S is not limited to this.
  • the target can be fixed and held by the holding unit 203.
  • the shape of the container 6 for storing the sample S is circular in the XZ section in FIG. 3A, but is not limited thereto, and any shape can be used as long as it can be held and rotated.
  • the rotation mechanism 202 uses a rotation speed relative error that is equal to or less than the reciprocal of the number of accumulated stages of the TDI sensor 4 (for example, in the case of 128 stages, the rotation speed relative error is 0.78% or less). It can be made low enough. While the sample S passes through the detection region of the detection system of the X-ray tube 1 and the TDI sensor 4, the linear moving speed by the linear motion mechanism 201 and the rotational speed by the rotating mechanism 202 are constant, and v, ⁇ described in FIG. Have the relationship.
  • sample transport unit 3 Another embodiment of the sample transport unit 3 is shown in the plan view of FIG. 4A, the side view of FIG. 4B, and the front view of FIG. 4C.
  • 4A to 4C includes a sample fork interval adjusting mechanism 209, sample fork linear motion mechanisms 210 and 211, sample forks 212 and 213, and a linear motion mechanism 208 that linearly moves the whole.
  • the container 6 containing the sample S is sandwiched and held between sample forks 212 and 213 positioned by a sample fork interval adjusting mechanism 209 and sample fork linear motion mechanisms 210 and 211.
  • the sample forks 212 and 213 are moved by the sample fork linear motion mechanisms 210 and 211 at a constant speed in directions opposite to each other on an axis (Z direction) perpendicular to the direction in which the container 6 containing the sample S is sandwiched (X direction). To do. By this movement, the container 6 containing the sample S rotates. In parallel with this operation, the linear movement mechanism 208 is linearly moved, whereby the container 6 containing the sample S is rotated and linearly moved. The rotational speed of the container 6 containing the sample S is determined by the distance between the sample forks 212 and 213 and the moving speed. The interval between the sample forks 212 and 213 is adjusted by the sample fork interval adjusting mechanism 209.
  • sample transport unit 3 is effective when the portion sandwiched between the sample forks 212 and 213 of the container 6 containing the sample S is cylindrical because the position of the rotating shaft with respect to the sample is constant. It is. By adjusting the interval between the sample forks 212 and 213 by the sample fork interval adjusting mechanism 209, it is possible to correspond to the container 6 in which the sample S having a cylindrical shape with an arbitrary diameter is stored.
  • the center axis and the rotation axis of the container 6 coincide with C in a state in which the container 6 containing the sample S is held by the sample transport unit 3 or 31.
  • An example is shown.
  • the sample 6 is held by the sample transport unit 32 corresponding to the sample transport unit 3 and the center axis of the container 6 does not coincide with the rotation center axis, that is, the center of the container 6
  • a case will be described in which an X-ray is irradiated in a state where the axis is inclined with respect to the rotation center axis C and a transmitted X-ray image transmitted through the sample S stored in the container 6 is captured.
  • the container 6 is a bottle or a vial
  • X-rays are irradiated from the side of the container 6 containing the sample as shown in FIG. 3B or 4C
  • the bottom surface of the sample is projected onto the TDI sensor 4c, and defects on the bottom surface of the sample can be inspected with high sensitivity.
  • FIGS. 5A and 5B show a state in which the container 6 containing the sample S is held by the sample transport unit 32.
  • the container 6 storing the sample S according to the present modification is held on the linear transport rail 552 by the sample tilting mechanism 553, the sample rotating mechanism 554, and the sample holder 555 that constitute the sample transporting section 32.
  • the sample tilt mechanism 553 has a goniometer configuration.
  • FIG. 5A shows a state in which the container 6 is held so that the central axis of the container 6 containing the sample S and the central axis C of rotation coincide with each other
  • FIG. 5B shows the central axis of the container 6 relative to the central axis C of rotation.
  • the state in which the tilt angle ⁇ is held is shown.
  • the container 6 in which the sample S is stored is held by the sample transport unit 32 so as to be rotatable around the rotation center axis C.
  • FIG. 6A illustrates the configuration of this modification in which an X-ray transmission image is detected using the TDI sensors 4-1 to 4-4 with 4 while the sample transport unit 32 is transported on the straight transport rail 552.
  • this modification two X-ray sources, an X-ray source 1-1 and an X-ray source 1-2, are used, and X-rays emitted from these X-ray sources are prevented from interfering on the sample. Therefore, a shielding plate 610 is provided.
  • condition A the defect of the sample S on the side surface of the cylindrical inner wall of the container 6 in the condition A (the position of the center of the sample when the sample is viewed from the focal point 2-1) becomes the side surface of the inner wall of the container 6 in the condition B. Therefore, it becomes possible to detect a defect that could not be detected with high sensitivity only under condition A.
  • the sample transport section 32 is transported on the straight transport rail 552, and at the position of the sample transport section 32-3, the TDI sensor 4-3 is transported.
  • the sample rotation mechanism 554 adjusts the inclination angle ⁇ of the container 6 in which the sample S is stored until the region to be detected is reached.
  • the sample transport section 32 is transported on the straight transport rail 552, and at the position of the sample transport section 32-4, the TDI sensor 4-4.
  • the container 6 is rotated 90 degrees by the sample rotating mechanism 554 before reaching the detection target area, and is set to a different azimuth angle when photographed by the TDI sensor 4-3.
  • a defect on the bottom surface of the cylindrical inner wall of the container 6 in the condition C becomes the side surface of the inner wall of the container 6 in the condition D.
  • FIG. 7 shows a flowchart of the X-ray inspection method according to the present embodiment.
  • the control unit 8 receives a signal related to the inspection conditions received from the input unit 10 and other components in FIG. 1 (S701), and the control unit 8 causes the sample transport unit 3, the TDI camera 4, and the X-ray tube 1 to be transmitted.
  • the condition is set (S702).
  • the sample is irradiated with X-rays under the conditions set in S702 by the X-ray tube 1 (S703).
  • the X-rays irradiated in S703 pass through the sample, and an X-ray transmission image is detected by the TDI camera 4 (S704).
  • the defect determining unit 7 processes the X-ray transmission image detected in S704 to detect defects present in the sample (S705).
  • the defect detection result in S705 is displayed on the display unit 9 (S706).
  • S703 to S704 are repeated a number of times according to the number of the plurality of cameras (in the case of FIG. 7, four times), Defect detection may be performed in S705 by integrating the images obtained from them.
  • the configuration of the X-ray inspection apparatus in the present embodiment is the same as the configuration of the X-ray inspection apparatus 100 described with reference to FIG.
  • FIG. 8 is a diagram for explaining the principle of the sample transport method in the present embodiment.
  • the case where the rotation center of the container 6 containing the sample S is set as the center of the container 6 has been described.
  • the rotation center of the container 6 is the focus 2 of the X-ray source 1. A case where the position is set will be described.
  • X-rays emitted from the focal point 2 of the X-ray source 1 are propagated radially around the focal point 2 and detected by the TDI camera 4.
  • the container 6 containing the sample S is transported by the sample transport unit 3 and passes through the detection range of the TDI camera 4. While passing through the detection range of the TDI camera 4, the sample transport unit 3 moves the container 6 containing the sample S straight at a certain speed v and rotates at a certain angular speed ⁇ .
  • the container 6 is rotated while the container 6 moves straight from the state (a) to the state (b) by the sample transport unit 3.
  • the direction of rotation is such that the moving distance or moving speed of the container 6 closer to the focal point 2 is smaller than that of the container 6 farther from the focal point 2.
  • the moving distance or moving speed refers to the moving distance component or moving speed component in the X direction of FIG.
  • the container 6 is rotated so that the relative direction 101 of 6 is equal.
  • the light beam 101, 102 passing through the center of the sample S stored in the container 6 has been described as an example.
  • the direction of the light beam passing through an arbitrary position in the sample S stored in the container 6 with respect to the sample S is substantially preserved during the integration time of the TDI sensor 4.
  • the movement distances during the time ⁇ t of the transmission image corresponding to an arbitrary position in the sample S become substantially equal.
  • FIG. 9 shows a sample transport method according to the second embodiment of the present invention.
  • the configuration of the X-ray inspection apparatus in the present embodiment is the same as the configuration of the X-ray inspection apparatus 100 described with reference to FIG.
  • the sample transport unit 3 is configured such that the container in which the sample S is stored is transported while drawing an arc-shaped trajectory centered on the focal point 2.
  • FIG. 9 shows an example in which the sample is carried on the arc-shaped conveyor 301 as the sample carrying unit 3.
  • the X-ray beam direction radially generated from the focal point 2 and the relative direction of the sample S stored in the container 6 with respect to the X-ray beam direction are within the integration time of the TDI sensor 4.
  • the condition of the sample transport method described with reference to FIG. 8 that the container 6 is rotated so as to be stored is satisfied.
  • the conveyance speed of the conveyor 301 is constant.
  • the velocity component in the X direction is not completely constant, but an error caused by this will not be a problem in practice as will be described below with reference to FIG.
  • O 1 passes through an arcuate track 302 that is a distance h away from the conveyor 301.
  • the image position x ′ of the O1 image on the TDI sensor 4 is Ltan. ( ⁇ t) and does not depend on the position h in the thickness direction in the sample.
  • the ideal image position x where the blur caused by TDI integration is 0 is L ⁇ t.
  • x / L ⁇ 1 ⁇ x is (x / L2) 2 ⁇ x / 3
  • the value of ⁇ x is determined to be 0.13 ⁇ m. Since this is small enough to be ignored with respect to the pixel size of 48 ⁇ m of the TDI sensor 4, the blur caused by TDI integration can be suppressed to be small enough to be ignored.
  • FIG. 10A and FIG. 10B show examples of the sample transport unit 3 in this embodiment for carrying out the sample transport method shown in FIG.
  • the sample transport unit 3 in this embodiment includes a sample holder 322, a sample holder position adjustment mechanism 324, a sample arm 321, and an arm rotation mechanism 323.
  • a sample holder 322 holds the container 6 containing the sample S and is fixed to the sample arm 321.
  • the position of the sample holder 322 relative to the sample arm 321 is adjusted and fixed by the sample holder position adjusting mechanism 324.
  • it is effective to bring the container 6 close to the TDI sensor 4 within a range where it does not collide with the TDI sensor 4.
  • the sample arm 321 is rotated at a constant rotation speed in the XZ plane of FIG. 10A around the rotation axis C passing through the focal point 2 by the arm rotation mechanism 323. While the sample S stored in the container 6 by the rotation of the sample arm 321 is photographed by the TDI sensor 4, the relative position and direction (posture) of the container 6 with respect to the sample arm 321 are constant.
  • FIG. 11 shows another configuration example of the sample transport unit 3 for carrying out the sample transport method shown in FIG.
  • the sample transport unit 3 includes an arc transport rail 341 and a sample holder 342.
  • the arc conveyance rail 341 includes a rail or a guide and a driving mechanism for conveying the sample holder 342 at a constant linear velocity along an arc-shaped locus centering on the focal point 2.
  • the sample holder 342 holds the container 6 in which the sample S is stored.
  • a sample holder mark 343 fixed on the sample holder 342 is shown so that the direction of the sample holder 342 can be seen.
  • the sample holder 342 is transported while changing its direction along the circular arc transport rail 341, so that the direction of the sample S stored in the container 6 with respect to the X-ray beam emitted from the focal point 2 is transported.
  • FIG. 12A and FIG. 12B show another configuration example of the sample transport unit 3 for carrying out the sample transport method shown in FIG.
  • the sample transport unit 3 includes a turntable 361 that rotates around a rotation axis that is parallel to the Y axis and passes through the focal point 2.
  • the turntable 361 places the container 6 containing the sample S and rotates at a constant speed, thereby implementing the sample transport method shown in FIG.
  • a sample holder 362 for fixing the sample S is installed on the turntable 361 as necessary so that the position of the container 6 containing the sample S on the turntable 361 does not shift due to the acceleration due to rotation. Is done.
  • FIG. 13A and FIG. 13B show another configuration example of the sample transport unit 3 for carrying out the sample transport method shown in FIG. 13A and 13B is configured to transport the container 6 containing the sample S by a belt conveyor, and as shown in the plan view of FIG. 13A, a belt 381, guide rollers 382 and 383, a circular guide roller 384 and 385 and a drive mechanism 386 are provided.
  • the guide rollers 382 and 383 and the circular guide roller 384 press the belt 381, so that the cross section of the belt 381 becomes an arc shape on the detection region on the TDI sensor 4.
  • the circular guide rollers 384 and 385 are circular with the focal point 2 as the central axis, and press both ends of the belt 381 so as not to contact the container 6 containing the sample S passing over the belt 381 as shown in FIG. 13A.
  • These guide rollers are configured to freely rotate about a fixed rotation shaft by the conveyance of the belt 381 by the drive mechanism 386. With the configuration described above, the container 6 containing the sample S is transported along a circular orbit on the focal point 2 when passing through the detection region on the TDI sensor 4.
  • FIGS. 14A and 14B show modified examples of the configuration of the sample transport unit 3 shown in FIGS. 13A and 13B.
  • the circular guide rollers 384 and 385 are replaced with the circular arc arrangement guide rollers 391 and 392 in FIGS. 14A and 14B.
  • the arc-arranged guide rollers 391 and 392 are a plurality of guide rollers whose central axes are parallel to each other so that the envelope on the belt 381 side is an arc centered on the focal point 2. .
  • the function is approximately the same as that of the circular guide rollers 384 and 385. Compared to the circular guide rollers 384 and 385, there is an advantage that the space occupied is small.
  • FIG. 15 shows the relationship between the range of the area where the carrying method of this embodiment is carried out, the dimensions of the container 6 containing the sample S, and the X-ray optical system composed of the X-ray tube 1 and the TDI sensor 4. explain.
  • the width of the TDI integration region of the TDI sensor 4 is W S
  • the width of the footprint of the container 6 containing the sample S is W
  • the height is H.
  • R2 and R3 be the trajectories of X-ray rays that come out of the focal point 2 and reach both ends of the TDI integration region of the TDI sensor 4.
  • a hatched region between R2 and R3 is a region to be detected by the TDI sensor 4. While a part of the sample S accommodated in the container 6 passes through this region, the conveyance for rotating the container 6 accommodating the sample S shown in FIG. 2 described in the first embodiment or in FIG. 8 of the present embodiment.
  • the container 6 containing the sample S in FIG. 15 is transported from left to right. 6 until the time when the right end of the sample S stored in 6 reaches R2 (when the sample is at the position of S1) until the time when the left end of the sample S finishes passing through R3 (when the sample is at the position of S2).
  • the sample S stored in the container 6 needs to be conveyed along an arcuate locus.
  • a range 401 is defined as a range of the belt 381 from the left end of the sample footprint when the sample S is at the position S1 to the right end of the sample footprint when the sample S is at the position S2.
  • the belt 381 on which the container 6 is placed needs to have an arcuate path centered on the focal point 2 at least in the range 401.
  • the width of the range 401 varies depending on the height H of the sample S and the shape of the sample, but is roughly calculated as W S + 2W.
  • FIG. 16A shows an embodiment of the transport unit 3 that performs imaging in a plurality of sample directions by the sample transport method shown in FIG.
  • the sample transport unit 3 includes an arc transport rail 502, sample goniometer mechanisms 503a-d, sample rotating mechanisms 504a-d, and sample holders 505a-d.
  • the arc conveying rail 502 includes a rail or a guide and a driving mechanism for conveying the sample Sa-d with an arcuate locus centered on the focal point 2 at a constant linear velocity.
  • Sample holders 505a-d each hold a sample Sa-d.
  • the sample holder marks 511a-d on the sample holders 505a-d are shown so that the azimuth angle ⁇ of the sample can be seen.
  • the sample holders 505a-d are transported while changing their orientations along the arc transport rail 502, so that the direction of the sample S with respect to the X-ray beam emitted from the focal point 2 is transported.
  • Each sample Sa-d is transported in a different direction with respect to the TDI sensors 4a-d.
  • condition ad of the table of FIG. 16B An example of the condition of the direction of the sample Sa-d with respect to the TDI sensor 4a-d is shown in the condition ad of the table of FIG. 16B.
  • Samples entering from the sample inlet 501 sequentially pass through the position of the sample Sa-d and are carried out from the sample outlet 509, so that each sample is photographed under four conditions a to d.
  • the inspection is performed at a higher speed than when inspecting a plurality of imaging conditions with a single TDI sensor. Is possible.
  • FIG. 17 illustrates a sample transport mechanism that holds the sample Sa of the sample transport unit 3 illustrated in FIG. 16A.
  • the container 6 containing the sample S is held on the circular arc conveying rail 502 by the sample tilting mechanism 503a, the sample rotating mechanism 504a, and the sample holder 505a.
  • the container 6 is transported on the circular transport rail 502 and photographed by the TDI sensor 4a at the position Sa, the container 6 is rotated by the sample rotating mechanism 504a before reaching the detection target region Sb by the TDI sensor 4b.
  • Sb is set to a different sample azimuth angle from that at Sa.
  • condition a and condition b By photographing under two conditions of condition a and condition b, it becomes possible to detect with high sensitivity regardless of the position of the defect in the sample.
  • a defect on the side surface of the inner wall of the cylindrical sample under the condition a (positions at both ends of the sample when the sample is viewed from the focal point 2) is the front of the inner wall of the sample under the condition b (the sample when the sample is viewed from the focal point 2). Therefore, a defect that could not be detected with high sensitivity only under condition a can be detected.
  • FIG. 18 shows a sample transport mechanism for holding the container 6 at the position Sc of the sample transport unit 3 shown in FIG.
  • the configuration is the same as that shown in FIG.
  • the tilt angle ⁇ of the container 6c containing the sample Sc is adjusted by the sample tilt mechanism 503c.
  • the container 6c is a bottle or a vial
  • an X-ray is taken from the side of the container 6 as shown in FIG.
  • FIG. 18 by changing the inclination angle ⁇ of the container 6c, the bottom surface of the container 6c is projected onto the TDI sensor 4c, and defects on the bottom surface of the container 6c can be inspected with high sensitivity.
  • the processing flow in the X-ray inspection method according to the present embodiment is the same as the processing flow described in Embodiment 1 with reference to FIG.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Abstract

本発明は、X線検査装置において、厚みのある被検査物に対しても空間分解能を劣化させることなく時間遅延積分による検出を可能にすることを目的とする。本発明のX線検査装置(100)は、X線を発生するX線源(1)と、試料(S)を搬送する搬送部(3)と、X線源(1)で発生して搬送部(3)で搬送されている試料(S)を透過したX線を検出する時間遅延積分(TDI)型の検出器(4)を備えた検出部と、時間遅延積分型の検出器(4)で検出して得た信号を処理して試料中の欠陥を判定する欠陥判定部(7)とを備え、搬送部(3)は、試料(S)が検出部の時間遅延積分型の検出器(4)の前を通過するときに、搬送と同期させて試料(S)を回転 させながら搬送することを特徴とする。

Description

X線検査方法及びX線検査装置
 本発明は、試料にX線を照射し、試料を透過したX線の強度分布に基づいて試料を検査するX線検査方法およびX線検査装置に関する。
 X線発生部が発生するX線の出力が低くても高感度に異物を検出することができるX線検査装置が特開2011-242374号公報(特許文献1)に記載されている。この公報には、「複数の検出素子列101~108の段ごとに各検出素子から得た検出データを時間遅延積分により合成して合成データを出力するX線検出器10と、X線検出器10により出力される合成データに基づいて被検査物W中の異物の有無を判定する判定部44と、を備える。被検査物Wの厚さ情報に応じて、X線検出器10により行われる時間遅延積分の対象となる検出素子列の段数を設定する段数設定部46を備える。」と記載されている。
特開2011-242374号公報
 前記特許文献1には、X線発生部が発生するX線の出力が低くても高感度に異物を検出することができるX線検査装置が記載されている。しかし、特許文献1に記載されたX線検査装置は被検査物の厚さが大きい場合に時間遅延積分の対象となる検出素子列の段数が小さく設定されるため、厚さが小さい場合と比較して検出出力が低く、高感度の異物検出が困難となる課題があった。
 本発明の目的は、厚みのある被検査物に対しても空間分解能を劣化させることなく時間遅延積分による検出を行うことができるようにしたX線検査方法及びX線検査装置を提供することにある。
 上記した課題を解決するために、本発明では、X線検査装置を、X線を発生するX線源と、試料を搬送する搬送部と、X線源で発生して搬送部で搬送されている試料を透過したX線を検出する時間遅延積分型の検出器を備えた検出部と、検出部の時間遅延積分型の検出器で試料を透過したX線を検出して得た信号を処理して試料中の欠陥を判定する欠陥判定部とを備えて構成し、搬送部は、試料が検出部の時間遅延積分型の検出器の前を通過するときに搬送と同期させて試料を回転させながら搬送するようにした。
 また、上記した課題を解決するために、本発明では、X線源から発生させたX線を搬送部で搬送されている試料に照射し、X線が照射された試料を透過したX線を時間遅延積分型の検出器で検出し、時間遅延積分型の検出器で試料を透過したX線を検出して得た信号を処理して試料中の欠陥を判定するX線検査方法において、試料が検出部の時間遅延積分型の検出器の前を通過するときに搬送と同期させて試料を回転させながらX線を試料に照射するようにした。
 本発明によれば、X線検査方法及びX線検査装置において、時間遅延積分型の検出器を用いた場合に、厚みのある被検査物に対しても空間分解能を劣化させることなく微細な欠陥を高感度に検出することができるようになった。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の第1の実施例に係るX線検査装置の構成図。 本発明の第1の実施例に係る試料搬送装置におけるX線源の焦点と容器及びTDIカメラの関係を示すブロック図である。 本発明の第1の実施例に係る試料搬送装置で使用するTDIカメラの構成を示す平面図である。 本発明の第1の実施例に係る試料搬送部の平面図である。 本発明の第1の実施例に係る試料搬送部の正面図である。 本発明の第1の実施例に係る別な方式の試料搬送部の平面図である。 本発明の第1の実施例に係る別な方式の試料搬送部の側面図である。 本発明の第1の実施例に係る別な方式の試料搬送部の正面図である。 本発明の第1の実施例に係り更に別な方式で容器が垂直な姿勢で回転しながら搬送されている状態を示す試料搬送部の正面図である。 本発明の第1の実施例に係る更に別な方式で容器が傾いた状態で回転しながら搬送されている状態を示す試料搬送部の正面図である。 本発明の第1の実施例の変形例に係る試料搬送部の平面図である。 本発明の第1の実施例の変形例に係る試料搬送部の試料方位角と傾斜角との組み合わせ条件を一覧にした表である。 本発明の第1の実施例に係るX線検査方法の処理の流れを示すフロー図である。 本発明の第2の実施例に係る試料搬送方法におけるX線源の焦点と容器及びTDIカメラの関係を示すブロック図である。 本発明の第2の実施例に係る試料搬送部の正面図である。 本発明の第2の実施例に係る試料搬送部の平面図である。 本発明の第2の実施例に係る試料搬送部の正面図である。 本発明の第2の実施例に係る別な方式の試料搬送部に係り、(a)は平面図、(b)は正面図である。 本発明の第2の実施例に係る更に別な方式の試料搬送部の平面図である。 本発明の第2の実施例に係る更に別な方式の試料搬送部の正面図である。 本発明の第2の実施例に係る更にまた別な方式の試料搬送部の平面図である。 本発明の第2の実施例に係る更にまた別な方式の試料搬送部の正面図である。 本発明の第2の実施例に係る更にまた別な方式の試料搬送部の平面図である。 本発明の第2の実施例に係る更にまた別な方式の試料搬送部の正面図である。 本発明の第2の実施例に係る試料搬送部のX線光学系を模式的に示した平面図である。 本発明の第2の実施例に係る複数の試料方向で撮影を行う試料搬送部の平面図である。 本発明の第2の実施例に係る試料搬送部の試料方位角と傾斜角との組み合わせ条件を一覧にした表である。 本発明の第2の実施例に係る複数の試料方向で撮影を行う試料搬送部で試料を収納した容器を垂直な姿勢で回転させながら搬送している状態を示す試料搬送部の正面図である。 本発明の第2の実施例に係る複数の試料方向で撮影を行う試料搬送部で試料を収納した容器を傾いた姿勢で回転させながら搬送している状態を示す試料搬送部の正面図である。
 本発明は、X線検査装置を、焦点からX線を放射状の光線方向に発生して試料に照射するX線源と、X線源から放射され試料を透過したX線を検出するTDI(時間遅延積分)型の検出器と、X線TDI検出器により検出されたX線透過像に基づき欠陥を検出する欠陥検出部を備えて構成し、TDI型の検出器による積算時間内の任意の時刻においてX線の光線方向に対する試料の相対的な方向が実質的に等しくなるようにしたことを特徴とする。
 本実施例では、試料にX線を照射し、試料を透過したX線の強度分布に基づいて試料を検査するX線検査装置の例を説明する。
 図1は本実施例のX線検査装置100の構成図の例である。X線検査装置100は、X線管1、試料搬送部3、TDIカメラ4、X線遮蔽部5、欠陥判定部7、制御部8、表示部9、入力部10を備える。
 X線管1は試料Sに向けてX線を照射する。X線管1はターゲット(陽極)を内蔵し、ターゲットに電子が加速して衝突することでX線が発生する。電子が衝突するターゲット上の領域、すなわちX線が発生する領域を焦点2とする。試料Sに照射されたX線は試料Sを透過しTDIカメラ4によってX線透過画像として検出される。検出器としてTDIカメラ4を用いることで、試料搬送部3が連続的に搬送する試料SのX線透過画像が絶え間なく取得される。また、通常のX線ラインカメラを使用する場合に比べて、TDIの段数分だけ多くの蓄積時間をとることができ、X線光量が増すことでSN比の高い画像が得られ、検査感度が向上する。
 TDIカメラ4は、表面にシンチレータ層が形成されたファイバオプティックプレートをイメージセンサと結合した構成である。イメージセンサとしてTDI(Time Delay Integration、時間遅延積分)型のCCDセンサを用いることでX線のTDI方式での撮像が可能となる。
 X線遮蔽部5はX線管1が発するX線、およびそれによる反射/散乱X線成分を遮蔽するとともに、X線が照射される空間を隔離し、人の手などがその空間に入ることを防ぐためのものである。X線遮蔽部5が所定の条件に設置されていない場合、インターロックが作動し、X線源1によるX線の照射が停止する。以上の構成により、装置オペレータ等のX線被曝が回避され、X線検査装置100の安全性が確保される。
 欠陥判定部7は、TDIカメラ4で検出されたX線透過像に基づいて、試料に存在する欠陥を判別し、その存在の有無、存在する数、位置、あるいは大きさを出力する。ここで欠陥とは、例えば医薬品の液剤バイアル、凍結乾燥剤バイアル、錠剤、および食品の検査では、それらに混入した異物(金属、ガラス、樹脂、ゴム、虫、体毛など)が挙げられる。また例えばCFRP(炭素繊維強化プラスチック)、セラミック、複合材など高機能材料の検査では、キズ、欠け、空孔などが挙げられる。また例えばリチウムイオン二次電池あるいは燃料電池の検査では、リチウムイオン電池に混入した微小金属異物、あるいは構成部材のキズや空孔が挙げられる。
 X線透過像は、試料の厚さや材料分布による背景パターンに、X線TDIカメラ4の固定パターンノイズ、出力回路の熱的・電気的なノイズ、X線光子数に応じた統計的なゆらぎとしてランダムに発生するショットノイズ、などがノイズとして加わったものとなる。欠陥が存在すると、欠陥の位置に局所的な明暗の特徴が現れる。欠陥が異物の場合は周囲に対して局所的に暗くなり、欠けや空孔の場合は周囲に対して局所的に明るくなる。欠陥判定部7において、検出した画像に対し、背景パターンやノイズを減衰するようフィルタ処理あるいは差分処理など行った後、残存する背景パターンやノイズを実質的に検出しないようなしきい値設定を行い、しきい値を超える箇所を欠陥と判定することで、欠陥が検出される。
 欠陥判定部7において、欠陥と判定された箇所の明あるいは暗パターンの空間的な広がりの中心(背景との明度差が最大となる位置、あるいは明度差の重心位置)を欠陥位置として計測する。さらに、欠陥部の背景との明度差および明度の空間的な広がりから欠陥の大きさを計測する。以上の欠陥判定結果を検査後に確認できるよう、欠陥部と周囲の背景を含む欠陥画像、欠陥位置の情報、および欠陥に付随する情報(欠陥の大きさ、種類)が、欠陥判定部7あるいは制御部8が内蔵するメモリに保存される。
 制御部8は、入力部10から、あるいは前述の各構成部品からの信号を受け、X線源1やX線TDIカメラ4の制御、及び欠陥判定部7のパラメータ設定、制御を行う。前述の各構成部品のパラメータ設定値、状態、検査条件、欠陥判定結果(欠陥個数、位置、欠陥寸法、欠陥画像)が表示部9に表示される。
 ユーザからの入力などの外部からの入力を入力部10が受け、制御部8に送られる。入力部10から入力される入力値は、各構成要件の設定パラメータ、検査条件の設定値、試料に関する情報などを含む。
 以下の説明においては、試料Sを容器6に入れて搬送する場合について説明するが、本発明はこれに限定されるものではなく、試料Sが個体の場合には、必ずしも容器6に入れて搬送する必要はなく、試料Sを試料搬送部3で直接保持して搬送してもよい。
 検査対象の試料Sは容器6に収納され、容器6は試料搬送部3に保持され、あるいは載せ置かれ、搬送される。X線管1および試料搬送部3による試料の搬送速度に合せて、TDIカメラ4のラインレートが設定され、試料の搬送速度に同期した撮像が行われる。試料搬送部3はTDIカメラ4のタイミング同期に必要な、搬送速度、あるいは搬送距離などの情報を制御部8に出力する。
 例えばX線検査装置100を、試料の製造工程などにおいて予め試料が実質的に一定速度にて搬送されている環境に設置して用いる場合は、X線検査装置自体が試料搬送部3を備える必要はなく、試料の製造工程などに予め設置されている搬送系を兼用し、これに同期するようTDIカメラ4を設定して動作すればよい。この場合、必要に応じて、試料の製造工程などの搬送系の出力あるいは搬送されている試料あるいは搬送系をエンコーダによって計測して得られる位置計測値、角度計測値、あるいは速度計によって計測して得られる速度計測値、角速度計測値を同期に用いる情報として制御部8に入力して用いる。
 図2Aに本実施例における試料Sを収納した容器6の回転方法の原理を説明する。本実施例における試料Sを収納した容器6の回転方法の原理は、試料Sを収納した容器6のX方向の移動速度の観点から図2Aを用いて以下のように説明される。試料搬送部3による試料Sを収納した容器6の回転の回転中心位置をC、焦点から回転中心までの距離をL0とする。容器6に収納した試料S内の物体の位置を、回転中心を基準とした極座標(r,θ)で表す。
 角速度ωによって位置(r,θ)の物体が受けるX方向の移動速度は-rωcosθ=-ωhと求められる。hは回転中心から物体までの容器6に収納した試料S厚さ方向の距離である。像の倍率はL/(L0-h)なので、物体の像の移動速度はL(v-ωh)/(L0-h)と求められる。ω=v/L0のときこの値は(L/L0)vとなり、容器6に収納した試料S内の厚さ方向の位置hによらず一定となる。
 すなわち、試料Sを収納した容器6の回転の角速度ωをTDI積算方向の直線移動速度vと焦点2から試料Sを収納した容器6の回転中心までの距離L0との比の値(ω=v/L0)に設定することで、容器6に収納した試料S内の厚さ方向の位置による像の移動速度の差が相殺され、容器6に収納した試料Sの厚さ方向全体にわたってTDI積算によるボケを発生させずに撮影することができる。
 具体的な搬送条件の例を挙げると、v=100mm/s、L0=300mmのとき、試料Sを収納した容器6の回転の速度はω=0.333rad/s=0.0531rps=3.18rpmとなる。ここで、容器6に収納した試料Sの厚さ方向とは図3のZ方向であり、焦点2とTDIセンサ4の受光領域の中心を結ぶ方向である。
 図2Bに、TDIセンサ4の平面図を示す。TDIセンサ4は、Y方向に複数の画素41を並べて形成した1次元の画素列42をX方向に複数配置して形成されている。TDIセンサ4は、容器6がX方向に移動して容器6の内部の試料Sのある位置を透過したX線の像が1次元の画素列42をX方向に順次移動していくとき、容器6のX方向の移動に同期して各画素列42のY方向に同じ位置の画素41の検出信号を転送し順次加算していく。これにより、試料Sからの微弱な画像信号を検出することができる。
 なお、試料Sを収納した容器6の回転により、容器6に収納した試料S内の物体のZ方向(試料の厚さ方向)の変位も生じるが、TDIセンサ4のTDI積算の幅が焦点2から容器6に収納した試料Sまでの距離に比べて小さければ検査結果に与える影響は少ない。具体的には、L0=300mm、容器6に収納した試料SのXZ断面の寸法が直径20mm以内、TDIセンサ4のTDI積算の幅が6.14mm(=48μm×128段)、回転中心における倍率(=L/L0)が1.1倍の場合、TDI積算範囲内での試料Sを収納した容器6の回転角度は1.07度であり、それによるZ方向の変位は最大で3.72mmである。これによりTDI積算中に像の倍率が最大1.2%程度変化するが、欠陥の中心位置のずれは起きないため欠陥の有無を判別することには影響しない。
 このような構成とすることにより、TDI型の検出器による積算時間内の任意の時刻においてX線の光線方向に対する試料の相対的な方向が実質的に等しくなるようにして、欠陥の中心位置のずれを起こさずに欠陥の有無を判別できるようにした。
 試料搬送部3は図3Aの平面図、及び図3Bの正面図に示すように直動機構201、回転機構202、試料保持部203を備える。試料保持部203が試料Sを保持し、回転機構202がある固定の回転中心Cを回転軸として試料保持部203を回転させる。直動機構201が回転機構202をTDIセンサ4の積算方向に平行に直線的に移動する。
 図3A及び図3Bでは試料Sを収納した容器6の例として円筒形状の瓶に凍結乾燥剤を封入した医薬品バイアルの例を示したが、試料Sを収納する容器6はこれに限らず、試料保持部203によって固定して保持できるものを対象とすることができる。
 試料Sを収納する容器6の形状は図3AではXZ断面が円形になっているが、これに限らず、保持して回転させられるものであれば任意の形状を対象とできる。回転機構202は回転速度の相対誤差がTDIセンサ4の積算段数の逆数以下(例えば128段の場合は回転速度相対誤差0.78%以下)のものを用いることで、TDI積算中の回転誤差を十分低くすることができる。試料SがX線管1とTDIセンサ4による検出系の検出領域を通過する間、直動機構201による直線移動速度、回転機構202による回転速度は一定であり、図2において説明したv,ωの関係を有する。
 試料搬送部3の別の実施形態を図4Aの平面図、図4Bの側面図、及び図4Cの正面図に示す。
 図4A乃至図4Cに示した試料搬送部31は、試料フォーク間隔調整機構209、試料フォーク直動機構210、211、試料フォーク212、213、およびこれら全体を直線移動する直動機構208を備える。試料Sを収納した容器6は試料フォーク間隔調整機構209、試料フォーク直動機構210、211によって位置決めされる試料フォーク212、213に挟まれて保持される。
 試料フォーク212、213は、試料フォーク直動機構210、211により、試料Sを収納した容器6を挟み込む方向(X方向)と垂直な軸上(Z方向)に、互いに逆方向に一定速で移動する。この移動によって試料Sを収納した容器6が回転する。この動作と並行して直動機構208を直線移動させることで、試料Sを収納した容器6の回転と直線移動が行われる。試料Sを収納した容器6の回転速度は試料フォーク212、213の間隔と移動速度で決められる。試料フォーク212、213の間隔は試料フォーク間隔調整機構209により調整される。
 この試料搬送部3の別の実施形態は、回転軸の試料に対する位置が一定であるために、試料Sを収納した容器6の試料フォーク212、213で挟まれる部分が円筒形状である場合に有効である。試料フォーク間隔調整機構209による試料フォーク212、213の間隔調整により、任意の径の円筒形状を持つ試料Sを収納した容器6に対応することができる。
 [実施例1の変形例] 
 実施例1の変形例を図5A、図5B及び図6A、図6Bを用いて説明する。
 図3A乃至図4Cを用いて説明した例においては、試料搬送部3又は31で試料Sを収容した容器6を保持した状態で、容器6の中心軸と回転軸とがCで一致している例を示した。一方、本変形例では、試料搬送部3に対応する試料搬送部32で試料Sを保持した状態で、容器6の中心軸と回転中心軸とが一致していない例、即ち、容器6の中心軸が回転中心軸Cに対して傾いた状態でX線を照射して容器6に収納された試料Sを透過した透過X線の像を撮像する場合について説明する。
 容器6が瓶やバイアルの場合、容器6の底面の側の試料Sに欠陥が存在する場合、図3B又は図4Cに示したような試料を収納した容器6の真横からX線を照射すると、容器6に収納した試料の底面の凹凸によるX線の吸収などが原因で高感度に検出することが難しい場合がある。容器6の傾斜角φを変えることで、試料の底面がTDIセンサ4cに投影され、試料の底面にある欠陥も高感度に検査することができる。
 図5A及び図5Bは、試料Sを収納した容器6を試料搬送部32で保持した状態を示す。本変形例による試料Sを収納した容器6は、試料搬送部32を構成する試料傾斜機構553、試料回転機構554、試料ホルダ555によって直線搬送レール552に保持される。試料傾斜機構553は、ゴニオメータの構成を有している。
 図5Aは試料Sを収納した容器6の中心軸と回転の中心軸Cとが一致するように容器6を保持している状態、図5Bは容器6の中心軸が回転の中心軸Cに対して傾斜角φの傾いた状態で保持されている状態を示す。試料Sを収納した容器6は、回転中心軸Cの周りに回転可能な状態で試料搬送部32で保持されている。
 図6Aに、試料搬送部32を直線搬送レール552上を搬送しながら、4とのTDIセンサ4-1~4-4を用いてX線透過像を検出する、本変形例の構成について説明する。本変形例においては、X線源1-1とX線源1-2の2台のX線源を用い、それらのX線源から発射されたX線が試料上で干渉するのを防止するために、遮蔽板610を設けた。
 図6Aに示した構成において、TDIセンサ4-1により撮影された後、TDIセンサ4-2により検出対象となる領域に到達するまでの間に、試料回転機構554によって試料Sを収納した容器6が90度回転され、試料Sを収納した容器6は、試料搬送部32-2の位置において、試料搬送部32-1の位置にあったときと異なる方位角に設定される。
 図6Bに示すように、条件Aと条件Bの二条件で撮影することで、容器6内の位置によらず高感度に欠陥を検出することが可能になる。例えば条件Aにおいて容器6の円筒形状内壁の側面(焦点2-1から試料を見たときの試料の中心の位置)にあった試料Sの欠陥が、条件Bにおいて容器6の内壁の側面になるため、条件Aのみでは高感度に検出できなかった欠陥が検出可能となる。
 また、試料搬送部32-2の位置でTDIセンサ4-2により撮影された後、試料搬送部32が直線搬送レール552上を搬送され、試料搬送部32-3の位置でTDIセンサ4-3により検出対象となる領域に到達するまでの間に、試料回転機構554によって試料Sを収納した容器6の傾斜角φが調整される。
 瓶やバイアルの試料では、試料の底面に欠陥が存在する場合、図5Aに示したような容器6の真横からX線を照射すると、容器6の底面の凹凸によるX線の吸収などが原因で高感度に検出することが難しい場合がある。容器6の傾斜角φを変えることで、試料の底面がTDIセンサ4-3に投影され、試料の底面にある欠陥も高感度に検査することができる。
 更に、試料搬送部32-3の位置でTDIセンサ4-3により撮影された後、試料搬送部32が直線搬送レール552上を搬送され、試料搬送部32-4の位置でTDIセンサ4-4により検出対象となる領域に到達するまでの間に、試料回転機構554によって容器6が90度回転され、TDIセンサ4-3により撮影されたとき異なる方位角に設定される。傾斜角φの状態において条件Cと条件Dの二条件で撮影することで、容器6内の欠陥の位置によらず高感度に検出することが可能になる。例えば条件Cにおいて容器6の円筒形状内壁の底面(焦点2-2から試料を見たときの試料の中心の位置)にあった欠陥が、条件Dにおいて容器6の内壁の側面になる。このように、条件Dのみでは高感度に検出できない欠陥を条件Cで検出することが可能となる。
 本実施例に係るX線検査方法のフロー図を図7に示す。 
 まず、図1の入力部10や他の各構成部品から受信した検査条件等に関する信号を制御部8が受けて(S701)、制御部8により試料搬送部3やTDIカメラ4、X線管1などの条件設定を行う(S702)。その後、X線管1によりS702で設定した条件にて試料にX線を照射する(S703)。S703にて照射されたX線が試料を透過し、X線透過像をTDIカメラ4により検出する(S704)。欠陥判定部7がS704で検出したX線透過像を処理して試料に存在する欠陥を検出する(S705)。S705による欠陥の検出結果を表示部9に表示する(S706)。
 なお、図6に示したような複数のTDIカメラを用いて複数の画像を取得する場合には、S703~S704を複数のカメラの数に応じた回数(図7の場合は4回)繰り返し、それらで得られた画像を統合してS705で欠陥検出を行えばよい。
 本実施例によれば、厚みのある被検査物に対しても分解能を低下させることなく、比較的小さな欠陥を高感度に検出することができる。
 以下に、本発明の第2の実施例について説明する。本実施例におけるX線検査装置の構成は、実施例1において図1を用いて説明したX線検査装置100の構成と同じであるので、説明を省略する。
 図8は、本実施例における試料搬送方法の原理を説明する図である。実施例1においては、試料Sを収納した容器6の回転中心を容器6の中心に設定した場合について説明したが、本実施例においては、容器6の回転中心をX線源1の焦点2の位置に設定する場合について説明する。
 図8において、X線源1の焦点2から発したX線は、焦点2を中心として放射状に伝搬してTDIカメラ4によって検出される。試料Sを収納した容器6は試料搬送部3によって搬送されてTDIカメラ4の検出範囲を通過する。TDIカメラ4の検出範囲を通過する間、試料搬送部3は試料Sを収納した容器6をある速度vで直進させるとともに、ある角速度ωで回転させる。
 容器6に収納した試料S内の焦点2に近い側に物体O1、遠い側に物体O2があると仮定する。焦点2から物体O1、物体O2、TDIセンサ4の受光面までの距離をそれぞれL1,L2,Lとする。物体O1、O2はそれぞれ倍率M1、M2で受光面上に投影される。M1=L/L1、M2=L/L2である。
 仮に試料Sの回転を行わない場合(ω=0)、時刻t0からt0+Δtの間の物体O1,O2のX方向の移動距離はいずれもvΔtである。よってTDIセンサ4上での物体O1,O2の像の移動距離はそれぞれΔX1=M1・vΔt、ΔX2=M2・vΔtとなり、倍率の差が原因で像の移動距離が互いに異なる。時間ΔtがTDIカメラ4のTDI積算の時間に等しいと仮定し、TDIカメラ4のラインレートを物体O1,O2のいずれかの一方の像の移動に合せると仮定すると、もう一方の物体の像の位置がTDIカメラ4の積算中に|ΔX1-ΔX2|だけずれる。
 このTDI積算の誤差により、誤差に相当するサイズの像のボケが発生する。すなわち、容器6に収納された試料Sの厚さ方向位置によって像の移動距離、あるいは移動速度が異なるため、特定の厚さ方向位置に合せてTDIカメラ4のラインレートを設定すると、他の位置は像の空間分解能が低下して検査感度が低下する。
 本実施例では、図8に示すように、試料搬送部3によって容器6を(a)の状態から(b)の状態へ直進移動中に容器6を回転させる。回転方向は容器6の焦点2に近い側の移動距離あるいは移動速度が焦点2から遠い側のそれに対して小さくなるような方向とする。ここで、移動距離あるいは移動速度は、図8のX方向すなわちTDIセンサ4の積算方向の移動距離成分あるいは移動速度成分を指す。このような搬送方法によって、容器6の回転を行わない場合と比べて倍率の差による移動距離の差|ΔX1-ΔX2|が縮小するため、TDIセンサ4の積算誤差による像のボケが縮小し、高感度に検査を行うことができる。
 試料Sを収納した容器6の回転方法の例は、焦点2と容器6の幾何学的な位置関係により以下のように説明される。焦点2から放射状に発生するX線の光線方向とそれに対する容器6の相対的な方向がTDIセンサ4の積算時間中に保存されるよう、容器6が回転される。
 具体的には、図8に示したように、(a)の時刻tにおいて焦点2から発生する光線101に対する容器6の相対的な方向と、(b)の時刻t’での光線102に対する容器6の相対的な方向101とが等しくなるように、容器6が回転される。ここでは説明を単純にするために容器6に収納された試料Sの中央を通過する光線101,102を例にとって説明したが、焦点2と容器6との距離が大きく変化しなければ、上記の回転方法によって、容器6に収納された試料S内の任意の位置を通過する光線の試料Sに対する方向がTDIセンサ4の積算時間中に実質的に保存される。これにより、試料S内の任意の位置に対応する透過像の時間Δtの間の移動距離が実質的に等しくなる。
 図9に本発明の第2の実施例の試料搬送方法を示す。本実施例におけるX線検査装置の構成は、実施例1において図1を用いて説明したX線検査装置100の構成と同じであるので、説明を省略する。図9に示した試料搬送部において、試料Sを収納した容器が焦点2を中心とする円弧状の軌道を描いて搬送されるように試料搬送部3を構成する。図9では試料搬送部3として円弧状のコンベア301に試料を載せて搬送する例を示す。
 本実施例では、図9を見れば分かるように、焦点2から放射状に発生するX線の光線方向とそれに対する容器6に収納された試料Sの相対的な方向がTDIセンサ4の積算時間中に保存されるよう、容器6が回転される、という図8を用いて説明した試料の搬送方法の条件を満たす。
 本実施例ではコンベア301の搬送速度が一定とする。この場合、コンベア301が円弧軌道を描いているため、X方向の速度成分が完全に一定とはならないが、これによる誤差は実用上問題にならないことを、図9を用いて以下に示す。容器6に収納された試料S内のある物体位置O1に着目すると、O1はコンベア301から距離h離れた円弧軌道302を通過する。円弧軌道のコンベア301の搬送速度(線速度)をv、対応する角速度をΩ(=v/L0)とすると、TDIセンサ4上でのO1の像の時刻tでの像の位置x’はLtan(Ωt)であり、試料内の厚さ方向の位置hによらない。
 一方、TDI積算起因のボケが0となる理想的な像の位置xは、LΩtである。両者の差分ΔxはΔx=x-x’=L[tan(Ωt)-Ωt]=L[tan(x/L)-x/L]と求められる。xが最大でTDIセンサ4のTDI積算の幅6.14mm(=48μm×128段)、Lが300mmとすると、x/L<<1のため、Δxは(x/L2)・x/3と近似され、Δxの値は0.13μmと求められる。これはTDIセンサ4の画素寸法48μmに対し無視できるほど小さいため、TDI積算起因のボケが無視できるほど小さく抑えられる。
 図9に示した試料搬送方法の実施するための本実施例における試料搬送部3の例を図10A及び図10Bに示す。本実施例における試料搬送部3は試料ホルダ322、試料ホルダ位置調整機構324、試料アーム321、アーム回転機構323、を備える。試料ホルダ322が試料Sを収納した容器6を保持し、試料アーム321に固定される。試料アーム321に対する試料ホルダ322の位置は試料ホルダ位置調整機構324によって調整され、固定される。焦点2の寸法に応じて発生する像の半影ボケを低減するには、TDIセンサ4に衝突しない範囲で容器6をTDIセンサ4に近接させることが有効である。試料アーム321はアーム回転機構323によって焦点2を通る回転軸Cを中心として図10AのXZ面内で一定の回転速度で回転する。試料アーム321の回転により容器6に収納された試料SがTDIセンサ4によって撮影されている間、容器6の試料アーム321に対する相対的な位置、方向(姿勢)は一定である。
 図9に示した試料搬送方法を実施するための試料搬送部3の別の構成例を図11に示す。図11に示した構成において、試料搬送部3は円弧搬送レール341と試料ホルダ342を備える。(a)の平面図に示すように、円弧搬送レール341は試料ホルダ342を焦点2を中心とする円弧状の軌跡で一定の線速度で搬送するレールあるいはガイドおよび駆動機構を備える。(b)の正面図に示すように、試料ホルダ342は試料Sを収納した容器6を保持する。試料ホルダ342の方向が分かるよう試料ホルダ342上に固定された試料ホルダマーク343を図示した。試料ホルダ342が円弧搬送レール341に沿って向きを変えて搬送されることで、焦点2が発するX線の光線に対する容器6に収納した試料Sの方向が保存されたまま搬送される。
 図9に示した試料搬送方法を実施するための試料搬送部3の別の構成例を図12A及び図12Bに示す。図12A及び図12Bに示した構成において、試料搬送部3はY軸に平行で焦点2を通る回転軸を中心として回転するターンテーブル361を備える。図12Aに示すように、ターンテーブル361が試料Sを収納した容器6を載せて等速で回転することで、図9に示した試料搬送方法が実施される。図12Bに示すように、回転による加速度で試料Sを収納した容器6のターンテーブル361上での位置がずれないよう、必要に応じて試料Sを固定する試料ホルダ362がターンテーブル361上に設置される。
 図9に示した試料搬送方法を実施するための試料搬送部3の別の構成例を図13A及び図13Bに示す。図13A及び図13Bにおける試料搬送部3はベルトコンベアで試料Sを収納した容器6を搬送する構成であり、図13Aの平面図に示すように、ベルト381、ガイドローラー382、383、円形ガイドローラー384、385、駆動機構386を備える。
 また、図13Bの正面図に示すように、ガイドローラー382、383、円形ガイドローラー384がベルト381を押さえることで、TDIセンサ4上の検出領域上でベルト381の断面が円弧状になる。円形ガイドローラー384、385は焦点2を中心軸とする円形であり、図13Aに示すように、ベルト381上を通過する試料Sを収納した容器6に接触しないよう、ベルト381の両端を押さえる。これらのガイドローラーは、駆動機構386によるベルト381の搬送により、固定された回転軸で自由に回転するようになっている。以上の構成により、試料Sを収納した容器6がTDIセンサ4上の検出領域を通過する際に焦点2を中心とする円弧上の軌道に沿って搬送される。
 図13A及び図13Bに示した試料搬送部3の構成の変形例を図14A及び図14Bに示す。図13A及び図13Bに示した構成例の円形ガイドローラー384、385が、図14A及び図14Bでは、円弧配列ガイドローラー391、392に置き換わった構成である。
 図14Bに示すように、円弧配列ガイドローラー391、392は互いに中心軸が平行な複数のガイドローラーを、ベルト381側の包絡線が焦点2を中心とする円弧となるように配列したものである。小さな径のガイドローラーで構成することで、近似的に円形ガイドローラー384、385と同じ機能を果たす。円形ガイドローラー384、385に比べて占有する空間が小さい利点がある。
 本実施例の搬送方法を実施する領域の範囲、試料Sを収納した容器6の寸法、およびX線管1とTDIセンサ4とで構成されるX線光学系との関係を図15を用いて説明する。TDIセンサ4のTDI積算領域の幅をW、試料Sを収納した容器6のフットプリントの幅をW、高さをHとする。焦点2から出てTDIセンサ4のTDI積算領域の両端に到達するX線の光線の軌跡をR2、R3とする。
 図15に示した断面で、R2、R3に挟まれた斜線を施した領域が、TDIセンサ4による検出対象となる領域である。容器6に収納された試料Sの一部がこの領域を通過する間は、実施例1で説明した図2、あるいは本実施例の図8に示した試料Sを収納した容器6を回転する搬送方法、あるいは図9に示した円弧状の軌道を試料Sが通過する搬送方法を行う。
 図13A、図13B、図14A及び図14Bのように、円弧状のベルトに試料を載せて搬送する場合、図15において試料Sを収納した容器6が左から右に搬送されるとすると、容器6に収納された試料Sの右端がR2に到達する時点(試料がS1の位置にある時点)から、試料Sの左端がR3を通過し終える時点(試料がS2の位置にある時点)まで、容器6に収納された試料Sが円弧状の軌跡を搬送される必要がある。
 試料SがS1の位置にあるときの試料のフットプリントの左端から試料SがS2の位置にあるときの試料のフットプリントの右端までのベルト381の範囲を範囲401とする。容器6を載せるベルト381は少なくとも範囲401において焦点2を中心とする円弧状の軌道とする必要がある。範囲401の幅は試料Sの高さHや試料の形状によっても変わるが、概略、W+2Wと計算される。
 図9に示した試料搬送方法により複数の試料方向での撮影を行う搬送部3の実施例を図16Aに示す。ここでは試料が円筒形状の瓶や医薬品のバイアルである場合の例を図示した。試料搬送部3は円弧搬送レール502と試料ゴニオメーター機構503a-d、試料回転機構504a-d、試料ホルダ505a-dを備える。円弧搬送レール502は試料Sa-dを焦点2を中心とする円弧状の軌跡で一定の線速度で搬送するレールあるいはガイドおよび駆動機構を備える。
 試料ホルダ505a-dは各々試料Sa-dを保持する。試料の方位角θが分かるように試料ホルダ505a-d上の試料ホルダマーク511a-dを図示した。試料ホルダ505a-dが円弧搬送レール502に沿って向きを変えて搬送されることで、焦点2が発するX線の光線に対する試料Sの方向が保存されたまま搬送される。試料Sa-dは各々、TDIセンサ4a-dに対して異なる方向で搬送される。
 試料Sa-dのTDIセンサ4a-dに対する方向の条件の一例を図16Bの表の条件a-dに示す。試料入口501から入った試料が試料Sa-dの位置を順次通過して試料出口509から搬出されことで、各々の試料が条件a-dの四条件で撮影される。複数の試料搬送機構およびTDIセンサを備えて、複数の撮影条件(条件a-d)の検査を行うことで、単一のTDIセンサで複数の撮影条件の検査を行う場合に比べて高速の検査が可能となる。
 [実施例2の変形例] 
図16Aに示した試料搬送部3の試料Saを保持する試料搬送機構を図17に図示する。試料Sを収納した容器6は試料傾斜機構503a、試料回転機構504a、試料ホルダ505aによって円弧搬送レール502に保持される。容器6が円弧搬送レール502上を搬送され、Saの位置でTDIセンサ4aにより撮影された後、TDIセンサ4bにより検出対象となる領域Sbに到達するまでの間に、試料回転機構504aによって回転され、Sbの位置においてSaの位置にあったときと異なる試料方位角に設定される。
 条件aと条件bの二条件で撮影することで、試料内の欠陥の位置によらず高感度に検出することが可能になる。例えば条件aにおいて円筒形状試料の内壁の側面(焦点2から試料を見たときの試料の両端の位置)にあった欠陥が条件bにおいて試料内壁の正面(焦点2から試料を見たときの試料の中央の位置)になるため、条件aのみでは高感度に検出できなかった欠陥が検出可能となる。
 図16に示した試料搬送部3のScの位置で容器6を保持する試料搬送機構を図18に図示する。構成は図17に示したものと同じである。試料傾斜機構503cによって試料Scを収納した容器6cの傾斜角φが調整される。容器6cが瓶やバイアルの場合は、容器6cに収納した試料Scのうち容器6cの底面又は底面に近い部分に欠陥が存在する場合、図17に示したような容器6の真横からX線を照射すると、容器6の底面の凹凸によるX線の吸収などが原因で高感度に検出することが難しい場合がある。図18に示すように、容器6cの傾斜角φを変えることで、容器6cの底面がTDIセンサ4cに投影され、容器6cの底面にある欠陥も高感度に検査することができる。
 本実施例に係るX線検査方法における処理フローは、実施例1で図7を用いて説明した処理フローと同じであるので、説明を省略する。
 本実施例によれば、厚みのある被検査物に対しても分解能を低下させることなく、比較的小さな欠陥を高感度に検出することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1・・・X線管
2・・・X線源
3,31,32・・・試料搬送部
4・・・TDIカメラ
5・・・X線遮蔽部
6・・・容器
7・・・欠陥判定部
8・・・制御部
9・・・表示部
10・・・入力部
100・・・X線検査装置

Claims (16)

  1.  X線を発生するX線源と、
     試料を搬送する搬送部と、
     前記X線源で発生して前記搬送部で搬送されている前記試料を透過したX線を検出する時間遅延積分型の検出器を備えた検出部と、
     前記検出部の時間遅延積分型の検出器で前記試料を透過したX線を検出して得た信号を処理して前記試料中の欠陥を判定する欠陥判定部と、を備え、
     前記搬送部は、前記試料が前記検出部の前記時間遅延積分型の検出器の前を通過するときに前記搬送と同期させて前記試料を回転させながら搬送することを特徴とするX線検査装置。
  2.  請求項1記載のX線検査装置であって、
     前記搬送部は、前記試料の中心軸を回転の中心軸として前記搬送と同期させて回転させながら搬送することを特徴とするX線検査装置。
  3.  請求項1記載のX線検査装置であって、
     前記搬送部は、前記試料を傾けた状態で前記傾けた試料の中心軸を回転の中心軸として前記搬送と同期させて回転させながら搬送することを特徴とするX線検査装置。
  4.  請求項1記載のX線検査装置であって、
     前記搬送部は、前記試料を前記搬送と同期させて前記X線源から発生するX線の焦点位置を回転の中心として回転させながら搬送することを特徴とするX線検査装置。
  5.  請求項1記載のX線検査装置であって、
     前記搬送部は、前記試料を傾けた状態で前記搬送と同期させて前記X線源から発生するX線の焦点位置を回転の中心として回転させながら搬送することを特徴とするX線検査装置。
  6.  請求項1記載のX線検査装置であって、
     前記検出部は前記時間遅延積分型の検出器を複数備え、前記搬送部は前記試料を前記検出部の前記複数の時間遅延積分型の検出器の前を通過させるときに、それぞれの前記時間遅延積分型の検出器ごとに前記試料の傾斜角または方位角を変えて前記搬送と同期させて前記試料を回転させながら搬送することを特徴とするX線検査装置。
  7.  請求項1記載のX線検査装置であって、
     前記搬送部は、前記試料をX線を透過する容器に収納して搬送することを特徴とするX線検査装置。
  8.  請求項7記載のX線検査装置であって、
     前記容器は医薬用バイアルであって、前記検出部において、前記X線源で発生したX線を前記容器に収納した試料に対して前記容器の側面から照射して前記試料を透過したX線を前記時間遅延積分型の検出器で検出することを特徴とするX線検査装置。
  9.  X線源から発生させたX線を搬送部で搬送されている試料に照射し、
     前記X線が照射された前記試料を透過したX線を時間遅延積分型の検出器で検出し、
     前記時間遅延積分型の検出器で前記試料を透過したX線を検出して得た信号を処理して前記試料中の欠陥を判定するX線検査方法であって、
     前記試料が前記検出部の前記時間遅延積分型の検出器の前を通過するときに前記搬送と同期させて前記試料を回転させながら前記X線を前記試料に照射することを特徴とするX線検査方法。
  10.  請求項9記載のX線検査方法であって、
     前記試料が前記検出部の前記時間遅延積分型の検出器の前を通過するときに、前記試料の中心軸を回転の中心軸として前記搬送と同期させて回転させながら搬送することを特徴とするX線検査方法。
  11.  請求項9記載のX線検査方法であって、
     前記試料が前記検出部の前記時間遅延積分型の検出器の前を通過するときに、前記試料を傾けた状態で前記傾けた試料の中心軸を回転の中心軸として前記搬送と同期させて回転させながら搬送することを特徴とするX線検査方法。
  12.  請求項9記載のX線検査方法であって、
     前記試料が前記検出部の前記時間遅延積分型の検出器の前を通過するときに、前記試料を前記搬送と同期させて前記X線源から発生するX線の焦点位置を回転の中心として回転させながら搬送することを特徴とするX線検査方法。
  13.  請求項9記載のX線検査方法であって、
     前記試料を傾けた状態で前記搬送と同期させて前記X線源から発生するX線の焦点位置を回転の中心として回転させながら搬送することを特徴とするX線検査方法。
  14.  請求項9記載のX線検査方法であって、
     前記試料を複数の前記時間遅延積分型の検出器の前を通過させるときに、それぞれの前記時間遅延積分型の検出器ごとに前記試料の傾斜角または方位角を変えて前記搬送と同期させて前記試料を回転させながら搬送することを特徴とするX線検査方法。
  15.  請求項9記載のX線検査方法であって、
     前記搬送部で、X線を透過する容器に前記試料を収納して搬送することを特徴とするX線検査方法。
  16.  請求項15記載のX線検査方法であって、
     前記X線を透過する容器は医薬用バイアルであって、前記試料を透過したX線を検出器で検出することを、前記X線源で発生したX線を前記容器に収納した試料に対して前記容器の側面から照射して前記試料を透過したX線を前記時間遅延積分型の検出器で検出することにより行うことを特徴とするX線検査方法。
PCT/JP2016/064223 2015-09-10 2016-05-13 X線検査方法及びx線検査装置 WO2017043123A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/744,223 US10823686B2 (en) 2015-09-10 2016-05-13 X-ray inspection method and X-ray inspection device
EP16843989.1A EP3348997A4 (en) 2015-09-10 2016-05-13 X-RAY INSPECTION METHOD AND X-RAY INSPECTION DEVICE
CN201680042496.6A CN108307656B (zh) 2015-09-10 2016-05-13 X射线检查方法以及x射线检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-178954 2015-09-10
JP2015178954A JP6266574B2 (ja) 2015-09-10 2015-09-10 X線検査方法及びx線検査装置

Publications (1)

Publication Number Publication Date
WO2017043123A1 true WO2017043123A1 (ja) 2017-03-16

Family

ID=58239482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064223 WO2017043123A1 (ja) 2015-09-10 2016-05-13 X線検査方法及びx線検査装置

Country Status (5)

Country Link
US (1) US10823686B2 (ja)
EP (1) EP3348997A4 (ja)
JP (1) JP6266574B2 (ja)
CN (1) CN108307656B (ja)
WO (1) WO2017043123A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171755A1 (ja) * 2018-03-09 2019-09-12 浜松ホトニクス株式会社 画像取得システムおよび画像取得方法
JP2020180982A (ja) * 2018-03-09 2020-11-05 浜松ホトニクス株式会社 画像取得システムおよび画像取得方法
JP2021165764A (ja) * 2020-07-17 2021-10-14 浜松ホトニクス株式会社 画像取得システムおよび画像取得方法
JP2022016606A (ja) * 2020-07-17 2022-01-21 浜松ホトニクス株式会社 画像取得システムおよび画像取得方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180284037A1 (en) * 2017-03-30 2018-10-04 Sumitomo Chemical Company, Limited Inspection device, inspection method, and method of producing film roll
JP6933514B2 (ja) * 2017-03-30 2021-09-08 住友化学株式会社 検査装置、検査方法およびフィルム捲回体の製造方法
JP7219148B2 (ja) * 2018-04-25 2023-02-07 住友化学株式会社 検査システム及び検査システムの駆動方法
JP7150638B2 (ja) * 2019-02-27 2022-10-11 キオクシア株式会社 半導体欠陥検査装置、及び、半導体欠陥検査方法
JP7201481B2 (ja) * 2019-03-04 2023-01-10 株式会社日立ハイテクサイエンス X線検査装置及びx線検査方法
FR3095506B1 (fr) * 2019-04-29 2021-05-07 Tiama Ligne de contrôle de récipients vides en verre
CN110120037B (zh) * 2019-04-29 2021-07-13 国网江苏省电力有限公司电力科学研究院 图像处理及缺陷检测方法、装置、设备及计算机存储介质
JP7321523B2 (ja) * 2019-11-20 2023-08-07 株式会社日立ハイテクサイエンス X線検査装置及びx線検査方法
JP2021135125A (ja) * 2020-02-26 2021-09-13 トヨタ自動車株式会社 膜電極接合体の検査方法および検査装置
IT202000014239A1 (it) * 2020-06-15 2021-12-15 Biometic S R L Tomografo computerizzato a tunnel e metodo per l’esecuzione di una tomografia computerizzata di un oggetto
JP2022021367A (ja) * 2020-07-22 2022-02-03 キヤノン株式会社 撮像システム、製造システム、情報処理方法、物品の製造方法、プログラム及び記録媒体
CN113267521B (zh) * 2021-07-20 2021-11-05 杭州盾源聚芯半导体科技有限公司 硅产品表面加工损伤深度检测方法及自动化检测系统
CN116519721B (zh) * 2023-06-28 2023-09-08 陶瓷工业设计研究院(福建)有限公司 一种陶瓷表面裂纹视觉检测装置及其检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880556U (ja) * 1981-11-26 1983-05-31 株式会社東芝 X線透視検査装置
JPH09196865A (ja) * 1996-01-18 1997-07-31 Hihakai Kensa Kk X線透視検査装置
JP2004184357A (ja) * 2002-12-06 2004-07-02 Nittetsu Elex Co Ltd X線検査装置
WO2010104107A1 (ja) * 2009-03-13 2010-09-16 ポニー工業株式会社 X線検査装置及びx線検査方法
JP2011242374A (ja) * 2010-05-21 2011-12-01 Anritsu Sanki System Co Ltd X線検査装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2512553A1 (fr) * 1981-09-10 1983-03-11 Commissariat Energie Atomique Systeme de controle non destructif de la structure interne d'objets
IT1168043B (it) 1981-10-22 1987-05-20 Sclavo Inst Sieroterapeut Cromogeno per la determinazione colorimetrica dei perossidi e metodo impiegante lo stesso
DE3803129A1 (de) * 1988-02-03 1989-08-17 Sauerwein Dr Kurt Verfahren und vorrichtung zum erzeugen eines durchstrahlungsbildes
US4989225A (en) * 1988-08-18 1991-01-29 Bio-Imaging Research, Inc. Cat scanner with simultaneous translation and rotation of objects
FR2699679B1 (fr) * 1992-12-23 1995-01-13 Commissariat Energie Atomique Procédé et dispositif d'analyse, par radiographie, d'objets en défilement.
US5845002A (en) * 1994-11-03 1998-12-01 Sunkist Growers, Inc. Method and apparatus for detecting surface features of translucent objects
WO1999027857A1 (fr) * 1997-12-04 1999-06-10 Hitachi Medical Corporation Appareil de radiologie et procede de formation d'une image radiologique
US6529270B1 (en) * 1999-03-31 2003-03-04 Ade Optical Systems Corporation Apparatus and method for detecting defects in the surface of a workpiece
FR2820822B1 (fr) * 2001-02-14 2003-09-05 Peugeot Citroen Automobiles Sa Dispositif et procede de manipulation d'un produit et de traitement d'images radiocospiques du produit pour obtenir des coupes tomographiques et utilisations
JP3845552B2 (ja) * 2001-04-20 2006-11-15 ユニオンツール株式会社 ドリル研磨システム及び塵埃除去装置
JP3891285B2 (ja) * 2002-11-01 2007-03-14 株式会社島津製作所 X線透視装置
US6922375B2 (en) * 2003-03-17 2005-07-26 Li-Mei Shen Super-thin hanging clock
CN1820346B (zh) * 2003-05-09 2011-01-19 株式会社荏原制作所 基于带电粒子束的检查装置及采用了该检查装置的器件制造方法
US7099432B2 (en) * 2003-08-27 2006-08-29 Matsushita Electric Industrial Co., Ltd. X-ray inspection apparatus and X-ray inspection method
JP3731207B2 (ja) * 2003-09-17 2006-01-05 株式会社リガク X線分析装置
WO2005090964A1 (en) * 2004-03-19 2005-09-29 Marel Hf. Apparatus for inspecting food items
US7310404B2 (en) * 2004-03-24 2007-12-18 Canon Kabushiki Kaisha Radiation CT radiographing device, radiation CT radiographing system, and radiation CT radiographing method using the same
GB2420683B (en) * 2004-11-26 2009-03-18 Univ Tsinghua A computer tomography method and apparatus for identifying a liquid article based on the density of the liquid article
JP2006226833A (ja) * 2005-02-17 2006-08-31 Ebara Corp 欠陥検査装置及び欠陥検査装置を用いたデバイス製造方法
JP4074874B2 (ja) * 2005-06-30 2008-04-16 株式会社リガク X線回折装置
EP1972279B1 (en) * 2007-03-20 2012-09-12 Cefla Societa' Cooperativa Method for synchronisation between an emitter and a detector of a computed tomography scanner
US8351672B2 (en) * 2007-09-26 2013-01-08 Industry Vision Automation Corp. Machine imaging apparatus and method for detecting foreign materials
EP2210559B1 (en) * 2007-11-16 2016-09-07 J. Morita Manufacturing Corporation X-ray ct imaging device
CN100565105C (zh) * 2008-02-03 2009-12-02 航天东方红卫星有限公司 一种星载tdiccd相机积分时间计算及调整方法
CN101729957A (zh) * 2008-10-24 2010-06-09 深圳富泰宏精密工业有限公司 电子装置及消除电子装置音量突变的方法
US8314866B2 (en) * 2010-04-06 2012-11-20 Omnivision Technologies, Inc. Imager with variable area color filter array and pixel elements
EP2407109B1 (en) * 2010-07-14 2016-01-06 XCounter AB Computed tomography scanning system and method
WO2012043199A1 (ja) * 2010-09-29 2012-04-05 株式会社 日立メディコ X線撮像装置及びx線撮像装置のx線焦点位置制御方法
US8175452B1 (en) * 2010-10-26 2012-05-08 Complete Genomics, Inc. Method and system for imaging high density biochemical arrays with sub-pixel alignment
CN103379860B (zh) * 2011-02-18 2016-08-17 皇家飞利浦有限公司 成像系统受试者支撑物运动算法
JP5827064B2 (ja) * 2011-08-05 2015-12-02 株式会社日立ハイテクサイエンス 透過x線分析装置及び方法
US9506876B2 (en) * 2012-02-06 2016-11-29 Hitachi High-Technologies Corporation X-ray inspection device, inspection method, and X-ray detector
JP5502132B2 (ja) * 2012-04-20 2014-05-28 Ckd株式会社 検査装置
US9129715B2 (en) * 2012-09-05 2015-09-08 SVXR, Inc. High speed x-ray inspection microscope
CN103267767B (zh) * 2013-04-01 2016-01-27 合肥晶桥光电材料有限公司 多功能x射线定向仪
JP6717784B2 (ja) * 2017-06-30 2020-07-08 アンリツインフィビス株式会社 物品検査装置およびその校正方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880556U (ja) * 1981-11-26 1983-05-31 株式会社東芝 X線透視検査装置
JPH09196865A (ja) * 1996-01-18 1997-07-31 Hihakai Kensa Kk X線透視検査装置
JP2004184357A (ja) * 2002-12-06 2004-07-02 Nittetsu Elex Co Ltd X線検査装置
WO2010104107A1 (ja) * 2009-03-13 2010-09-16 ポニー工業株式会社 X線検査装置及びx線検査方法
JP2011242374A (ja) * 2010-05-21 2011-12-01 Anritsu Sanki System Co Ltd X線検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348997A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171755A1 (ja) * 2018-03-09 2019-09-12 浜松ホトニクス株式会社 画像取得システムおよび画像取得方法
JP2019158473A (ja) * 2018-03-09 2019-09-19 浜松ホトニクス株式会社 画像取得システムおよび画像取得方法
CN111837028A (zh) * 2018-03-09 2020-10-27 浜松光子学株式会社 图像取得系统和图像取得方法
JP2020180982A (ja) * 2018-03-09 2020-11-05 浜松ホトニクス株式会社 画像取得システムおよび画像取得方法
US11385191B2 (en) 2018-03-09 2022-07-12 Hamamatsu Photonics K.K. Image acquisition system and image acquisition method
CN111837028B (zh) * 2018-03-09 2023-07-04 浜松光子学株式会社 图像取得系统和图像取得方法
US11698350B2 (en) 2018-03-09 2023-07-11 Hamamatsu Photonics K.K. Image acquisition system and image acquisition method
JP2021165764A (ja) * 2020-07-17 2021-10-14 浜松ホトニクス株式会社 画像取得システムおよび画像取得方法
JP2022016606A (ja) * 2020-07-17 2022-01-21 浜松ホトニクス株式会社 画像取得システムおよび画像取得方法
JP7250891B2 (ja) 2020-07-17 2023-04-03 浜松ホトニクス株式会社 画像取得システムおよび画像取得方法

Also Published As

Publication number Publication date
JP2017053778A (ja) 2017-03-16
US10823686B2 (en) 2020-11-03
CN108307656B (zh) 2021-10-19
JP6266574B2 (ja) 2018-01-24
US20180202947A1 (en) 2018-07-19
EP3348997A4 (en) 2019-05-22
CN108307656A (zh) 2018-07-20
EP3348997A1 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6266574B2 (ja) X線検査方法及びx線検査装置
US11049237B2 (en) Method and device for optical examination of transparent bodies
US7099432B2 (en) X-ray inspection apparatus and X-ray inspection method
JP6028094B2 (ja) 容器および/または容器の内容物の欠陥のx線検出
JP5363559B2 (ja) X線検査装置及びx線検査方法
JPH09257437A (ja) 物体表面の形状検出方法
JP3678730B2 (ja) X線異物検査方法及び装置
JPH11281337A (ja) 欠陥検査装置
JP2007127611A (ja) 異物検出装置
JP2009236633A (ja) X線異物検査装置
JPH0688790A (ja) ラミノグラフィー装置
JPH10267867A (ja) X線検査装置
JP2010230559A (ja) X線検査装置
KR101761793B1 (ko) 회전 및 평면 이동 구조의 엑스레이 장치
JP4926645B2 (ja) 放射線検査装置、放射線検査方法および放射線検査プログラム
JP7265505B2 (ja) 放射線画像取得システムおよび撮像ユニット
JP2000039407A (ja) X線異物検査装置
JP2004340606A (ja) X線異物位置検出装置及び方法
JP2000111501A (ja) 透視検査装置
WO2022085275A1 (ja) 撮像ユニット、放射線画像取得システム、および放射線画像取得方法
CN115876813A (zh) 衍射检测装置、检查设备、检查方法以及检查系统
CN113740365A (zh) 非破坏检查装置
JP2962489B2 (ja) レンズ系の偏心量測定方法および装置
WO2006008819A1 (ja) 溶液中の異物検査方法およびその装置
JPS63210651A (ja) X線断層撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15744223

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE