WO2017033793A1 - チップ抵抗器およびチップ抵抗器の製造方法 - Google Patents

チップ抵抗器およびチップ抵抗器の製造方法 Download PDF

Info

Publication number
WO2017033793A1
WO2017033793A1 PCT/JP2016/073847 JP2016073847W WO2017033793A1 WO 2017033793 A1 WO2017033793 A1 WO 2017033793A1 JP 2016073847 W JP2016073847 W JP 2016073847W WO 2017033793 A1 WO2017033793 A1 WO 2017033793A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
resistor
insulating substrate
electrodes
electrode
Prior art date
Application number
PCT/JP2016/073847
Other languages
English (en)
French (fr)
Inventor
松本 健太郎
伊藤 隆志
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Publication of WO2017033793A1 publication Critical patent/WO2017033793A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • H01C1/034Housing; Enclosing; Embedding; Filling the housing or enclosure the housing or enclosure being formed as coating or mould without outer sheath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material

Definitions

  • the present invention relates to a chip resistor that is surface-mounted on a circuit board by soldering, and a method for manufacturing such a chip resistor.
  • This type of chip resistor is an insulating substrate having a rectangular parallelepiped shape made of ceramics, a pair of front electrodes opposed to each other with a predetermined interval on the surface of the insulating substrate, and insulated so as to be connected to the pair of surface electrodes.
  • a resistor provided on the surface of the substrate, a protective film made of resin provided so as to cover the resistor, a pair of back electrodes opposed to the back surface of the insulating substrate at a predetermined interval, and a front electrode And a pair of end electrodes provided on both end faces of the insulating substrate so as to be electrically connected to each other and a pair of external electrodes formed by plating the outer surfaces of these end face electrodes.
  • the external electrode is mounted on the land with the back electrode facing downward, and in this state, the solder paste is melted and melted. By solidifying, it is surface-mounted on the circuit board.
  • Patent Document 1 in a chip-shaped electronic component such as a chip capacitor, a technique is known in which cap-shaped end surface electrodes are formed at both longitudinal ends of a prismatic chip body. .
  • the posture can be any of the four surfaces (upper surface, lower surface, and both side surfaces) on the circuit board. Can be installed.
  • Patent Document 1 lists a chip resistor as an example of a chip-shaped electronic component.
  • a cap-shaped end surface electrode is formed on both ends of an insulating substrate, and the end surface electrode is used as a surface electrode. If it is configured to be connected, it can be mounted on four surfaces on the circuit board.
  • patent document 1 does not specify in particular about the specific method of forming an end surface electrode, while rotating the roller which apply
  • the protective film which covers a resistor is formed in the surface of the insulating substrate which consists of ceramics in the usual chip resistor, when forming a cap-shaped end face electrode in the both ends of an insulating substrate as mentioned above, it is insulated. After forming a protective film on the entire surface of the board so as to cover the surface electrode and the resistor, it is necessary to wrap the conductive paste from the end face side of the insulating board to the upper surface of the protective film, the back face of the insulating board, and halfway between the both sides. is there.
  • the present invention has been made in view of the above-described prior art, and a first object of the present invention is to provide a chip resistor capable of forming cap-shaped end face electrodes with stable dimensions at both ends of an insulating substrate. It is to provide.
  • a second object of the present invention is to provide a method for manufacturing such a chip resistor.
  • a chip resistor of the present invention includes a rectangular parallelepiped insulating substrate made of ceramics, and a pair of front electrodes provided at both ends in the longitudinal direction on the surface of the insulating substrate, A resistor connecting the two surface electrodes, a protective film made of resin covering the entire surface of the insulating substrate including the resistor and the surface electrodes, and an auxiliary made of resin covering the entire back surface of the insulating substrate A film and a pair of end surface electrodes provided on both end surfaces in the longitudinal direction of the insulating substrate and conducting to the surface electrode, wherein the end surface electrodes are in the longitudinal direction of both sides of the protective film, the auxiliary film, and the insulating substrate. It was configured to cover both ends.
  • the protective film covering the entire surface of the insulating substrate and the auxiliary film covering the entire back surface of the insulating substrate are both formed of the same resin material.
  • the amount of bleeding of the end face electrodes becomes almost the same.
  • the ceramic surfaces exposed on both side surfaces of the insulating substrate are also pulled in the same way by the protective film and the auxiliary film made of the same material, so that the dimensions of the end surface electrode are four surfaces of the rectangular parallelepiped chip resistor ( It is possible to form a cap-shaped end face electrode that is uniform on the upper surface, the lower surface, and both side surfaces) and has a stable dimension.
  • the protective film and the auxiliary film may be formed of different resin materials, but if the protective film and the auxiliary film are formed of the same resin material, the dimensions of the end face electrode can be made more stable. Is preferable.
  • the end face shape of the end face electrode is a square having the same aspect ratio
  • a chip resistor having a rectangular column shape with the same width and thickness is obtained, so that the mounting surface on the circuit board is a chip. All four sides of the resistor are preferably the same.
  • a chip resistor manufacturing method includes a step of forming a pair of surface electrodes in each of a plurality of chip formation regions on the surface of a large substrate made of ceramics, Forming a resistor so as to connect between the surface electrodes forming a protective layer, and forming a protective film made of resin over the plurality of chip formation regions on the surface of the large substrate so as to cover the surface electrode and the resistor A step of forming an auxiliary film made of a resin over the plurality of chip formation regions on the back surface of the large substrate, and a primary dividing line extending in the longitudinal direction through the central portion of the surface electrode.
  • the ceramic surfaces exposed on both side surfaces of the chip element are also pulled in the same way by the protective film and the auxiliary film made of the same material, so that the dimensions of the end surface electrode are 4 surfaces of the rectangular parallelepiped chip resistor ( It is possible to form a cap-shaped end face electrode that is uniform on the upper surface, the lower surface, and both side surfaces) and has a stable dimension.
  • cap-shaped end face electrodes with stable dimensions can be formed on both ends of the insulating substrate.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 2.
  • Sectional view along line VV in FIG. It is explanatory drawing which shows the manufacturing process of this chip resistor. It is explanatory drawing which shows the manufacturing process of this chip resistor.
  • a chip resistor includes a rectangular parallelepiped insulating substrate 1 and an insulating substrate 1 as shown in FIGS.
  • a pair of front electrodes 2 provided at both ends in the longitudinal direction on the surface, a rectangular resistor 3 provided so as to be connected to the front electrodes 2, and insulation including both the front electrodes 2 and the resistors 3
  • a protective film 4 made of a resin covering the entire surface of the substrate 1, an auxiliary film 5 made of a resin covering the entire back surface of the insulating substrate 1, and a pair of end surface electrodes 6 provided at both longitudinal ends of the insulating substrate 1. It is mainly composed.
  • the insulating substrate 1 is made of ceramics, and a large number of the insulating substrates 1 are obtained by dicing along a primary dividing line and a secondary dividing line that extend in the horizontal and vertical directions, which will be described later.
  • the pair of front electrodes 2 is obtained by screen-printing Ag paste and drying and firing.
  • the front electrodes 2 are rectangular so as to be exposed from the end surfaces of the short side and the long side of the insulating substrate 1. Is formed.
  • the resistor 3 is obtained by screen-printing a resistor paste such as ruthenium oxide, drying and firing, and both ends of the resistor 3 in the longitudinal direction overlap the surface electrode 2 respectively. Although not shown, the resistor 3 is formed with a trimming groove for adjusting the resistance value.
  • the protective film 4 is an overcoat layer obtained by screen-printing an epoxy resin paste and heat-cured. Although not shown, an undercoat layer covering the resistor 3 is formed below the protective film 4. Yes.
  • the undercoat layer is obtained by screen-printing glass paste, drying and firing. Since the protective film 4 is formed so as to cover the entire surface of the insulating substrate 1 including both the front electrodes 2 and the resistor 3, the three end surfaces including the left end of the front electrode 2 located on the left side in FIG. The three end surfaces including the right end of the surface electrode 2 located on the right side are exposed from between the substrate 1 and the protective film 4 and are exposed from between the insulating substrate 1 and the protective film 4.
  • the auxiliary film 5 is obtained by screen-printing an epoxy resin paste and heat-curing, and the auxiliary film 5 and the protective film 4 described above are preferably formed using the same resin material.
  • the pair of end face electrodes 6 are obtained by dip-coating Ag paste or Cu paste and heat-curing them.
  • a cap is formed so as to cover both side surfaces 1 b of the substrate 1.
  • the pair of end surface electrodes 6 are covered with external electrodes, and these external electrodes are formed by electrolytically plating Ni, Sn or the like on the surface of the end surface electrode 6.
  • the protective film 4 covering the entire surface of the insulating substrate 1 and the auxiliary film 5 covering the entire back surface of the insulating substrate 1 are both made of an epoxy resin or the like. Since it is formed of a material, when the cap-shaped end surface electrode 6 is applied and formed on both ends in the longitudinal direction of the insulating substrate 1, the amount of bleeding of the end surface electrode 6 is substantially the same on the front surface and the back surface of the insulating substrate 1. Therefore, since the end face electrode 6 is pulled in the same manner by the protective film 4 and the auxiliary film 5 made of the same material on the ceramic surface exposed on both side faces 1b of the insulating substrate 1, the end face electrode 6 has a rectangular parallelepiped shape. It is possible to form a cap-shaped end surface electrode 6 that is uniform on the four surfaces (upper surface, lower surface, and both side surfaces) of the resistor and has a stable dimension.
  • the end electrodes 6 formed on the four surfaces (the upper surface, the lower surface, and both side surfaces) of the chip resistor have the same shape with the same area. Even if any of the four surfaces (upper surface, lower surface, and both side surfaces) of the chip resistor is a mounting surface, the self-alignment effect can be exhibited in exactly the same manner.
  • a large substrate 10 made of ceramic from which a large number of insulating substrates 1 are taken is prepared.
  • the large-sized substrate 10 is not formed with a primary dividing groove or a secondary dividing groove, the large-sized substrate 10 is divided into a primary dividing line L1 and a secondary dividing line L2 extending vertically and horizontally in the subsequent process shown in FIG.
  • Each of the squares that are diced along and divided by the two divided lines L1 and L2 is a chip formation region for one piece.
  • 6 shows a state in which the large-sized substrate 10 is viewed in plan (only FIG. 6E is a rear view)
  • FIG. 7 shows a state in which one chip forming region in FIG. Yes.
  • a resistor paste such as ruthenium oxide is screen-printed on the surface of the large-sized substrate 10 and then dried and fired, thereby forming a pair of front electrodes 2 as shown in FIGS. 6 (c) and 7 (c). A plurality of resistors 3 are formed between them.
  • the formation order of the surface electrode 2 and the resistor 3 may be reverse to the above.
  • an epoxy resin paste is screen-printed on the back surface of the large-sized substrate 10 and is heat-cured, so that the entire chip formation region on the back surface of the large-sized substrate 10 is shown in FIGS. 6 (e) and 7 (e).
  • An auxiliary film 5 is formed to cover the film.
  • a primary dividing line L1 extending in the longitudinal direction through the central portion in the width direction of the surface electrode 2 and a secondary orthogonal to the primary dividing line L1 as shown in FIG. 6 (f).
  • individual chip elements 10A having substantially the same outer shape as the chip resistor are obtained.
  • the peripheral portion of the large substrate 10 is a dummy region surrounding each chip formation region, and this dummy region is discarded as a discarded substrate 10B after dicing.
  • the primary dividing line L1 and the secondary dividing line L2 are virtual lines set for the large substrate 10, and as described above, the primary dividing groove and the secondary dividing corresponding to the dividing line are formed on the large substrate 10. No groove is formed.
  • a conductive paste such as an Ag paste or a Cu paste is dip-applied to the end face of the chip element 10A and cured by heating, so that as shown in FIG. End face electrodes 6 are formed so as to go to predetermined positions on both end faces in the direction.
  • the protective film 4 and the auxiliary film 5 covering the two opposing surfaces of the chip element 10A are formed of the same resin material (epoxy resin), the chip on which the protective film 4 and the auxiliary film 5 are formed. The amount of bleeding of the end face electrode 6 is almost the same on the two faces of the element 10A.
  • the end face electrode 6 is similarly pulled by the protective film 4 and the auxiliary film 5 made of the same material on the remaining two surfaces of the chip element 10A, the four surfaces of the rectangular parallelepiped chip element 10A ( The dimensions of the end face electrodes 6 formed on the upper surface, the lower surface, and both side surfaces can be made uniform.
  • electrolytic plating such as Ni and Sn is performed on each chip element 10A to form an external electrode (not shown) that covers the end face electrode 6 to complete the chip resistor as shown in FIG. .
  • the surface electrode 2, the resistor 3, and the protective film 4 corresponding to a large number of chip resistors are formed on the surface of the large substrate 10.
  • the large substrate 10 is divided into individual chip elements 10A by dicing, and then a conductive paste such as an Ag paste is dip coated on the end surface side of the chip element 10A.
  • the end face electrode 6 is formed.
  • the protective film 4 and the auxiliary film 5 covering the two opposing surfaces of the ceramic chip element are formed of the same resin material, the protective film 4 The amount of bleeding of the end face electrode 6 is almost the same on the two surfaces of the chip element 10A on which the auxiliary film 5 is formed.
  • the end face electrode 6 is similarly pulled by the protective film 4 and the auxiliary film 5 made of the same material on the remaining two surfaces of the chip element 10A, the four surfaces of the rectangular parallelepiped chip element 10A ( The size of the end surface electrode 6 is uniform on the upper surface, the lower surface, and both side surfaces, and the cap-shaped end surface electrode 6 having a stable size can be formed.
  • the large substrate 10 is connected to the primary division line L1.
  • the chip element 10A is obtained by dicing along the secondary dividing line L2
  • the surface electrode 2 formed in a strip shape is cut in the length direction and the width direction.
  • the cut surface of the broken surface electrode 2 is exposed from the end surface and both side surfaces of the chip element 10A. Therefore, when the end face electrodes 6 are subsequently formed at both ends of the chip element 10A, the connection portion of the surface electrode 2 and the end face electrode 6 becomes three faces including not only the end face of the chip element 10A but also both end faces. And the connection reliability between the front electrode 2 and the surface electrode 2 can be greatly enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

本発明のチップ抵抗器は、セラミックスからなる直方体形状の絶縁基板1と、絶縁基板1の表面における長手方向両端部に設けられた一対の表電極2と、両表電極2間を接続する抵抗体3と、両表電極2と抵抗体3を含めて絶縁基板1の表面全体を覆う樹脂からなる保護膜4と、絶縁基板1の裏面全体を覆う樹脂からなる補助膜5と、絶縁基板1の長手方向両端面に設けられて表電極2に導通する一対の端面電極6とを備えており、端面電極6は保護膜4の上面と補助膜5の下面および絶縁基板1の両側面の長手方向両端部を覆うようにキャップ状に形成されている。

Description

チップ抵抗器およびチップ抵抗器の製造方法
 本発明は、回路基板上に半田付けによって面実装されるチップ抵抗器と、そのようなチップ抵抗器の製造方法に関するものである。
 この種のチップ抵抗器は、セラミックスからなる直方体形状の絶縁基板と、絶縁基板の表面に所定間隔を存して対向配置された一対の表電極と、これら一対の表面電極に接続するように絶縁基板の表面に設けられた抵抗体と、抵抗体を覆うように設けられた樹脂からなる保護膜と、絶縁基板の裏面に所定間隔を存して対向配置された一対の裏電極と、表電極と裏電極を導通するように絶縁基板の両端面に設けられた一対の端面電極と、これら端面電極の外表面にめっき処理を施して形成された一対の外部電極と、を備えている。
 このように構成されたチップ抵抗器は、回路基板に設けられたランド上に半田ペーストを印刷した後、裏電極を下向きにして外部電極をランド上に搭載し、この状態で半田ペーストを溶融・固化することによって回路基板上に面実装されるようになっている。
 一方、特許文献1に開示されているように、チップコンデンサ等のチップ状電子部品において、角柱状のチップ素体の長手方向両端部にキャップ状の端面電極を形成するという技術が知られている。かかるチップ状電子部品では、キャップ状の端面電極が角柱状のチップ素体の上面と下面および両側面まで延びているため、回路基板上に4面(上面と下面および両側面)いずれの姿勢でも搭載することができる。
 特許文献1にはチップ状電子部品の一例としてチップ抵抗器が挙げられており、チップ抵抗器においても、絶縁基板の両端部にキャップ状の端面電極を形成して、この端面電極を表電極に接続させるという構成にすれば、回路基板上に4面での搭載が可能となる。
 なお、特許文献1には端面電極を形成する具体的な方法について特に明記されていないが、例えば特許文献2に開示されているように、外周面に導電ペーストを塗布させたローラを回転させると共に、ローラの回転方向とほぼ同じ方向にチップ素体を移動させながら、ローラの外周面にチップ素体の一面を近接させて導電ペーストを塗布するという塗布方法を採用すれば、端面電極の寸法のバラツキを極力抑えることが可能となる。
特開昭61-183911号公報 特開2003-264117号公報
 ところで通常のチップ抵抗器は、セラミックスからなる絶縁基板の表面に抵抗体を覆う保護膜が形成されているため、前述したように絶縁基板の両端部にキャップ状の端面電極を形成する場合、絶縁基板の表面全体に表電極と抵抗体を覆うように保護膜を形成した後、導電ペーストを絶縁基板の端面側から保護膜の上面と絶縁基板の裏面および両側面の途中位置まで回り込ます必要がある。
 しかしながら、樹脂からなる保護膜が形成された上面と、絶縁基板のセラミックス面が露出する裏面および両側面とでは、絶縁基板の端面側から塗布される導電ペーストの回り込み量に大きな差が生じてしまうため、端面電極のキャップ形状が不規則になってしまうという問題がある。すなわち、導電ペーストの回り込み量は、樹脂の露出する上面で滲みが大きく、セラミックス面の露出する裏面で滲みが少なくなるため、表裏面での電極寸法が相違してしまい、さらに、側面の電極形状が上面側(保護膜側)に引っ張られて斜めになってしまう。その結果、チップ抵抗器の側面を下向きにした姿勢で回路基板に搭載された場合、回路基板のランドに半田付けされる一対の端面電極が「ハの字」状に対向することになるため、半田ペーストを硬化させるときのセルフアライメント効果を発揮することができなくなってしまう。
 本発明は、上記した従来技術の実情に鑑みてなされたものであり、その第1の目的は、絶縁基板の両端部に寸法の安定したキャップ状端面電極を形成することができるチップ抵抗器を提供することにある。また、本発明の第2の目的は、このようなチップ抵抗器の製造方法を提供することにある。
 上記した第1の目的を達成するために、本発明のチップ抵抗器は、セラミックスからなる直方体形状の絶縁基板と、この絶縁基板の表面における長手方向両端部に設けられた一対の表電極と、これら両表電極間を接続する抵抗体と、この抵抗体と前記両表電極を含めて前記絶縁基板の表面全体を覆う樹脂からなる保護膜と、前記絶縁基板の裏面全体を覆う樹脂からなる補助膜と、前記絶縁基板の長手方向両端面に設けられて前記表電極に導通する一対の端面電極とを備え、前記端面電極が前記保護膜と前記補助膜および前記絶縁基板の両側面の長手方向両端部を覆っているという構成にした。
 このように構成されたチップ抵抗器では、絶縁基板の表面全体を覆う保護膜と絶縁基板の裏面全体を覆う補助膜がいずれも同質の樹脂材料で形成されているため、絶縁基板の表面と裏面で端面電極の滲み量がほぼ同じになる。したがって、絶縁基板の両側面に露出するセラミックス面についても、端面電極が同質材料からなる保護膜と補助膜に同じように引っ張られるため、端面電極の寸法が直方体形状のチップ抵抗器の4面(上面と下面および両側面)において均一になり、寸法の安定したキャップ状の端面電極を形成することができる。
 上記の構成において、保護膜と補助膜を異種の樹脂材料で形成しても良いが、これら保護膜と補助膜が同一の樹脂材料で形成されていると、端面電極の寸法をより安定させることができて好ましい。
 また、上記の構成において、端面電極の端面形状が縦横比を同じくする正方形であると、幅寸法と厚み寸法を等しくする角柱形状のチップ抵抗器となるため、回路基板上への搭載面がチップ抵抗器の4面で全て同じになって好ましい。
 上記した第2の目的を達成するために、本発明によるチップ抵抗器の製造方法は、セラミックスからなる大判基板の表面における複数のチップ形成領域にそれぞれ一対の表電極を形成する工程と、前記対をなす表電極間を接続するように抵抗体を形成する工程と、前記表電極と前記抵抗体を覆うように前記大判基板の表面における前記複数のチップ形成領域全体に樹脂からなる保護膜を形成する工程と、前記大判基板の裏面における複数のチップ形成領域全体に樹脂からなる補助膜を形成する工程と、前記大判基板を前記表電極の中央部を通って長手方向へ延びる1次分割ラインと、この1次分割ラインに直交する2次分割ラインとに沿ってダイシングブレードで切断して個々のチップ素子を形成する工程と、前記チップ素子の前記1次分割ラインに沿う切断面から前記2次分割ラインに沿う切断面の一部にかけて導電ペーストを塗布して端面電極を形成する工程と、を含むことを特徴としている。
 このように大判基板の表面に多数個のチップ抵抗器に対応する表電極と抵抗体および保護膜を形成すると共に、大判基板の裏面に補助膜を形成した後、ダイシングによって大判基板を個々のチップ素子に分割してから、チップ素子の端面側に導電ペーストを塗布して端面電極を形成すると、セラミックスからなるチップ素子の表面全体を覆う保護膜と裏面全体を覆う補助膜がいずれも同質の樹脂材料からなるため、チップ素子の表面と裏面で端面電極の滲み量がほぼ同じになる。したがって、チップ素子の両側面に露出するセラミックス面についても、端面電極が同質材料からなる保護膜と補助膜に同じように引っ張られるため、端面電極の寸法が直方体形状のチップ抵抗器の4面(上面と下面および両側面)において均一になり、寸法の安定したキャップ状の端面電極を形成することができる。
 本発明のチップ抵抗器とその製造方法によれば、絶縁基板の両端部に寸法の安定したキャップ状の端面電極を形成することができる。
本発明の実施形態例に係るチップ抵抗器の斜視図である。 該チップ抵抗器の平面図である。 図2のIII-III線に沿う断面図である。 図2のIV-IV線に沿う断面図である。 図2のV-V線に沿う断面図 該チップ抵抗器の製造工程を示す説明図である。 該チップ抵抗器の製造工程を示す説明図である。
 以下、発明の実施の形態について図面を参照しながら説明すると、本発明の実施形態例に係るチップ抵抗器は、図1~図5に示すように、直方体形状の絶縁基板1と、絶縁基板1の表面における長手方向両端部に設けられた一対の表電極2と、これら表電極2に接続するように設けられた長方形状の抵抗体3と、両表電極2と抵抗体3を含めて絶縁基板1の表面全体を覆う樹脂からなる保護膜4と、絶縁基板1の裏面全体を覆う樹脂からなる補助膜5と、絶縁基板1の長手方向両端部に設けられた一対の端面電極6とによって主に構成されている。
 絶縁基板1はセラミックスからなり、この絶縁基板1は後述する大判基板を縦横に延びる1次分割ラインと2次分割ラインに沿ってダイシングすることにより多数個取りされたものである。
 一対の表電極2はAg系ペーストをスクリーン印刷して乾燥・焼成させたものであり、これら表電極2は絶縁基板1の短辺側と両長辺側の各端面から露出するように矩形状に形成されている。
 抵抗体3は酸化ルテニウム等の抵抗ペーストをスクリーン印刷して乾燥・焼成させたものであり、この抵抗体3の長手方向の両端部はそれぞれ表電極2に重なっている。なお、図示省略されているが、抵抗体3には抵抗値を調整するためのトリミング溝が形成されている。
 保護膜4はエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化させたオーバーコート層であり、図示省略されているが、保護膜4の下側には抵抗体3を覆うアンダーコート層が形成されている。なお、このアンダーコート層はガラスペーストをスクリーン印刷して乾燥・焼成させたものである。保護膜4は両表電極2と抵抗体3を含めて絶縁基板1の表面全体を覆うように形成されているため、図3中で左側に位置する表電極2の左端を含む3端面が絶縁基板1と保護膜4間から露出し、右側に位置する表電極2の右端を含む3端面が絶縁基板1と保護膜4間から露出している。
 補助膜5はエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化させたものであり、この補助膜5と前述した保護膜4は同一の樹脂材料を用いて形成されることが好ましい。
 一対の端面電極6はAgペーストやCuペーストをディップ塗布して加熱硬化させたものであり、これら端面電極6は絶縁基板1の両端面1aから保護膜4の上面と補助膜5の下面および絶縁基板1の両側面1bを覆うようにキャップ状に形成されている。これにより、図3中で左側に位置する端面電極6は、絶縁基板1と保護膜4間から露出する左側の表電極2の3端面と接続され、右側に位置する端面電極6は、絶縁基板1と保護膜4間から露出する右側の表電極2の3端面と接続されている。
 図示省略されているが、一対の端面電極6は外部電極によって覆われており、これら外部電極は端面電極6の表面にNi,Sn等を電解メッキして形成されたものである。
 以上説明したように、本実施形態例に係るチップ抵抗器では、絶縁基板1の表面全体を覆う保護膜4と絶縁基板1の裏面全体を覆う補助膜5がいずれもエポキシ系樹脂等からなる樹脂材料で形成されているため、絶縁基板1の長手方向両端部にキャップ状の端面電極6を塗布形成する際に、絶縁基板1の表面と裏面で端面電極6の滲み量がほぼ同じになる。したがって、絶縁基板1の両側面1bに露出するセラミックス面についても、端面電極6が同一材料からなる保護膜4と補助膜5に同じように引っ張られるため、端面電極6の寸法が直方体形状のチップ抵抗器の4面(上面と下面および両側面)において均一になり、寸法の安定したキャップ状の端面電極6を形成することができる。
 ここで、本実施形態例に係るチップ抵抗器では、図1に示すように、端面電極6の端面形状が縦横比を同じくする正方形に設定されており、幅寸法Wと厚み寸法Tを等しくする角柱形状のチップ抵抗器(例えば、幅寸法W=0.1mm、厚み寸法T=0.1mm)となっている。これにより、チップ抵抗器の4面(上面と下面および両側面)に形成される端面電極6が面積の等しい同一形状となるため、このような形状のチップ抵抗器を回路基板上に搭載する場合、チップ抵抗器の4面(上面と下面および両側面)のいずれが搭載面になったとしても、全く同じようにセルフアライメント効果を発揮することができる。
 次に、上記の如く構成されたチップ抵抗器の製造方法について、図6と図7を参照しながら説明する。
 まず、図6(a)と図7(a)に示すように、絶縁基板1が多数個取りされるセラミックスからなる大判基板10を準備する。この大判基板10に1次分割溝や2次分割溝は形成されていないが、図6(f)に示す後工程で大判基板10は縦横に延びる1次分割ラインL1と2次分割ラインL2に沿ってダイシングされ、これら両分割ラインL1,L2によって区切られたマス目の1つ1つが1個分のチップ形成領域となる。なお、図6は大判基板10を平面的に見た状態を示し(図6(e)だけは裏面図)、図7は図6中の1個分のチップ形成領域を断面した状態を示している。
 そして、このような大判基板10の表面にAg系ペーストを印刷して乾燥・焼成させることにより、図6(b)と図7(b)に示すように、大判基板10の表面に所定間隔を存して帯状に延びる複数対の表電極2を形成する。
 次に、大判基板10の表面に酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成させることにより、図6(c)と図7(c)に示すように、対をなす表電極2間に跨る複数の抵抗体3を形成する。なお、表電極2と抵抗体3の形成順序は上記と逆であっても良い。
 次に、トリミング溝形成時の抵抗体3へのダメージを軽減するものとして、ガラスペーストをスクリーン印刷して乾燥・焼成することにより、抵抗体3を覆う図示せぬアンダーコート層を形成した後、このアンダーコート層の上から抵抗体3にトリミング溝を形成して抵抗値を調整する。しかる後、アンダーコート層の上からエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化させることにより、図6(d)と図7(d)に示すように、表電極2と抵抗体3を含めて大判基板10のチップ形成領域全体を覆う保護膜4を形成する。
 次に、大判基板10の裏面にエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化させることにより、図6(e)と図7(e)に示すように、大判基板10の裏面におけるチップ形成領域全体を覆う補助膜5を形成する。
 しかる後、図6(f)に示すように、大判基板10を表電極2の幅方向中央部を通って長手方向へ延びる1次分割ラインL1と、この1次分割ラインL1に直交する2次分割ラインL2とに沿ってダイシングブレードで切断することにより、図6(g)に示すように、チップ抵抗器と外形をほぼ同じくする個々のチップ素子10Aを得る。なお、大判基板10の周辺部は各チップ形成領域を包囲するダミー領域となっており、このダミー領域はダイシング後に捨て基板10Bとして破棄される。また、これら1次分割ラインL1と2次分割ラインL2は大判基板10に対して設定された仮想線であり、前述したように大判基板10に分割ラインに対応する1次分割溝や2次分割溝は形成されていない。
 次に、チップ素子10Aの端面にAgペーストやCuペースト等の導電ペーストをディップ塗布して加熱硬化させることにより、図7(f)に示すように、チップ素子10Aの長手方向両端面から短手方向両端面の所定位置まで回り込む端面電極6を形成する。その際、チップ素子10Aの相対向する2面を覆う保護膜4と補助膜5が同じ樹脂材料(エポキシ系樹脂)で形成されているため、これら保護膜4と補助膜5が形成されたチップ素子10Aの2面で端面電極6の滲み量がほぼ同じになる。したがって、チップ素子10Aの残り2面に露出するセラミックス面についても、端面電極6が同一材料からなる保護膜4と補助膜5に同じように引っ張られるため、直方体形状のチップ素子10Aの4面(上面と下面および両側面)に形成される端面電極6の寸法を均一にすることができる。
 最後に、個々のチップ素子10Aに対してNi,Sn等の電解メッキを施すことにより、端面電極6を被覆する図示せぬ外部電極を形成し、図1に示すようなチップ抵抗器が完成する。
 以上説明したように、本実施形態例に係るチップ抵抗器の製造方法では、大判基板10の表面に多数個のチップ抵抗器に対応する表電極2と抵抗体3および保護膜4を形成すると共に、大判基板10の裏面に補助膜5を形成した後、ダイシングによって大判基板10を個々のチップ素子10Aに分割してから、チップ素子10Aの端面側にAgペースト等の導電ペーストをディップ塗布して端面電極6を形成するようにしているが、その際、セラミックスからなるチップ素子の相対向する2面を覆う保護膜4と補助膜5が同じ樹脂材料で形成されているため、これら保護膜4と補助膜5が形成されたチップ素子10Aの2面で端面電極6の滲み量がほぼ同じになる。したがって、チップ素子10Aの残り2面に露出するセラミックス面についても、端面電極6が同一材料からなる保護膜4と補助膜5に同じように引っ張られるため、直方体形状のチップ素子10Aの4面(上面と下面および両側面)において端面電極6の寸法が均一になり、寸法の安定したキャップ状の端面電極6を形成することができる。
 また、本実施形態例に係るチップ抵抗器の製造方法では、大判基板10に表電極2と抵抗体3および保護膜4や補助膜5を形成した後、大判基板10を1次分割ラインL1と2次分割ラインL2に沿ってダイシングしてチップ素子10Aを得るとき、帯状に形成された表電極2が長さ方向と幅方向にそれぞれ切断されるようになっているため、保護膜4によって覆われた表電極2の切断面がチップ素子10Aの端面と両側面からそれぞれ露出した状態となる。したがって、その後にチップ素子10Aの両端部に端面電極6を形成するとき、表電極2と端面電極6の接続箇所がチップ素子10Aの端面だけでなく両側面を含めた3面となり、端面電極6と表電極2との接続信頼性を非常に高めることができる。
 1 絶縁基板
 2 表電極
 3 抵抗体
 4 保護膜
 5 補助膜
 6 端面電極
 10 大判基板
 10A チップ素子
 L1 1次分割ライン
 L2 2次分割ライン
 

Claims (6)

  1.  セラミックスからなる直方体形状の絶縁基板と、この絶縁基板の表面における長手方向両端部に設けられた一対の表電極と、これら両表電極間を接続する抵抗体と、この抵抗体と前記両表電極を含めて前記絶縁基板の表面全体を覆う樹脂からなる保護膜と、前記絶縁基板の裏面全体を覆う樹脂からなる補助膜と、前記絶縁基板の長手方向両端面に設けられて前記表電極に導通する一対の端面電極と、を備え、前記端面電極が前記保護膜と前記補助膜および前記絶縁基板の両側面の長手方向両端部を覆っていることを特徴とするチップ抵抗器。
  2.  請求項1の記載において、前記保護膜と前記補助膜が同一の樹脂材料で形成されていることを特徴とするチップ抵抗器。
  3.  請求項1の記載において、前記端面電極の端面形状が縦横比を同じくする正方形であることを特徴とするチップ抵抗器。
  4.  請求項2の記載において、前記端面電極の端面形状が縦横比を同じくする正方形であることを特徴とするチップ抵抗器。
  5.  セラミックスからなる大判基板の表面における複数のチップ形成領域にそれぞれ一対の表電極を形成する工程と、
     前記対をなす表電極間を接続するように抵抗体を形成する工程と、
     前記表電極と前記抵抗体を覆うように前記大判基板の表面における前記複数のチップ形成領域全体に樹脂からなる保護膜を形成する工程と、
     前記大判基板の裏面における複数のチップ形成領域全体に樹脂からなる補助膜を形成する工程と、
     前記大判基板を前記表電極の中央部を通って長手方向へ延びる1次分割ラインと、この1次分割ラインに直交する2次分割ラインとに沿ってダイシングブレードで切断して個々のチップ素子を形成する工程と、
     前記チップ素子の前記1次分割ラインに沿う切断面から前記2次分割ラインに沿う切断面の一部にかけて導電ペーストを塗布して端面電極を形成する工程と、
    を含むことを特徴とするチップ抵抗器の製造方法。
  6.  請求項5の記載において、前記保護膜と前記補助膜が同一の樹脂材料で形成されていることを特徴とするチップ抵抗器の製造方法。
     
PCT/JP2016/073847 2015-08-26 2016-08-15 チップ抵抗器およびチップ抵抗器の製造方法 WO2017033793A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015167221A JP6688025B2 (ja) 2015-08-26 2015-08-26 チップ抵抗器およびチップ抵抗器の製造方法
JP2015-167221 2015-08-26

Publications (1)

Publication Number Publication Date
WO2017033793A1 true WO2017033793A1 (ja) 2017-03-02

Family

ID=58100131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073847 WO2017033793A1 (ja) 2015-08-26 2016-08-15 チップ抵抗器およびチップ抵抗器の製造方法

Country Status (2)

Country Link
JP (1) JP6688025B2 (ja)
WO (1) WO2017033793A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020000734T5 (de) * 2019-02-07 2021-10-21 Rohm Co., Ltd. Widerstand
JP2022189028A (ja) 2021-06-10 2022-12-22 Koa株式会社 チップ部品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330802A (ja) * 1996-06-07 1997-12-22 Matsushita Electric Ind Co Ltd 抵抗器およびその製造方法
JPH10275702A (ja) * 1997-03-31 1998-10-13 Taiyo Yuden Co Ltd チップ抵抗器
JPH11283804A (ja) * 1998-03-31 1999-10-15 Murata Mfg Co Ltd 抵抗器
JP2011165752A (ja) * 2010-02-05 2011-08-25 Taiyosha Electric Co Ltd チップ抵抗器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019590A1 (ja) * 2013-08-07 2015-02-12 パナソニックIpマネジメント株式会社 抵抗器およびその製造方法
JP6499007B2 (ja) * 2015-05-11 2019-04-10 Koa株式会社 チップ抵抗器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330802A (ja) * 1996-06-07 1997-12-22 Matsushita Electric Ind Co Ltd 抵抗器およびその製造方法
JPH10275702A (ja) * 1997-03-31 1998-10-13 Taiyo Yuden Co Ltd チップ抵抗器
JPH11283804A (ja) * 1998-03-31 1999-10-15 Murata Mfg Co Ltd 抵抗器
JP2011165752A (ja) * 2010-02-05 2011-08-25 Taiyosha Electric Co Ltd チップ抵抗器

Also Published As

Publication number Publication date
JP2017045861A (ja) 2017-03-02
JP6688025B2 (ja) 2020-04-28

Similar Documents

Publication Publication Date Title
JP2007073693A (ja) チップ抵抗器とのその製造方法
WO2017033793A1 (ja) チップ抵抗器およびチップ抵抗器の製造方法
JP5706186B2 (ja) チップ抵抗器およびその製造方法
WO2016158240A1 (ja) チップ抵抗器
WO2016167182A1 (ja) チップ抵抗器およびその製造方法
WO2017057248A1 (ja) チップ抵抗器
JP6629013B2 (ja) チップ抵抗器およびチップ抵抗器の製造方法
JP2017228701A (ja) チップ抵抗器およびチップ抵抗器の実装構造
WO2017057096A1 (ja) チップ抵抗器およびチップ抵抗器の製造方法
JP2017059597A (ja) チップ抵抗器
JP6715002B2 (ja) チップ抵抗器の実装構造
JP3370685B2 (ja) 角形チップ抵抗器の製造方法
JP4504577B2 (ja) チップ形抵抗器の製造方法
JP6695415B2 (ja) チップ抵抗器
JP6599759B2 (ja) チップ抵抗器
KR101538416B1 (ko) 칩 저항기 및 그 제작 방법
JP2009088368A (ja) 低抵抗チップ抵抗器の製造方法
JP2003272901A (ja) 厚膜抵抗器およびその製造方法
KR101544393B1 (ko) 칩 저항기 및 그 제작 방법
JP6688035B2 (ja) チップ抵抗器
JP2022159807A (ja) チップ抵抗器
JP5166685B2 (ja) チップ抵抗器とのその製造方法
JP2022189028A (ja) チップ部品
JPH09120904A (ja) チップ抵抗器
JP4508737B2 (ja) ネットワーク抵抗器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839140

Country of ref document: EP

Kind code of ref document: A1