WO2017018237A1 - リアクトル、およびリアクトルの製造方法 - Google Patents

リアクトル、およびリアクトルの製造方法 Download PDF

Info

Publication number
WO2017018237A1
WO2017018237A1 PCT/JP2016/070899 JP2016070899W WO2017018237A1 WO 2017018237 A1 WO2017018237 A1 WO 2017018237A1 JP 2016070899 W JP2016070899 W JP 2016070899W WO 2017018237 A1 WO2017018237 A1 WO 2017018237A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
winding
reactor
end surface
peripheral surface
Prior art date
Application number
PCT/JP2016/070899
Other languages
English (en)
French (fr)
Inventor
誠二 舌間
雅幸 加藤
三崎 貴史
平林 辰雄
伸一郎 山本
大石 明典
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to US15/746,080 priority Critical patent/US10916365B2/en
Priority to CN201680034515.0A priority patent/CN107683514B/zh
Publication of WO2017018237A1 publication Critical patent/WO2017018237A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • H01F27/325Coil bobbins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating

Definitions

  • the present invention relates to a reactor and a method for manufacturing the reactor.
  • This application claims priority based on Japanese Patent Application No. 2015-146551 filed on Jul. 24, 2015, and incorporates all the contents described in the aforementioned Japanese application.
  • the reactor of Patent Document 1 includes a coil having a winding portion, a magnetic core that forms a closed magnetic circuit, and an insulating interposition member that ensures insulation between the coil and the magnetic core.
  • a magnetic core is provided with the inner core part arrange
  • the insulation interposition member is comprised by combining a pair of bobbin.
  • the bobbin includes an inner interposed member interposed between the inner peripheral surface of the winding portion and the inner core portion, an end surface interposed member interposed between the axial end surface of the winding portion and the outer core portion,
  • Patent Document 1 discloses a reactor in which a coil, a magnetic core, and an insulating interposed member are combined, and then a coil is wound with resin inside.
  • a reactor according to the present disclosure includes a coil having a winding portion formed by winding a winding, an inner core portion disposed inside the winding portion, and an outer core portion disposed outside the winding portion.
  • a reactor comprising: a magnetic core that forms a closed magnetic path; and an end surface interposed member interposed between the axial end surface of the winding portion and the outer core portion, An inner resin portion filled between an inner peripheral surface of the wound portion and an outer peripheral surface of the inner core portion;
  • the said end surface interposition member is a reactor provided with the turn accommodating part which accommodates at least one part of the turn of the axial direction edge part of the said winding part.
  • a method for manufacturing a reactor according to the present disclosure is a method for manufacturing a reactor including a coil and a magnetic core that is disposed inside and outside the coil to form a closed magnetic circuit,
  • the reactor is a reactor according to the present disclosure, An assembly step in which the inner core portion is disposed inside the winding portion, and an axial end portion of the winding portion is stored in the turn storage portion of the end surface interposed member;
  • a reactor manufacturing method comprising: a filling step of filling a resin between an inner peripheral surface of the winding portion and an outer peripheral surface of the inner core portion.
  • FIG. 1 is a perspective view of a reactor according to Embodiment 1.
  • FIG. It is a longitudinal cross-sectional view of the union body with which a reactor is equipped. It is a disassembled perspective view of the union except a resin part.
  • the resin filled in the winding part easily leaks out of the winding part from the gap between the axial end surface of the winding part and the end surface interposed member, and the winding part is sufficient.
  • the resin may not be filled.
  • the resin filled in the winding portion fills the space between the inner peripheral surface of the winding portion and the outer peripheral surface of the inner core portion, whereby the inner core portion can be held in the winding portion.
  • the inner core part tends to rattle inside the winding part, and noise is generated or the inner core part is formed on the inner peripheral surface of the winding part. There is a risk of contact.
  • an object of the present disclosure is to provide a reactor in which resin leakage from between the end surface interposed member and the end surface in the axial direction of the coil is suppressed, and a manufacturing method thereof.
  • the reactor of the present disclosure is a reactor in which resin leakage from between the end surface interposed member and the winding portion is suppressed.
  • the manufacturing method of the reactor according to the present disclosure can produce the reactor according to the present disclosure.
  • the reactor of ⁇ 1> embodiment includes a coil having a winding part formed by winding a winding, an inner core part arranged inside the winding part, and an outer core arranged outside the winding part.
  • a reactor including a magnetic core that forms a closed magnetic path with a portion, and an end surface interposed member interposed between the axial end surface of the winding portion and the outer core portion.
  • the reactor includes an inner resin portion that is filled between an inner peripheral surface of the winding portion and an outer peripheral surface of the inner core portion, and the end surface interposed member provided in the reactor is an axial end of the winding portion.
  • a turn storage section that stores at least a part of the turn of the section.
  • the end surface interposed member and the axial end surface of the winding portion can be brought into surface contact with each other, and the inside of the winding portion is filled with resin in the manufacturing process of the reactor. At this time, it is possible to prevent the resin from leaking from the contact portion between the end surface interposed member and the winding portion. Further, at least a part of the turn at the axial end of the winding part is stored in the turn storage part, that is, at least a part of the turn at the axial end is covered with the inner wall of the turn storage part. The resin leakage from the contact portion can be suppressed rather than simply bringing the end surface interposed member and the axial end surface of the winding portion into surface contact.
  • the reactor can be set as the reactor by which the resin leak from between an end surface interposed member and a winding part was suppressed by using the end surface interposed member which has a turn accommodating part.
  • an inner resin portion formed by filling a sufficient amount of resin inside the winding portion at the time of manufacture is provided. If it is such an inner side resin part, an inner core part can be hold
  • the said coil is provided separately from the said inner side resin part, and the form provided with integrated resin which integrates each turn of the said winding part can be mentioned.
  • the reactor is easy to manufacture.
  • each turn is integrated so that the winding part is not easily bent, and the magnetic core is easily arranged inside the winding part when the reactor is manufactured.
  • each turn of the winding part is integrated, it is difficult to form a large gap between the turns, and the resin filled in the winding part during the manufacture of the reactor is difficult to leak from between the turns. be able to. As a result, it is difficult to form a large gap inside the winding part.
  • the gap between turns can be eliminated by the integrated resin.
  • the end surface interposed member may include a form having a resin filling hole that fills the inside of the winding part with a resin constituting the inner resin part.
  • the resin filling hole By forming the resin filling hole in the end face interposed member, it is possible to facilitate filling of the resin inside the winding portion when manufacturing the reactor. In addition, when filling the inside of the winding part from this resin filling hole, it is possible to effectively suppress resin leakage from the inside of the winding part to the outside by using the winding part hardened with an integrated resin. it can.
  • both the resin portions can be formed by one molding. That is, a reactor having this configuration is excellent in productivity because it can be obtained by a single resin molding in spite of having an outer resin portion in addition to the inner resin portion.
  • the end surface interposed member has a through hole into which the outer core portion is fitted, and the through hole and the outer core portion fitted into the through hole.
  • the resin filling hole may be formed by a gap, and the gap may be formed between the outer core part and the inner core part by the inner resin part that has entered the through hole. it can.
  • the above reactor can be manufactured without separately preparing a gap material such as alumina when forming a gap between the outer core portion and the inner core portion, and is excellent in productivity.
  • the said inner core part can mention the form comprised by the several division
  • the inner resin part that has entered between the divided cores functions as a gap that adjusts the magnetic properties of the magnetic core. That is, the reactor having this configuration does not require a gap material made of another material such as alumina, and is excellent in productivity as much as the gap material is unnecessary.
  • the inner core portion includes a plurality of split cores, and is an inner interposed member interposed between the inner peripheral surface of the winding portion and the outer peripheral surface of the inner core portion.
  • the inner interposition member may include a storage unit that stores the divided cores in a separated state.
  • the inner interposed member when filling the winding portion with resin in the manufacturing process of the reactor, the winding portion and the divided cores constituting the inner core portion can be reliably separated from each other. Insulation between the turning part and the inner core part can be ensured reliably. Further, by providing the storage portion in the inner interposed member, the divided cores constituting the inner core portion can be easily arranged at a predetermined position inside the winding portion. As a result, a reactor having stable magnetic characteristics can be manufactured with high productivity. In addition, the resin gap can be easily formed between the split cores by filling the gap between the split cores with the inner resin portion.
  • an inner interposed member interposed between an inner peripheral surface of the winding portion and an outer peripheral surface of the inner core portion is provided, and the inner resin portion includes the end surface interposed member and the The form comprised with the same material as at least one of the inner side interposed member can be mentioned.
  • the linear expansion coefficient of the inner resin portion and the inner interposed member can be made the same.
  • the inner resin portion and the inner interposed member (end surface interposed member) are thermally expanded and contracted when the reactor is used, cracks and the like are hardly generated in the inner resin portion.
  • it is preferable that the inner resin portion, the inner interposed member, and the end surface interposed member are made of the same material.
  • the inner interposed member interposed between the inner peripheral surface of the wound portion and the outer peripheral surface of the inner core portion, and the inner portion of the wound portion in the vicinity of the end surface interposed member And a sealing member interposed between the peripheral surface and the outer peripheral surface of the inner interposed member.
  • sealing member By providing the sealing member, it is possible to more effectively suppress the resin from leaking between the end surface interposed member and the end surface in the axial direction of the winding portion when the reactor is manufactured.
  • the manufacturing method of the reactor of ⁇ 10> embodiment is a manufacturing method of the reactor which manufactures a reactor provided with a coil and the magnetic core which is arrange
  • the manufacturing method of the reactor of this embodiment arrange
  • the resin when the resin is filled between the inner peripheral surface of the winding portion and the outer peripheral surface of the inner core portion, the resin is interposed between the end surface interposed member and the axial end surface of the winding portion. Can be prevented from leaking.
  • the reason why the resin leakage can be suppressed is that the end storage member is formed with a turn storage portion that stores the axial end of the winding portion.
  • the resin filled in the winding portion becomes an inner resin portion that joins the inner peripheral surface of the winding portion and the outer peripheral surface of the inner core portion. As a result, the reactor of the embodiment is obtained.
  • the coil is manufactured using a winding having a heat-sealing resin on the surface, the heat-sealing resin is melted by heat treatment, and each turn of the winding portion is performed.
  • the form which performs the said filling process after integrating can be mentioned.
  • the end surface interposed member has a resin filling hole for filling the resin into the winding portion, and in the filling step, the resin filling hole is interposed.
  • the resin is sufficiently filled between the inner peripheral surface of the winding part and the outer peripheral surface of the inner core part. Can do.
  • the resin can be filled by injection molding.
  • both the outer resin portion and the inner resin portion can be formed by a single injection molding. This is because the resin covering the outer periphery of the outer core portion is also filled into the winding portion via the resin filling hole.
  • a reactor 1 shown in FIG. 1 includes a combined body 10 in which a coil 2, a magnetic core 3, and an insulating interposed member 4 are combined, and a mounting plate 9 on which the combined body 10 is mounted.
  • the combined body 10 further includes an inner resin portion 5 (see FIG. 2) disposed inside the winding portions 2 ⁇ / b> A and 2 ⁇ / b> B of the coil 2 and an outer resin portion that covers the outer core portion 32 constituting a part of the magnetic core 3. 6.
  • each component with which the reactor 1 is provided is demonstrated in detail.
  • the coil 2 of the present embodiment is composed of a single winding 2w, and a pair of winding portions 2A and 2B and a connecting portion 2R that connects both winding portions 2A and 2B. And comprising.
  • Each winding part 2A, 2B is formed in a hollow cylindrical shape with the same number of turns and the same winding direction, and is arranged in parallel so that the respective axial directions are parallel. You may manufacture the coil 2 by connecting the winding parts 2A and 2B produced with the separate coil
  • Each winding part 2A, 2B of this embodiment is formed in a rectangular tube shape.
  • the rectangular tube-shaped winding parts 2A and 2B are winding parts whose end face shape is a square shape (including a square shape) with rounded corners.
  • the winding portions 2A and 2B may be formed in a cylindrical shape.
  • the cylindrical winding portion is a winding portion whose end face shape is a closed curved surface shape (an elliptical shape, a perfect circle shape, a race track shape, etc.).
  • the coil 2 including the winding portions 2A and 2B is a coated wire having an insulating coating made of an insulating material on the outer periphery of a conductor such as a flat wire or a round wire made of a conductive material such as copper, aluminum, magnesium, or an alloy thereof.
  • a conductor such as a flat wire or a round wire made of a conductive material such as copper, aluminum, magnesium, or an alloy thereof.
  • the conductor is made of a copper rectangular wire (winding 2w)
  • the insulating coating is made of enamel (typically polyamideimide) by edgewise winding, whereby each winding portion 2A, 2B is formed.
  • Both end portions 2a and 2b of the coil 2 are extended from the winding portions 2A and 2B and connected to a terminal member (not shown).
  • the insulating coating such as enamel is peeled off at both ends 2a and 2b.
  • An external device such as a power source for supplying power is connected to the coil 2 through the terminal member.
  • the coil 2 having the above configuration is preferably integrated with resin.
  • the winding parts 2A and 2B of the coil 2 are individually integrated by an integrated resin 20 (see FIG. 2).
  • the integrated resin 20 of this example is configured by fusing a coating layer of heat-sealing resin formed on the outer periphery of the winding 2w (further outer periphery of an insulating coating such as enamel), and is very thin. Therefore, even if winding part 2A, 2B is integrated with the integrated resin 20, the shape of the turn of winding part 2A, 2B and the boundary of a turn are in the state which can be seen from an external appearance.
  • the material of the integrated resin 20 include resins that are fused by heat, for example, thermosetting resins such as epoxy resins, silicone resins, and unsaturated polyesters.
  • the integrated resin 20 is exaggerated, but actually it is formed very thin.
  • the integrated resin 20 integrates the turns constituting the winding part 2B (the same applies to the winding part 2A) and suppresses the expansion and contraction of the winding part 2B in the axial direction.
  • the integrated resin 20 since the integrated resin 20 is formed by fusing the heat-sealing resin formed on the winding 2w, the integrated resin 20 uniformly enters the gaps between the turns.
  • the thickness t1 of the integrated resin 20 between the turns is about twice the thickness of the heat-sealing resin formed on the surface of the winding 2w before winding, specifically, 20 ⁇ m or more and 2 mm or less. Can be mentioned. By increasing the thickness t1, the turns can be firmly integrated, and by reducing the thickness t1, it is possible to suppress the axial length of the winding portion 2B from becoming too long.
  • the thickness t2 of the integrated resin 20 on the outer peripheral surface and inner peripheral surface of the winding portion 2B is substantially the same as the thickness of the heat-sealing resin formed on the surface of the winding 2w before winding, and is 10 ⁇ m or more and 1 mm. The following may be mentioned.
  • the thickness t2 of the integrated resin 20 on the inner peripheral surface and the outer peripheral surface of the winding portion 2B is 10 ⁇ m or more, the turns of the winding portions 2A and 2B are firmly integrated so as not to be scattered. Can be made.
  • the fall of the heat dissipation of the winding part 2B by the integrated resin 20 can be suppressed because the said thickness shall be 1 mm or less.
  • the winding portions 2A and 2B of the rectangular tube-shaped coil 2 are divided into four corner portions formed by bending the winding 2w and a flat portion where the winding 2w is not bent. .
  • the turns are integrated with the integrated resin 20 in the corner portions and flat portions of the winding portions 2 ⁇ / b> A and 2 ⁇ / b> B.
  • the inner side of the bending (upper side of the paper) is likely to be thicker than the outer side of the bending (lower side of the paper).
  • the winding portions 2A and 2B having a thick inside of the bend are heat-treated and the heat-sealing resin on the surface of the winding 2w is melted, the turns are integrated with the integrated resin 20 inside the bend. Each turn can be separated outside the bend.
  • fusion resin exists in the outer periphery of the coil
  • the magnetic core 3 is configured by combining a plurality of split cores 31m and 32m, and can be divided into inner core portions 31 and 31 and outer core portions 32 and 32 for convenience (see FIGS. 1 and 2). See).
  • the inner core part 31 is a part arrange
  • the inner core portion 31 means a portion of the magnetic core 3 along the axial direction of the winding portions 2A and 2B of the coil 2.
  • the end portions of the winding portions 2A and 2B along the axial direction protrude outside the winding portions 2A and 2B from the end surfaces of the winding portions 2A and 2B, but the protrusions protrude.
  • the portion is also a part of the inner core portion 31.
  • the inner core portion 31 of this example includes three divided cores 31m, a gap 31g formed between each divided core 31m, a gap 32g formed between the divided core 31m and a divided core 32m described later, It consists of The gaps 31g and 32g in this example are formed by an inner resin portion 5 described later.
  • the shape of the inner core portion 31 is a shape along the inner shape of the winding portion 2A (2B), and in the case of this example, is a substantially rectangular parallelepiped shape.
  • the outer core portion 32 is a portion disposed outside the winding portions 2A and 2B, and has a shape connecting the ends of the pair of inner core portions 31 and 31 (see FIG. 1).
  • the outer core portion 32 of this example is composed of columnar divided cores 32m whose upper and lower surfaces are substantially dome-shaped.
  • the lower surface of the outer core portion 32 (the lower surface of the split core 32m) is substantially flush with the lower surfaces of the winding portions 2A and 2B of the coil 2 (see FIG. 2).
  • the split cores 31m and 32m are compacted bodies formed by pressure-molding raw material powder containing soft magnetic powder.
  • Soft magnetic powder is an aggregate of magnetic particles composed of an iron group metal such as iron or an alloy thereof (Fe—Si alloy, Fe—Ni alloy, etc.).
  • the raw material powder may contain a lubricant.
  • the split cores 31m and 32m can be formed of a molded body of a composite material containing soft magnetic powder and resin.
  • the soft magnetic powder and resin of the composite material the same soft magnetic powder and resin that can be used for the powder compact can be used.
  • An insulating coating made of phosphate or the like may be formed on the surface of the magnetic particles.
  • the split cores 31m and 32m can be made of laminated steel plates.
  • the insulating intervening member 4 is a member that ensures insulation between the coil 2 and the magnetic core 3, and includes end surface interposing members 4 ⁇ / b> A and 4 ⁇ / b> B, inner interposing members 4 ⁇ / b> C and 4 ⁇ / b> D, It consists of
  • the insulating interposition member 4 includes, for example, polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, liquid crystal polymer (LCP), polyamide (PA) resin such as nylon 6 and nylon 66, polybutylene terephthalate (PBT) resin, It can be composed of a thermoplastic resin such as acrylonitrile / butadiene / styrene (ABS) resin.
  • the insulating interposed member 4 can be formed of a thermosetting resin such as an unsaturated polyester resin, an epoxy resin, a urethane resin, or a silicone resin.
  • the resin may contain a ceramic filler to improve the heat dissipation property of the insulating interposed member 4.
  • the ceramic filler for example, nonmagnetic powder such as alumina or silica can be used.
  • [[End face interposed member]] 3 and 4 are mainly used to describe the end surface interposed members 4A and 4B.
  • 4 is a schematic perspective view of the left end face interposed member 4A in FIG. 3 as viewed from the coil 2 side, and the lower view is a schematic perspective view of the end face interposed member 4A as viewed from the split core 32m side. It is.
  • the end face interposed member 4B on the right side of FIG. 3 is different from the end face interposed member 4A in FIG. 4 only in the configuration of a turn accommodating portion 41 described later. Therefore, here, the end surface interposed member 4A will be mainly described.
  • turn storage portions 41 for storing at least a part of the axial ends of the winding portions 2A and 2B are formed.
  • the turn accommodating part 41 is formed to bring the entire axial end faces of the winding parts 2A and 2B into surface contact with the end face interposed member 4A.
  • the turn storage portion 41 is formed in a square ring surrounding the periphery of a through-hole 42 described later, and gradually turns counterclockwise from the position of the corner on the upper right side of the paper (see the thick arrow). The depth is deeper.
  • the right side portion of each turn storage portion 41 reaches the upper end of the end surface interposed member 4A, and the ends 2a and 2b of the coil 2 shown in FIG.
  • the turn accommodating portion 41 provided in the end surface interposed member 4B on the right side of FIG. 3 has a “8” shape that can accommodate the end surfaces of the winding portions 2A and 2B including the connecting portion 2R.
  • the resin leakage from a contact part can be suppressed by making the axial direction end surface of winding part 2A, 2B and the end surface interposition member 4A surface-contact by the turn accommodating part 41.
  • FIG. In addition to the above surface contact, in the turn storage portion 41, at least a part of the turn direction of the turns at the axial ends of the winding portions 2A and 2B is covered with the end surface interposed member 4A. Specifically, in the upper side portion, the right side portion, and the lower side portion of the turn storage portion 41 on the left side of the paper surface, the peripheral surface portion of the turn of the winding portion 2B fitted into the turn storage portion 41 is covered with the end surface interposed member 4A. (See also FIG. 2).
  • the peripheral surface portion of the turn of the winding portion 2A fitted in the turn storage portion 41 is covered with the end surface interposed member 4A.
  • the resin is more difficult to leak than the other portions.
  • the portion 41 is preferable.
  • the through hole 42 is a hole for fitting an assembly of the inner interposed members 4C and 4D and the split core 31m shown in FIG.
  • the fitting part 43 is a recessed part for fitting the split core 32 m to be the outer core part 32.
  • a stopper 44 for stopping the assembly is formed on the lower portion near the center of the through hole 42 and above the outer portion. By this stopper 44, the assembly and the split core 32m are separated from each other without direct contact (see also FIG. 3).
  • the outer side portion and the upper side portion of the through hole 42 are recessed outward. As shown in FIG. 6, when the divided core 32m is fitted into the fitting portion of the end surface interposed member 4A, the recessed portion has resin filling holes 45 at the positions of the side edge and the upper edge of the divided core 32m.
  • the resin filling hole 45 is a hole that penetrates in the thickness direction of the end surface interposed member 4A from the outer core portion 32 (divided core 32m) side in front of the paper surface toward the axial end surface side of the winding portions 2A and 2B on the back surface of the paper surface. Yes, it communicates with the space between the inner peripheral surface of the winding portions 2A and 2B and the outer peripheral surface of the inner core portion 31 (divided core 31m) on the back side of the paper (see also FIG. 2).
  • FIG. 5 is used to describe the inner interposed members 4C and 4D.
  • the inner interposed member 4C and the inner interposed member 4D have the same shape. If the inner interposed member 4C is rotated 180 ° horizontally, the inner interposed member 4D is formed.
  • These inner interposed members 4C and 4D are bowl-shaped members that are open at both ends. More specifically, the inner interposition members 4C and 4D are configured by a pair of cylindrical portions 46 and 46 formed in a rectangular tube shape, and a plurality of bridge portions 47 that connect both the cylindrical portions 46 and 46. Yes.
  • the bridge portion 47 is not provided on the side facing the other inner interposed members 4C and 4D above the inner interposed members 4C and 4D, and a large opening is formed.
  • the bridge portion 47 is formed with a plurality of partition portions 48 protruding inward of the inner interposition members 4C and 4D, and the inner portions of the inner interposition members 4C and 4D are arranged in the axial direction by the partition portion 48. It is divided into two.
  • the partitioned portion functions as a storage portion 49 that stores the split core 31m.
  • each storage portion 49 is provided with an opening at both ends in the axial direction of the inner interposed members 4C and 4D and an opening above the inner interposed members 4C and 4D.
  • the split core 31m can be inserted.
  • the divided cores 31m are separated from each other by the partition portion 48.
  • the inner resin portion 5 is disposed inside the winding portion 2B (the same applies to the winding portion 2A not shown), and the inner peripheral surface of the winding portion 2B and the split core 31m (inner core portion 31). ).
  • the winding portion 2B Since the winding portion 2B is integrated with the integrated resin 20 in the inner resin portion 5, the winding portion does not straddle between the inner peripheral surface and the outer peripheral surface of each turn of the winding portion 2B. It stays inside 2B. A part of the inner resin portion 5 enters between the split core 31m and the split core 31m and between the split core 31m and the split core 32m to form gaps 31g and 32g.
  • the inner resin part 5 is, for example, a thermosetting resin such as an epoxy resin, a phenol resin, a silicone resin, or a urethane resin, a thermoplastic resin such as a PPS resin, a PA resin, a polyimide resin, or a fluorine resin, a room temperature curable resin, or A low temperature curable resin can be used. These resins may contain ceramic fillers such as alumina and silica to improve the heat dissipation of the inner resin portion 5.
  • the inner resin portion 5 is preferably made of the same material as the end surface interposed members 4A and 4B and the inner interposed members 4C and 4D. By configuring the three members with the same material, the linear expansion coefficients of the three members can be made the same, and damage to each member due to thermal expansion / contraction can be suppressed.
  • the outer resin portion 6 is disposed so as to cover the entire outer periphery of the split core 32 m (outer core portion 32), and fixes the split core 32 m to the end surface interposed members 4 ⁇ / b> A and 4 ⁇ / b> B.
  • the core 32m is protected from the external environment.
  • the lower surface of the split core 32 m may be exposed from the outer resin portion 6. In that case, it is preferable to extend the lower part of the split core 32m so as to be substantially flush with the lower surfaces of the end surface interposed members 4A and 4B.
  • a magnetic core including the split core 32m by bringing the lower surface of the split core 32m into direct contact with the mounting plate 9 to be described later, or by interposing an adhesive or an insulating sheet between the mounting plate 9 and the lower surface of the split core 32m.
  • the heat dissipation of 3 can be improved.
  • the outer resin portion 6 of this example is provided on the side where the split core 32m is disposed in the end surface interposed members 4A and 4B, and does not reach the outer peripheral surface of the winding portions 2A and 2B.
  • the outer resin part 6 is formed in a sufficient range as shown in the drawing and is preferable in that the amount of resin used can be reduced.
  • the outer resin portion 6 may extend to the winding portions 2A and 2B.
  • the outer resin portion 6 of this example is connected to the inner resin portion 5 through the resin filling holes 45 of the end surface interposed members 4A and 4B. That is, the outer resin part 6 and the inner resin part 5 are formed of the same resin at a time. Unlike this example, the outer resin part 6 and the inner resin part 5 can be formed separately.
  • the outer resin portion 6 can be made of a resin similar to the resin that can be used for forming the inner resin portion 5.
  • both the resin parts 6 and 5 are made of the same resin.
  • the outer resin portion 6 is formed with a fixing portion 60 (see FIG. 1) for fixing the combined body 10 to the mounting plate 9 or the like.
  • a fixing portion 60 for fixing the combined body 10 to the mounting plate 9 with a bolt can be formed.
  • the sealing member 7 is interposed between the inner peripheral surface of the winding portion 2B (2A) in the vicinity of the end surface interposed member 4A and the outer peripheral surface of the inner interposed member 4D. It may be provided.
  • the sealing member 7 when the resin is filled into the winding part 2B through the resin filling hole 45, the resin contacts the axial end surface of the winding part 2B and the end surface interposed member 4A. It becomes difficult to go to the part. Therefore, resin leakage from between the axial end face of the winding part 2B and the end face interposed member 4A can be more effectively suppressed.
  • An annular packing can be used for the sealing member 7. In that case, after attaching an annular packing to the outer periphery of the cylindrical portion 46 (see FIG. 5) of the inner interposed member 4D, the assembly of the inner interposed member 4D and the split core 31m may be inserted into the winding portion 2B.
  • the reactor 1 of the present embodiment further includes a mounting plate 9 on which the combined body 10 is mounted. Between the mounting plate 9 and the combined body 10, a bonding layer 8 for bonding the both 9 and 10 is formed.
  • the mounting plate 9 is preferably made of a material having excellent mechanical strength and thermal conductivity, and can be made of, for example, aluminum or an alloy thereof.
  • the bonding layer 8 is preferably made of a material having excellent insulating properties, and can be made of, for example, a thermosetting resin such as epoxy resin, silicone resin, or unsaturated polyester, or a thermoplastic resin such as PPS resin or LCP. . You may improve the heat dissipation of the joining layer 8 by making these insulating resins contain a ceramic filler.
  • the assembly 10 may be stored in a case.
  • the bottom surface of the case functions as the mounting plate 9.
  • the combined body 10 can be used in a state immersed in a liquid refrigerant.
  • the liquid refrigerant is not particularly limited, but when the reactor 1 is used in a hybrid vehicle, ATF (Automatic Transmission Fluid) or the like can be used as the liquid refrigerant.
  • fluorinated inert liquids such as Fluorinert (registered trademark), chlorofluorocarbon refrigerants such as HCFC-123 and HFC-134a, alcohol refrigerants such as methanol and alcohol, and ketone refrigerants such as acetone are used as liquid refrigerants. You can also.
  • the reactor 1 in which the resin leakage from the portion is suppressed includes the inner resin portion 5 formed by filling the inside of the winding portion with a sufficient resin at the time of manufacture. If it is such an inner side resin part 5, the inner core parts 31 and 31 can be hold
  • the outer periphery of winding part 2A, 2B of the coil 2 is not molded with resin, it is in the state of being directly exposed to the external environment. It becomes the reactor 1 excellent in property. If the combination 10 of the reactor 1 is immersed in the liquid refrigerant, the heat dissipation of the reactor 1 can be further improved.
  • the reactor 1 of this example can be used as a component of a power conversion device such as a bidirectional DC-DC converter mounted on an electric vehicle such as a hybrid vehicle, an electric vehicle, or a fuel cell vehicle.
  • a power conversion device such as a bidirectional DC-DC converter mounted on an electric vehicle such as a hybrid vehicle, an electric vehicle, or a fuel cell vehicle.
  • FIG. 3 is mainly referred to, and FIGS. 4 and 5 are referred to as necessary.
  • FIG. 3 is mainly referred to, and FIGS. 4 and 5 are referred to as necessary.
  • FIGS. 4 and 5 are referred to as necessary.
  • the coil 2 is produced by preparing the winding 2w and winding a part of the winding 2w.
  • a known winding machine can be used for winding the winding 2w.
  • a coating layer of the heat-sealing resin that becomes the integrated resin 20 described with reference to FIG. 2 can be formed. The thickness of the coating layer can be appropriately selected.
  • the winding portions 2A and 2B are integrated with the integrated resin 20 (see FIG. 2).
  • the integrated resin 20 can be formed by heat-treating the coil 2.
  • a resin is applied to the outer periphery and inner periphery of the winding portions 2A and 2B of the coil 2, and the resin is cured, thereby integrating the resin 20 It is good to form.
  • This integration step can be performed after the assembly step described below and before the filling step.
  • the coil 2, the split cores 31 m and 32 m constituting the magnetic core 3, and the insulating interposed member 4 are combined.
  • a first assembly in which the split cores 31m are arranged in the storage portions 49 of the inner interposed members 4C and 4D is produced, and the first assembly is placed inside the winding portions 2A and 2B. Arrange (see also FIG. 3).
  • the side edge and the upper edge of the split core 32m are formed.
  • the resin filling hole 45 is formed by a gap between the through hole 42 (see FIG. 3) of the end surface interposed members 4 ⁇ / b> A and 4 ⁇ / b> B and the outer core portion 32 fitted in the through hole 42.
  • the resin is filled into the winding parts 2A and 2B in the second assembly.
  • the second assembly is placed in a mold, and injection molding is performed in which a resin is injected into the mold.
  • the resin is injected from the end face side of one of the split cores 32m (the side opposite to the coil 2).
  • the resin filled in the mold covers the outer periphery of the split core 32m and flows into the winding portions 2A and 2B through the resin filling holes 45 (FIGS. 2 and 6). In that case, the air in winding part 2A, 2B is exhausted outside from the resin filling hole 45 by the side of the other division
  • the resin filled in the winding portions 2A and 2B not only enters between the inner peripheral surface of the winding portion 2B and the outer peripheral surface of the split core 31m, but also adjacent two The gaps 31g and 32g are formed between the split cores 31m and 31m and between the split core 31m and the outer core portion 32 (split core 32m).
  • the resin filled in the winding portions 2A and 2B from the resin filling hole 45 by applying pressure by injection molding is sufficiently distributed in the narrow gap between the winding portions 2A and 2B and the inner core portion 31, but the winding portion There is almost no leakage to the outside of 2A and 2B. As shown in FIG.
  • the axial end surface of the winding portion 2 ⁇ / b> B and the end surface interposed members 4 ⁇ / b> A and 4 ⁇ / b> B are in surface contact, and the winding portion 2 ⁇ / b> B is integrated with the integrated resin 20.
  • the turns are integrated at the corners of the bending of the rectangular cylindrical winding parts 2A and 2B, and a minute gap is formed in the flat part.
  • the resin can be filled from both the outside of one divided core 32m and the outside of the other divided core 32m. In that case, it exhausts out of winding part 2A, 2B from the micro clearance gap formed in a flat part. Due to the viscosity and surface tension of the resin, the resin hardly leaks outside the winding portions 2A and 2B through a minute gap in the flat portion.
  • the resin is cured by heat treatment or the like.
  • the resin inside the winding parts 2A and 2B is the inner resin part 5 as shown in FIG. 2, and the resin that covers the split core 32m is the outer resin part 6.
  • the combined body 10 of the reactor 1 shown in FIG. 1 can be manufactured. Moreover, since the inner resin part 5 and the outer resin part 6 are integrally formed, the filling process and the curing process are performed only once, so that the assembly 10 can be manufactured with high productivity.
  • the completed assembly 10 may be fixed on the mounting plate 9 via the bonding layer 8.
  • the combined body 10 of Embodiment 1 may be accommodated in a case and embedded in the case with potting resin.
  • the second assembly produced in the assembly process according to the reactor manufacturing method of Embodiment 1 is housed in a case, and potting resin is filled in the case.
  • the potting resin that covers the outer periphery of the split core 32m (outer core portion 32) becomes the outer resin portion 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulating Of Coils (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

巻線を巻回してなる巻回部を有するコイルと、前記巻回部の内部に配置される内側コア部と前記巻回部の外部に配置される外側コア部とで閉磁路を形成する磁性コアと、前記巻回部の軸方向端面と前記外側コア部との間に介在される端面介在部材と、を備えるリアクトルであって、前記巻回部の内周面と前記内側コア部の外周面との間に充填される内側樹脂部を備え、前記端面介在部材は、前記巻回部の軸方向端部のターンの少なくとも一部を収納するターン収納部を備えるリアクトル。

Description

リアクトル、およびリアクトルの製造方法
 本発明は、リアクトル、およびリアクトルの製造方法に関する。
 本出願は、2015年7月24日付の日本国出願の特願2015-146551に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 特許文献1のリアクトルは、巻回部を有するコイル、閉磁路を形成する磁性コアと、コイルと磁性コアとの間の絶縁を確保する絶縁介在部材と、を備える。磁性コアは、巻回部の内部に配置される内側コア部と、巻回部の外部に配置される外側コア部と、を備える。特許文献1のリアクトルでは、一対のボビンを組み合わせることで絶縁介在部材を構成している。当該ボビンは、巻回部の内周面と内側コア部との間に介在される内側介在部材と、巻回部の軸方向端面と外側コア部との間に介在される端面介在部材と、に分けることができる。また、特許文献1には、コイルと磁性コアと絶縁介在部材とを組み合わせた後、コイルの巻回部の内部に樹脂を充填したリアクトルが開示されている。
特開2014-003125号公報
 本開示のリアクトルは、巻線を巻回してなる巻回部を有するコイルと、前記巻回部の内部に配置される内側コア部と前記巻回部の外部に配置される外側コア部とで閉磁路を形成する磁性コアと、前記巻回部の軸方向端面と前記外側コア部との間に介在される端面介在部材と、を備えるリアクトルであって、
 前記巻回部の内周面と前記内側コア部の外周面との間に充填される内側樹脂部を備え、
 前記端面介在部材は、前記巻回部の軸方向端部のターンの少なくとも一部を収納するターン収納部を備えるリアクトル。
 本開示のリアクトルの製造方法は、コイルと、前記コイルの内外に配置されて閉磁路を形成する磁性コアと、を備えるリアクトルを製造するリアクトルの製造方法であって、
 前記リアクトルは、本開示のリアクトルであり、
 前記内側コア部を前記巻回部の内部に配置し、前記巻回部の軸方向端部を前記端面介在部材の前記ターン収納部に収納する組付工程と、
 前記巻回部の内周面と前記内側コア部の外周面との間に樹脂を充填する充填工程と、を備えるリアクトルの製造方法。
実施形態1に係るリアクトルの斜視図である。 リアクトルに備わる組合体の縦断面図である。 樹脂部を除く組合体の分解斜視図である。 リアクトルに備わる端面介在部材の概略図である。 リアクトルに備わる内側介在部材と分割コアの概略斜視図である。 樹脂部を形成する前の組合体の概略正面図である。 組合体の端面介在部材近傍における部分拡大縦断面図である。
[本開示が解決しようとする課題]
 特許文献1の構成では、巻回部の内部に充填された樹脂が、巻回部の軸方向端面と端面介在部材との隙間から巻回部の外部に漏れ出し易く、巻回部に十分な樹脂を充填できない場合がある。巻回部の内部に充填される樹脂が巻回部の内周面と内側コア部の外周面との間を埋めることで、内側コア部を巻回部内に保持することができる。しかし、巻回部への樹脂の充填が不十分であると、巻回部の内部で内側コア部ががたつき易く、騒音が発生したり、巻回部の内周面に内側コア部が接触したりする虞がある。
 そこで、本開示は、端面介在部材とコイルの軸方向端面との間からの樹脂漏れが抑制されたリアクトル、およびその製造方法を提供することを目的とする。
[本開示の効果]
 本開示のリアクトルは、端面介在部材と巻回部との間からの樹脂漏れが抑制されたリアクトルである。
 本開示のリアクトルの製造方法は、本開示のリアクトルを作製することができる。
[本願発明の実施形態の説明]
 最初に本願発明の実施態様を列記して説明する。
<1>実施形態のリアクトルは、巻線を巻回してなる巻回部を有するコイルと、前記巻回部の内部に配置される内側コア部と前記巻回部の外部に配置される外側コア部とで閉磁路を形成する磁性コアと、前記巻回部の軸方向端面と前記外側コア部との間に介在される端面介在部材と、を備えるリアクトルである。このリアクトルは、前記巻回部の内周面と前記内側コア部の外周面との間に充填される内側樹脂部を備え、リアクトルに備わる前記端面介在部材は、前記巻回部の軸方向端部のターンの少なくとも一部を収納するターン収納部を備える。
 端面介在部材にターン収納部が形成されていることで、端面介在部材と巻回部の軸方向端面とを面接触させることができ、リアクトルの製造過程で巻回部の内部に樹脂を充填する際、端面介在部材と巻回部との接触部から樹脂が漏れることを抑制できる。また、巻回部の軸方向端部のターンの少なくとも一部がターン収納部に収納される、つまり軸方向端部のターンの厚み方向の少なくとも一部がターン収納部の内壁で覆われることで、単に端面介在部材と巻回部の軸方向端面とを面接触させるよりも、接触部からの樹脂漏れを抑制することができる。上述したように、ターン収納部を有する端面介在部材を用いることで、端面介在部材と巻回部との間からの樹脂漏れが抑制されたリアクトルとすることができる。端面介在部材と巻回部との間からの樹脂漏れが抑制されたリアクトルでは、その製造時に巻回部の内部に十分な樹脂が充填されることで形成された内側樹脂部が備わっている。このような内側樹脂部であれば、内側コア部を巻回部の内部に保持することができる。
<2>実施形態のリアクトルとして、前記コイルは、前記内側樹脂部とは別に設けられ、前記巻回部の各ターンを一体化する一体化樹脂を備える形態を挙げることができる。
 上記リアクトルは、その作製が容易である。上記リアクトルでは、各ターンが一体化されることで巻回部が屈曲し難く、リアクトルの製造の際に巻回部の内部に磁性コアを配置し易い。また、巻回部の各ターンが一体化されていることで、各ターン間に大きな隙間ができ難く、リアクトルの製造の際に巻回部の内部に充填された樹脂がターン間から漏れ難くすることができる。その結果、巻回部の内部に大きな空隙が形成され難い。一体化樹脂によってターン間の空隙を無くすこともできる。
<3>実施形態のリアクトルとして、前記端面介在部材は、前記内側樹脂部を構成する樹脂を前記巻回部の内部へ充填する樹脂充填孔を有する形態を挙げることができる。
 端面介在部材に樹脂充填孔を形成することで、リアクトルを製造する際、巻回部の内部への樹脂の充填を容易にすることができる。また、この樹脂充填孔から巻回部の内部に樹脂を充填する際、一体化樹脂で固めた巻回部を利用することで、巻回部の内部から外部への樹脂漏れを効果的に抑制できる。
<4>前記端面介在部材に前記樹脂充填孔を備える実施形態のリアクトルとして、前記外側コア部を前記端面介在部材に一体化する外側樹脂部を備え、前記外側樹脂部と前記内側樹脂部とは、前記樹脂充填孔を通じて繋がっている形態を挙げることができる。
 外側樹脂部と内側樹脂部とが樹脂充填孔を通じて繋がっているため、両樹脂部を1回の成形によって形成することができる。つまり、この構成を備えるリアクトルは、内側樹脂部に加えて外側樹脂部を備えるにも拘らず、1回の樹脂成形にて得ることができるため、生産性に優れる。
<5>樹脂充填孔を有する実施形態のリアクトルとして、前記端面介在部材は、前記外側コア部を嵌め込む貫通孔を有し、前記貫通孔とその貫通孔に嵌め込まれた前記外側コア部との隙間によって前記樹脂充填孔が形成されており、前記貫通孔の内部に入り込んだ前記内側樹脂部によって、前記外側コア部と前記内側コア部との間にギャップが形成されている形態を挙げることができる。
 上記リアクトルは、外側コア部と内側コア部との間にギャップを形成するにあたり、アルミナなどのギャップ材を別途用意することなく製造することができ、生産性に優れる。
<6>実施形態のリアクトルとして、前記内側コア部は、複数の分割コアと、各分割コアの間に入り込んだ前記内側樹脂部と、で構成される形態を挙げることができる。
 各分割コアの間に入り込んだ内側樹脂部は、磁性コアの磁気特性を調整するギャップとして機能する。つまり、この構成を備えるリアクトルは、アルミナなどの別材料でできたギャップ材を必要とせず、ギャップ材が不要な分だけ生産性に優れる。
<7>実施形態のリアクトルとして、前記内側コア部は、複数の分割コアを備えており、前記巻回部の内周面と前記内側コア部の外周面との間に介在される内側介在部材を備え、前記内側介在部材は、各分割コアを離隔させた状態で収納する収納部を備える形態を挙げることができる。
 内側介在部材を用いることで、リアクトルの製造過程で巻回部に樹脂を充填する際、巻回部と、内側コア部を構成する分割コアと、を確実に離隔させておくことができ、巻回部と内側コア部との間の絶縁を確実に確保することができる。また、内側介在部材に収納部を設けることで、内側コア部を構成する分割コアを、巻回部の内部の所定の位置に容易に配置することができる。その結果、安定した磁気特性を備えるリアクトルを生産性良く製造することができる。加えて、各分割コア間の間隙に内側樹脂部を充填させることで、容易に分割コア間に樹脂ギャップを形成することができる。
<8>実施形態のリアクトルとして、前記巻回部の内周面と前記内側コア部の外周面との間に介在される内側介在部材を備え、前記内側樹脂部は、前記端面介在部材および前記内側介在部材の少なくとも一方と同じ材料で構成されている形態を挙げることができる。
 上記構成によれば、内側樹脂部と内側介在部材(端面介在部材)の線膨張係数を同じにすることができる。その結果、リアクトルの使用時に、内側樹脂部と内側介在部材(端面介在部材)が熱膨張・収縮しても、内側樹脂部にクラックなどが生じ難い。この効果に鑑み、内側樹脂部、内側介在部材、および端面介在部材を同じ材料で構成することが好ましい。
<9>実施形態のリアクトルとして、前記巻回部の内周面と前記内側コア部の外周面との間に介在される内側介在部材と、前記端面介在部材の近傍における前記巻回部の内周面と前記内側介在部材の外周面との間に介在される封止部材と、を備える形態を挙げることができる。
 封止部材を設けることで、リアクトルを製造する際、端面介在部材と巻回部の軸方向端面との間から樹脂が漏れることを、より効果的に抑制することができる。
<10>実施形態のリアクトルの製造方法は、コイルと、前記コイルの内外に配置されて閉磁路を形成する磁性コアと、を備えるリアクトルを製造するリアクトルの製造方法であって、前記リアクトルは、上記実施形態に係るリアクトルである。この実施形態のリアクトルの製造方法は、前記内側コア部を前記巻回部の内部に配置し、前記巻回部の軸方向端部を前記端面介在部材の前記ターン収納部に収納する組付工程と、前記巻回部の内周面と前記内側コア部の外周面との間に樹脂を充填する充填工程と、を備える。
 上記リアクトルの製造方法によれば、巻回部の内周面と内側コア部の外周面との間に樹脂を充填したときに、端面介在部材と巻回部の軸方向端面との間から樹脂が漏れることを抑制することができる。樹脂の漏れが抑制できるのは、端面介在部材に、巻回部の軸方向端部を収納するターン収納部が形成されているからである。巻回部の内部に充填された樹脂は、巻回部の内周面と内側コア部の外周面とを接合する内側樹脂部となる。その結果、実施形態のリアクトルが得られる。
<11>実施形態のリアクトルの製造方法として、表面に熱融着樹脂を有する巻線を用いて前記コイルを作製し、熱処理によって前記熱融着樹脂を溶融させて前記巻回部の各ターンを一体化させた後、前記充填工程を行う形態を挙げることができる。
 熱融着樹脂を有する巻線を用いてコイルを作製することで、そのコイルを熱処理するだけで、巻回部を構成する各ターンを一体化する一体化樹脂を形成することができる。また、一体化樹脂で固められた巻回部の内部に樹脂を充填することで、巻回部の各ターン間からの樹脂漏れを抑制することができ、巻回部の内部に大きな空隙が形成されることを抑制できる。
<12>実施形態のリアクトルの製造方法として、前記端面介在部材は、前記巻回部の内部へ前記樹脂を充填するための樹脂充填孔を有し、前記充填工程では、前記樹脂充填孔を介して前記巻回部の内部に前記樹脂を充填する形態を挙げることができる。
 端面介在部材に形成した樹脂充填孔を介して巻回部の内部に樹脂を充填することで、巻回部の内周面と内側コア部の外周面との間に十分に樹脂を充填することができる。
<13>前記樹脂充填孔を有する前記端面介在部材を用いた実施形態のリアクトルの製造方法として、前記充填工程では、射出成形によって前記樹脂の充填を行う形態を挙げることができる。
 射出成形によって圧力をかけながら巻回部内に樹脂を充填することで、巻回部と内側コア部との間の狭い隙間に十分に樹脂を行き渡らせることができる。また、外側コア部の外周側から樹脂の充填を行なうことで、1回の射出成形で、外側樹脂部と内側樹脂部の両方を形成することができる。外側コア部の外周を覆う樹脂が、樹脂充填孔を介して巻回部の内部にも充填されるからである。
[本願発明の実施形態の詳細]
 以下、本願発明のリアクトルの実施形態を図面に基づいて説明する。図中の同一符号は同一名称物を示す。なお、本願発明は実施形態に示される構成に限定されるわけではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
<実施形態1>
 実施形態1では、図1~図6に基づいてリアクトル1の構成を説明する。図1に示すリアクトル1は、コイル2と磁性コア3と絶縁介在部材4とを組み合わせた組合体10と、組合体10を載置する載置板9と、を備える。組合体10はさらに、コイル2の巻回部2A,2Bの内部に配置される内側樹脂部5(図2参照)と、磁性コア3の一部を構成する外側コア部32を覆う外側樹脂部6と、を備える。以下、リアクトル1に備わる各構成を詳細に説明する。
 ≪組合体≫
  [コイル]
 図3に示すように、本実施形態のコイル2は、一本の巻線2wで構成されており、一対の巻回部2A,2Bと、両巻回部2A,2Bを連結する連結部2Rと、を備える。各巻回部2A,2Bは、互いに同一の巻数、同一の巻回方向で中空筒状に形成され、各軸方向が平行になるように並列されている。別々の巻線により作製した巻回部2A,2Bを連結することでコイル2を製造しても良い。
 本実施形態の各巻回部2A,2Bは角筒状に形成されている。角筒状の巻回部2A,2Bとは、その端面形状が四角形状(正方形状を含む)の角を丸めた形状の巻回部のことである。もちろん、巻回部2A,2Bは円筒状に形成しても構わない。円筒状の巻回部とは、その端面形状が閉曲面形状(楕円形状や真円形状、レーストラック形状など)の巻回部のことである。
 巻回部2A,2Bを含むコイル2は、銅やアルミニウム、マグネシウム、あるいはその合金といった導電性材料からなる平角線や丸線などの導体の外周に、絶縁性材料からなる絶縁被覆を備える被覆線によって構成することができる。本実施形態では、導体が銅製の平角線(巻線2w)からなり、絶縁被覆がエナメル(代表的にはポリアミドイミド)からなる被覆平角線をエッジワイズ巻きにすることで、各巻回部2A,2Bを形成している。
 コイル2の両端部2a,2bは、巻回部2A,2Bから引き延ばされて、図示しない端子部材に接続される。両端部2a,2bではエナメルなどの絶縁被覆は剥がされている。この端子部材を介して、コイル2に電力供給を行なう電源などの外部装置が接続される。
 上記構成を備えるコイル2は、樹脂によって一体化されていることが好ましい。本例の場合、コイル2の巻回部2A,2Bはそれぞれ、一体化樹脂20(図2参照)によって個別に一体化されている。本例の一体化樹脂20は、巻線2wの外周(エナメルなどの絶縁被覆のさらに外周)に形成される熱融着樹脂の被覆層を融着させることで構成されており、非常に薄い。そのため、巻回部2A,2Bが一体化樹脂20で一体化されていても、巻回部2A,2Bのターンの形状や、ターンの境界が外観上から分かる状態になっている。一体化樹脂20の材質としては、熱によって融着する樹脂、例えば、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなどの熱硬化性樹脂を挙げることができる。
 図2では一体化樹脂20を誇張して示しているが、実際には非常に薄く形成されている。一体化樹脂20は、巻回部2B(巻回部2Aでも同様)を構成する各ターンを一体化し、巻回部2Bの軸方向の伸縮を抑制する。本例では、巻線2wに形成される熱融着樹脂を融着させて一体化樹脂20を形成しているため、各ターン間の隙間にも均一的に一体化樹脂20が入り込んでいる。ターン間における一体化樹脂20の厚さt1は、巻回前の巻線2wの表面に形成される熱融着樹脂の厚さの約二倍であり、具体的には20μm以上2mm以下とすることが挙げられる。厚さt1を厚くすることで、各ターンを強固に一体化させることができ、厚さt1を薄くすることで巻回部2Bの軸方向長さが長くなり過ぎることを抑制できる。
 巻回部2Bの外周面および内周面における一体化樹脂20の厚さt2は、巻回前の巻線2wの表面に形成される熱融着樹脂の厚さとほぼ同じであり、10μm以上1mm以下とすることが挙げられる。巻回部2Bの内周面および外周面における一体化樹脂20の厚さt2を10μm以上とすることで、巻回部2A,2Bの各ターンがばらけないように各ターンを強固に一体化させることができる。また上記厚さを1mm以下とすることで、一体化樹脂20による巻回部2Bの放熱性の低下を抑制することができる。
 ここで、角筒状のコイル2の巻回部2A,2Bは、巻線2wが曲げられることで形成される四つの角部と、巻線2wが曲げられていない平坦部と、に分けられる。図1,2では巻回部2A,2Bの角部においても平坦部においても各ターン同士を一体化樹脂20で一体化した構成である。これに対して、巻回部2A,2Bの一部、例えば角部においてのみ各ターン同士が一体化樹脂20で一体化されている構成としても良い。
 巻線2wをエッジワイズ巻きすることで形成される巻回部2A,2Bの角部では、曲げの内側(紙面上側)が曲げの外側(紙面下側)よりも太くなり易い。このような曲げの内側が太くなった巻回部2A,2Bを熱処理し、巻線2w表面の熱融着樹脂を溶融させると、曲げの内側では各ターンを一体化樹脂20で一体化させることができ、曲げの外側では各ターンを離隔させることができる。この場合、巻回部2A,2Bの平坦部では、巻線2wの外周に熱融着樹脂があるが、各ターン間は一体化されずに離隔する。この平坦部における隙間が十分に小さければ、巻回部2A,2Bの内部に樹脂を充填してもその樹脂は表面張力によって平坦部の隙間を通過できない。
  [磁性コア]
 磁性コア3は、複数の分割コア31m,32mを組み合わせて構成されており、便宜上、内側コア部31,31と、外側コア部32,32と、に分けることができる(図1,2を合わせて参照)。
 内側コア部31は、図2に示すようにコイル2の巻回部2B(巻回部2Aでも同様)の内部に配置される部分である。ここで、内側コア部31とは、磁性コア3のうち、コイル2の巻回部2A,2Bの軸方向に沿った部分を意味する。例えば、図2では、巻回部2A,2Bの軸方向に沿った部分の端部が巻回部2A,2Bの端面よりも巻回部2A,2Bの外側に突出しているものの、その突出する部分も内側コア部31の一部である。
 本例の内側コア部31は、三つの分割コア31mと、各分割コア31mの間に形成されるギャップ31gと、分割コア31mと後述する分割コア32mとの間に形成されるギャップ32gと、で構成されている。本例のギャップ31g,32gは、後述する内側樹脂部5によって形成されている。この内側コア部31の形状は、巻回部2A(2B)の内部形状に沿った形状であって、本例の場合、略直方体状である。
 一方、外側コア部32は、巻回部2A,2Bの外部に配置される部分であって、一対の内側コア部31,31の端部を繋ぐ形状を備える(図1参照)。本例の外側コア部32は、上面と下面が略ドーム形状の柱状の分割コア32mで構成されている。この外側コア部32の下面(分割コア32mの下面)は、コイル2の巻回部2A,2Bの下面とほぼ面一になっている(図2参照)。
 分割コア31m,32mは、軟磁性粉末を含む原料粉末を加圧成形してなる圧粉成形体である。軟磁性粉末は、鉄などの鉄族金属やその合金(Fe-Si合金、Fe-Ni合金など)などで構成される磁性粒子の集合体である。原料粉末には潤滑剤が含有されていても良い。本例とは異なり、分割コア31m,32mは、軟磁性粉末と樹脂とを含む複合材料の成形体で構成することもできる。複合材料の軟磁性粉末と樹脂には、圧粉成形体に使用できる軟磁性粉末と樹脂と同じものを利用することができる。磁性粒子の表面には、リン酸塩などで構成される絶縁被覆が形成されていても良い。その他、分割コア31m,32mを積層鋼板で構成することもできる。
  [絶縁介在部材]
 絶縁介在部材4は、図2,3に示すように、コイル2と磁性コア3との間の絶縁を確保する部材であって、端面介在部材4A,4Bと、内側介在部材4C,4Dと、で構成されている。絶縁介在部材4は、例えば、ポリフェニレンスルフィド(PPS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、液晶ポリマー(LCP)、ナイロン6やナイロン66といったポリアミド(PA)樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂などの熱可塑性樹脂で構成することができる。その他、不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂などの熱硬化性樹脂などで絶縁介在部材4を形成することができる。上記樹脂にセラミックスフィラーを含有させて、絶縁介在部材4の放熱性を向上させても良い。セラミックスフィラーとしては、例えば、アルミナやシリカなどの非磁性粉末を利用することができる。
  [[端面介在部材]]
 端面介在部材4A,4Bの説明には主として図3,4を用いる。図4の上段図は、図3の紙面左側の端面介在部材4Aをコイル2側から見た概略斜視図であり、下段図は、その端面介在部材4Aを分割コア32m側から見た概略斜視図である。ここで、図3の紙面右側の端面介在部材4Bは、図4の端面介在部材4Aとは、後述するターン収納部41の構成のみが相違する。従って、ここでは端面介在部材4Aを主に説明する。
 端面介在部材4Aのコイル側の面には、巻回部2A,2Bの軸方向端部の少なくとも一部を収納する二つのターン収納部41が形成されている。ターン収納部41は、巻回部2A,2Bの軸方向端面全体を、端面介在部材4Aに面接触させるために形成されている。より具体的には、ターン収納部41は、後述する貫通孔42の周囲を取り囲む四角環状に形成されており、紙面右上側の角部の位置(太矢印を参照)から反時計回りに徐々に深さが深くなっている。各ターン収納部41における右辺部分は、端面介在部材4Aの上端にまで達しており、図3に示すコイル2の端部2a,2bを、端面介在部材4Aの上方側に引き出せるようになっている。ここで、図3の紙面右側の端面介在部材4Bに備わるターン収納部41は、連結部2Rを含む巻回部2A,2Bの端面を収納できる『8』の字形状となっている。
 ターン収納部41によって巻回部2A,2Bの軸方向端面と端面介在部材4Aとを面接触させることで、接触部分からの樹脂漏れを抑制することができる。上記面接触に加えて、ターン収納部41では、巻回部2A,2Bの軸方向端部のターンの厚み方向の少なくとも一部が端面介在部材4Aで覆われた状態になっている。具体的には、紙面左側のターン収納部41における上辺部分、右辺部分、および下辺部分では、ターン収納部41に嵌り込んだ巻回部2Bのターンの周面部分が端面介在部材4Aに覆われている(図2を合わせて参照)。紙面右側のターン収納部41における上辺部分、左辺部分、および下辺部分では、ターン収納部41に嵌り込んだ巻回部2Aのターンの周面部分が端面介在部材4Aに覆われている。この端面介在部材4A,4Bで覆われる部分では、他の部分よりも更に樹脂が漏れ難い。巻回部2A,2Bと端面介在部材4Aとの接触部分からの樹脂漏れを抑制する観点からすれば、巻回部2A,2Bの軸方向端部のターンを全周に亘って収納するターン収納部41とすることが好ましい。
 端面介在部材4Aは、上述したターン収納部41の他に、一対の貫通孔42,42と、嵌合部43(下段図参照)と、を備える。貫通孔42は、図3に示す内側介在部材4C,4Dと分割コア31mとの組物を嵌め込むための孔である。一方、嵌合部43は、外側コア部32となる分割コア32mを嵌め込むための凹部である。
 上記貫通孔42の中央寄りの下部と外側寄りの上方には、上記組物を当て止めするための当て止め部44が形成されている。この当て止め部44によって、組物と分割コア32mとが直接接触することなく離隔される(図3を合わせて参照)。
 上記貫通孔42の外側寄りの部分、および上方寄りの部分には、外方に向って凹んでいる。この凹んでいる部分は、図6に示すように、端面介在部材4Aの嵌合部に分割コア32mを嵌め込んだときに、分割コア32mの側縁および上縁の位置に樹脂充填孔45を形成する。樹脂充填孔45は、紙面手前の外側コア部32(分割コア32m)側から紙面奥側の巻回部2A,2Bの軸方向端面側に向って端面介在部材4Aの厚み方向に貫通する孔であり、紙面奥側で巻回部2A,2Bの内周面と内側コア部31(分割コア31m)の外周面との間の空間に連通している(図2を合わせて参照)。
  [[内側介在部材]]
 内側介在部材4C,4Dの説明には図5を用いる。内側介在部材4Cと内側介在部材4Dとは同一形状を備え、内側介在部材4Cを180°水平方向に回転させれば内側介在部材4Dとなる。これら内側介在部材4C,4Dは、その両端が開口する籠状の部材である。より具体的には、内側介在部材4C,4Dは、角筒状に形成された一対の筒部46,46と、両筒部46,46を連結する複数のブリッジ部47と、で構成されている。内側介在部材4C,4Dの上方側における他の内側介在部材4C,4Dに対向する側にはブリッジ部47が設けられておらず、大きな開口部が形成されている。ブリッジ部47には、内側介在部材4C,4Dの内方側に突出する複数の仕切り部48が形成されており、この仕切り部48によって内側介在部材4C,4Dの内部が、その軸方向に3つに区画されている。区画された部分は、分割コア31mを収納する収納部49として機能する。本例では、図5の太矢印で示すように、内側介在部材4C,4Dの軸方向の両端の開口部、および内側介在部材4C,4Dの上方の開口部を介して、各収納部49に分割コア31mを挿入できるようになっている。各分割コア31mは、仕切り部48によって互いに離隔される。
  [内側樹脂部]
 内側樹脂部5は、図2に示すように、巻回部2B(図示しない巻回部2Aでも同様)の内部に配置され、巻回部2Bの内周面と分割コア31m(内側コア部31)の外周面とを接合する。
 内側樹脂部5は、巻回部2Bが一体化樹脂20によって一体化されているため、巻回部2Bの各ターンの内周面と外周面との間に跨がることなく、巻回部2Bの内部に留まっている。また、この内側樹脂部5の一部は、分割コア31mと分割コア31mとの間、および分割コア31mと分割コア32mとの間に入り込み、ギャップ31g,32gを形成している。
 内側樹脂部5は、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂などの熱硬化性樹脂や、PPS樹脂、PA樹脂、ポリイミド樹脂、フッ素樹脂などの熱可塑性樹脂、常温硬化性樹脂、あるいは低温硬化性樹脂を利用することができる。これらの樹脂にアルミナやシリカなどのセラミックスフィラーを含有させて、内側樹脂部5の放熱性を向上させても良い。内側樹脂部5は、端面介在部材4A,4Bおよび内側介在部材4C,4Dと同じ材料で構成することが好ましい。三つの部材を同じ材料で構成することで、三つの部材の線膨張係数を同じにすることができ、熱膨張・収縮に伴う各部材の損傷を抑制することができる。
  [外側樹脂部]
 外側樹脂部6は、図1,2に示すように、分割コア32m(外側コア部32)の外周全体を覆うように配置され、分割コア32mを端面介在部材4A,4Bに固定すると共に、分割コア32mを外部環境から保護する。ここで、分割コア32mの下面は、外側樹脂部6から露出していても構わない。その場合、分割コア32mの下方部分を、端面介在部材4A,4Bの下面とほぼ面一となるように延設することが好ましい。後述する載置板9に分割コア32mの下面を直接接触させる、あるいは載置板9と分割コア32mの下面との間に接着剤や絶縁シートを介在させることで、分割コア32mを含む磁性コア3の放熱性を高めることができる。
 本例の外側樹脂部6は、端面介在部材4A,4Bにおける分割コア32mが配置される側に設けられ、巻回部2A,2Bの外周面に及んでいない。分割コア32mの固定と保護を行なうという外側樹脂部6の機能に鑑みれば、外側樹脂部6の形成範囲は図示する程度で十分であり、樹脂の使用量を低減できる点で好ましいと言える。もちろん、図示する例とは異なり、外側樹脂部6が巻回部2A,2B側に及んでいても構わない。
 本例の外側樹脂部6は、図2に示すように、端面介在部材4A,4Bの樹脂充填孔45を介して内側樹脂部5と繋がっている。つまり、外側樹脂部6と内側樹脂部5とは同じ樹脂で一度に形成されたものである。本例と異なり、外側樹脂部6と内側樹脂部5とを個別に形成することも可能である。
 外側樹脂部6は、内側樹脂部5の形成に利用できる樹脂と同様の樹脂で構成することができる。本例のように外側樹脂部6と内側樹脂部5とが繋がっている場合、両樹脂部6,5は同じ樹脂で構成される。
 その他、外側樹脂部6には、組合体10を載置板9などに固定するための固定部60(図1参照)が形成されている。例えば、高剛性の金属や樹脂で構成されるカラーを外側樹脂部6に埋設することで、組合体10を載置板9にボルトで固定するための固定部60を形成することができる。
  [封止部材]
 図7の部分拡大縦断面図に示すように、端面介在部材4Aの近傍における巻回部2B(2A)の内周面と、内側介在部材4Dの外周面と、の間に封止部材7を設けても良い。封止部材7を設けることで、樹脂充填孔45を介して巻回部2Bの内部に樹脂を充填したときに、その樹脂が、巻回部2Bの軸方向端面と端面介在部材4Aとの接触部分に行き難くなる。そのため、巻回部2Bの軸方向端面と端面介在部材4Aとの間からの樹脂漏れをより効果的に抑制することができる。
 封止部材7には、環状パッキンを利用することができる。その場合、内側介在部材4Dの筒部46(図5参照)の外周に環状パッキンを取り付けてから、内側介在部材4Dと分割コア31mとの組物を巻回部2Bの内部に挿入すると良い。
 ≪載置板≫
 図1に示すように、本実施形態のリアクトル1はさらに、組合体10を載置する載置板9を備える。載置板9と組合体10との間には、両者9,10を接合させる接合層8が形成されている。載置板9は、機械的強度と熱伝導性に優れる材料で構成することが好ましく、例えばアルミニウムやその合金で構成することができる。接合層8は、絶縁性に優れる材料で構成することが好ましく、例えばエポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなどの熱硬化性樹脂や、PPS樹脂、LCPなどの熱可塑性樹脂で構成することができる。これら絶縁性樹脂に、セラミックスフィラーなどを含有させることで、接合層8の放熱性を向上させても良い。
 上記組合体10は、ケースに収納しても構わない。その場合、ケースの底面が載置板9として機能する。
 組合体10は、液体冷媒に浸漬された状態で使用することができる。液体冷媒は特に限定されないが、ハイブリッド自動車でリアクトル1を利用する場合、ATF(Automatic Transmission Fluid)などを液体冷媒として利用できる。その他、フロリナート(登録商標)などのフッ素系不活性液体、HCFC-123やHFC-134aなどのフロン系冷媒、メタノールやアルコールなどのアルコール系冷媒、アセトンなどのケトン系冷媒などを液体冷媒として利用することもできる。
 ≪効果≫
 本例のリアクトル1では、端面介在部材4A,4Bに形成されるターン収納部41によって、端面介在部材4A,4Bと巻回部2A,2Bとの間からの樹脂漏れが抑制されている。そのため、当該部分からの樹脂漏れが抑制されたリアクトル1では、その製造時に巻回部の内部に十分な樹脂が充填されることで形成された内側樹脂部5が備わっている。このような内側樹脂部5であれば、巻回部2A,2Bの内部に内側コア部31,31をしっかりと保持することができる。その結果、巻回部2A,2Bの内部で内側コア部31,31ががたつくことを抑制でき、騒音の発生や、巻回部2A,2Bと内側コア部31,31との接触を抑制できる。
 また、本例のリアクトル1では、コイル2の巻回部2A,2Bの外周が樹脂でモールドされておらず、外部環境に直接曝された状態となっているため、本例のリアクトル1は放熱性に優れたリアクトル1となる。リアクトル1の組合体10を液体冷媒に浸漬された状態とすれば、リアクトル1の放熱性をより向上させることができる。
 本例のリアクトル1は、ハイブリッド自動車や電気自動車、燃料電池自動車といった電動車両に搭載される双方向DC-DCコンバータなどの電力変換装置の構成部材に利用することができる。
 ≪リアクトルの製造方法≫
 次に、実施形態1に係るリアクトル1を製造するためのリアクトルの製造方法の一例を説明する。リアクトルの製造方法は、大略、次の工程を備える。リアクトルの製造方法の説明にあたっては主として図3を参照し、必要に応じて図4,5を参照する。
・コイル作製工程
・一体化工程
・組付工程
・充填工程
・硬化工程
  [コイル作製工程]
 この工程では、巻線2wを用意し、巻線2wの一部を巻回することでコイル2を作製する。巻線2wの巻回には、公知の巻線機を利用することができる。巻線2wの外周には、図2を参照して説明した一体化樹脂20となる熱融着樹脂の被覆層を形成することができる。被覆層の厚さは適宜選択することができる。
  [一体化工程]
 この工程では、コイル作製工程で作製したコイル2のうち、巻回部2A,2Bを一体化樹脂20(図2参照)で一体化する。巻線2wの外周に熱融着樹脂の被覆層を形成している場合、コイル2を熱処理することで、一体化樹脂20を形成することができる。これに対して、巻線2wの外周に被覆層を形成していない場合、コイル2の巻回部2A,2Bの外周や内周に樹脂を塗布し、樹脂を硬化させることで一体化樹脂20を形成すると良い。
 この一体化工程は、次に説明する組付工程の後で、かつ充填工程の前に行なうこともできる。
  [組付工程]
 この工程では、コイル2と、磁性コア3を構成する分割コア31m,32mと、絶縁介在部材4と、を組み合わる。例えば、図5に示すように、内側介在部材4C,4Dの各収納部49に分割コア31mを配置した第一組物を作製し、その第一組物を巻回部2A,2Bの内部に配置する(図3を合わせて参照)。そして、端面介在部材4A,4Bを巻回部2A,2Bの軸方向の一端側端面と他端側端面に当接させ、一対の分割コア32mで挟み込んで、コイル2と分割コア31m,32mと絶縁介在部材4とを組み合わせた第二組物を作製する。
 ここで、図6に示すように、分割コア32mの巻回部2A,2Bの軸方向から第二組物を見たときに、分割コア32m(外側コア部32)の側縁と上縁には、巻回部2A,2Bの内部に樹脂を充填するための樹脂充填孔45が形成されている。樹脂充填孔45は、端面介在部材4A,4Bの貫通孔42(図3参照)と、貫通孔42に嵌め込まれた外側コア部32と、の隙間によって形成される。
  [充填工程]
 充填工程では、第二組物における巻回部2A,2Bの内部に樹脂を充填する。本例では、第二組物を金型内に配置し、金型内に樹脂を注入する射出成形を行なう。樹脂の注入は、いずれかの一方の分割コア32mの端面側(コイル2の反対側)から行なう。金型内に充填された樹脂は、分割コア32mの外周を覆い、樹脂充填孔45(図2,6)を介して巻回部2A,2Bの内部に流入する。その際、巻回部2A,2B内の空気は、他方の分割コア32m側の樹脂充填孔45から外部に排気される。
 巻回部2A,2Bの内部に充填された樹脂は、図2に示すように、巻回部2Bの内周面と分割コア31mの外周面との間に入り込むだけでなく、隣接する二つの分割コア31m,31mの間、および分割コア31mと外側コア部32(分割コア32m)との間にも入り込み、ギャップ31g,32gを形成する。射出成形によって圧力をかけて樹脂充填孔45から巻回部2A,2B内に充填された樹脂は、巻回部2A,2Bと内側コア部31との狭い隙間に十分に行き渡るが、巻回部2A,2Bの外部に漏れることは殆どない。図2に示すように、巻回部2Bの軸方向端面と端面介在部材4A,4Bとが面接触すると共に、巻回部2Bが一体化樹脂20で一体化されているからである。
 ここで、巻回部2A,2Bの説明の際に述べたように、角筒状の巻回部2A,2Bの曲げの角部において各ターンを一体化し、平坦部に微小な隙間が形成されるようにしたコイル2を利用する場合、一方の分割コア32mの外側と他方の分割コア32mの外側の両方から樹脂を充填することができる。その場合、平坦部に形成される微小な隙間から巻回部2A,2Bの外に排気される。樹脂は、その粘度と表面張力によって、平坦部の微小な隙間から巻回部2A,2Bの外側に漏れることは殆どない。
  [硬化工程]
 硬化工程では、熱処理などで樹脂を硬化させる。硬化した樹脂のうち、巻回部2A,2Bの内部にあるものは図2に示すように内側樹脂部5となり、分割コア32mを覆うものは外側樹脂部6となる。
 以上説明したリアクトルの製造方法によれば、図1に示すリアクトル1の組合体10を製造することができる。また、内側樹脂部5と外側樹脂部6とを一体に形成することで、充填工程と硬化工程が1回ずつで済むので、生産性良く組合体10を製造することができる。完成した組合体10は、接合層8を介して載置板9上に固定すれば良い。
<実施形態2>
 実施形態1の組合体10をケースに収納し、ポッティング樹脂でケース内に埋設しても構わない。例えば、実施形態1のリアクトルの製造方法に係る組付工程で作製した第二組物をケース内に収納し、ケース内にポッティング樹脂を充填する。その場合、分割コア32m(外側コア部32)の外周を覆うポッティング樹脂が外側樹脂部6となる。また、樹脂充填孔45(図2,6参照)を介して巻回部2A,2B内に浸入したポッティング樹脂が内側樹脂部5となる。
1 リアクトル
10 組合体
2 コイル 2w 巻線
 2A,2B 巻回部 2R 連結部 2a,2b 端部
 20 一体化樹脂
3 磁性コア
 31 内側コア部 32 外側コア部
 31m,32m 分割コア 31g,32g ギャップ
4 絶縁介在部材
 4A,4B 端面介在部材
  41 ターン収納部 42 貫通孔 43 嵌合部 44 当て止め部
  45 樹脂充填孔
 4C,4D 内側介在部材
  46 筒部 47 ブリッジ部 48 仕切り部 49 収納部
5 内側樹脂部
6 外側樹脂部 60 固定部
7 封止部材
8 接合層
9 載置板

Claims (13)

  1.  巻線を巻回してなる巻回部を有するコイルと、前記巻回部の内部に配置される内側コア部と前記巻回部の外部に配置される外側コア部とで閉磁路を形成する磁性コアと、前記巻回部の軸方向端面と前記外側コア部との間に介在される端面介在部材と、を備えるリアクトルであって、
     前記巻回部の内周面と前記内側コア部の外周面との間に充填される内側樹脂部を備え、
     前記端面介在部材は、前記巻回部の軸方向端部のターンの少なくとも一部を収納するターン収納部を備えるリアクトル。
  2.  前記コイルは、前記内側樹脂部とは別に設けられ、前記巻回部の各ターンを一体化する一体化樹脂を備える請求項1に記載のリアクトル。
  3.  前記端面介在部材は、前記内側樹脂部を構成する樹脂を前記巻回部の内部へ充填する樹脂充填孔を有する請求項1または請求項2に記載のリアクトル。
  4.  前記外側コア部を前記端面介在部材に一体化する外側樹脂部を備え、
     前記外側樹脂部と前記内側樹脂部とは、前記樹脂充填孔を通じて繋がっている請求項3に記載のリアクトル。
  5.  前記端面介在部材は、前記外側コア部を嵌め込む貫通孔を有し、
     前記貫通孔とその貫通孔に嵌め込まれた前記外側コア部との隙間によって前記樹脂充填孔が形成されており、
     前記貫通孔の内部に入り込んだ前記内側樹脂部によって、前記外側コア部と前記内側コア部との間にギャップが形成されている請求項4に記載のリアクトル。
  6.  前記内側コア部は、複数の分割コアと、各分割コアの間に入り込んだ前記内側樹脂部と、で構成される請求項1から請求項5のいずれか1項に記載のリアクトル。
  7.  前記内側コア部は、複数の分割コアを備えており、
     前記巻回部の内周面と前記内側コア部の外周面との間に介在される内側介在部材を備え、
     前記内側介在部材は、各分割コアを離隔させた状態で収納する収納部を備える請求項1から請求項6のいずれか1項に記載のリアクトル。
  8.  前記巻回部の内周面と前記内側コア部の外周面との間に介在される内側介在部材を備え、
     前記内側樹脂部は、前記端面介在部材および前記内側介在部材の少なくとも一方と同じ材料で構成されている請求項1から請求項7のいずれか1項に記載のリアクトル。
  9.  前記巻回部の内周面と前記内側コア部の外周面との間に介在される内側介在部材と、
     前記端面介在部材の近傍における前記巻回部の内周面と前記内側介在部材の外周面との間に介在される封止部材と、を備える請求項1から請求項8のいずれか1項に記載のリアクトル。
  10.  コイルと、前記コイルの内外に配置されて閉磁路を形成する磁性コアと、を備えるリアクトルを製造するリアクトルの製造方法であって、
     前記リアクトルは、請求項1から請求項9のいずれか1項に記載のリアクトルであり、
     前記内側コア部を前記巻回部の内部に配置し、前記巻回部の軸方向端部を前記端面介在部材の前記ターン収納部に収納する組付工程と、
     前記巻回部の内周面と前記内側コア部の外周面との間に樹脂を充填する充填工程と、を備えるリアクトルの製造方法。
  11.  表面に熱融着樹脂を有する巻線を用いて前記コイルを作製し、熱処理によって前記熱融着樹脂を溶融させて前記巻回部の各ターンを一体化させた後、前記充填工程を行う請求項10に記載のリアクトルの製造方法。
  12.  前記端面介在部材は、前記巻回部の内部へ前記樹脂を充填するための樹脂充填孔を有し、
     前記充填工程では、前記樹脂充填孔を介して前記巻回部の内部に前記樹脂を充填する請求項10または請求項11に記載のリアクトルの製造方法。
  13.  前記充填工程では、射出成形によって前記樹脂の充填を行う請求項12に記載のリアクトルの製造方法。
PCT/JP2016/070899 2015-07-24 2016-07-14 リアクトル、およびリアクトルの製造方法 WO2017018237A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/746,080 US10916365B2 (en) 2015-07-24 2016-07-14 Reactor and reactor manufacturing method
CN201680034515.0A CN107683514B (zh) 2015-07-24 2016-07-14 电抗器以及电抗器的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015146551A JP6358565B2 (ja) 2015-07-24 2015-07-24 リアクトル、およびリアクトルの製造方法
JP2015-146551 2015-07-24

Publications (1)

Publication Number Publication Date
WO2017018237A1 true WO2017018237A1 (ja) 2017-02-02

Family

ID=57885553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070899 WO2017018237A1 (ja) 2015-07-24 2016-07-14 リアクトル、およびリアクトルの製造方法

Country Status (4)

Country Link
US (1) US10916365B2 (ja)
JP (1) JP6358565B2 (ja)
CN (1) CN107683514B (ja)
WO (1) WO2017018237A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221128A1 (ja) * 2017-05-29 2018-12-06 株式会社オートネットワーク技術研究所 リアクトル
US20200013542A1 (en) * 2017-03-06 2020-01-09 Autonetworks Technologies, Ltd. Coil molded article and reactor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6683957B2 (ja) * 2017-03-07 2020-04-22 株式会社オートネットワーク技術研究所 リアクトル
JP6628155B2 (ja) 2017-04-18 2020-01-08 株式会社オートネットワーク技術研究所 リアクトル
JP6662347B2 (ja) 2017-04-27 2020-03-11 株式会社オートネットワーク技術研究所 リアクトル
JP6628156B2 (ja) 2017-05-29 2020-01-08 株式会社オートネットワーク技術研究所 リアクトル
JP6937992B2 (ja) * 2017-06-08 2021-09-22 株式会社オートネットワーク技術研究所 リアクトル
JP6747383B2 (ja) * 2017-06-08 2020-08-26 株式会社オートネットワーク技術研究所 リアクトル
JP6796259B2 (ja) 2017-07-18 2020-12-09 株式会社オートネットワーク技術研究所 リアクトル
JP6880456B2 (ja) 2017-10-27 2021-06-02 株式会社オートネットワーク技術研究所 リアクトル
JP6877695B2 (ja) 2017-11-21 2021-05-26 株式会社オートネットワーク技術研究所 リアクトル
JP7015453B2 (ja) * 2018-08-09 2022-02-03 株式会社オートネットワーク技術研究所 リアクトル
JP7104897B2 (ja) * 2018-11-14 2022-07-22 株式会社オートネットワーク技術研究所 リアクトル
JP2020088046A (ja) * 2018-11-19 2020-06-04 株式会社オートネットワーク技術研究所 リアクトル
WO2020111160A1 (ja) * 2018-11-29 2020-06-04 株式会社オートネットワーク技術研究所 リアクトル
JP7202544B2 (ja) * 2019-05-29 2023-01-12 株式会社オートネットワーク技術研究所 リアクトル
JP7331770B2 (ja) * 2020-04-30 2023-08-23 トヨタ自動車株式会社 リアクトルの製造方法及びリアクトル
TW202405832A (zh) * 2022-07-22 2024-02-01 音律電子股份有限公司 磁性組件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138243U (ja) * 1976-04-14 1977-10-20
JP2015122484A (ja) * 2013-11-22 2015-07-02 株式会社タムラ製作所 コイルとその製造方法、及びリアクトル

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098209A (ja) * 2006-10-05 2008-04-24 Tamura Seisakusho Co Ltd コイルの絶縁構造
JP5118065B2 (ja) * 2007-01-30 2013-01-16 株式会社タムラ製作所 静止誘導電器の固定構造及び固定部材
US8125304B2 (en) * 2008-09-30 2012-02-28 Rockwell Automation Technologies, Inc. Power electronic module with an improved choke and methods of making same
WO2011013394A1 (ja) * 2009-07-29 2011-02-03 住友電気工業株式会社 リアクトル
JP5459120B2 (ja) * 2009-07-31 2014-04-02 住友電気工業株式会社 リアクトル、リアクトル用部品、及びコンバータ
JP2012146927A (ja) * 2011-01-14 2012-08-02 Tdk Corp リアクトル
JP5932247B2 (ja) * 2011-06-10 2016-06-08 株式会社タムラ製作所 コイル装置用ボビン
JP5874959B2 (ja) * 2011-10-11 2016-03-02 住友電装株式会社 リアクトルおよびその製造方法
JP5893505B2 (ja) * 2012-05-15 2016-03-23 株式会社タムラ製作所 リアクトル
JP2014003125A (ja) * 2012-06-18 2014-01-09 Toyota Motor Corp リアクトル
JP6041563B2 (ja) * 2012-07-26 2016-12-07 株式会社ケーヒン リアクトル装置
JP5983942B2 (ja) * 2013-01-25 2016-09-06 住友電気工業株式会社 リアクトル、コンバータ、及び電力変換装置
JP2015050298A (ja) * 2013-08-30 2015-03-16 住友電気工業株式会社 リアクトル、コンバータ、及び電力変換装置
JP6343142B2 (ja) * 2013-11-22 2018-06-13 株式会社タムラ製作所 電子部品付きコイル
US9514878B2 (en) * 2013-11-22 2016-12-06 Tamura Corporation Coil and manufacturing method for same, and reactor
JP6457714B2 (ja) * 2013-12-26 2019-01-23 株式会社タムラ製作所 リアクトル及びリアクトルの製造方法
JP6365941B2 (ja) * 2014-11-07 2018-08-01 株式会社オートネットワーク技術研究所 リアクトル
JP6570876B2 (ja) * 2015-05-21 2019-09-04 株式会社タムラ製作所 リアクトル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138243U (ja) * 1976-04-14 1977-10-20
JP2015122484A (ja) * 2013-11-22 2015-07-02 株式会社タムラ製作所 コイルとその製造方法、及びリアクトル

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200013542A1 (en) * 2017-03-06 2020-01-09 Autonetworks Technologies, Ltd. Coil molded article and reactor
US11615913B2 (en) * 2017-03-06 2023-03-28 Autonetworks Technologies, Ltd. Coil molded article and reactor
WO2018221128A1 (ja) * 2017-05-29 2018-12-06 株式会社オートネットワーク技術研究所 リアクトル
JP2018200993A (ja) * 2017-05-29 2018-12-20 株式会社オートネットワーク技術研究所 リアクトル

Also Published As

Publication number Publication date
JP2017028142A (ja) 2017-02-02
CN107683514B (zh) 2020-03-17
CN107683514A (zh) 2018-02-09
JP6358565B2 (ja) 2018-07-18
US10916365B2 (en) 2021-02-09
US20180211758A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6358565B2 (ja) リアクトル、およびリアクトルの製造方法
JP6478065B2 (ja) リアクトル、およびリアクトルの製造方法
JP6570876B2 (ja) リアクトル
JP6621056B2 (ja) リアクトル、およびリアクトルの製造方法
WO2017135319A1 (ja) リアクトル
JP6870975B2 (ja) リアクトル
WO2017213196A1 (ja) リアクトル、およびリアクトルの製造方法
JP7215036B2 (ja) リアクトル
JP6508622B2 (ja) リアクトル、およびリアクトルの製造方法
CN109416976B (zh) 电抗器及电抗器的制造方法
JP2020043355A (ja) リアクトル
JP7072788B2 (ja) リアクトル
JP6512188B2 (ja) リアクトル
JP6379981B2 (ja) リアクトル
WO2016199700A1 (ja) リアクトル、およびリアクトルの製造方法
JP6936372B2 (ja) リアクトルの製造方法
WO2019168152A1 (ja) リアクトル、及びリアクトルの製造方法
JP2019149431A (ja) リアクトル
JP2019096698A (ja) リアクトル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830342

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15746080

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830342

Country of ref document: EP

Kind code of ref document: A1