WO2020111160A1 - リアクトル - Google Patents

リアクトル Download PDF

Info

Publication number
WO2020111160A1
WO2020111160A1 PCT/JP2019/046466 JP2019046466W WO2020111160A1 WO 2020111160 A1 WO2020111160 A1 WO 2020111160A1 JP 2019046466 W JP2019046466 W JP 2019046466W WO 2020111160 A1 WO2020111160 A1 WO 2020111160A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
portions
holding member
resin
core
Prior art date
Application number
PCT/JP2019/046466
Other languages
English (en)
French (fr)
Inventor
誠二 舌間
大石 明典
浩平 吉川
尚稔 古川
和宏 稲葉
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN201980074009.8A priority Critical patent/CN112970080B/zh
Priority to US17/295,651 priority patent/US12009130B2/en
Priority to JP2020557806A priority patent/JP7042400B2/ja
Publication of WO2020111160A1 publication Critical patent/WO2020111160A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the present disclosure relates to reactors.
  • This application claims priority based on Japanese Patent Application No. 2018-224282 of Japanese application dated November 29, 2018, and incorporates all the contents described in the Japanese application.
  • Patent Document 1 discloses a coil having a winding part formed by winding a winding, a magnetic core arranged inside and outside the winding part to form a closed magnetic circuit, and an end face of the winding part and an outer core part.
  • a reactor including an end surface interposing member interposed therebetween is disclosed.
  • the magnetic core has an inner core portion arranged inside the winding portion and an outer core portion arranged outside the winding portion.
  • the reactor described in Patent Document 1 is an inner resin portion filled between the inner peripheral surface of the winding portion and the outer peripheral surface of the inner core portion, and an outer resin portion that integrates the outer core portion into the end face interposing member. And a section.
  • the end face interposing member has a resin filling hole for filling the resin forming the inner side resin portion into the winding portion.
  • the outer resin portion and the inner resin portion are connected to each other through a resin filling hole.
  • Patent Document 2 discloses a coil that is configured by winding a series of windings and that has a pair of winding portions arranged in parallel. Both winding parts are connected via a connecting part formed by folding back a part of the winding.
  • the connecting portion is formed by folding a winding in a hairpin shape on one end side of both winding portions, and connects the end portions of both winding portions.
  • the reactor of the present disclosure is A coil having a pair of winding portions arranged in parallel via a connecting portion, A magnetic core having an inner core portion arranged inside each of the winding portions, and a pair of outer core portions arranged outside of the winding portions, A pair of holding members arranged so as to face each end surface of the both winding portions, A mold resin portion which covers at least a part of the outer peripheral surface of each outer core portion and is filled between the inner peripheral surface of each winding portion and each inner core portion,
  • the coil is composed of one continuous winding
  • the connecting portion is formed by folding back a part of the winding,
  • One of the holding members on the side where the connecting portion is arranged has a concave portion for accommodating the connecting portion and an inner protrusion arranged inside the connecting portion.
  • FIG. 1 is a schematic top view of the reactor of the first embodiment.
  • FIG. 2 is a schematic sectional view taken along line (II)-(II) shown in FIG.
  • FIG. 3 is a schematic exploded view of a combined body forming the reactor of the first embodiment.
  • FIG. 4 is a schematic top view of the first holding member.
  • FIG. 5 is a schematic sectional view taken along line (V)-(V) shown in FIG.
  • FIG. 6 is a schematic view of the first holding member as seen from the side facing the end surface of the winding portion.
  • FIG. 7 is a schematic view of the second holding member as seen from the side facing the end surface of the winding portion.
  • FIG. 1 is a schematic top view of the reactor of the first embodiment.
  • FIG. 2 is a schematic sectional view taken along line (II)-(II) shown in FIG.
  • FIG. 3 is a schematic exploded view of a combined body forming the reactor of the first embodiment.
  • FIG. 4 is
  • FIG. 8 is a figure explaining the method of arrange
  • FIG. 9 is a figure explaining the state which has arrange
  • the outer peripheral surface of the outer core portion is covered with resin, and the winding portion and the inner core portion are formed from the end surface side of the winding portion through a resin filling hole formed in a holding member such as an end face interposing member.
  • the gap is filled with resin.
  • the molded resin portion such as the outer side resin portion and the inner side resin portion is integrally molded.
  • a coil having a pair of winding portions which is composed of one continuous winding and is arranged in parallel via a connecting portion, is provided in a reactor including the above-described mold resin portion. It is considered to be applied.
  • the coil which is composed of one continuous winding, has a connecting portion formed by folding back the winding.
  • the connecting portion projects from the end faces of the winding portions in the axial direction of the winding portions on one end side of the winding portions.
  • a space is formed between the connecting portion and the end surface of the winding portion, in other words, inside the connecting portion.
  • this space may be referred to as an “inner space of the connecting portion”.
  • the reactor including the above-described mold resin portion for example, a combination of a coil, a magnetic core, and a holding member is placed in a mold, and resin is injected into the mold to perform resin molding. Is mentioned. As a result, the outer core portion is covered with the resin, and the resin is filled between the winding portion and the inner core portion through the resin filling hole of the holding member to form the molded resin portion.
  • injection of resin into the mold is performed by applying pressure to the resin by injection molding, but in order to sufficiently spread the resin in the narrow gap between the winding part and the inner core part, high pressure is applied. Need to call. Therefore, when the molded resin portion is molded, the holding member tends to deform so as to bulge outward due to the pressure of the resin. In particular, if the wall thickness of one of the holding members on the side where the connecting portion of the coil is arranged is partially thin so as not to interfere with the connecting portion, the strength of that portion is reduced. Therefore, the thin-walled portion of the holding member is easily deformed when the molding resin portion is molded, and may be damaged in some cases. When the holding member is greatly deformed or damaged, resin leakage occurs between the holding member and the end surface of the winding portion.
  • an object of the present disclosure is to provide a reactor capable of suppressing resin leakage due to deformation of a holding member when molding a molded resin portion.
  • the reactor of the present disclosure can suppress resin leakage due to deformation of the holding member when molding the molded resin portion.
  • the present inventors have studied to provide one holding member on the side where the connecting portion is arranged with a recess that forms a space for housing the connecting portion so that the connecting portion of the coil does not interfere with the holding member.
  • the portion where the recess is formed is likely to be deformed during the molding of the mold resin portion.
  • the size of the projection relative to the inner space of the connecting portion is ensured so that the projection surely enters the inner space of the connecting portion when the combination is arranged in the mold.
  • the present inventors propose to integrally provide an inner protrusion, which is arranged in an inner space of the connecting portion, in a concave portion in which the connecting portion is accommodated in one holding member on the side where the connecting portion of the coil is arranged. To do.
  • the inner protrusion it is possible to reduce a region where the thickness of the portion of the holding member where the recess is formed is thin. Therefore, the strength of the portion of the holding member in which the concave portion is formed can be increased. Therefore, it is possible to suppress the deformation of the portion of the holding member where the concave portion is formed when molding the mold resin portion, and it is possible to suppress the resin leakage due to the deformation of the holding member.
  • the reactor according to the embodiment of the present disclosure is A coil having a pair of winding portions arranged in parallel via a connecting portion, A magnetic core having an inner core portion arranged inside each of the winding portions, and a pair of outer core portions arranged outside of the winding portions, A pair of holding members arranged so as to face each end surface of the both winding portions, A mold resin portion which covers at least a part of the outer peripheral surface of each outer core portion and is filled between the inner peripheral surface of each winding portion and each inner core portion,
  • the coil is composed of one continuous winding
  • the connecting portion is formed by folding back a part of the winding,
  • One of the holding members on the side where the connecting portion is arranged has a concave portion for accommodating the connecting portion and an inner protrusion arranged inside the connecting portion.
  • the one holding member on the side where the coil connecting portion is arranged has the inner protrusion inside the recess that accommodates the connecting portion. It is possible to reduce an area where the thickness of the portion where the concave portion is formed by the inner protrusion is thin. Therefore, the strength of the portion of the holding member in which the concave portion is formed can be increased. Therefore, it is possible to suppress the deformation of the portion of the holding member where the concave portion is formed when molding the mold resin portion.
  • the reactor of the present disclosure can suppress resin leakage due to deformation of the holding member when molding the molded resin portion.
  • the inner protrusion can have a size and shape corresponding to the inner space of the connecting portion. Therefore, it is easy to secure the strength of the portion where the concave portion is formed.
  • the combination of the coil, the magnetic core, and the holding member is arranged in the mold. In that case, it is difficult to prevent the positions of the connecting portions from varying in the combination of a plurality of members. Therefore, there is no choice but to make the projection smaller than the inner space of the connecting portion.
  • the inner protrusion is provided on the holding member, it is only necessary to fit the inner protrusion into the inner space of the connecting portion. Therefore, it is not necessary to change the size of the inner protrusion, and it is easy to secure the size of the inner protrusion with respect to the inner space of the connecting portion.
  • the ratio of the area of the inner protrusion to the area of the recess is 50% or more when the surface of the one holding member on the recess side is viewed in a plan view.
  • the ratio of the area of the inner protrusion to the area of the recess is 50% or more, so that the strength of the portion of the holding member where the recess is formed can be further increased. Therefore, it is possible to further suppress the deformation of the portion of the holding member where the concave portion is formed during molding of the mold resin portion.
  • the end surface of the inner protrusion is flush with the surface of the remaining portion excluding the recess.
  • the end surface of the inner protrusion and the surface of the remaining portion of the holding member excluding the concave portion are flush with each other, so that the upper surface of the holding member excluding the concave portion during molding of the mold resin portion is the inner surface of the mold. Can be in surface contact with. Thereby, the deformation of the holding member can be effectively suppressed.
  • the holding member is formed with a pair of through holes into which the respective end portions of the inner core portions are inserted.
  • An inner interposition portion protruding from the peripheral portion of the through hole toward the inner side of the winding portion, The inner interposition part may be inserted between the winding part and the inner core part.
  • the inner core portions can be positioned by inserting the respective end portions of the inner core portions into the through holes of the holding member. Further, by inserting the inner interposition part of the holding member between the winding part and the inner core part, the winding part and the inner core part can be held at a distance and the winding part can be positioned.
  • the inner interposition part may be provided only on the side where the recess is provided in the peripheral part of the through hole.
  • the inner protrusion interferes with the connecting portion and the connecting portion is formed in the recess even if the inner protrusion is arranged with respect to the end face of the winding portion in the axial direction of the winding portion. Cannot be placed.
  • the inner protrusion is located below the inner space of the connecting part. In this way, the inner protrusion is inserted from the lower side of the inner space of the connecting portion. Then, the holding member is slid and arranged relatively upward along the end face of the winding portion.
  • the holding member when the holding member has the inner interposition part, the holding member is slid along the end face of the winding part with the inner interposition part inserted in the winding part. If the inner interposition part is provided around the entire periphery of the through hole, the inner interposition part interferes with the winding part when the inner projection is positioned below the inner space of the connection part, and the inner interposition part is located. Cannot be inserted into the winding part.
  • the inner interposition part is provided only on the side where the recess is provided, that is, on the upper side in the above example. It is possible to slide the holding member along the end face. Thereby, one holding member can be arranged on the end surface of the winding portion.
  • the reactor 1A of the first embodiment will be described with reference to FIGS. 1 to 9.
  • the reactor 1A is viewed from the side, and the side where the connecting portion 23 is provided with respect to the central axes of the two winding portions 21 and 22 of the coil 2 is the upper side, The opposite side is the lower side.
  • This vertical direction is the height direction, that is, the vertical direction.
  • the front side of the paper is the upper side and the back side of the paper is the lower side.
  • the upper side of the paper is the upper side and the lower side of the paper is the lower side.
  • the central axis line is indicated by an alternate long and short dash line.
  • the direction along the axial direction of both winding parts 21 and 22 of the coil 2 that is, the left-right direction on the paper surface of FIGS. 1 and 2 is defined as the length direction.
  • the parallel direction of both winding parts 21 and 22 of the coil 2, that is, the vertical direction of the paper surface of FIG. FIG. 2 is a vertical cross-sectional view of the reactor 1 ⁇ /b>A cut in the vertical direction along the axial direction of the winding part 21.
  • the reactor 1A has a combined body 10 shown in FIG. 3 that includes a coil 2, a magnetic core 3, and holding members 41 and 42.
  • the coil 2 has a pair of winding portions 21 and 22 and a connecting portion 23.
  • the magnetic core 3 has inner core portions 31 and 32 arranged inside the winding portions 21 and 22, and an outer core portion 33 arranged outside the winding portions 21 and 22.
  • the holding members 41 and 42 are arranged so as to face the respective end surfaces of the winding portions 21 and 22.
  • the reactor 1A includes a mold resin portion 8 as shown in FIGS.
  • the mold resin portion 8 covers at least a part of the outer peripheral surface of each outer core portion 33 and is filled between the inner peripheral surface of each winding portion 21, 22 and each inner core portion 31, 32.
  • first holding member the side on which the connecting portion 23 of the coil 2 is arranged, that is, the one holding member 41 on the right side in FIGS. 1 and 2 is referred to as a “first holding member”.
  • the other holding member 42 may be referred to as a "second holding member”.
  • One of the features of the reactor 1A is that, as shown in FIGS. 3 and 4, the first holding member 41 has a recess 46 in which the connecting portion 23 is housed and an inner protrusion that is arranged inside the connecting portion 23. 47 and 47.
  • the configuration of the reactor 1A will be described in detail.
  • the coil 2 has a pair of winding portions 21 and 22, and a connecting portion 23 on one end side of both winding portions 21 and 22.
  • the connecting portion 23 is provided on the right side of both the winding portions 21 and 22.
  • the coil 2 is composed of one continuous winding.
  • the connecting portion 23 is formed by folding back a part of the winding.
  • both winding parts 21 and 22 are configured by spirally winding one continuous winding, and are arranged in parallel so that their axes are parallel to each other. Both winding parts 21 and 22 are connected via a connecting part 23 formed by folding back a part of the winding.
  • the connecting portion 23 of the present example is formed by folding the winding in a J-shape on one end side of each of the winding portions 21 and 22.
  • the connecting portion 23 projects in the axial direction from the end faces of the winding portions 21 and 22.
  • a teardrop-shaped space is formed between the connecting portion 23 and the end faces of the winding portions 21 and 22, that is, inside the connecting portion 23.
  • a terminal fitting (not shown) is attached to the tip thereof.
  • An external device (not shown) such as a power supply is connected to the terminal fitting. 1 and 3, the winding ends are omitted.
  • the winding may be a coated wire having a conductor wire and an insulating coating.
  • the constituent material of the conductor wire include copper.
  • the constituent material of the insulating coating include resins such as polyamide-imide.
  • the covered wire include a covered rectangular wire having a rectangular cross section and a covered round wire having a circular cross section.
  • Both winding parts 21 and 22 are composed of windings having the same specifications, and have the same shape, size, winding direction, and number of turns.
  • the winding portions 21 and 22 are square tube-shaped edgewise coils obtained by edgewise winding a coated rectangular wire.
  • the winding parts 21 and 22 have a rectangular tubular shape.
  • the shape of the winding portions 21 and 22 is not particularly limited, and may be, for example, a cylindrical shape, an elliptic cylindrical shape, an oblong cylindrical shape, or the like.
  • the specifications of the windings forming the winding portions 21 and 22 and the shapes and sizes of the winding portions 21 and 22 may be different.
  • the end faces of the winding parts 21 and 22 as viewed from the axial direction are rectangular annular. That is, the outer peripheral surfaces of the winding portions 21 and 22 have four flat surfaces and four corner portions. The corners of the winding parts 21 and 22 are rounded.
  • the magnetic core 3 has inner core portions 31 and 32 and a pair of outer core portions 33.
  • the inner core portions 31 and 32 are arranged inside the winding portions 21 and 22, respectively.
  • the outer core portion 33 is arranged outside the winding portions 21 and 22.
  • the inner core portions 31 and 32 may have axial end portions protruding from the winding portions 21 and 22.
  • the outer core portion 33 connects the respective end portions of the inner core portions 31 and 32 to each other.
  • the outer core portions 33 are arranged so as to sandwich the inner core portions 31 and 32 from both ends.
  • the magnetic core 3 shown in FIG. 1 is formed in an annular shape by connecting the respective end surfaces of the inner core portions 31 and 32 and the inner end surface 33e of the outer core portion 33 to each other. A magnetic flux flows through the magnetic core 3 when the coil 2 is excited to form a closed magnetic circuit.
  • the shapes of the inner core portions 31 and 32 are substantially corresponding to the inner peripheral shapes of the winding portions 21 and 22. There is a gap between the inner peripheral surfaces of the winding portions 21 and 22 and the outer peripheral surfaces of the inner core portions 31 and 32. As shown in FIG. 2, this gap is filled with a mold resin portion 8 described later.
  • the shape of the inner core portions 31 and 32 is a quadrangular prism shape, specifically, a rectangular pillar shape.
  • the end surface shape of the inner core portions 31 and 32 as viewed in the axial direction is rectangular.
  • the corner portions of the inner core portions 31 and 32 are rounded along the corner portions of the winding portions 21 and 22.
  • the inner core portions 31 and 32 have the same shape and size.
  • both ends of the inner core portions 31 and 32 project from both end faces of the winding portions 21 and 22. Ends protruding from the winding portions 21 and 22 are also included in the inner core portions 31 and 32. Both ends of the inner core portions 31 and 32 protruding from the winding portions 21 and 22 are inserted into through holes 43 of holding members 41 and 42 described later, as shown in FIG.
  • each of the inner core portions 31 and 32 is composed of one columnar core piece.
  • Each core piece constituting the inner core portions 31 and 32 has a length substantially equal to the entire length of the winding portions 21 and 22 in the axial direction. That is, no gap material is provided on the inner core portions 31 and 32.
  • the inner core portions 31 and 32 may be composed of a plurality of core pieces and a gap material interposed between adjacent core pieces.
  • the shape of the outer core portion 33 is not particularly limited as long as it is a shape that connects the ends of the inner core portions 31 and 32 to each other. As shown in FIG. 3, the outer core portion 33 has an inner end surface 33e facing the respective end surfaces of the inner core portions 31 and 32. In this example, the outer core portion 33 has a rectangular parallelepiped shape. Both outer core portions 33 have the same shape and size. Each outer core portion 33 is composed of one columnar core piece.
  • the inner core portions 31 and 32 and the outer core portion 33 are formed of a molded body containing a soft magnetic material.
  • soft magnetic materials include metals such as iron and iron alloys and non-metals such as ferrite.
  • the iron alloy is, for example, an Fe-Si alloy or an Fe-Ni alloy.
  • the molded body containing the soft magnetic material include powder composed of the soft magnetic material, that is, a compacted body formed by compression molding the soft magnetic powder, and a composite material formed by dispersing the soft magnetic powder in a resin.
  • the composite material is obtained by filling a mold with a raw material obtained by mixing and dispersing soft magnetic powder in an unsolidified resin and curing the resin.
  • the compacted body has a higher proportion of the soft magnetic powder in the core piece than in the composite material. By adjusting the content of the soft magnetic powder in the resin, the composite material can easily control the magnetic characteristics such as relative permeability and saturation magnetic flux density.
  • Soft magnetic powder is an aggregate of soft magnetic particles.
  • the soft magnetic particles may be coated particles having an insulating coating on the surface thereof.
  • the constituent material of the insulating coating include phosphate.
  • the resin of the composite material is, for example, thermosetting resin such as epoxy resin, phenol resin, silicone resin, urethane resin, polyphenylene sulfide (PPS) resin, polyamide (PA) resin, liquid crystal polymer (LCP), polyimide (PI).
  • the resin include thermoplastic resins such as resins and fluororesins.
  • Examples of the PA resin include nylon 6, nylon 66, nylon 9T and the like.
  • the resin of the composite material may contain a filler. The heat dissipation of the composite material can be improved by containing the filler.
  • oxides such as alumina, silica and magnesium oxide, nitrides such as silicon nitride, aluminum nitride and boron nitride, and ceramics such as carbides such as silicon carbide and non-magnetic powders such as carbon nanotubes can be used.
  • the constituent material of the inner core portions 31 and 32 and the constituent material of the outer core portion 33 may be the same or different.
  • the inner core portions 31 and 32 and the outer core portion 33 may be made of a composite material, and the materials and the contents of the soft magnetic powders may be different.
  • the inner core portions 31 and 32 are made of a composite material.
  • the outer core portion 33 is composed of a powder compact.
  • the magnetic core 3 of the present example does not have a gap material, but it is not limited to this and may have a configuration having a gap material interposed between a plurality of core pieces.
  • the holding members 41 and 42 are members that are arranged so as to face the respective end surfaces of the winding portions 21 and 22.
  • the holding members 41 and 42 of this example ensure electrical insulation between the coil 2 having the winding portions 21 and 22 and the magnetic core 3 having the inner core portions 31 and 32 and the outer core portion 33. Further, the holding members 41 and 42 hold the positioning state of the coil 2 and the magnetic core 3.
  • the two holding members 41, 42 have the same basic configuration, but the first holding member 41 differs from the second holding member 42 in that it has a recess 46 and an inner protrusion 47.
  • the holding members 41 and 42 of this example will be described with reference to FIGS. 4 to 7. First, a common basic configuration of the holding members 41 and 42 will be described. Next, the recess 46 and the inner protrusion 47 provided on the one holding member 41 will be described.
  • the holding members 41 and 42 have a rectangular frame shape.
  • the outer peripheral surface of each holding member 41, 42 is substantially flat.
  • the right side of the drawing is the upper side of the holding member 41.
  • the left side of the drawing is the upper side of the holding member 42.
  • Each holding member 41, 42 ensures electrical insulation between the winding parts 21, 22 and the outer core part 33.
  • the holding members 41 and 42 are interposed between the end surfaces of the winding portions 21 and 22 and the inner end surface 33e of the outer core portion 33.
  • a pair of through holes 43 is formed in each of the holding members 41 and 42.
  • the respective end portions of both inner core portions 31 and 32 are inserted into the respective through holes 43.
  • the shape of the through hole 43 is substantially corresponding to the outer peripheral shape of the end portions of the inner core portions 31 and 32.
  • the inner core portions 31 and 32 are held by inserting the respective end portions of the inner core portions 31 and 32 into the through holes 43. Further, as shown in FIGS.
  • the through hole 43 has the outer peripheral surfaces of the inner core portions 31 and 32 and the inner peripheral surface of the through hole 43 when the end portions of the inner core portions 31 and 32 are inserted. Is provided so that a gap 43c is partially formed therebetween. The gap 43c communicates with the gap between the inner peripheral surfaces of the winding portions 21 and 22 and the outer peripheral surfaces of the inner core portions 31 and 32.
  • Each holding member 41, 42 is formed so as to surround at least a part of the outer peripheral surface of each outer core portion 33, and has a fitting portion 44 inside thereof. As shown in FIG. 3, the fitting portion 44 is fitted on the inner end surface 33e side of the outer core portion 33. In this example, the fitting portion 44 is provided such that a gap is partially formed between the outer peripheral surface of the outer core portion 33 and the inner peripheral surface of the fitting portion 44 when the outer core portion 33 is fitted. Has been. As shown in FIG. 1, the gap is filled with a mold resin portion 8 described later, and the holding members 41 and 42 and the outer core portions 33 are integrated by the mold resin portion 8.
  • the gap between the outer core portion 33 and the fitting portion 44 and the gap 43c between the inner core portions 31 and 32 and the through hole 43 shown in FIGS. 6 and 7 described above. Is configured to communicate with.
  • these gaps it is possible to introduce the resin forming the mold resin portion 8 between the winding portions 21 and 22 and the inner core portions 31 and 32 when molding the mold resin portion 8 described later.
  • these gaps function as resin filling holes for filling the resin forming the mold resin portion 8 into the winding portions 21 and 22.
  • each holding member 41, 42 has an inner interposition part 48 protruding from the peripheral edge of the through hole 43 toward the inside of the winding parts 21, 22.
  • the inner interposition part 48 is inserted between the winding parts 21 and 22 and the inner core parts 31 and 32.
  • the inner interposition portion 48 holds the winding portions 21 and 22 and the inner core portions 31 and 32 with a space therebetween, and thus the winding portions 21 and 22 and the inner core portion 31. , 32 to ensure electrical insulation.
  • the first holding member 41 and the second holding member 42 have different formation ranges of the inner interposition part 48.
  • the inner interposition part 48 is provided only on the side where the recess 46 is provided.
  • the inner interposition portion 48 is provided only on the upper side of the peripheral portion of the through hole 43.
  • the inner interposition part 48 of the first holding member 41 covers the upper surface and a part of the upper side surface of the inner core parts 31 and 32.
  • the inner interposition portion 48 is provided over the entire circumference of the peripheral edge portion of the through hole 43.
  • the inner interposition portion 48 has a rectangular frame shape as shown in FIG. 7.
  • the inner interposition part 48 of the second holding member 42 covers the entire circumference of the outer peripheral surface at the ends of the inner core parts 31, 32.
  • the inner core portions 31 and 32 are positioned by inserting the respective end portions of the inner core portions 31 and 32 into the respective through holes 43 of the holding members 41 and 42. Further, as shown in FIG. 3, the outer core portion 33 is positioned by fitting the inner end surface 33e side of the outer core portion 33 into the fitting portion 44 of the holding members 41 and 42. Further, the winding portions 21 and 22 are positioned by the inner interposition portion 48. As a result, the holding members 41 and 42 hold the coil 2 having the winding portions 21 and 22 and the magnetic core 3 having the inner core portions 31 and 32 and the outer core portion 33 in a positioned state.
  • the holding members 41 and 42 are made of an electrically insulating material.
  • a resin is typically used as the electrically insulating material.
  • thermosetting resins such as epoxy resin, phenol resin, silicone resin, urethane resin, unsaturated polyester resin, PPS resin, PA resin, LCP, PI resin, fluororesin, polytetrafluoroethylene (PTFE)
  • the resin include thermoplastic resins such as resins, polybutylene terephthalate (PBT) resins, and acrylonitrile-butadiene-styrene (ABS) resins.
  • the resin forming the holding members 41, 42 may contain a filler.
  • the heat dissipation of the holding members 41 and 42 can be improved.
  • the filler the same fillers as those used for the composite material described above can be used.
  • the holding members 41 and 42 of this example are molded products formed by injection molding and are made of PPS resin.
  • a recess 46 for accommodating the connecting portion 23 is formed in the upper portion of the first holding member 41 in which the connecting portion 23 is arranged.
  • the bottom surface of the recess 46 is a flat surface.
  • the inner peripheral surface of the recess 46 facing the connecting portion 23 is formed along the outer contour of the connecting portion 23. That is, when the holding member 41 is viewed from the upper side, the shape of the recess 46 is a shape substantially corresponding to the external shape of the connecting portion 23. As shown in FIGS.
  • the thickness of the portion of the holding member 41 where the concave portion 46 is formed in other words, the distance between the inner peripheral surface of the through hole 43 and the bottom surface of the concave portion 46 is the portion other than the concave portion 46. Is thin compared to the distance between the inner peripheral surface of the through hole 43 and the upper surface of the holding member 41.
  • an inner protrusion disposed between the connecting portion 23 and the end faces of the winding portions 21 and 22, that is, inside the connecting portion 23. 47 is provided in the recess 46 of the first holding member 41. That is, the inner protrusion 47 is fitted into the inner space of the connecting portion 23.
  • the inner protrusion 47 projects from the bottom surface of the recess 46, as shown in FIG.
  • the inner protrusion 47 is formed integrally with the holding member 41.
  • the end surface of the inner protrusion 47 is a flat surface. In this example, as shown in FIG.
  • the shape of the inner protrusion 47 is a teardrop shape that substantially corresponds to the shape of the inner space of the connecting portion 23.
  • the thickness of the portion of the holding member 41 where the inner protrusion 47 is formed in other words, the distance between the inner peripheral surface of the through hole 43 and the end face of the inner protrusion 47 is determined by the recess 46. It is thicker than the thickness of the formed portion.
  • the ratio of the area of the inner protrusion 47 to the area of the concave portion 46 is 50% or more.
  • area ratio of the inner protrusions the area of the concave portion 46 refers to a region surrounded by the inner peripheral surface of the concave portion 46 and the end surfaces of the winding portions 21 and 22 in a state where the holding member 41 is arranged on the end surfaces of the winding portions 21 and 22. The area. This area is indicated by the hatched portion in FIG.
  • the area of the recess 46 includes the area of the inner protrusion 47.
  • the area of the inner protrusion 47 refers to the area of the end face of the inner protrusion 47 when the upper surface of the holding member 41 is viewed in a plan view.
  • the area ratio of the inner protrusions 47 is preferably 55% or more, more preferably 60% or more of the area of the recesses 46.
  • the upper limit of the area ratio of the inner protrusions 47 is not particularly limited, but is, for example, 80% or less.
  • the height of the inner protrusion 47 is, for example, not less than the height of the connecting portion 23, that is, the width of the winding wire forming the winding portions 21 and 22 of the coil 2.
  • the height of the inner protrusion 47 refers to the distance from the bottom surface of the recess 46 to the end surface of the inner protrusion 47.
  • the height of the connecting portion 23 refers to the dimension of the winding portions 21 and 22 in the direction orthogonal to both the parallel direction and the axial direction.
  • the height of the connecting portion 23 is equal to the distance between the inner peripheral surface and the outer peripheral surface of the winding portions 21 and 22. In this example, as shown in FIG.
  • the height of the inner protrusion 47 is substantially equal to the height of the connecting portion 23, and the inner protrusion 47 is slightly higher than the connecting portion 23.
  • the inner protrusion 47 has a uniform cross section in the protruding direction, that is, the height direction.
  • the end surface of the inner protrusion 47 that constitutes the upper surface of the holding member 41 and the surface of the remaining portion excluding the recess 46 are substantially flush with each other. Therefore, the upper surface of the holding member 41 provided with the recess 46 is substantially flat except the recess 46.
  • the mold resin portion 8 covers at least a part of the outer peripheral surface of the outer core portion 33, and the inner peripheral surfaces of the winding portions 21 and 22 and the outer peripheral surfaces of the inner core portions 31 and 32. Filled between the faces.
  • the molding resin portion 8 integrally holds the inner core portions 31 and 32 and the outer core portion 33, and includes the coil 2 having the winding portions 21 and 22, the inner core portions 31 and 32, and the outer core portion 33.
  • the magnetic core 3 is integrated. Therefore, the coil 2 and the magnetic core 3 can be handled as one body. Further, the mold resin portion 8 integrates each outer core portion 33 and each holding member 41, 42.
  • the coil 2, the magnetic core 3, and the holding members 41 and 42 are integrated by the mold resin portion 8, and the combined body 10 shown in FIG. 3 can be handled as an integrated body.
  • the outer peripheral surfaces of the wound portions 21 and 22 are not covered with the mold resin portion 8 and are exposed from the mold resin portion 8.
  • the mold resin part 8 only needs to be able to integrally hold the inner core parts 31, 32 and the outer core part 33. Therefore, the mold resin portion 8 may be formed so as to cover at least the outer peripheral surfaces of the inner core portions 31 and 32. That is, the mold resin portion 8 does not have to extend to the central portion in the axial direction of the inner core portions 31 and 32. Considering the function of the mold resin portion 8 that integrally holds the inner core portions 31 and 32 and the outer core portion 33, the forming range of the mold resin portion 8 is sufficiently close to the end portions of the inner core portions 31 and 32. Is. Of course, the mold resin portion 8 may extend to the central portion in the axial direction of the inner core portions 31 and 32.
  • the mold resin portion 8 covers the outer peripheral surfaces of the inner core portions 31 and 32 over the entire length and is formed from one outer core portion 33 to the other outer core portion 33.
  • the mold resin portion 8 has inner circumferential surfaces of the winding portions 21 and 22 and outer circumferential surfaces of the inner core portions 31 and 32 along the axial direction of the winding portions 21 and 22. Are filled over the entire length of the gap between.
  • the mold resin portion 8 of this example is molded by injection molding.
  • the resin forming the mold resin portion 8 may be the same as the resin forming the holding members 41 and 42 described above.
  • the mold resin part 8 may contain the above-mentioned filler.
  • the mold resin portion 8 is made of PPS resin.
  • the reactor manufacturing method roughly includes a step of producing a combined body and a step of molding a mold resin portion.
  • the combined body 10 in which the coil 2, the magnetic core 3, and the holding members 41 and 42 are combined is produced.
  • Assembly of the combined body 10 is performed as follows.
  • the holding members 41 and 42 are arranged so as to face the respective end faces of the winding portions 21 and 22 of the coil 2.
  • the first holding member 41 on the side where the connecting portion 23 of the coil 2 is arranged as shown in FIG. 8, the lower side of the inner space of the connecting portion 23 with respect to one end surface of the winding portions 21 and 22.
  • the holding member 41 is arranged so that the inner protrusion 47 is located at the inner side of the winding portion 21, and the inner interposition portion 48 is inserted into the winding portions 21 and 22. It should be noted that FIG.
  • FIG. 8 shows a state in which the winding portion 21 of the both winding portions 21 and 22 is cut in the longitudinal direction along the axial direction, and the winding portion 22 is not shown.
  • the holding member 41 is relatively slid upward along the end faces of the winding portions 21 and 22 so that the inner protrusion 47 is inserted from the lower side of the inner space of the connecting portion 23.
  • the outline arrow direction indicates the sliding direction of the holding member 41.
  • the connecting portion 23 is housed in the recess 46 of the holding member 41, and the inner protrusion 47 is fitted into the inner space of the connecting portion 23, so that one of the winding portions 21, 22 is
  • the first holding member 41 is disposed on the end surface of the.
  • the outer core portion 33 is fitted into the fitting portion 44 of the holding member 41.
  • the inner core portions 31 and 32 are inserted into the winding portions 21 and 22 from the other ends of the winding portions 21 and 22, respectively.
  • the second holding member 42 is arranged in the axial direction of the winding portions 21 and 22 with respect to the other end surface of the winding portions 21 and 22, and the outer core portion 33 is fitted into the fitting portion 44 of the holding member 42. ..
  • the ends of the inner core portions 31 and 32 are inserted into the through holes 43 of the holding members 41 and 42, and the outer core portions 33 are arranged at both ends of the inner core portions 31 and 32, respectively.
  • the end surfaces of the inner core portions 31 and 32 are connected to the inner end surfaces 33e of the outer core portions 33, and as shown in FIG. 1, the inner core portions 31 and 32 and the outer core portion 33 form an annular shape.
  • the magnetic core 3 of FIG. As described above, the combined body 10 including the coil 2, the magnetic core 3, and the holding members 41 and 42 is assembled. The coil 2 and the magnetic core 3 are held in a positioned state by the holding members 41 and 42.
  • the mold resin portion In the step of molding the mold resin portion, at least a part of the outer peripheral surface of the outer core portion 33 is covered with the resin, and the resin is provided between the inner peripheral surfaces of the winding portions 21 and 22 and the inner core portions 31 and 32. Fill. As a result, the mold resin portion 8 is molded as shown in FIG.
  • the combination 10 is placed in the mold, and the resin is injected into the mold from the outer core portion 33 side of the combination 10.
  • the resin is injected from the side of the outer core portion 33 opposite to the side where the inner core portions 31 and 32 are arranged, and the outer peripheral surface of the outer core portion 33 is covered with the resin.
  • a part of the resin is the above-mentioned resin filling hole formed in the holding members 41 and 42 described with reference to FIGS. 6 and 7, that is, the gap between the outer core portion 33 and the fitting portion 44.
  • the gap 43c between the inner core portions 31 and 32 and the through hole 43 is filled between the winding portions 21 and 22 and the inner core portions 31 and 32.
  • the mold resin portion 8 is integrally molded by solidifying the resin.
  • the coil 2, the magnetic core 3, and the holding members 41 and 42 can be integrated by the mold resin portion 8.
  • the reactor 1A shown in FIGS. 1 and 2 can be manufactured.
  • the resin may be filled in the winding portions 21 and 22 from one outer core portion 33 side toward the other outer core portion 33 side, or may be wound from both outer core portion 33 sides. Resin may be filled in the parts 21 and 22.
  • each outer core portion 33 is covered with resin by bidirectional filling that injects resin from both outer core portion 33 sides, and the inner peripheral surfaces of the winding portions 21 and 22 and the outer peripheral portions of the inner core portions 31 and 32 are also covered. Fill the gap between the surfaces with resin.
  • an inner protrusion 47 is integrally provided in an upper portion of the first holding member 41 in a recess 46 in which the connecting portion 23 is accommodated. Since the inner protrusion 47 is present in the recess 46, it is possible to reduce the region of the holding member 41 where the recess 46 reduces the thickness. Therefore, the strength of the portion of the holding member 41 where the recess 46 is formed can be increased. Therefore, when the molded resin portion 8 is molded, it is possible to suppress the deformation of the portion of the holding member 41 in which the recess 46 is formed, and it is possible to suppress the resin leakage due to the deformation of the holding member 41.
  • the area ratio of the inner protrusion 47 is 50% or more, the strength of the portion of the holding member 41 where the recess 46 is formed can be further increased. Therefore, it is possible to further suppress the deformation of the portion of the holding member 41 in which the recess 46 is formed during the molding of the mold resin portion 8.
  • the end surface of the inner protrusion 47 and the surface of the remaining portion of the holding member 41 excluding the concave portion 46 are flush, and the concave portion 46 of the holding member 41 is The upper surface except is flat. Therefore, the upper surface of the holding member 41 can be brought into surface contact with the inner surface of the mold when the molding resin portion 8 is molded. Thereby, the deformation of the holding member 41 can be effectively suppressed.
  • the inner interposition part 48 of the holding member 41 is provided only on the upper side of the peripheral part of the through hole 43. Therefore, as described with reference to FIG. 8, while the inner protrusion 47 is positioned below the connecting portion 23 and the inner interposition portion 48 is inserted into the winding portions 21 and 22, the winding portion 21. , 22 can be slid along the end faces of Accordingly, the holding member 41 can be arranged on the end faces of the winding portions 21 and 22.
  • the reactor 1A of the first embodiment has the following operational effects.
  • the one holding member 41 on the side where the connecting portion 23 of the coil 2 is arranged has an inner protrusion 47 inside a recess 46 in which the connecting portion 23 is accommodated. Since the inner protrusion 47 can reduce the region of the holding member 41 where the recess 46 is formed and which has a small thickness, the strength of the portion of the holding member 41 where the recess 46 is formed can be increased. Therefore, when the molded resin portion 8 is molded, it is possible to suppress the deformation of the portion of the holding member 41 in which the recess 46 is formed, and it is possible to suppress the resin leakage due to the deformation of the holding member 41.
  • the reactor 1A of the first embodiment can be used as a component of a circuit that performs a voltage boosting operation or a voltage dropping operation.
  • the reactor 1A can be used as, for example, various converters, components of a power conversion device, or the like.
  • the converter include an in-vehicle converter mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle, typically a DC-DC converter, an air conditioner converter, and the like.
  • Reactor 1A is installed, for example, on an installation target (not shown) such as a converter case.
  • a case for accommodating the reactor 1A may be provided.
  • mechanical protection of the combined body 10 including the coil 2, the magnetic core 3, and the holding members 41, 42 and protection from the external environment can be achieved.
  • the protection from the external environment improves the corrosion resistance of the combination 10.
  • the case may be made of a metal material.
  • the metal case has a relatively high thermal conductivity, and the heat of the combined body 10 is easily radiated to the outside through the case. Therefore, it contributes to the improvement of the heat dissipation of the reactor 1A.
  • the case may include, for example, a bottom plate portion on which the reactor 1A is mounted, a side wall portion surrounding the reactor 1A, and an opening formed on the side facing the bottom plate portion.
  • the bottom plate portion and the side wall portion form a storage space for the reactor 1A.
  • This case is a bottomed cylindrical container having an opening formed on the side facing the bottom plate.
  • the bottom plate portion and the side wall portion may be formed integrally or separately. When the bottom plate portion and the side wall portion are formed separately, they may be joined by, for example, a screw or an adhesive.
  • the height of the side wall portion that is, the height of the case may be higher than the upper end of the reactor 1A housed in the case.
  • the bottom plate side of the case is the lower side
  • the opposite opening side is the upper side
  • the direction along the vertical direction is the height direction of the case, in other words, the depth direction.
  • the shape of the case for example, the shape of the side wall portion is a rectangular frame shape, and the shape of the opening portion viewed from above is a rectangular shape.
  • Nonmagnetic metal is suitable as the material for the case.
  • non-magnetic metals include aluminum and its alloys, magnesium and its alloys, copper and its alloys, silver and its alloys, and austenitic stainless steel.
  • the metal case can be manufactured by die casting.
  • a sealing resin portion that is filled in the case and seals at least a part of the reactor 1A may be provided.
  • the combination resin 10 can be protected by the sealing resin portion.
  • the sealing resin portion is interposed between the coil 2 and the case.
  • the sealing resin portion is interposed between the winding portions 21 and 22 and the side wall portion of the case.
  • the encapsulating resin part may be made of, for example, a thermosetting resin such as an epoxy resin, a urethane resin, a silicone resin, an unsaturated polyester resin, or a thermoplastic resin such as a PPS resin.
  • a thermosetting resin such as an epoxy resin, a urethane resin, a silicone resin, an unsaturated polyester resin, or a thermoplastic resin such as a PPS resin.
  • the thermal conductivity of the sealing resin portion is, for example, 1 W/m ⁇ K or more, more preferably 1.5 W/m ⁇ K or more, and particularly preferably 2 W/m ⁇ K or more.
  • the sealing resin part may contain the above-mentioned filler.
  • the flat type is a form in which both winding parts 21 and 22 of the coil 2 are arranged so that the parallel direction is parallel to the surface to be installed.
  • the vertically stacked type is a mode in which both winding parts 21 and 22 of the coil 2 are arranged so that the parallel direction is orthogonal to the surface to be installed.
  • the upright type is a form in which the winding portions 21 and 22 of the coil 2 are arranged such that the axial direction of the winding portions 21 and 22 is orthogonal to the surface to be installed.
  • the installation area of the reactor 1A for the installation target can be made smaller than that of the flat type.
  • the length of the combined body 10 along the direction orthogonal to both the parallel direction and the axial direction of the two wound portions 21 and 22 is equal to the length of the combined body 10 along the parallel direction of the two wound portions 21 and 22. Because it is shorter than the length.
  • the installation area of the reactor 1A with respect to the installation target can be made smaller than that of the flat installation type.
  • the length of the combined body 10 along the direction orthogonal to both the parallel direction and the axial direction of the both wound portions 21 and 22 is equal to the length of the combined body 10 along the axial direction of the both wound portions 21 and 22. Because it is shorter than the length. Therefore, when the arrangement form is the vertically stacked type or the upright type, it is possible to save the installation area of the reactor 1A as compared with the flat type. In the case of storing in a case, the vertical stacking type or the upright type can secure a large facing area between the winding parts 21 and 22 and the case as compared with the flat type, and the case can be efficiently used as a heat dissipation path. it can.
  • the heat of the coil 2 can be easily dissipated to the case, and the heat dissipation can be further improved.
  • the length of the combined body 10 along the axial direction of the two winding parts 21 and 22 is longer than the length of the combined body 10 along the parallel direction of the two winding parts 21 and 22, the upright type is better.
  • the installation area of the reactor 1A can be made smaller than that of the vertically stacked type.
  • An adhesive layer may be provided between the reactor 1A and the installation target. Thereby, the reactor 1A can be firmly fixed to the installation target.
  • An example of the adhesive layer is that when the reactor 1A is attached to the installation target, it is formed on the surface of the reactor 1A facing the installation target.
  • the bottom plate portion of the case is an installation target.
  • the adhesive layer may be made of an electrically insulating resin.
  • the electrically insulating resin forming the adhesive layer include thermosetting resins such as epoxy resin, silicone resin and unsaturated polyester resin, and thermoplastic resins such as PPS resin and LCP.
  • the adhesive layer may contain the filler described above.
  • the adhesive layer may be formed by using a commercially available adhesive sheet or applying a commercially available adhesive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulating Of Coils (AREA)

Abstract

連結部を介して並列に配置される一対の巻回部を有するコイルと、各巻回部の内側に配置される内側コア部と、両巻回部の外側に配置される一対の外側コア部とを有する磁性コアと、両巻回部の各端面に対向するように配置される一対の保持部材と、各外側コア部の外周面の少なくとも一部を覆い、各巻回部の内周面と各内側コア部との間に充填されるモールド樹脂部と、を備え、コイルは、1本の連続する巻線で構成され、連結部は、巻線の一部を折り返して形成され、連結部が配置される側の一方の保持部材は、連結部が収納される凹部と、連結部の内側に配置される内側突起とを有する、リアクトル。

Description

リアクトル
 本開示は、リアクトルに関する。
 本出願は、2018年11月29日付の日本国出願の特願2018-224282号に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 特許文献1には、巻線を巻回してなる巻回部を有するコイルと、巻回部の内外に配置されて閉磁路を形成する磁性コアと、巻回部の端面と外側コア部との間に介在される端面介在部材とを備えるリアクトルが開示されている。上記磁性コアは、巻回部の内部に配置される内側コア部と、巻回部の外部に配置される外側コア部とを有する。また、特許文献1に記載のリアクトルは、巻回部の内周面と内側コア部の外周面との間に充填される内側樹脂部と、外側コア部を端面介在部材に一体化する外側樹脂部とを備える。上記端面介在部材は、内側樹脂部を構成する樹脂を巻回部の内部へ充填する樹脂充填孔を有する。上記外側樹脂部と上記内側樹脂部とは、樹脂充填孔を通じて繋がっている。
 特許文献2には、一連の巻線を巻回して構成され、並列状態に配置された一対の巻回部を有するコイルが開示されている。両巻回部は、巻線の一部を折り返してなる連結部を介して接続される。上記連結部は、両巻回部の一端側において、巻線をヘアピン状に折り返して形成され、両巻回部の端部同士を繋ぐ。
特開2017-28142号公報 特開2010-45112号公報
 本開示のリアクトルは、
 連結部を介して並列に配置される一対の巻回部を有するコイルと、
 前記各巻回部の内側に配置される内側コア部と、前記両巻回部の外側に配置される一対の外側コア部とを有する磁性コアと、
 前記両巻回部の各端面に対向するように配置される一対の保持部材と、
 前記各外側コア部の外周面の少なくとも一部を覆い、前記各巻回部の内周面と前記各内側コア部との間に充填されるモールド樹脂部と、を備え、
 前記コイルは、1本の連続する巻線で構成され、
 前記連結部は、前記巻線の一部を折り返して形成され、
 前記連結部が配置される側の一方の前記保持部材は、前記連結部が収納される凹部と、前記連結部の内側に配置される内側突起とを有する。
図1は、実施形態1のリアクトルの概略上面図である。 図2は、図1に示す(II)-(II)線で切断した概略断面図である。 図3は、実施形態1のリアクトルを構成する組合体の概略分解図である。 図4は、第一の保持部材の概略上面図である。 図5は、図4に示す(V)-(V)線で切断した概略断面図である。 図6は、第一の保持部材を巻回部の端面に対向する側から見た概略図である。 図7は、第二の保持部材を巻回部の端面に対向する側から見た概略図である。 図8は、巻回部の端面に第一の保持部材を配置する方法を説明する図である。 図9は、巻回部の端面に第一の保持部材を配置した状態を説明する図である。
 [本開示が解決しようとする課題]
 特許文献1に記載のリアクトルでは、外側コア部の外周面を樹脂で覆うと共に、端面介在部材といった保持部材に形成された樹脂充填孔を通して巻回部の端面側から巻回部と内側コア部との間の隙間に樹脂を充填する。このようにして、外側樹脂部及び内側樹脂部といったモールド樹脂部とを一体に成形している。
 特許文献2に記載されるような、1本の連続する巻線で構成され、連結部を介して並列に配置される一対の巻回部を有するコイルを、上述したモールド樹脂部を備えるリアクトルに適用することが検討されている。1本の連続する巻線で構成された上記コイルは、巻線を折り返して形成された連結部を有する。この連結部は、両巻回部の一端側において、巻回部の端面から巻回部の軸方向に突出する。連結部と巻回部の端面との間、換言すれば連結部の内側には、空間が形成される。以下、この空間を「連結部の内側空間」という場合がある。上記コイルを用いる場合、連結部が保持部材と干渉しないように、連結部が配置される側の一方の保持部材を部分的に薄くすることが考えられる。
 上述したモールド樹脂部を備えるリアクトルの製造方法としては、例えば、コイルと磁性コアと保持部材とを組み合わせた組合体を金型内に配置し、金型内に樹脂を注入して樹脂モールドすることが挙げられる。これにより、外側コア部を樹脂で覆い、保持部材の樹脂充填孔を通して巻回部と内側コア部との間に樹脂を充填することで、モールド樹脂部を成形する。
 一般に、金型内への樹脂の注入は、射出成形により樹脂に圧力をかけて行うが、巻回部と内側コア部との間の狭い隙間に樹脂を十分に行き渡らせるためには、高い圧力をかける必要がある。そのため、モールド樹脂部を成形する際に、樹脂の圧力によって保持部材が外方に膨らむように変形しようとする。特に、コイルの連結部が配置される側の一方の保持部材の肉厚を連結部と干渉しないように部分的に薄くすると、その部分の強度が低下する。そのため、モールド樹脂部の成形時に保持部材の肉厚の薄い部分が変形し易く、場合によっては破損するおそれがある。保持部材が大きく変形したり破損したりすると、保持部材と巻回部の端面との間から樹脂漏れが発生する。
 そこで、本開示は、モールド樹脂部を成形する際に保持部材の変形による樹脂漏れを抑制できるリアクトルを提供することを目的の一つとする。
 [本開示の効果]
 本開示のリアクトルは、モールド樹脂部を成形する際に保持部材の変形による樹脂漏れを抑制できる。
 [本開示の実施形態の説明]
 本発明者らは、コイルの連結部が保持部材と干渉しないように、連結部が配置される側の一方の保持部材に、連結部を収納する空間を形成する凹部を設けることを検討した。この場合、保持部材における凹部が形成された部分の厚さが薄く強度が低いため、モールド樹脂部の成形時に凹部が形成された部分が変形し易い。モールド樹脂部の成形時に保持部材の変形を抑制するため、金型の内面に突起を一体に設けておき、その突起を連結部の内側空間に嵌め込むことが考えられる。モールド樹脂部の成形時に金型に設けた突起の端面を保持部材に形成された凹部の底面に接触させて、突起の端面で凹部の底面を支持することにより、凹部が形成された部分の変形を抑制する。しかし、一般的に、巻線を巻回してなるコイルの巻回部は、その軸方向の長さにばらつきが生じ易い。そのため、個々のコイルによって巻回部の長さが異なることから、連結部の軸方向の位置が異なることがあり、金型に対する保持部材の位置もばらつくことがある。よって、金型に上記突起を設けるにしても、金型内に組合体を配置したときに連結部の内側空間に突起が確実に入るように、連結部の内側空間に対して突起の大きさを比較的小さくせざるを得ない。つまり、保持部材の凹部の面積に対して突起の面積が小さくなる。突起が小さければ、突起の端面と保持部材の凹部の底面との接触面積が減るため、突起の端面で凹部の底面を十分に支持することが難しくなる。そうすると、保持部材の凹部が形成された部分の変形を十分に抑制できない可能性がある。
 本発明者らは、コイルの連結部が配置される側の一方の保持部材において、連結部が収納される凹部内に、連結部の内側空間に配置される内側突起を一体に設けることを提案する。内側突起を設けることによって、保持部材における凹部が形成された部分の厚さが薄い領域を減らすことができる。そのため、保持部材の凹部が形成された部分の強度を高めることができる。よって、モールド樹脂部を成形する際に保持部材の凹部が形成された部分の変形を抑制することが可能であり、保持部材の変形による樹脂漏れを抑制できる。
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の実施形態に係るリアクトルは、
 連結部を介して並列に配置される一対の巻回部を有するコイルと、
 前記各巻回部の内側に配置される内側コア部と、前記両巻回部の外側に配置される一対の外側コア部とを有する磁性コアと、
 前記両巻回部の各端面に対向するように配置される一対の保持部材と、
 前記各外側コア部の外周面の少なくとも一部を覆い、前記各巻回部の内周面と前記各内側コア部との間に充填されるモールド樹脂部と、を備え、
 前記コイルは、1本の連続する巻線で構成され、
 前記連結部は、前記巻線の一部を折り返して形成され、
 前記連結部が配置される側の一方の前記保持部材は、前記連結部が収納される凹部と、前記連結部の内側に配置される内側突起とを有する。
 本開示のリアクトルによれば、コイルの連結部が配置される側の一方の保持部材が、連結部が収納される凹部内に内側突起を有する。内側突起により凹部が形成された部分の厚さが薄い領域を減らすことができる。そのため、保持部材の凹部が形成された部分の強度を高めることができる。よって、モールド樹脂部を成形する際に保持部材の凹部が形成された部分の変形を抑制することが可能である。本開示のリアクトルは、モールド樹脂部を成形する際に保持部材の変形による樹脂漏れを抑制できる。
 また、本開示のリアクトルによれば、コイルによって連結部の軸方向の位置が異なることがあっても、保持部材の内側突起の大きさは変更する必要がない。そのため、内側突起は、連結部の内側空間に対応した大きさ、形状とすることができる。よって、凹部が形成された部分の強度を確保し易い。上述したように、金型に設けた突起を連結部の内側空間に嵌め込む場合、コイルと磁性コアと保持部材とを組み合わせた組合体を金型内に配置する。その際、複数の部材からなる組合体において、連結部の位置をばらつかないようにすることは困難である。したがって、連結部の内側空間に対して突起を小さくせざるを得ない。一方、保持部材に設けた内側突起であれば、連結部の内側空間に嵌め込むだけでよく、内側突起を大きくしても連結部の内側に嵌め易い。したがって、内側突起の大きさを変更する必要がなく、連結部の内側空間に対する内側突起の大きさも確保し易い。
 (2)上記リアクトルの一形態として、
 一方の前記保持部材の前記凹部側の面を平面視したとき、前記凹部の面積に対する前記内側突起の面積の割合が50%以上であることが挙げられる。
 上記形態によれば、凹部の面積に対する内側突起の面積の割合が50%以上であることで、保持部材の凹部が形成された部分の強度をより高めることができる。よって、モールド樹脂部の成形時に保持部材の凹部が形成された部分の変形をより抑制できる。
 (3)上記リアクトルの一形態として、
 一方の前記保持部材の前記凹部側の面は、前記内側突起の端面と、前記凹部を除く残りの部分の面とが面一であることが挙げられる。
 上記形態によれば、内側突起の端面と、保持部材の凹部を除く残りの部分の面とが面一であることで、モールド樹脂部の成形時に保持部材の凹部を除く上面を金型の内面に面接触させることができる。これにより、保持部材の変形を効果的に抑制できる。
 (4)上記リアクトルの一形態として、
 前記保持部材は、前記両内側コア部の各端部が挿入される一対の貫通孔が形成され、
 前記貫通孔の周縁部から前記巻回部の内側に向かって突出する内側介在部を有し、
 前記内側介在部は、前記巻回部と前記内側コア部との間に挿入されることが挙げられる。
 上記形態によれば、保持部材の各貫通孔に両内側コア部の各端部が挿入されることで、両内側コア部を位置決めできる。また、保持部材の内側介在部が巻回部と内側コア部との間に挿入されることで、巻回部と内側コア部とを間隔をあけて保持できると共に、巻回部を位置決めできる。
 (5)上記(4)に記載のリアクトルの一形態として、
 一方の前記保持部材において、前記内側介在部は、前記貫通孔の周縁部のうち、前記凹部が設けられた側にのみ設けられていることが挙げられる。
 一方の保持部材は、内側突起が設けられているため、巻回部の端面に対して巻回部の軸方向から配置しようとしても、内側突起が連結部と干渉して凹部内に連結部を配置することはできない。一方の保持部材を巻回部の端面に配置するとき、例えば、両巻回部の軸線に対して連結部が上側に設けられている場合、連結部の内側空間の下側に内側突起が位置するようにして、連結部の内側空間の下側から内側突起を差し込む。そして、巻回部の端面に沿って保持部材を相対的に上方向にスライドさせて配置する。このとき、保持部材が内側介在部を有する場合は、内側介在部を巻回部内に挿入した状態で、巻回部の端面に沿って保持部材をスライドさせる。内側介在部が貫通孔の周縁部の全周に設けられていると、連結部の内側空間の下側に内側突起を位置させるときに、内側介在部が巻回部と干渉し、内側介在部を巻回部内に挿入できない。上記形態によれば、内側介在部が凹部が設けられた側、上記の例でいえば上側にのみ設けられていることで、内側介在部を巻回部内に挿入した状態で、巻回部の端面に沿って保持部材をスライドさせることが可能である。これにより、一方の保持部材を巻回部の端面に配置することができる。
 [本開示の実施形態の詳細]
 本開示の実施形態に係るリアクトルの具体例を、以下に図面を参照しつつ説明する。図中の同一符号は同一名称物を示す。また、各図面では、説明の便宜上、構成の一部を誇張又は簡略化して示す場合があり、また、実際の縮尺とは必ずしも一致していない。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 [実施形態1]
 図1~図9を参照して、実施形態1のリアクトル1Aについて説明する。以下、リアクトル1A及びその構成部材について説明するときは、リアクトル1Aを側面視して、コイル2の両巻回部21、22の中心軸線に対して連結部23が設けられた側を上側とし、その反対側を下側とする。この上下方向を高さ方向、即ち縦方向とする。図1において、紙面手前側が上側であり、紙面奥側が下側である。図2において、紙面上側が上側であり、紙面下側が下側である。図2、図5中、上記中心軸線を一点鎖線で示す。また、コイル2の両巻回部21、22の軸方向に沿った方向、即ち図1、図2の紙面左右方向を長さ方向とする。コイル2の両巻回部21、22の並列方向、即ち図1の紙面上下方向を幅方向とする。図2は、巻回部21の軸方向に沿って縦方向に切断したリアクトル1Aの縦断面図である。
 <概要>
 実施形態1のリアクトル1Aは、図1~図3に示すように、コイル2と、磁性コア3と、保持部材41、42とを備える図3に示す組合体10を有する。コイル2は、図1に示すように、一対の巻回部21、22と、連結部23とを有する。磁性コア3は、巻回部21、22の内側に配置される内側コア部31、32と、巻回部21、22の外側に配置される外側コア部33とを有する。保持部材41、42は、両巻回部21、22の各端面に対向するように配置される。また、リアクトル1Aは、図1、図2に示すように、モールド樹脂部8を備える。モールド樹脂部8は、各外側コア部33の外周面の少なくとも一部を覆い、各巻回部21、22の内周面と各内側コア部31、32との間に充填される。以下の説明では、一対の保持部材41、42のうち、コイル2の連結部23が配置される側、即ち図1、図2における右側の一方の保持部材41を「第一の保持部材」と呼び、他方の保持部材42を「第二の保持部材」と呼ぶ場合がある。リアクトル1Aの特徴の1つは、図3、図4にも示すように、第一の保持部材41が、連結部23が収納される凹部46と、連結部23の内側に配置される内側突起47とを有する点にある。以下、リアクトル1Aの構成について詳しく説明する。
 (コイル)
 コイル2は、図1、図3に示すように、一対の巻回部21、22と、両巻回部21、22の一端側に連結部23とを有する。図1でいえば、両巻回部21、22の右側に連結部23が設けられている。コイル2は、1本の連続する巻線で構成される。連結部23は、巻線の一部を折り返して形成される。具体的には、両巻回部21、22は、1本の連続する巻線を螺旋状に巻回して構成され、互いの軸が平行するように並列に配置されている。両巻回部21、22は、巻線の一部を折り返して形成される連結部23を介して繋がっている。本例の連結部23は、両巻回部21、22の一端側で、巻線をJ状に折り返して形成されている。連結部23は、巻回部21、22の端面から軸方向に突出する。本例では、図3に示すように、コイル2を上側から見たとき、連結部23と巻回部21、22の端面との間、即ち連結部23の内側に涙滴形状の空間が形成されている。両巻回部21、22の他端側、即ち図1における左側は、巻線の端部が適宜な方向に引き出され、その先端に図示しない端子金具が取り付けられる。端子金具には、電源などの図示しない外部装置が接続される。なお、図1、図3では、巻線の端部を省略して示している。
 巻線は、導体線と、絶縁被覆とを有する被覆線が挙げられる。導体線の構成材料は、銅などが挙げられる。絶縁被覆の構成材料は、ポリアミドイミドなどの樹脂が挙げられる。被覆線としては、断面形状が長方形状の被覆平角線や、断面形状が円形状の被覆丸線などが挙げられる。
 両巻回部21、22は、同じ仕様の巻線からなり、形状、大きさ、巻回方向、ターン数が同じである。この例では、巻回部21、22は、被覆平角線をエッジワイズ巻きした四角筒状のエッジワイズコイルである。具体的には、巻回部21、22の形状は矩形筒状である。巻回部21、22の形状は、特に限定されるものではなく、例えば、円筒状や楕円筒状、長円筒状などであってもよい。また、各巻回部21、22を形成する巻線の仕様や、各巻回部21、22の形状、大きさなどは異ならせてもよい。
 この例では、巻回部21、22を軸方向から見た端面形状が矩形環状である。つまり、巻回部21、22の外周面は、4つの平面と4つの角部とを有する。巻回部21、22の角部は丸められている。
 (磁性コア)
 磁性コア3は、図1、図3に示すように、内側コア部31、32と、一対の外側コア部33とを有する。内側コア部31、32はそれぞれ、各巻回部21、22の内側に配置される。外側コア部33は、両巻回部21、22の外側に配置される。内側コア部31、32は、その軸方向の端部が巻回部21、22から突出していてもよい。外側コア部33は、両内側コア部31、32の各端部同士を接続する。この例では、両内側コア部31、32を両端から挟むように外側コア部33がそれぞれ配置される。図1に示す磁性コア3は、図3に示すように、両内側コア部31、32の各端面と外側コア部33の内端面33eとが接続されることによって、環状に構成される。磁性コア3には、コイル2を励磁した際に磁束が流れ、閉磁路が形成される。
 (内側コア部)
 内側コア部31、32の形状は、巻回部21、22の内周形状に概ね対応した形状である。巻回部21、22の内周面と内側コア部31、32の外周面との間には隙間が存在する。この隙間には、図2に示すように、後述するモールド樹脂部8が充填される。この例では、内側コア部31、32の形状が四角柱状、具体的には矩形柱状である。内側コア部31、32を軸方向から見た端面形状が矩形状である。内側コア部31、32の角部は、巻回部21、22の角部に沿うように丸められている。両内側コア部31、32の形状、大きさは同じである。また、この例では、内側コア部31、32の両端部が巻回部21、22の両端面から突出している。この巻回部21、22から突出する端部も内側コア部31、32に含まれる。巻回部21、22から突出する内側コア部31、32の両端部は、図3にも示すように、後述する保持部材41、42の貫通孔43に挿入される。
 この例では、各内側コア部31、32は、1つの柱状のコア片で構成されている。内側コア部31、32構成する各コア片は、巻回部21、22の軸方向の全長と略等しい長さを有する。つまり、内側コア部31、32には、ギャップ材が設けられていない。なお、各内側コア部31、32は、複数のコア片と、隣り合うコア片間に介在されるギャップ材とで構成してもよい。
 (外側コア部)
 外側コア部33の形状は、両内側コア部31、32の各端部同士を繋ぐ形状であれば、特に限定されない。外側コア部33は、図3に示すように、両内側コア部31、32の各端面に対向する内端面33eを有する。この例では、外側コア部33の形状は直方体状である。両外側コア部33の形状、大きさは同じである。各外側コア部33は、1つの柱状のコア片で構成されている。
 〈構成材料〉
 内側コア部31、32及び外側コア部33は、軟磁性材料を含む成形体で構成されている。軟磁性材料としては、鉄や鉄合金といった金属、フェライトなどの非金属が挙げられる。鉄合金は、例えば、Fe-Si合金、Fe-Ni合金などである。軟磁性材料を含む成形体としては、軟磁性材料からなる粉末、即ち軟磁性粉末を圧縮成形した圧粉成形体や、軟磁性粉末を樹脂中に分散させて成形した複合材料などが挙げられる。複合材料は、未固化の樹脂中に軟磁性粉末を混合して分散させた原料を金型に充填し、樹脂を硬化させることで得られる。圧粉成形体は、複合材料に比較して、コア片に占める軟磁性粉末の割合が高い。複合材料は、樹脂中の軟磁性粉末の含有量を調整することによって、比透磁率や飽和磁束密度といった磁気特性を制御し易い。
 軟磁性粉末は、軟磁性粒子の集合体である。軟磁性粒子は、その表面に絶縁被覆を有する被覆粒子であってもよい。絶縁被覆の構成材料は、リン酸塩などが挙げられる。複合材料の樹脂は、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂などの熱硬化性樹脂や、ポリフェニレンスルフィド(PPS)樹脂、ポリアミド(PA)樹脂、液晶ポリマー(LCP)、ポリイミド(PI)樹脂、フッ素樹脂などの熱可塑性樹脂が挙げられる。PA樹脂としては、例えば、ナイロン6、ナイロン66、ナイロン9Tなどが挙げられる。複合材料の樹脂にフィラーを含有させてもよい。フィラーを含有することで、複合材料の放熱性を向上させることができる。フィラーとしては、例えば、アルミナ、シリカ、酸化マグネシウムなどの酸化物、窒化珪素、窒化アルミニウム、窒化ホウ素などの窒化物、炭化珪素などの炭化物といったセラミックスやカーボンナノチューブなどの非磁性粉末を利用できる。
 内側コア部31、32の構成材料と外側コア部33の構成材料は、同じであってもよいし、異なってもよい。例えば、内側コア部31、32及び外側コア部33を複合材料で構成し、それぞれの軟磁性粉末の材質や含有量を異ならせることも可能である。この例では、内側コア部31、32が複合材料で構成されている。外側コア部33が圧粉成形体で構成されている。また、本例の磁性コア3は、ギャップ材を有していないが、これに限らず、複数のコア片間に介在されるギャップ材を有する構成であってもよい。
 (保持部材)
 保持部材41、42は、図1、図3に示すように、両巻回部21、22の各端面に対向するように配置される部材である。本例の保持部材41、42は、巻回部21、22を有するコイル2と、内側コア部31、32及び外側コア部33を有する磁性コア3との電気的絶縁を確保する。また、保持部材41、42は、コイル2及び磁性コア3の位置決め状態を保持する。
 両保持部材41、42の基本的な構成は同じであるが、第一の保持部材41は、凹部46及び内側突起47を有する点で、第二の保持部材42と異なる。本例の保持部材41、42について、図4~図7も参照しつつ説明する。まず、保持部材41、42の共通の基本構成を説明する。次いで、一方の保持部材41に設けられた凹部46及び内側突起47について説明する。
 本例では、図6、図7に示すように、保持部材41、42が矩形枠状である。各保持部材41、42の外周面は実質的に平面で構成されている。なお、図6では、紙面右側が保持部材41の上側である。図7では、紙面左側が保持部材42の上側である。
 〈貫通孔〉
 各保持部材41、42は、巻回部21、22と外側コア部33との間の電気的絶縁を確保する。各保持部材41、42は、図1、図3に示すように、両巻回部21、22の各端面と各外側コア部33の内端面33eとの間に介在される。各保持部材41、42には、図6、図7にも示すように、一対の貫通孔43が形成されている。各貫通孔43には、両内側コア部31、32の各端部が挿入される。貫通孔43の形状は、内側コア部31、32の端部の外周形状に概ね対応した形状である。各貫通孔43に両内側コア部31、32の各端部が挿入されることで、内側コア部31、32が保持される。また、貫通孔43は、内側コア部31、32の端部が挿入された状態で、図6、図7に示すように、内側コア部31、32の外周面と貫通孔43の内周面との間に部分的に隙間43cが形成されるように設けられている。この隙間43cは、巻回部21、22の内周面と内側コア部31、32の外周面との間の隙間に連通する。
 〈嵌め込み部〉
 各保持部材41、42は、各外側コア部33の外周面の少なくとも一部を囲むように形成され、その内側に嵌め込み部44を有する。嵌め込み部44には、図3に示すように、外側コア部33の内端面33e側が嵌め込まれる。この例では、嵌め込み部44は、外側コア部33が嵌め込まれた状態で、外側コア部33の外周面と嵌め込み部44の内周面との間に部分的に隙間が形成されるように設けられている。この隙間には、図1に示すように、後述するモールド樹脂部8が充填され、モールド樹脂部8によって各保持部材41、42と各外側コア部33とが一体化される。本例の保持部材41、42は、外側コア部33と嵌め込み部44との間の隙間と、上述した図6、図7に示す内側コア部31、32と貫通孔43との間の隙間43cとが連通するように構成されている。これらの隙間が連通することにより、後述するモールド樹脂部8を成形する際に、モールド樹脂部8を構成する樹脂を巻回部21、22と内側コア部31、32との間に導入することが可能である。つまり、これらの隙間は、モールド樹脂部8を構成する樹脂を巻回部21、22の内部へ充填する樹脂充填孔として機能する。
 〈内側介在部〉
 更に、各保持部材41、42は、図3に示すように、貫通孔43の周縁部から巻回部21、22の内側に向かって突出する内側介在部48を有する。内側介在部48は、巻回部21、22と内側コア部31、32との間に挿入される。図6、図7に示すように、この内側介在部48によって、巻回部21、22と内側コア部31、32とが間隔をあけて保持され、巻回部21、22と内側コア部31、32との間の電気的絶縁を確保する。
 この例では、図6、図7に示すように、第一の保持部材41と第二の保持部材42とで、内側介在部48の形成範囲が異なっている。第一の保持部材41では、図6に示すように、内側介在部48が凹部46が設けられた側にのみ設けられている。具体的には、図5、図6に示すように、第一の保持部材41において、内側介在部48は、貫通孔43の周縁部のうち上側にのみ設けられている。第一の保持部材41を図3に示す巻回部21、22の端面に対向する側から見たとき、図6に示すように内側介在部48の形状は]状である。第一の保持部材41の内側介在部48は、内側コア部31、32の端部のうち、上面と側面の上側の一部とを覆う。一方、第二の保持部材42では、図7に示すように、内側介在部48が貫通孔43の周縁部の全周に亘って設けられている。第二の保持部材42を図3に示す巻回部21、22の端面に対向する側から見たとき、図7に示すように内側介在部48の形状は矩形枠状である。第二の保持部材42の内側介在部48は、内側コア部31、32の端部における外周面の全周を覆う。
 上述したように、内側コア部31、32の各端部が保持部材41、42の各貫通孔43に挿入されることによって、内側コア部31、32が位置決めされる。また、図3に示すように、外側コア部33の内端面33e側が保持部材41、42の嵌め込み部44に嵌め込まれることによって、外側コア部33が位置決めされる。更に、内側介在部48によって、巻回部21、22が位置決めされる。その結果、保持部材41、42によって、巻回部21、22を有するコイル2と、内側コア部31、32及び外側コア部33を有する磁性コア3とが位置決め状態で保持される。
 〈構成材料〉
 保持部材41、42は、電気絶縁材料で構成されている。電気絶縁材料としては、代表的には樹脂が挙げられる。具体的には、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂や、PPS樹脂、PA樹脂、LCP、PI樹脂、フッ素樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂などの熱可塑性樹脂が挙げられる。保持部材41、42を構成する樹脂にフィラーを含有させてもよい。フィラーを含有することで、保持部材41、42の放熱性を向上させることができる。フィラーとしては、上述した複合材料に用いるフィラーと同様のものを利用できる。本例の保持部材41、42は、射出成形により成形された成形品であり、PPS樹脂で構成されている。
 (凹部)
 連結部23が配置される第一の保持部材41の上部には、図4、図5に示すように、連結部23が収納される凹部46が形成されている。図5、図6に示すように、凹部46の底面は平面である。本例では、図4に示すように、連結部23に対向する凹部46の内周面は、連結部23の外側の輪郭に沿って形成されている。つまり、保持部材41を上側から見たとき、凹部46の形状は連結部23の外観形状に概ね対応した形状である。図5、図6に示すように、保持部材41の凹部46が形成された部分の厚さ、換言すれば貫通孔43の内周面と凹部46の底面との間隔は、凹部46を除く部分の厚さ、換言すれば貫通孔43の内周面と保持部材41の上面との間隔に比較して薄い。
 (内側突起)
 第一の保持部材41の凹部46には、図4、図5に示すように、連結部23と巻回部21、22の端面との間、即ち連結部23の内側に配置される内側突起47が設けられている。つまり、連結部23の内側空間に内側突起47が嵌め込まれる。内側突起47は、図5に示すように、凹部46の底面から突出する。内側突起47は保持部材41に一体に形成されている。図5、図6に示すように、内側突起47の端面は平面である。本例では、図4に示すように、保持部材41を上側から見たとき、内側突起47の形状は連結部23の内側空間の形状に概ね対応した涙滴形状である。図5、図6に示すように、保持部材41の内側突起47が形成された部分の厚さ、換言すれば貫通孔43の内周面と内側突起47の端面との間隔は、凹部46が形成された部分の厚さに比較して厚くなっている。
 〈内側突起の面積比〉
 図4に示すように、保持部材41の凹部46側の面、即ち上面を平面視したとき、凹部46の面積に対する内側突起47の面積の割合は50%以上であることが挙げられる。以下、上記面積の割合のことを「内側突起の面積比」という。ここで、凹部46の面積とは、巻回部21、22の端面に保持部材41を配置した状態で、凹部46の上記内周面と巻回部21、22の端面とで囲まれる領域の面積をいう。この領域を、図4の斜線部分で示す。凹部46の面積には、内側突起47の面積を包含する。内側突起47の面積とは、保持部材41の上面を平面視したときの内側突起47の端面の面積をいう。内側突起47の面積比は、凹部46の面積の55%以上、更に60%以上であることが好ましい。内側突起47の面積比の上限は、特に限定されないが、例えば80%以下であることが挙げられる。
 〈内側突起の高さ〉
 図5に示すように、内側突起47の高さは、例えば、連結部23の高さ、即ちコイル2の巻回部21、22を構成する巻線の幅以上であることが挙げられる。内側突起47の高さとは、凹部46の底面から内側突起47の端面までの距離のことを指す。連結部23の高さとは、両巻回部21、22の並列方向と軸方向の双方に直交する方向の寸法のことをいう。連結部23の高さは、巻回部21、22の内周面と外周面との間隔に等しい。本例では、図5に示すように、内側突起47の高さが連結部23の高さと略等しく、内側突起47の方が連結部23よりも若干高い。また、内側突起47は、その突出方向、即ち高さ方向に一様な断面を有する。
 更に、本例では、図5、図6に示すように、保持部材41の上面を構成する内側突起47の端面と、凹部46を除く残りの部分の面とが実質的に面一である。そのため、凹部46が設けられた保持部材41の上面は、凹部46を除いて実質的に平面で構成されている。
 (モールド樹脂部)
 モールド樹脂部8は、図1、図2に示すように、外側コア部33の外周面の少なくとも一部を覆うと共に、巻回部21、22の内周面と内側コア部31、32の外周面との間に充填される。このモールド樹脂部8により、内側コア部31、32と外側コア部33とが一体に保持され、巻回部21、22を有するコイル2と、内側コア部31、32及び外側コア部33を有する磁性コア3とが一体化されている。そのため、コイル2と磁性コア3とを一体物として取り扱うことができる。また、モールド樹脂部8によって各外側コア部33と各保持部材41、42とが一体化されている。つまり、この例では、モールド樹脂部8によって、コイル2、磁性コア3及び保持部材41、42が一体化されており、図3に示す組合体10を一体物として取り扱うことができる。なお、巻回部21、22の外周面は、モールド樹脂部8で覆われておらず、モールド樹脂部8から露出している。
 モールド樹脂部8は、内側コア部31、32と外側コア部33とを一体に保持できればよい。そのため、モールド樹脂部8は、内側コア部31、32の少なくとも端部の外周面を覆うように形成されていればよい。つまり、モールド樹脂部8は、内側コア部31、32の軸方向の中央部まで及んでいなくてもよい。内側コア部31、32と外側コア部33とを一体に保持するというモールド樹脂部8の機能に鑑みれば、モールド樹脂部8の形成範囲は、内側コア部31、32の端部近傍までで十分である。勿論、モールド樹脂部8は、内側コア部31、32の軸方向の中央部まで及んでいてもよい。この場合、モールド樹脂部8は、内側コア部31、32の外周面を全長にわたって覆い、一方の外側コア部33から他方の外側コア部33にわたって形成される。本例では、モールド樹脂部8が、図2に示すように巻回部21、22の軸方向に沿って、巻回部21、22の内周面と内側コア部31、32の外周面との間の隙間の全長にわたって充填されている。
 〈構成材料〉
 本例のモールド樹脂部8は、射出成形により成形されている。モールド樹脂部8を構成する樹脂は、上述した保持部材41、42を構成する樹脂と同様のものを利用できる。モールド樹脂部8は上述したフィラーを含有してもよい。本例では、モールド樹脂部8がPPS樹脂で構成されている。
 <製造方法>
 上述したリアクトル1Aの製造方法の一例を説明する。リアクトルの製造方法は、大別すると、組合体を作製する工程と、モールド樹脂部を成形する工程とを備える。
 組合体を作製する工程では、図3に示すように、コイル2と磁性コア3と保持部材41、42とを組み合わせた組合体10を作製する。
 組合体10の組立は、次のようにして行う。コイル2の巻回部21、22の各端面に対向するように保持部材41、42をそれぞれ配置する。コイル2の連結部23が配置される側の第一の保持部材41については、図8に示すように、巻回部21、22の一方の端面に対し、連結部23の内側空間の下側に内側突起47が位置するように保持部材41を配置すると共に、内側介在部48を巻回部21、22内に挿入した状態とする。なお、図8では、両巻回部21、22のうち、巻回部21を軸方向に沿って縦方向に切断した状態を示しており、巻回部22を図示していない。次に、連結部23の内側空間の下側から内側突起47を差し込むように、巻回部21、22の端面に沿って保持部材41を相対的に上方向にスライドさせる。図8中、白抜き矢印方向は保持部材41のスライド方向を示す。これにより、図9に示すように、保持部材41の凹部46内に連結部23を収納すると共に、連結部23の内側空間に内側突起47を嵌め込むことで、巻回部21、22の一方の端面に第一の保持部材41を配置する。
 巻回部21、22の一端側に保持部材41を配置した後、保持部材41の嵌め込み部44に外側コア部33を嵌め込む。その状態で、巻回部21、22の他端側から巻回部21、22内に内側コア部31、32をそれぞれ挿入する。その後、巻回部21、22の他方の端面に対して巻回部21、22の軸方向から第二の保持部材42を配置し、保持部材42の嵌め込み部44に外側コア部33を嵌め込む。両内側コア部31、32の各端部は、保持部材41、42の各貫通孔43に挿入され、内側コア部31、32の両端に外側コア部33がそれぞれ配置される。これにより、両内側コア部31、32の各端面と各外側コア部33の内端面33eとを接続して、図1に示すように、内側コア部31、32と外側コア部33とで環状の磁性コア3を構成する。以上のようにして、コイル2と磁性コア3と保持部材41、42とを備える組合体10を組み立てる。コイル2と磁性コア3とは、保持部材41、42によって位置決め状態で保持されている。
 モールド樹脂部を成形する工程では、外側コア部33の外周面の少なくとも一部を樹脂で被覆すると共に、巻回部21、22の内周面と内側コア部31、32との間に樹脂を充填する。これにより、図2に示すように、モールド樹脂部8を成形する。
 組合体10を金型内に配置し、組合体10の外側コア部33側から金型内に樹脂を注入する。例えば、外側コア部33の内側コア部31、32が配置される側とは反対側から樹脂を射出して、外側コア部33の外周面を樹脂で覆う。このとき、樹脂の一部は、図6、図7を参照して説明した保持部材41、42に形成される上述の樹脂充填孔、即ち、外側コア部33と嵌め込み部44との間の隙間と、内側コア部31、32と貫通孔43との間の隙間43cとを通って、巻回部21、22と内側コア部31、32との間に充填される。その後、樹脂を固化させることで、モールド樹脂部8を一体成形する。これにより、モールド樹脂部8によってコイル2、磁性コア3及び保持部材41、42を一体化することができる。以上により、図1、図2に示すリアクトル1Aを製造することができる。
 樹脂の充填は、一方の外側コア部33側から他方の外側コア部33側に向かって巻回部21、22内に樹脂を充填してもよいし、両方の外側コア部33側から巻回部21、22内に樹脂を充填してもよい。本例では、両方の外側コア部33側から樹脂を射出する両方向充填により、各外側コア部33を樹脂で覆うと共に、巻回部21、22の内周面と内側コア部31、32の外周面との間の隙間に樹脂を充填する。
 本実施形態では、図4、図5に示すように、第一の保持部材41の上部に、連結部23が収納される凹部46内に内側突起47が一体に設けられている。凹部46内に内側突起47が存在するため、保持部材41において、凹部46により厚さが薄くなった部分の領域を減らすことができる。よって、保持部材41の凹部46が形成された部分の強度を高めることができる。したがって、モールド樹脂部8を成形する際に、保持部材41の凹部46が形成された部分の変形を抑制することが可能であり、保持部材41の変形による樹脂漏れを抑制できる。
 また、内側突起47の面積比が50%以上であることで、保持部材41の凹部46が形成された部分の強度をより高めることができる。よって、モールド樹脂部8の成形時に保持部材41の凹部46が形成された部分の変形をより抑制できる。
 更に、本例では、図5、図6に示すように、内側突起47の端面と、保持部材41の凹部46を除く残りの部分の面とが面一であり、保持部材41の凹部46を除く上面が平面である。そのため、モールド樹脂部8の成形時に保持部材41の上面を金型の内面に面接触させることができる。これにより、保持部材41の変形を効果的に抑制できる。
 本例では、保持部材41の内側介在部48が貫通孔43の周縁部のうち上側にのみ設けられている。そのため、図8を参照して説明したように、連結部23の下側に内側突起47を位置させると共に、内側介在部48を巻回部21、22内に挿入した状態で、巻回部21、22の端面に沿って保持部材41をスライドさせることができる。これにより、保持部材41を巻回部21、22の端面に配置することができる。
 {効果}
 実施形態1のリアクトル1Aは、次の作用効果を奏する。
 コイル2の連結部23が配置される側の一方の保持部材41が、連結部23が収納される凹部46内に内側突起47を有する。内側突起47によって、保持部材41における凹部46が形成された厚さが薄い部分の領域を減らすことができるため、保持部材41の凹部46が形成された部分の強度を高めることができる。よって、モールド樹脂部8を成形する際に、保持部材41の凹部46が形成された部分の変形を抑制することが可能であり、保持部材41の変形による樹脂漏れを抑制できる。
 {用途}
 実施形態1のリアクトル1Aは、電圧の昇圧動作や降圧動作を行う回路の部品に利用できる。リアクトル1Aは、例えば、種々のコンバータや電力変換装置の構成部品などに利用できる。コンバータの一例としては、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車等の車両に搭載される車載用コンバータ、代表的にはDC-DCコンバータや、空調機のコンバータなどが挙げられる。リアクトル1Aは、例えば、コンバータケースなどの図示しない設置対象に設置される。
 [変形例]
 上述した実施形態1のリアクトル1Aの変形例としては、例えば次のようなものが挙げられる。
 (1)リアクトル1Aを収納するケースを備えてもよい。リアクトル1Aをケースに収納することで、コイル2、磁性コア3及び保持部材41、42を含む組合体10の機械的保護及び外部環境からの保護を図ることができる。外部環境からの保護は、組合体10の防食性を向上させる。ケースは、金属材料で構成することが挙げられる。金属製のケースは、熱伝導率が比較的高く、組合体10の熱をケースを介して外部に放熱し易い。よって、リアクトル1Aの放熱性の向上に寄与する。
 ケースは、例えば、リアクトル1Aが載置される底板部と、リアクトル1Aの周囲を囲む側壁部と、底板部と対向する側に形成された開口部とを有することが挙げられる。このケースは、底板部と側壁部とでリアクトル1Aの収納空間が形成される。このケースは、底板部と対向する側に開口部が形成された有底筒状の容器である。底板部と側壁部とは、一体に形成されていてもよいし、別体で形成されていてもよい。底板部と側壁部とを別体とする場合、例えばねじや接着剤などで接合すること挙げられる。側壁部の高さ、即ちケースの高さは、ケース内に収納されたリアクトル1Aの上端よりも高くすることが挙げられる。ここでは、ケースの底板部側を下、その反対側の開口部側を上とする。この上下方向に沿った方向をケースの高さ方向、換言すれば深さ方向とする。ケースの形状としては、例えば、側壁部の形状が矩形枠状で、上方から見た開口部の形状が矩形状であることが挙げられる。
 ケースの構成材料は、非磁性金属が好適である。非磁性金属としては、アルミニウムやその合金、マグネシウムやその合金、銅やその合金、銀やその合金、オーステナイト系ステンレス鋼などが挙げられる。金属製のケースは、ダイキャストで製造できる。
 (2)上記ケースを備える場合、ケース内に充填されて、リアクトル1Aの少なくとも一部を封止する封止樹脂部を備えてもよい。封止樹脂部によって、組合体10の保護を図ることができる。また、封止樹脂部は、コイル2とケースとの間に介在される。例えば、巻回部21、22とケースの側壁部との間に封止樹脂部が介在される。これにより、コイル2の熱を封止樹脂部を介してケースに伝えることができ、組合体10の放熱性を向上できる。
 封止樹脂部は、例えば、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂や、PPS樹脂などの熱可塑性樹脂で構成することが挙げられる。封止樹脂部の熱伝導率は高いほど好ましい。コイル2の熱をケースに伝達させ易いからである。封止樹脂部の熱伝導率は、例えば1W/m・K以上、更に1.5W/m・K以上、特に2W/m・K以上が好ましい。封止樹脂部は上述したフィラーを含有してもよい。
 (3)リアクトル1Aの配置形態として、平置き型、縦積み型、直立型が挙げられる。平置き型とは、コイル2の両巻回部21、22の並列方向が設置対象の面と平行するように配置されている形態である。縦積み型とは、コイル2の両巻回部21、22の並列方向が設置対象の面と直交するように配置されている形態である。直立型とは、コイル2の両巻回部21、22の軸方向が設置対象の面と直交するように配置されている形態である。上記ケースにリアクトル1Aを収納する場合、ケースの底板部が設置対象になる。
 リアクトル1Aの配置形態が縦積み型の場合、平置き型に比較して、設置対象に対するリアクトル1Aの設置面積を小さくできる。一般的に、両巻回部21、22の並列方向及び軸方向の双方に直交する方向に沿った組合体10の長さは、両巻回部21、22の並列方向に沿った組合体10長さよりも短いからである。同様に、リアクトル1Aの配置形態が直立型の場合も、平置き型に比較して、設置対象に対するリアクトル1Aの設置面積を小さくできる。一般的に、両巻回部21、22の並列方向及び軸方向の双方に直交する方向に沿った組合体10の長さは、両巻回部21、22の軸方向に沿った組合体10長さよりも短いからである。よって、配置形態が縦積み型又は直立型の場合、平置き型に比較して、リアクトル1Aの設置面積の省スペース化が可能である。また、ケースに収納する場合、縦積み型又は直立型では、平置き型に比較して、両巻回部21、22とケースとの対向面積を大きく確保でき、ケースを放熱経路として効率よく利用できる。そのため、コイル2の熱をケースに放熱し易く、放熱性をより向上できる。両巻回部21、22の軸方向に沿った組合体10の長さが、両巻回部21、22の並列方向に沿った組合体10の長さよりも長い場合は、直立型の方が縦積み型よりもリアクトル1Aの設置面積を小さくできる。
 (4)リアクトル1Aと設置対象との間に接着層を備えてもよい。これにより、リアクトル1Aを設置対象に強固に固定できる。接着層は、リアクトル1Aを設置対象に取り付けたとき、リアクトル1Aにおける設置対象に対向する面に形成することが挙げられる。上記ケースにリアクトル1Aを収納する場合、ケースの底板部が設置対象になる。
 接着層は、電気絶縁樹脂で構成することが挙げられる。接着層を構成する電気絶縁樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂や、PPS樹脂、LCPなどの熱可塑性樹脂が挙げられる。接着層は上述したフィラーを含有してもよい。接着層は、市販の接着シートを利用したり、市販の接着剤を塗布して形成してもよい。
 1A リアクトル
 10 組合体
 2 コイル
  21、22 巻回部
  23 連結部
 3 磁性コア
  31、32 内側コア部
  33 外側コア部
  33e 内端面
 41、42 保持部材
  43 貫通孔
  43c 隙間
  44 嵌め込み部
  46 凹部
  47 内側突起
  48 内側介在部
 8 モールド樹脂部

Claims (5)

  1.  連結部を介して並列に配置される一対の巻回部を有するコイルと、
     前記各巻回部の内側に配置される内側コア部と、前記両巻回部の外側に配置される一対の外側コア部とを有する磁性コアと、
     前記両巻回部の各端面に対向するように配置される一対の保持部材と、
     前記各外側コア部の外周面の少なくとも一部を覆い、前記各巻回部の内周面と前記各内側コア部との間に充填されるモールド樹脂部と、を備え、
     前記コイルは、1本の連続する巻線で構成され、
     前記連結部は、前記巻線の一部を折り返して形成され、
     前記連結部が配置される側の一方の前記保持部材は、前記連結部が収納される凹部と、前記連結部の内側に配置される内側突起とを有する、
     リアクトル。
  2.  一方の前記保持部材の前記凹部側の面を平面視したとき、前記凹部の面積に対する前記内側突起の面積の割合が50%以上である請求項1に記載のリアクトル。
  3.  一方の前記保持部材の前記凹部側の面は、前記内側突起の端面と、前記凹部を除く残りの部分の面とが面一である請求項1又は請求項2に記載のリアクトル。
  4.  前記保持部材は、前記両内側コア部の各端部が挿入される一対の貫通孔が形成され、
     前記貫通孔の周縁部から前記巻回部の内側に向かって突出する内側介在部を有し、
     前記内側介在部は、前記巻回部と前記内側コア部との間に挿入される請求項1から請求項3のいずれか1項に記載のリアクトル。
  5.  一方の前記保持部材において、前記内側介在部は、前記貫通孔の周縁部のうち、前記凹部が設けられた側にのみ設けられている請求項4に記載のリアクトル。
PCT/JP2019/046466 2018-11-29 2019-11-27 リアクトル WO2020111160A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980074009.8A CN112970080B (zh) 2018-11-29 2019-11-27 电抗器
US17/295,651 US12009130B2 (en) 2018-11-29 2019-11-27 Reactor
JP2020557806A JP7042400B2 (ja) 2018-11-29 2019-11-27 リアクトル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-224282 2018-11-29
JP2018224282 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020111160A1 true WO2020111160A1 (ja) 2020-06-04

Family

ID=70853831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046466 WO2020111160A1 (ja) 2018-11-29 2019-11-27 リアクトル

Country Status (4)

Country Link
US (1) US12009130B2 (ja)
JP (1) JP7042400B2 (ja)
CN (1) CN112970080B (ja)
WO (1) WO2020111160A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045112A (ja) * 2008-08-11 2010-02-25 Sumitomo Electric Ind Ltd リアクトル
JP2013243211A (ja) * 2012-05-18 2013-12-05 Toyota Motor Corp リアクトル、および、その製造方法
JP2018182173A (ja) * 2017-04-18 2018-11-15 株式会社オートネットワーク技術研究所 リアクトル

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112692A (ja) * 1997-06-11 1999-01-06 Toshiba Corp 制御棒・燃料支持金具つかみ具
JP4176083B2 (ja) * 2005-01-31 2008-11-05 Tdk株式会社 コイル部品
CN101622761A (zh) * 2007-03-01 2010-01-06 美商·帕斯脉冲工程有限公司 连接器阻止装置和方法
CN101271760B (zh) * 2007-03-21 2012-06-20 富士康(昆山)电脑接插件有限公司 电子元件及其制造方法
WO2010110007A1 (ja) * 2009-03-25 2010-09-30 住友電気工業株式会社 リアクトル
JP5465151B2 (ja) * 2010-04-23 2014-04-09 住友電装株式会社 リアクトル
WO2014010554A1 (ja) * 2012-07-10 2014-01-16 東レ株式会社 エレメントユニット、分離膜モジュール、分離膜エレメントの着脱方法
JP6288513B2 (ja) * 2013-12-26 2018-03-07 株式会社オートネットワーク技術研究所 リアクトル
JP6274511B2 (ja) * 2014-01-06 2018-02-07 株式会社西本合成販売 リアクトル用コイルボビン兼巻鉄心ホルダー及びリアクトル
JP6195229B2 (ja) * 2014-05-07 2017-09-13 株式会社オートネットワーク技術研究所 リアクトル
JP6292398B2 (ja) * 2014-05-07 2018-03-14 株式会社オートネットワーク技術研究所 リアクトル
JP6460393B2 (ja) * 2015-02-18 2019-01-30 株式会社オートネットワーク技術研究所 リアクトル
JP6095724B2 (ja) * 2015-06-03 2017-03-15 株式会社エス・エッチ・ティ コイル装置
JP6358565B2 (ja) 2015-07-24 2018-07-18 株式会社オートネットワーク技術研究所 リアクトル、およびリアクトルの製造方法
JP6508572B2 (ja) * 2015-09-11 2019-05-08 株式会社オートネットワーク技術研究所 リアクトル
JP6547646B2 (ja) * 2016-01-29 2019-07-24 株式会社オートネットワーク技術研究所 リアクトル、及びリアクトルの製造方法
JP6651879B2 (ja) * 2016-02-03 2020-02-19 株式会社オートネットワーク技術研究所 リアクトル
CN109074943B (zh) * 2016-04-19 2021-02-02 株式会社日立制作所 变压器
JP6683957B2 (ja) * 2017-03-07 2020-04-22 株式会社オートネットワーク技術研究所 リアクトル
TW201837934A (zh) * 2017-04-11 2018-10-16 日商阿爾普士電氣股份有限公司 耦合電感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045112A (ja) * 2008-08-11 2010-02-25 Sumitomo Electric Ind Ltd リアクトル
JP2013243211A (ja) * 2012-05-18 2013-12-05 Toyota Motor Corp リアクトル、および、その製造方法
JP2018182173A (ja) * 2017-04-18 2018-11-15 株式会社オートネットワーク技術研究所 リアクトル

Also Published As

Publication number Publication date
JP7042400B2 (ja) 2022-03-28
CN112970080B (zh) 2023-01-17
CN112970080A (zh) 2021-06-15
US20220005641A1 (en) 2022-01-06
JPWO2020111160A1 (ja) 2021-09-27
US12009130B2 (en) 2024-06-11

Similar Documents

Publication Publication Date Title
US10665386B2 (en) Reactor and reactor manufacturing method
CN102714091A (zh) 电抗器
WO2020145276A1 (ja) リアクトル
WO2020241325A1 (ja) リアクトル
WO2015178208A1 (ja) リアクトル
JP7202544B2 (ja) リアクトル
WO2020111160A1 (ja) リアクトル
CN111344822B (zh) 电抗器
CN111316389B (zh) 电抗器
JP7042399B2 (ja) リアクトル
CN111788646B (zh) 电抗器
JP7022344B2 (ja) リアクトル
JP2019153772A (ja) リアクトル
JP7320181B2 (ja) リアクトル
WO2020105469A1 (ja) リアクトル
WO2020100658A1 (ja) リアクトル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557806

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890818

Country of ref document: EP

Kind code of ref document: A1