WO2017017814A1 - 熱交換器及び冷凍サイクル装置 - Google Patents

熱交換器及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2017017814A1
WO2017017814A1 PCT/JP2015/071535 JP2015071535W WO2017017814A1 WO 2017017814 A1 WO2017017814 A1 WO 2017017814A1 JP 2015071535 W JP2015071535 W JP 2015071535W WO 2017017814 A1 WO2017017814 A1 WO 2017017814A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
flat surface
flat
water guide
projecting
Prior art date
Application number
PCT/JP2015/071535
Other languages
English (en)
French (fr)
Inventor
翼 丹田
加藤 央平
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/071535 priority Critical patent/WO2017017814A1/ja
Priority to EP15899647.0A priority patent/EP3330637B1/en
Priority to JP2017530544A priority patent/JP6463479B2/ja
Priority to US15/572,626 priority patent/US10801791B2/en
Priority to CN201580081822.XA priority patent/CN107850358B/zh
Publication of WO2017017814A1 publication Critical patent/WO2017017814A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/002Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using inserts or attachments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/14Safety or protection arrangements; Arrangements for preventing malfunction for preventing damage by freezing, e.g. for accommodating volume expansion

Definitions

  • the present invention relates to a fin tube type heat exchanger using a flat tube, and a refrigeration cycle apparatus using the heat exchanger.
  • Patent Document 1 As a conventional fin tube type heat exchanger, for example, as in Patent Document 1, a water guide piece formed by cutting and raising a side plate is provided to remove water droplets generated in a connecting pipe of a heat transfer pipe. It has been.
  • Patent Document 1 water droplets may bridge between the heat transfer tube and the water guide piece, and the bridged water droplets may freeze to form ice blocks.
  • the heat transfer tube of Patent Document 1 is a flat tube
  • water tends to stay on the flat surface of the flat tube due to surface tension, and thus the possibility of water droplets bridging increases. Therefore, in patent document 1, since there exists a possibility that a heat exchanger tube may be damaged with the formed ice block, there existed a subject that the safety
  • the water guide piece was formed by cutting and raising a side plate, there existed a subject that a manufacturing method was complicated.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat exchanger and a refrigeration cycle apparatus that avoid the water droplet bridging phenomenon between flat tubes and that can be easily manufactured.
  • the heat exchanger according to the present invention includes at least a plurality of plate-like fins arranged in parallel at intervals, a plurality of flat tubes inserted into the plate-like fins, and the plate-like fins arranged at both ends. It is arrange
  • the refrigeration cycle apparatus includes the above-described heat exchanger.
  • the water guide member is disposed between the flat tubes so as to be in contact with the flat surface of the protruding flat tube, it is possible to avoid a bridging phenomenon caused by water droplets, and heat exchange is easy to manufacture. And a refrigeration cycle apparatus can be provided.
  • FIG. 6 is a schematic cross-sectional view taken along the line XX in FIG. 5. It is the perspective view which showed a part of structure of the heat exchanger 1 which concerns on Embodiment 2 of this invention roughly.
  • FIG. 1 is a perspective view schematically showing a part of the structure of the heat exchanger 1 according to the first embodiment.
  • the white block arrows in FIG. 1 indicate the flow direction of air flowing from the front surface to the back surface.
  • the heat exchanger 1 according to the first embodiment includes a plurality of flat fins 2 and a plurality of flattened cross-sectional tubes that intersect the plurality of plate-like fins 2. It is a fin tube type heat exchanger provided with a tube 3.
  • the heat exchanger 1 performs heat exchange between the air flowing along the plurality of plate-like fins 2 and the refrigerant flowing inside the plurality of flat tubes 3.
  • the plate-like fin 2 has a pair of plate-like surfaces 21 and a peripheral edge portion 22 located between each side of the pair of plate-like surfaces 21.
  • the plurality of plate-like fins 2 are arranged in parallel with a pair of plate-like surfaces 21 at intervals.
  • the plurality of plate-like fins 2 arranged in parallel serve as a heat exchange unit 10 that causes air to flow along the plate-like surface 21 and exchanges heat with the refrigerant flowing through the flat tube 3.
  • the plate-like surface 21 of the plate-like fin 2 may be provided with a heat transfer promoting portion in which peaks and valleys are alternately arranged to promote heat transfer in the plate-like fin 2. Can be made.
  • the flat tube 3 is located between the flat surface 31 to be paired, the pair of bent surfaces 32 having a semicircular cross-section of the tube, and the flat surface 31 to be paired, that is, inside the flat tube 3, and forms a flat plate that forms a pair.
  • one or more refrigerant channels 33 extending in the longitudinal direction of the surface 31.
  • the one or more refrigerant flow paths 33 are not shown in FIG. 1, but are shown in FIG.
  • the plurality of flat tubes 3 have a pair of flat surfaces 31 arranged in parallel at intervals.
  • the flat tube 3 is configured so as to intersect with the plurality of plate-like fins 2 by being inserted in a direction perpendicular to the plate-like surfaces 21 and the peripheral edge portions 22 of the plurality of plate-like fins 2, for example.
  • FIG. 1 illustrates a U-shaped flat tube 3 in which the flat tube 3 is bent into a hairpin shape. By making the flat tube 3 into a U-shaped refrigerant pipe, the flat tube 3 can be straddled in the step direction, for example, the vertical direction in FIG.
  • end portions in the longitudinal direction of the pair of flat surfaces 31 are protruded outward from at least one of the heat exchanging portions 10, that is, at least one of the plate-like fins 2 disposed at both ends.
  • a plurality of projecting flat surfaces 34 facing each other are provided. That is, the plurality of projecting flat surfaces 34 constitute a part of the flat surface 31.
  • the heat exchanger 1 is arranged in the space 4 between the projecting flat surfaces 34, and a plurality of water guiding members 5 whose both ends on the side of the projecting flat surfaces 34 are in contact with the projecting flat surfaces 34. It has.
  • a cylindrical water guide member 5 in which ends of upper and lower cylindrical surfaces are in contact with the projecting flat surface 34 is illustrated. Below, arrangement
  • FIG. 2 is an example of a schematic front view of a part of the structure of the heat exchanger 1 according to the first embodiment as viewed from the windward side in the air flow direction.
  • the heat exchanger 1 provided with the U-shaped flat tube 3 is illustrated similarly to FIG.
  • the projecting flat surface 34 of the U-shaped flat tube 3 includes a first projecting flat surface 34a located on the upper outer side, a second projecting flat surface 34b located on the upper inner side, and a third projecting flat surface 34b located on the lower inner side. It has a protruding flat surface 34c and a fourth protruding flat surface 34d located on the lower outer side.
  • the cylindrical water guide members 5 shown at the uppermost part and the lowermost part are provided with a cylindrical water guide in the first space 4 a between the second projecting flat surface 34 b and the third projecting flat surface 34 c.
  • the cylindrical surface of the member 5 is disposed so as to contact the second projecting flat surface 34b and the third projecting flat surface 34c.
  • the cylindrical water guide member 5 shown in the intermediate portion has a cylindrical surface of the cylindrical water guide member 5 in the second space 4b between the fourth projecting flat surface 34d and the first projecting flat surface 34a. It arrange
  • the first space 4a and the second space 4b in FIG. 2 are examples of the space 4 shown in FIG.
  • FIG. 2 a U-shaped refrigerant pipe is illustrated as an example of the flat tube 3, but a linear refrigerant pipe may be used, for example.
  • the heat exchanger 1 can be configured such that the flat tube 3 is a straight refrigerant pipe and the water guide member 5 is disposed between the projecting flat surfaces 34 of the flat tube 3.
  • FIG. 3 shows the configuration of the heat exchanger 1 when the flat tube 3 is a straight refrigerant pipe.
  • FIG. 3 is another example of a schematic front view of a part of the structure of the heat exchanger 1 according to Embodiment 1 as viewed from the windward side in the air flow direction.
  • the end of the flat tube 3 is connected to the header tube 6.
  • the projecting flat surface 34 of the flat tube 3 has a fifth projecting flat surface 34e positioned above and a sixth projecting flat surface 34f positioned below.
  • the cylindrical surface of the cylindrical water guide member 5 is the fifth protruding flat in the third space 4c between the fifth protruding flat surface 34e and the sixth protruding flat surface 34f. It can arrange
  • the third space 4c in FIG. 3 is an example of the space 4 shown in FIG.
  • the shape of the water guide member 5 may be a shape in which the end portions on both sides of the water guide member 5 on the side of the projecting flat surface 34 are in contact with the projecting flat surface 34.
  • the shape of the water guide member 5 can be a spherical shape, a cylindrical shape, a polygonal column shape, a polyhedral shape, or the like.
  • the ends of both sides of the water guide member 5 on the side of the projecting flat surface 34 have a shape in which the water guide member 5 is in contact with the projecting flat surface 34, thereby avoiding water droplet bridging between the projecting flat surfaces 34. Therefore, the drainage effect can be improved.
  • the material of the water guide member 5 can be a metal material with high thermal conductivity such as aluminum or aluminum alloy, or a resin material such as plastic.
  • the metal material of the water guide member 5 is the same as the material of the flat tube 3 or the flat tube 3 in order to prevent corrosion caused by contact of different metals, so-called electric corrosion. It is selected from metal materials that have a small potential difference from the material.
  • connection part of the plate-shaped fin 2 and the flat tube 3, and the contact part of the flat tube 3 and the water guide member 5 are joined by the brazing process, for example.
  • the material of the flat tube 3 is aluminum
  • the drainage effect is improved by forming the water guide member 5 using an aluminum clad material and integrating the flat tube 3 and the water guide member 5 by brazing. be able to.
  • methods other than brazing processing may be used, for example, the said connection part and The contact portion may be joined by welding or adhesion.
  • FIG. 4 is a refrigerant circuit diagram schematically showing an air conditioner 100 which is an example of a refrigeration cycle apparatus according to Embodiment 1, that is, a heat pump apparatus.
  • the air conditioner 100 includes a compressor 110, a refrigerant flow switching device 120, a heat source side heat exchanger 130, a decompression device 140, and a load side heat exchanger 150 that are annularly arranged via a refrigerant pipe. It has a connected configuration.
  • the heat exchanger 1 according to Embodiment 1 is used in at least one of the heat source side heat exchanger 130 or the load side heat exchanger 150. Below, the case where the heat exchanger 1 is used for the heat source side heat exchanger 130 is demonstrated.
  • the air conditioner 100 includes a heat source side blower fan 160 that blows outdoor air to the heat source side heat exchanger 130.
  • the air conditioner 100 may include a gas-liquid separator, a receiver, an accumulator, and the like in addition to the components shown in FIG. Further, when the air conditioner 100 is exclusively used for cooling or heating, the refrigerant flow switching device 120 may be omitted.
  • Compressor 110 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant.
  • the refrigerant flow switching device 120 switches the flow direction of the refrigerant in the refrigeration cycle between the cooling operation and the heating operation.
  • a four-way valve is used.
  • the heat source side heat exchanger 130 is a heat exchanger that functions as an evaporator during heating operation and functions as a condenser during cooling operation.
  • heat exchange is performed between the refrigerant circulating inside and the outdoor air blown by the heat source side blower fan 160.
  • the evaporator may be referred to as a cooler
  • the condenser may be referred to as a radiator.
  • the decompression device 140 decompresses the high-pressure refrigerant into a low-pressure refrigerant.
  • a linear electronic expansion valve LEV capable of adjusting the opening degree is used.
  • the load side heat exchanger 150 is a heat exchanger that functions as a condenser during heating operation and functions as an evaporator during cooling operation.
  • heat exchange between the refrigerant circulating in the interior and the room air is performed.
  • the indoor air is blown to the load-side heat exchanger 150 by, for example, a load-side blower fan.
  • heating operation refers to an operation for supplying high-temperature and high-pressure refrigerant to the load-side heat exchanger 150
  • cooling operation refers to supplying low-temperature and low-pressure refrigerant to the load-side heat exchanger 150. It refers to driving.
  • the refrigerant flow during the heating operation is indicated by solid arrows
  • the refrigerant flow during the cooling operation is indicated by dashed arrows.
  • FIG. 5 is a schematic diagram illustrating an example of a draining operation in the heat exchanger 1 according to the first embodiment.
  • condensed water that is, condensed water is generated on the surface of the heat source side heat exchanger 130 that functions as an evaporator, that is, the heat exchanger 1.
  • the condensed water is drained by gravity using the plate-like fins 2 as the water guide path.
  • the water guide member 5 is disposed in a direction away from the heat exchange unit 10, that is, the plate-like fin 2, with respect to the center position of the projecting flat surface 34 in the projecting direction of the flat tube 3, that is, the longitudinal direction of the projecting flat surface 34. By doing so, drainage of condensed water can be promoted.
  • the intersection of the heat exchange unit 10 and the protruding flat surface 34 in the longitudinal direction of the protruding flat surface 34 is set as the reference point 0.
  • the length of the protruding portion of the flat tube 3 is L
  • the radius of the first arcuate surface 35a is R.
  • the projecting flat surface 34 is exposed to outside air of 0 ° C. or lower, or even when a refrigerant of 0 ° C. or lower is present inside the flat tube 3, drainage is performed by the water guide member 5.
  • formation of ice blocks due to condensed water can be avoided. Therefore, it is possible to avoid the possibility of breaking the flat tube 3 due to the formation of ice blocks by condensed water and causing the fluid inside the flat tube 3 to leak out.
  • the frequency of operation for defrosting can be reduced by promoting drainage of condensed water, the energy consumption of the entire air conditioner 100 can be reduced.
  • FIG. 6 is a schematic cross-sectional view taken along the line XX in FIG.
  • the cross-sectional width in the short direction of the projecting flat surface 34 is represented as S
  • the radius of the bent surface 32 is represented as r.
  • the angle between the cross section of the third projecting flat surface 34c and the line segment connecting the second projecting flat surface 34b and the third projecting flat surface 34c in the cross section of the water guide member 5 is expressed as ⁇ . Yes.
  • the draining operation of water droplets that reach the second projecting flat surface 34 b from the first projecting flat surface 34 a through the bent surface 32 will be considered.
  • the water droplets reaching the second projecting flat surface 34b are drained more quickly as the distance until the water guide member 5 is touched is shorter. Therefore, when the cross-sectional width of the contact portion of the water guide member 5 in the short direction of the second projecting flat surface 34b is Y, the cross-sectional width Y of the contact portion of the water guide member 5 is the same as the cross-sectional width S of the projecting flat surface 34. By doing so, drainage of condensed water can be promoted.
  • the width H of the water guide member 5 in the pitch width direction of the flat tube 3 is configured to be the same as the width between the second projecting flat surface 34b and the third projecting flat surface 34c. Further, by configuring the angle ⁇ to be 90 degrees, the condensed water quickly travels along the bent surface 32 and reaches the fourth projecting flat surface 34d, and therefore, the drainage of the condensed water can be promoted. That is, by making the cross-sectional area of the water guide member 5 rectangular and making the cross-sectional width Y of the contact portion of the water guide member 5 the same as the cross-sectional width S of the projecting flat surface 34, drainage of condensed water can be further promoted.
  • the heat exchanger 1 includes a plurality of plate-like fins 2 arranged in parallel at intervals, and a plurality of flat tubes 3 inserted into the plate-like fins 2.
  • the water guide member 5 is disposed between the flat tubes 3 protruding from at least one of the plate-like fins 2 disposed at both ends, and both end portions on the flat tube 3 side are in contact with the flat surface 31 of the flat tube 3. Is provided.
  • the air conditioner 100 of the first embodiment includes the heat exchanger 1 described above.
  • the water guide member 5 is disposed between the flat tubes 3 so as to be in contact with the protruding flat surface 34, a bridge phenomenon due to water droplets between the protruding flat surfaces 34 is avoided. Thus, drainage of water droplets adhering to the projecting flat surface 34 is promoted. Moreover, since it comprises by arrange
  • the protruding portion of the flat tube 3 is bent into a U shape.
  • the header portion connected to the end of the U-shaped refrigerant pipe can be arranged in the same direction, and the heat exchanger 1 can be downsized.
  • the water guide member 5 can be arranged in a direction away from the plate-like fin 2 with respect to the center position of the protruding flat surface 34 in the longitudinal direction of the protruding flat surface 34. . Further, the cross-sectional width of the contact portion of the water guide member 5 in the short direction of the projecting flat surface 34 can be the same as the cross-sectional width of the projecting flat surface 34 in the short direction. According to this configuration, drainage of condensed water can be further promoted.
  • the water guide member 5 can be a member having a cylindrical shape, a polygonal column shape, or a polyhedral shape.
  • the water guide member 5 may be a spherical member.
  • the water guiding member 5 can be a member made of the same material as the flat tube 3 or a resin member. Since the water guide member 5 can be formed in various shapes using various materials, it can be easily manufactured.
  • FIG. 7 is a perspective view schematically showing a part of the structure of the heat exchanger 1 according to the second embodiment.
  • the heat exchanger 1 according to Embodiment 2 is a modification of the heat exchanger 1 according to Embodiment 1 described above.
  • each of the water guide members 5 is fixed to the support member 8.
  • description is abbreviate
  • the support member 8 may be any member that can fix the water guide member 5.
  • the support member 8 can be a rectangular plate member.
  • the support member 8 can be a member made of the same material as the water guide member 5 or a resin member.
  • each of the water guide members 5 by fixing each of the water guide members 5 to the support member 8, all of the water guide members 5 can be attached to the heat exchanger 1 at a time, so that the water guide member 5 can be easily attached to the heat exchanger. 1 is attached. Moreover, the strength of the projecting flat surface 34 can be improved by attaching each of the water guide members 5 to the support member 8. That is, the water guide member 5 also functions as a reinforcing member.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
  • the air conditioner 100 is exemplified as the refrigeration cycle apparatus, but the present invention is also applicable to refrigeration cycle apparatuses other than the air conditioner 100, such as a water heater.
  • a plurality of water guiding members 5 may be provided in the same space 4.
  • the water guide member 5 disposed in the lower flat tube 3 may be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

扁平管の間における水滴のブリッジ現象を回避し、かつ、製造が容易な熱交換器を提供するものであり、熱交換器は、間隔を置いて並列に配置された複数の板状フィンと、板状フィンに挿入された複数の扁平管と、両端に配置された板状フィンの少なくとも一方から突出する扁平管の間に配置され、扁平管の側の両方の端部が扁平管の扁平面に接触する導水部材とを備える。

Description

熱交換器及び冷凍サイクル装置
 本発明は、扁平管を用いたフィンチューブ型の熱交換器、及び当該熱交換器を用いた冷凍サイクル装置に関する。
 従来のフィンチューブ型の熱交換器としては、例えば、特許文献1のように、側板を切り起こして形成した導水片を設けることにより、伝熱管の連結管に発生する水滴を除去するものが知られている。
特開平10-62085号公報
 しかしながら、特許文献1では、伝熱管と導水片との間に水滴がブリッジし、ブリッジした水滴が凍結して氷塊を形成する場合がある。特に、特許文献1の伝熱管を扁平管とした場合、表面張力により扁平管の扁平面に水が滞留しやすくなるため、水滴がブリッジする可能性が高くなる。したがって、特許文献1では、形成された氷塊により伝熱管が損傷する可能性があるため、冷凍サイクル装置の安全性が確保できないという課題があった。また、特許文献1では、側板を切り起こすことにより導水片を形成するため、製造方法が煩雑であるという課題があった。
 本発明は、上述の課題を解決するためになされたものであり、扁平管の間における水滴のブリッジ現象を回避し、かつ、製造が容易な熱交換器及び冷凍サイクル装置を提供することを目的とする。
 本発明に係る熱交換器は、間隔を置いて並列に配置された複数の板状フィンと、前記板状フィンに挿入された複数の扁平管と、両端に配置された前記板状フィンの少なくとも一方から突出する前記扁平管の間に配置され、前記扁平管の側の両方の端部が前記扁平管の扁平面に接触する導水部材とを備える。
 また、本発明に係る冷凍サイクル装置は、上述の熱交換器を備える。
 本発明によれば、導水部材が突出した扁平管の扁平面と接触するように扁平管の間に配置されるため、水滴によるブリッジ現象を回避することができ、かつ、製造が容易な熱交換器及び冷凍サイクル装置を提供することができる。
本発明の実施の形態1に係る熱交換器1の構造の一部を概略的に示した斜視図である。 本発明の実施の形態1に係る熱交換器1の構造の一部を空気の流動方向の風上側から見た概略的な正面図の一例である。 本発明の実施の形態1に係る熱交換器1の構造の一部を空気の流動方向の風上側から見た概略的な正面図の他の一例である。 本発明の実施の形態1に係る空気調和機100の一例を概略的に示す冷媒回路図である。 本発明の実施の形態1に係る熱交換器1における排水動作の一例を示した概略図である。 図5のX-Xにおける概略的な矢視断面図である。 本発明の実施の形態2に係る熱交換器1の構造の一部を概略的に示した斜視図である。
実施の形態1.
 本発明の実施の形態1に係る熱交換器1の構造について説明する。図1は、本実施の形態1に係る熱交換器1の構造の一部を概略的に示した斜面図である。図1における白抜きのブロック矢印は、紙面の表面から裏面方向に流れる空気の流動方向を示している。図1に示すように、本実施の形態1に係る熱交換器1は、複数の板状フィン2と、複数の板状フィン2と交差する、管の断面形状が扁平状である複数の扁平管3とを備えるフィンチューブ型熱交換器である。熱交換器1は、複数の板状フィン2に沿って流動する空気と、複数の扁平管3の内部を流れる冷媒との間で熱交換を行うものである。
 なお、図1を含む以下の図面では、各構成部材の寸法の関係及び形状は、実際のものとは異なる場合がある。また、以下の図面では、同一の又は類似する部材又は部分には、同一の符号を付すか、又は符号を付すことを省略している。また、以下の説明における各構成部材同士の、例えば上下関係等の位置関係は、原則として、本実施の形態1を含む以下の実施の形態の熱交換器1を使用可能な状態に設置したときのものである。
 板状フィン2は、一対の板状面21と、一対の板状面21の各辺の間に位置する周縁部22とを有している。熱交換器1においては、複数の板状フィン2は、一対の板状面21が間隔を置いて並列に配置されている。並列に配置された複数の板状フィン2は、板状面21に沿って空気を流動させ、扁平管3を流れる冷媒との間で熱交換を行う熱交換部10となる。また、図示しないが、板状フィン2の板状面21には、山部と谷部が交互に並んで形成される伝熱促進部を設けてもよく、板状フィン2における伝熱を促進させることができる。
 扁平管3は、対となる扁平面31と、管断面が半円形状の一対の屈曲面32と、対となる扁平面31の間、すなわち扁平管3の内部に位置し、対となる扁平面31の長手方向に延在する1つ以上の冷媒流路33とを有している。1つ以上の冷媒流路33は、図1には図示していないが、後述する図6に図示しているので参照されたい。熱交換器1においては、複数の扁平管3は、一対の扁平面31が間隔を置いて並列に配置されている。扁平管3は、例えば複数の板状フィン2の板状面21及び周縁部22に直交する方向にかち込み挿入されることで、複数の板状フィン2と交差するように構成される。図1では、扁平管3をヘアピン形状に折り曲げたU字形状の扁平管3が例示されている。扁平管3をU字形状の冷媒配管とすることにより、扁平管3を段方向、例えば図1では上下方向に管を跨がせることができる。
 扁平管3には、一対の扁平面31の長手方向の端部を熱交換部10の少なくとも一方、すなわち両端に配置された板状フィン2の少なくとも一方から外側に突出させ、空間4を介して向かい合う複数の突出扁平面34が設けられている。すなわち、複数の突出扁平面34は扁平面31の一部を構成するものである。
 本実施の形態1に係る熱交換器1は、突出扁平面34の間の空間4に配置され、突出扁平面34の側の両方の端部が突出扁平面34に接触する複数の導水部材5を備えている。図1では、上下の円柱面の端部が突出扁平面34に接触する円柱形状の導水部材5が例示されている。以下では、図1に記載の円柱形状の導水部材5の配置について図2を用いて説明する。
 図2は、本実施の形態1に係る熱交換器1の構造の一部を空気の流動方向の風上側から見た概略的な正面図の一例である。図2では、図1と同様にU字形状の扁平管3を備える熱交換器1を例示している。U字形状の扁平管3の突出扁平面34は、上方外側に位置する第1の突出扁平面34aと、上方内側に位置する第2の突出扁平面34bと、下方内側に位置する第3の突出扁平面34cと、下方外側に位置する第4の突出扁平面34dとを有している。
 図2においては、最上部及び最下部に示す円柱形状の導水部材5は、第2の突出扁平面34bと第3の突出扁平面34cとの間の第1の空間4aに、円柱形状の導水部材5の円柱面が第2の突出扁平面34bと第3の突出扁平面34cと接触するように配置されている。また、中間部に示す円柱形状の導水部材5は、第4の突出扁平面34dと第1の突出扁平面34aとの間の第2の空間4bに、円柱形状の導水部材5の円柱面が第4の突出扁平面34d及び第1の突出扁平面34aと接触するように配置されている。なお、図2における第1の空間4a及び第2の空間4bは、図1で示した空間4の一例である。
 図2では、扁平管3の一例としてU字形状の冷媒配管を例示したが、例えば、直線形状の冷媒配管としてもよい。熱交換器1は、扁平管3を直線形状の冷媒配管とし、導水部材5を扁平管3の突出扁平面34の間に配置するように構成することができる。扁平管3を直線形状の冷媒配管とした場合の熱交換器1の構成を図3に示す。
 図3は、本実施の形態1に係る熱交換器1の構造の一部を空気の流動方向の風上側から見た概略的な正面図の別の一例である。図3では、扁平管3の端部はヘッダ管6に連結された構造となっている。扁平管3の突出扁平面34は、上方に位置する第5の突出扁平面34eと、下方に位置する第6の突出扁平面34fとを有している。
 図3の熱交換器1においても第5の突出扁平面34eと第6の突出扁平面34fとの間の第3の空間4cに、円柱形状の導水部材5の円柱面が第5の突出扁平面34e及び第6の突出扁平面34fと接触するように配置できる。なお、図3における第3の空間4cは、図1で示した空間4の一例である。
 導水部材5の形状は、突出扁平面34の側の導水部材5の両側の端部が、突出扁平面34と接触する形状であればよい。例えば、導水部材5の形状は、球状、円柱形状、多角柱形状、多面体形状等にできる。突出扁平面34の側の導水部材5の両側の端部が導水部材5は、突出扁平面34と接触する形状とすることにより、突出扁平面34の間における水滴のブリッジを回避することができるため、排水効果を向上させることができる。
 また、導水部材5の材質は、アルミニウム又はアルミニウム合金等の熱伝導性の高い金属材料、またはプラスチック等の樹脂材料とすることができる。なお、導水部材5として金属材料を用いる場合は、異種金属の接触による腐食、いわゆる電食を防ぐため、導水部材5の金属材料は、扁平管3の材質と同一の金属材料、又は扁平管3の材質との電位差が小さくなる金属材料から選択される。
 なお、板状フィン2と扁平管3との連結部、並びに扁平管3と導水部材5との接触部は、例えば、ロウ付け処理によって接合されている。例えば、扁平管3の材質がアルミニウムの場合、導水部材5をアルミのクラッド材を用いて構成し、扁平管3と導水部材5とをロウ付け処理で一体化することにより、排水効果を向上させることができる。なお、当該連結部及び接触部の接合方法としては、当該連結部及び接触部における熱伝導性を維持できる方法であれば、ロウ付け処理以外の方法を用いてもよい、例えば、当該連結部及び接触部は、溶接又は接着によって接合してもよい。
 次に、本実施の形態1に係る熱交換器1を用いた冷凍サイクル装置について図4を用いて説明する。図4は、本実施の形態1に係る冷凍サイクル装置、すなわちヒートポンプ装置の一例である空気調和機100を概略的に示す冷媒回路図である。
 図4に示すように、空気調和機100は、圧縮機110、冷媒流路切替装置120、熱源側熱交換器130、減圧装置140、及び負荷側熱交換器150が冷媒配管を介して環状に接続された構成を有している。本実施の形態1に係る熱交換器1は、熱源側熱交換器130又は負荷側熱交換器150の少なくとも一方に用いられている。以下では、熱交換器1は、熱源側熱交換器130に用いられた場合について説明する。また、空気調和機100は、熱源側熱交換器130に室外空気を送風する熱源側送風ファン160を有している。
 なお、図4では、冷房運転及び暖房運転の双方を行う空気調和機100として必要最小限の構成要素のみを示している。空気調和機100は、図4に示す構成要素の他に、気液分離器、レシーバ、アキュムレータ等を備えていてもよい。また、空気調和機100を冷房専用または暖房専用とする場合には、冷媒流路切替装置120を省略してもよい。
 圧縮機110は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する流体機械である。
 冷媒流路切替装置120は、冷房運転時と暖房運転時とで冷凍サイクル内の冷媒の流れ方向を切り替えるものであり、例えば四方弁等が用いられる。
 熱源側熱交換器130は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する熱交換器である。熱源側熱交換器130では、内部を流通する冷媒と、熱源側送風ファン160により送風される室外空気との間で熱交換が行われる。なお、空気調和機100においては、蒸発器は冷却器と称され、凝縮器は放熱器と称される場合がある。
 減圧装置140は、高圧冷媒を減圧して低圧冷媒とするものである。減圧装置140としては、例えば、開度を調節可能なリニア電子膨張弁(LEV)等が用いられる。
 負荷側熱交換器150は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する熱交換器である。負荷側熱交換器150では、例えば、内部を流通する冷媒と、室内空気との熱交換が行われる。図4では図示していないが、室内空気は、例えば負荷側送風ファンにより負荷側熱交換器150に送風される。
 ここで、「暖房運転」とは、負荷側熱交換器150に高温高圧の冷媒を供給する運転のことをいい、「冷房運転」とは、負荷側熱交換器150に低温低圧の冷媒を供給する運転のことをいう。図4では、暖房運転時における冷媒の流れを実線の矢印で示し、冷房運転時における冷媒の流れを破線の矢印で示している。
 次に、本実施の形態1の空気調和機100において、熱源側熱交換器130として本実施の形態1の熱交換器1を用いた場合における、暖房運転時の熱交換器1の排水動作について図5を用いて説明する。図5は、本実施の形態1に係る熱交換器1における排水動作の一例を示した概略図である。
 空気調和機100においては、暖房運転が長時間継続されたときには、蒸発器として機能する熱源側熱交換器130、すなわち熱交換器1の表面には、結露水すなわち凝縮水が発生する。熱交換器1の熱交換部10においては、凝縮水は、板状フィン2を導水経路として重力により排水される。
 一方、扁平管3の突出扁平面34が外気に露出している場合には、外気が露点温度まで冷却されると、扁平管3の突出扁平面34にも凝縮水の水滴が発生する。突出扁平面34は熱交換部10の外側、すなわち両端に配置された板状フィン2の外側に位置するため、突出扁平面34に生じた水滴は、板状フィン2を導水経路として排水されない場合がある。図5では、U字形状の扁平管3を2つ備える熱交換器1が図示されているが、以下では、紙面上側の扁平管3を用いて、第1の空間4aに導水部材5が配置されない場合の、凝縮水の排水動作について比較例として説明する。図5の紙面上側の扁平管3における矢印は、水滴の流れを示している。
 第1の突出扁平面34aに発生した凝縮水の水滴は、熱交換部10の近くで発生した場合には、板状フィン2を導水経路として重力により排水される。また、屈曲面32の近くで水滴が発生した場合には、重力により屈曲面32を伝って第2の突出扁平面34bに到達する。一方、U字形状の扁平管3の外側の円弧面である第1の円弧面35aの近くに発生した水滴は、重力により第1の円弧面35aを伝って、第4の突出扁平面34dに到達する。第4の突出扁平面34dの第1の円弧面35a側には排水経路がないため、水滴の表面張力により、凝縮水の滞留7aが発生しやすくなる。
 また、第2の突出扁平面34bに発生した凝縮水の水滴は、熱交換部10の近くで発生した場合には、板状フィン2を導水経路として重力により排水される。また、U字形状の扁平管3の内側の円弧面である第2の円弧面35bの近くに発生した水滴は、重力により第2の円弧面35bを伝って、第3の突出扁平面34cに到達する。一方、熱交換部10と第2の円弧面35bの立ち上がり位置との間に発生した水滴は、板状フィン2からも第2の円弧面35bからも排水されないため、水滴の表面張力により凝縮水の滞留7bが発生しやすくなる。よって、熱交換器1が、導水部材5を備えていない場合、凝縮水の一部が、水滴の表面張力等により突出扁平面34に滞留することとなる。
 したがって、導水部材5を、扁平管3の突出方向、すなわち突出扁平面34の長手方向において、突出扁平面34の中心位置を基準として、熱交換部10、すなわち板状フィン2から離れる方向に配置することにより、凝縮水の排水を促進することができる。例えば、突出扁平面34の長手方向における、熱交換部10と突出扁平面34の交差部分を基準点0とする。扁平管3の突出部分の長さをL、第1の円弧面35aの半径をRとする。突出扁平面34の長手方向における導水部材5の中心位置をXとした場合において、導水部材5の中心位置Xが式(1)を満たすように導水部材5を配置することにより、凝縮水の滞留を回避し、凝縮水の排水を促進することができる。
   (L-R)/2<X<L …(1)
 本実施の形態1では、突出扁平面34が0℃以下の外気に触れた場合、又は、扁平管3の内部に0℃以下の冷媒が存在する場合であっても、導水部材5により排水が促進されるため、凝縮水による氷塊の形成を回避できる。したがって、凝縮水による氷塊の形成による扁平管3を破壊し、扁平管3の内部の流体が外部へ漏出させる可能性を回避できる。また、凝縮水の排水を促進することにより、除霜のための運転頻度を少なくすることができるため、空気調和機100全体のエネルギー消費量を削減することができる。
 次に、第1の突出扁平面34a又は第3の突出扁平面34cから屈曲面32を伝って第2の突出扁平面34b又は第4の突出扁平面34dに到達する水滴の排水動作について図6を用いて説明する。図6は、図5のX-Xにおける概略的な矢視断面図である。図6では、突出扁平面34の短手方向における断面幅をS、屈曲面32の半径をrとして表記している。また、第3の突出扁平面34cの断面と、導水部材5の断面における第2の突出扁平面34bと第3の突出扁平面34cとを結ぶ線分との間の角度をθとして表記している。
 図6では、第1の突出扁平面34aから屈曲面32を伝って第2の突出扁平面34bに到達する水滴の排水動作について考える。第2の突出扁平面34bに到達する水滴は、導水部材5に触れるまでの距離が短いほど、迅速に水滴が排水される。したがって、第2の突出扁平面34bの短手方向における導水部材5の接触部位の断面幅をYとした場合、導水部材5の接触部位の断面幅Yを突出扁平面34の断面幅Sと同一にすることによって、凝縮水の排水を促進することができる。また、扁平管3のピッチ幅方向における導水部材5の幅Hは、第2の突出扁平面34bと第3の突出扁平面34cとの間の幅と同一となるように構成されている。また、角度θは90度となるように構成することにより、凝縮水が迅速に屈曲面32を伝って第4の突出扁平面34dに到達するため、凝縮水の排水を促進することができる。すなわち、導水部材5の断面積を長方形とし、導水部材5の接触部位の断面幅Yを突出扁平面34の断面幅Sと同一にすることにより、凝縮水の排水をより促進することができる。
 以上に説明したように、本実施の形態1の熱交換器1は、間隔を置いて並列に配置された複数の板状フィン2と、板状フィン2に挿入された複数の扁平管3と、両端に配置された板状フィン2の少なくとも一方から突出する扁平管3の間に配置され、扁平管3の側の両方の端部が扁平管3の扁平面31に接触する導水部材5とを備える。
 また、本実施の形態1の空気調和機100は、上述の熱交換器1を備える。
 本実施の形態1の構成によれば、導水部材5が突出扁平面34と接触するように扁平管3の間に配置されるため、突出扁平面34の間における水滴によるブリッジ現象を回避することができ、突出扁平面34に付着した水滴の排水が促進される。また、複数の導水部材5を突出した扁平管3の間に配置することによって構成されるため、製造方法が簡易である。したがって、本実施の形態1の構成によれば、水滴によるブリッジ現象を回避することができ、かつ、製造が容易な熱交換器1及び空気調和機100を提供することができる。
 また、本実施の形態1の熱交換器1においては、扁平管3の突出部は、U字形状に折り曲げられている。扁平管3をU字形状の冷媒配管とすることにより、U字形状の冷媒配管の末端に連結されるヘッダ部を同一の方向に配置でき、熱交換器1の小型化を図ることができる。
 また、本実施の形態1の熱交換器1においては、導水部材5は、突出扁平面34の長手方向において、突出扁平面34の中心位置を基準として、板状フィン2から離れる方向に配置できる。また、突出扁平面34の短手方向における導水部材5の接触部位の断面幅は、突出扁平面34の短手方向における断面幅と同一にすることができる。この構成によれば、凝縮水の排水を更に促進することができる。
 また、本実施の形態1の熱交換器1においては、導水部材5は、円柱状、多角柱形状、又は多面体形状の部材にできる。また、導水部材5は、球状の部材としてもよい。また、導水部材5は、扁平管3と同一の材質の部材、又は樹脂製の部材にできる。導水部材5は、多様な材質で多様な形状に構成できるため、製造を容易にすることができる。
実施の形態2.
 本発明の実施の形態2に係る熱交換器1の構造について説明する。図7は、本実施の形態2に係る熱交換器1の構造の一部を概略的に示した斜視図である。本実施の形態2に係る熱交換器1は、上述の実施の形態1に係る熱交換器1の一変形例である。
 本実施の形態2に係る熱交換器1においては、導水部材5の各々は、支持部材8に固定された構成となっている。その他の熱交換器1の構造については、上述の実施の形態1に係る熱交換器1のものと同一であるため、説明を省略する。
 支持部材8は、導水部材5を固定できるものであればよい。例えば、支持部材8は、長方形の板状部材とすることができる。また、支持部材8は、導水部材5と同一の材質の部材、又は樹脂製の部材にできる。また、突出扁平面34の長手方向に、支持部材8の幅を広げることによって、風除部材として用いてもよい。
 本実施の形態2では、導水部材5の各々を支持部材8に固定することにより、導水部材5の全てを一度に熱交換器1に取り付けることができるため、簡易に導水部材5を熱交換器1に取り付けられる。また、導水部材5の各々を支持部材8に取り付けることにより、突出扁平面34の強度を向上させることができる。つまり、導水部材5が補強部材としても機能することになる。
その他の実施の形態.
 本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱しない範囲において種々の変形が可能である。例えば、上述の実施の形態では、冷凍サイクル装置として空気調和機100を例に挙げたが、本発明は、空気調和機100以外の冷凍サイクル装置、例えば給湯器等にも適用可能である。
 また、導水部材5は、同一の空間4に複数個設けるように構成してもよい。例えば、熱交換器1においては、下方に向かうほど排水量が多くなるため、下方の扁平管3に配置する導水部材5を多くするように構成してもよい。
 また、上記の各実施の形態は、互いに組み合わせて実施することが可能である。
 1 熱交換器、2 板状フィン、3 扁平管、4 空間、4a 第1の空間、4b 第2の空間、4c 第3の空間、5 導水部材、6 ヘッダ管、7a、7b 滞留、8 支持部材、10 熱交換部、21 板状面、22 周縁部、31 扁平面、32 屈曲面、33 冷媒流路、34 突出扁平面、34a 第1の突出扁平面、34b 第2の突出扁平面、34c 第3の突出扁平面、34d 第4の突出扁平面、34e 第5の突出扁平面、34f 第6の突出扁平面、35a 第1の円弧面、35b 第2の円弧面、100 空気調和機、110 圧縮機、120 冷媒流路切替装置、130 熱源側熱交換器、140 減圧装置、150 負荷側熱交換器、160 熱源側送風ファン。

Claims (9)

  1.  間隔を置いて並列に配置された複数の板状フィンと、
     前記板状フィンに挿入された複数の扁平管と、
     両端に配置された前記板状フィンの少なくとも一方から突出する前記扁平管の間に配置され、前記扁平管の側の両方の端部が前記扁平管の扁平面に接触する導水部材と
    を備える
    熱交換器。
  2.  前記扁平管の突出部は、U字形状に折り曲げられている
    請求項1に記載の熱交換器。
  3.  前記導水部材は、突出した前記扁平面の長手方向において、前記扁平面の中心位置を基準として、前記板状フィンから離れる方向に配置される
    請求項1又は2に記載の熱交換器。
  4.  突出した前記扁平面の短手方向における前記導水部材の接触部位の断面幅は、突出した前記扁平面の短手方向における断面幅と同一である
    請求項1~3のいずれか1項に記載の熱交換器。
  5.  前記導水部材は、円柱状、多角柱形状、又は多面体形状の部材である
    請求項1~4のいずれか1項に記載の熱交換器。
  6.  前記導水部材は、球状の部材である
    請求項1~3のいずれか1項に記載の熱交換器。
  7.  前記導水部材の各々は、支持部材に固定されている
    請求項1~6のいずれか1項に記載の熱交換器。
  8.  前記導水部材は、前記扁平管と同一の材質の部材、又は樹脂製の部材である
    請求項1~7のいずれか1項に記載の熱交換器。
  9.  請求項1~8のいずれか1項に記載の熱交換器を備える冷凍サイクル装置。
PCT/JP2015/071535 2015-07-29 2015-07-29 熱交換器及び冷凍サイクル装置 WO2017017814A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2015/071535 WO2017017814A1 (ja) 2015-07-29 2015-07-29 熱交換器及び冷凍サイクル装置
EP15899647.0A EP3330637B1 (en) 2015-07-29 2015-07-29 Heat exchanger and refrigeration cycle apparatus
JP2017530544A JP6463479B2 (ja) 2015-07-29 2015-07-29 熱交換器及び冷凍サイクル装置
US15/572,626 US10801791B2 (en) 2015-07-29 2015-07-29 Heat exchanger and refrigeration cycle apparatus
CN201580081822.XA CN107850358B (zh) 2015-07-29 2015-07-29 热交换器及制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071535 WO2017017814A1 (ja) 2015-07-29 2015-07-29 熱交換器及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2017017814A1 true WO2017017814A1 (ja) 2017-02-02

Family

ID=57885378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071535 WO2017017814A1 (ja) 2015-07-29 2015-07-29 熱交換器及び冷凍サイクル装置

Country Status (5)

Country Link
US (1) US10801791B2 (ja)
EP (1) EP3330637B1 (ja)
JP (1) JP6463479B2 (ja)
CN (1) CN107850358B (ja)
WO (1) WO2017017814A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978692B2 (ja) * 2019-05-10 2021-12-08 ダイキン工業株式会社 熱交換器およびヒートポンプ装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127451U (ja) * 1978-02-24 1979-09-05
JPS58181193U (ja) * 1982-05-28 1983-12-03 三菱電機株式会社 ドレンガイド
JPH03137498A (ja) * 1989-10-24 1991-06-12 Asahi Chem Ind Co Ltd 流水手段付き熱交換器
JPH04278197A (ja) * 1991-03-04 1992-10-02 Asahi Chem Ind Co Ltd 流水手段付きピンフィン熱交換器
JPH1062085A (ja) * 1996-08-20 1998-03-06 Fujitsu General Ltd 熱交換器
JP2010203726A (ja) * 2009-03-05 2010-09-16 Toshiba Carrier Corp 熱交換器、空気調和機
JP2010249498A (ja) * 2009-03-23 2010-11-04 Nippon Light Metal Co Ltd コルゲートフィン式熱交換器の排水構造
JP2010255885A (ja) * 2009-04-22 2010-11-11 Sharp Corp 熱交換器及びそれを搭載した空気調和機
JP2010255916A (ja) * 2009-04-24 2010-11-11 Sharp Corp 熱交換器及びそれを搭載した空気調和機
JP2011202820A (ja) * 2010-03-24 2011-10-13 Mitsubishi Electric Corp 熱交換器用フィンおよび熱交換器
JP2012037092A (ja) * 2010-08-04 2012-02-23 Sharp Corp 熱交換器及びそれを搭載した空気調和機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021657B2 (ja) * 1978-03-27 1985-05-29 三井化学株式会社 高分子重合体用架橋剤
JPH033877Y2 (ja) 1985-07-03 1991-01-31
JPH03181759A (ja) * 1989-12-08 1991-08-07 Nippondenso Co Ltd 冷媒蒸発器
JPH11101594A (ja) * 1997-09-26 1999-04-13 Toyo Radiator Co Ltd 空調用熱交換器
JP3417310B2 (ja) * 1998-08-31 2003-06-16 株式会社デンソー プレートフィン型熱交換器及びその製造方法
JP4482991B2 (ja) * 1999-12-14 2010-06-16 株式会社デンソー 複式熱交換器
US20050217834A1 (en) * 2004-04-06 2005-10-06 Jeroen Valensa Multi-pass heat exchanger
WO2006070918A1 (en) * 2004-12-28 2006-07-06 Showa Denko K.K. Evaporator
JP4628152B2 (ja) * 2005-03-18 2011-02-09 三菱電機株式会社 床置き式空気調和機
JP2009085467A (ja) 2007-09-28 2009-04-23 Fujitsu General Ltd 空気調和機の室外機
JP4275182B2 (ja) * 2007-11-02 2009-06-10 シャープ株式会社 熱交換器
KR101383508B1 (ko) 2009-03-17 2014-04-08 샤프 가부시키가이샤 코루게이트 핀식 열교환기의 배수 구조
JP4988015B2 (ja) 2010-07-20 2012-08-01 シャープ株式会社 熱交換器及びそれを搭載した空気調和機
CN102494443B (zh) * 2011-12-02 2014-04-16 四川长虹电器股份有限公司 一种有利于冷凝水排水的微通道换热器
CN105190202B (zh) * 2013-05-08 2017-11-17 三菱电机株式会社 热交换器和制冷循环装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127451U (ja) * 1978-02-24 1979-09-05
JPS58181193U (ja) * 1982-05-28 1983-12-03 三菱電機株式会社 ドレンガイド
JPH03137498A (ja) * 1989-10-24 1991-06-12 Asahi Chem Ind Co Ltd 流水手段付き熱交換器
JPH04278197A (ja) * 1991-03-04 1992-10-02 Asahi Chem Ind Co Ltd 流水手段付きピンフィン熱交換器
JPH1062085A (ja) * 1996-08-20 1998-03-06 Fujitsu General Ltd 熱交換器
JP2010203726A (ja) * 2009-03-05 2010-09-16 Toshiba Carrier Corp 熱交換器、空気調和機
JP2010249498A (ja) * 2009-03-23 2010-11-04 Nippon Light Metal Co Ltd コルゲートフィン式熱交換器の排水構造
JP2010255885A (ja) * 2009-04-22 2010-11-11 Sharp Corp 熱交換器及びそれを搭載した空気調和機
JP2010255916A (ja) * 2009-04-24 2010-11-11 Sharp Corp 熱交換器及びそれを搭載した空気調和機
JP2011202820A (ja) * 2010-03-24 2011-10-13 Mitsubishi Electric Corp 熱交換器用フィンおよび熱交換器
JP2012037092A (ja) * 2010-08-04 2012-02-23 Sharp Corp 熱交換器及びそれを搭載した空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3330637A4 *

Also Published As

Publication number Publication date
EP3330637A4 (en) 2019-04-03
US20180135926A1 (en) 2018-05-17
JP6463479B2 (ja) 2019-02-06
JPWO2017017814A1 (ja) 2018-02-01
EP3330637A1 (en) 2018-06-06
EP3330637B1 (en) 2021-08-25
US10801791B2 (en) 2020-10-13
CN107850358A (zh) 2018-03-27
CN107850358B (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2013161802A1 (ja) 熱交換器、及び空気調和機
JP6847229B2 (ja) 熱交換器、及び冷凍サイクル装置
JP2007232246A (ja) 熱交換器
JPWO2013160951A1 (ja) 熱交換器、熱交換器の製造方法、及び、空気調和機
JP6877549B2 (ja) 空気調和装置、熱交換器、及び冷凍サイクル装置
WO2013084397A1 (ja) 空気調和機
JP2008002746A (ja) 高性能空気熱交換器
EP2699867B1 (en) Heat exchanger
JP6765528B2 (ja) 熱交換器、冷凍サイクル装置および空気調和機
US10775081B2 (en) Heat exchanger and air conditioner
JP6425829B2 (ja) 熱交換器及び冷凍サイクル装置
WO2020012549A1 (ja) 熱交換器、熱交換装置、熱交換器ユニット及び冷凍サイクル装置
JP2010048473A (ja) 熱交換器ユニット及びこれを備えた空気調和機
WO2018073898A1 (ja) 熱交換器及び室外機並びに熱交換器の製作装置及び製作方法
JP6463479B2 (ja) 熱交換器及び冷凍サイクル装置
JPWO2018185824A1 (ja) 熱交換器および冷凍サイクル装置
JP6563115B2 (ja) 熱交換器及び冷凍サイクル装置
JP5963958B2 (ja) 空気調和機の室外機、及び空気調和機の室外機の製造方法
JP2008082619A (ja) 熱交換器
JP5815128B2 (ja) 熱交換器、及び空気調和機
JPWO2020021706A1 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
WO2020012548A1 (ja) 熱交換器、熱交換器ユニット及び冷凍サイクル装置
WO2019239554A1 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP2015081689A (ja) ヒートポンプ式冷凍サイクル用室外熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530544

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15572626

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE