WO2017013866A1 - スクリーン印刷機、スクリーン印刷方法及び太陽電池の電極形成方法 - Google Patents

スクリーン印刷機、スクリーン印刷方法及び太陽電池の電極形成方法 Download PDF

Info

Publication number
WO2017013866A1
WO2017013866A1 PCT/JP2016/003347 JP2016003347W WO2017013866A1 WO 2017013866 A1 WO2017013866 A1 WO 2017013866A1 JP 2016003347 W JP2016003347 W JP 2016003347W WO 2017013866 A1 WO2017013866 A1 WO 2017013866A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
screen printing
paste
humidity
printing
Prior art date
Application number
PCT/JP2016/003347
Other languages
English (en)
French (fr)
Inventor
信太郎 月形
紀文 高橋
寛之 大塚
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US15/745,650 priority Critical patent/US11101391B2/en
Priority to DE112016002917.9T priority patent/DE112016002917T5/de
Priority to MYPI2018700178A priority patent/MY192805A/en
Priority to CN201680042453.8A priority patent/CN107848314B/zh
Priority to SG11201800461TA priority patent/SG11201800461TA/en
Priority to JP2017529453A priority patent/JP6879913B2/ja
Priority to KR1020187000822A priority patent/KR102393056B1/ko
Publication of WO2017013866A1 publication Critical patent/WO2017013866A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/08Machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/08Machines
    • B41F15/0881Machines for printing on polyhedral articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/08Machines
    • B41F15/12Machines with auxiliary equipment, e.g. for drying printed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/12Stencil printing; Silk-screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • B41M1/34Printing on other surfaces than ordinary paper on glass or ceramic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/006Patterns of chemical products used for a specific purpose, e.g. pesticides, perfumes, adhesive patterns; use of microencapsulated material; Printing on smoking articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • H05K3/1233Methods or means for supplying the conductive material and for forcing it through the screen or stencil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2200/00Printing processes
    • B41P2200/40Screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2215/00Screen printing machines
    • B41P2215/50Screen printing machines for particular purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a screen printer, a screen printing method, and a solar cell electrode forming method.
  • a solar cell has a structure shown in FIG. As shown in FIG. 7, in the solar cell 50, for example, it has a plate shape with a size of 100 to 156 mm square and a thickness of 0.1 to 0.3 mm, and is made of polycrystalline, single crystal silicon, etc.
  • a p-type diffusion layer 52 is provided on the light-receiving surface side and an n-type diffusion layer 53 is provided on the back surface side of the n-type semiconductor substrate 51 doped with the n-type impurity.
  • a light receiving surface electrode 55 is provided on the p-type diffusion layer 52, and a back electrode 56 is provided on the n-type diffusion layer 53.
  • an antireflection film / passivation film 57 such as SiN (silicon nitride) is provided on the light receiving surface side.
  • a passivation film 58 such as SiN can be provided on the back side.
  • the p-type diffusion layer 52 is formed on the light-receiving surface side by doping p-type impurities such as boron
  • the n-type diffusion layer 53 is formed on the back surface side by doping n-type impurities such as phosphorus.
  • the light receiving surface electrode 55 and the back surface electrode 56 are formed by printing a conductive silver paste on the back surface side and the light receiving surface side using a screen printing method, followed by drying and baking. These electrodes include a bus bar electrode for taking out a photo-generated current generated in the solar cell to the outside, and a finger electrode for current collection connected to these bus bar electrodes.
  • the screen printing method is generally used for electrode formation (see, for example, Patent Documents 1 and 2).
  • the screen printing method is suitable for mass production of a thick film electrode with a high yield as compared with a photolithography method or the like that handles a photosensitive material, and has an advantage that the equipment cost is relatively low. Therefore, the screen printing method includes not only the formation of solar cell electrodes, but also the formation of patterns such as electrode layers, resistance layers, dielectric layers, or phosphor layers of large area displays such as plasma display panels and liquid crystal display panels. Widely used in the industry.
  • FIG. 8 is a schematic side view of a main part of a general screen printing machine.
  • FIG. 9 is a schematic plan view of the spread of paste by a general screen printing method as seen from above the screen plate making, and a schematic side view as seen from the side.
  • a series of printing operations will be described with reference to FIG.
  • the paste 116 is placed on the screen plate making 111 in which a pattern to be formed is opened.
  • the scraper 112 moves on the paste 116 in a certain direction while pressure is applied from above, so that the pattern of the openings of the screen plate making 111 is filled with the paste 116.
  • the squeegee 113 is moved in the direction opposite to the scraper 112 while pressure is applied from above, so that the paste 116 filled in the opening pattern of the screen plate making 111 is applied on the printing stage 114. Transfer to printed matter 115. Subsequently, while the scraper 112 moves in the direction opposite to the squeegee 113, the remaining paste 116 is filled again into the pattern of the opening of the screen plate making 111. These series of operations are repeated.
  • FIG. 9 schematically shows the paste accumulation area 120 outside the print pattern area during continuous printing.
  • the present invention has been made in view of the above problems, and a screen printing machine and a screen printing method capable of improving the printability of a paste by suppressing solvent volatilization from the paste on the screen plate making.
  • the purpose is to provide.
  • Another object of the present invention is to provide a method for forming an electrode of a solar cell that can produce a solar cell having high electrical characteristics using such a screen printing method.
  • a screen printing plate provided with an opening corresponding to a printing pattern, a scraper, and a screen printing machine provided with a squeegee are used and supplied to the upper surface of the screen printing plate. After the paste is filled in the opening of the screen plate making by the scraper, the paste is extruded from the opening of the screen plate making to a predetermined position of the printing material by the squeegee to correspond to the printing pattern on the printing material.
  • a method of screen printing the paste A screen printing method is provided in which the humidity in the screen printer is adjusted during the screen printing.
  • the printability of the paste can be improved by controlling the amount of water in the paste on the screen plate making.
  • the dew point temperature in the screen printer is set to 8.2 to 18.0 ° C. by adjusting the humidity in the screen printer during the screen printing.
  • Such a screen printing method can further improve the printability of the paste by controlling the amount of moisture in the paste on the screen plate making.
  • k defined by the following formula is 8.2 ⁇ k ⁇ 18.0. It is preferable.
  • the humidity in the screen printer between 30% and 65% in relative humidity, and more preferably within 50 ⁇ 5%.
  • Such a screen printing method can increase the aspect ratio of the printed paste.
  • the paste is one or more organic compounds selected from aliphatic hydrocarbon solvents, carbitol solvents, cellosolve solvents, higher fatty acid ester solvents, higher alcohol solvents, higher fatty acid solvents, and aromatic hydrocarbon solvents. It is preferable to include a solvent.
  • the shape of the opening of the screen plate making can be a fine line, and the length in the longitudinal direction can be 156 to 8 mm.
  • the method of the present invention is particularly effective for fine wires having a length in the longitudinal direction of the opening of 156 to 8 mm.
  • the width of the opening of the screen plate making can be set to 60 ⁇ m or less.
  • the screen printing method of the present invention makes it difficult for printing defects to occur even when such a screen plate making with a small opening width is used.
  • k ′ defined by the following formula is 8.2 ⁇ It is preferable that k ′ ⁇ 18.0.
  • the screen printing method of the present invention is used to screen-print the paste on at least one main surface of the semiconductor substrate, and the screen-printed paste is dried and fired to form electrodes.
  • a method for forming an electrode of a solar cell is provided.
  • Such a solar cell electrode forming method can easily form an electrode with a high aspect ratio. Therefore, if such a solar cell electrode forming method is used, a solar cell having high electrical characteristics can be produced.
  • the electrode to be formed may be a finger electrode, and the aspect ratio of the finger electrode may be 0.5 or more and 1.0 or less.
  • the finger electrode having such a high aspect ratio can be easily formed by the method for forming a solar cell electrode according to the present invention.
  • the screen plate making provided with an opening corresponding to the printing pattern
  • the scraper for filling the opening of the screen plate making with the paste supplied to the upper surface of the screen plate making
  • the opening of the screen plate making There is provided a screen printing machine comprising a squeegee for extruding the paste to a predetermined position of a substrate and a humidity controller for adjusting the humidity in the screen printing machine.
  • the printability of the paste can be improved by controlling the amount of water in the paste on the screen plate making.
  • a space including at least the screen plate making, the scraper, and the squeegee is surrounded by a plate-like member.
  • the plate member is made of polyethylene, polypropylene, vinyl chloride resin, polystyrene, ABS (acrylonitrile / butadiene / styrene) resin, polyethylene terephthalate, methacrylic resin, polyvinyl alcohol, vinylidene chloride resin, polycarbonate, melamine resin, urea.
  • Resin polyacrylonitrile, polymethylpentene, cyclic olefin copolymer, MBS (methyl methacrylate / butadiene / styrene) resin, SBC (styrene / butadiene copolymer) resin, polymethacryl styrene, polyester carbonate, polyethylene naphthalate, polyetherimide, poly Any of arylate, polyallylsulfone and glass is preferable.
  • MBS methyl methacrylate / butadiene / styrene
  • SBC styrene / butadiene copolymer
  • polyester carbonate polyethylene naphthalate
  • polyetherimide poly Any of arylate, polyallylsulfone and glass is preferable.
  • Such a screen printing machine can stabilize the humidity without impairing workability, and thus enables more stable printing.
  • the screen printing machine and the screen printing method of the present invention can improve the printability of the paste by controlling the amount of moisture in the paste on the screen plate making. If it is the electrode formation method of the solar cell of this invention, an electrode with a high aspect ratio can be formed easily. Therefore, if such a solar cell electrode forming method is used, a solar cell having high electrical characteristics can be produced.
  • FIG. 10 is a diagram showing the relationship between relative humidity (% RH) in the printing press and conversion efficiency Eff (%) in Examples 1 to 9.
  • FIG. 10 is a diagram showing the relationship between the relative humidity (% RH) in the printing press and the open circuit voltage Voc (mV) in Examples 1 to 9.
  • FIG. 6 is a graph showing the relationship between the relative humidity (% RH) in the printing press and the short-circuit current density Jsc (mA / cm 2 ) in Examples 1 to 9.
  • FIG. 10 is a diagram showing a relationship between relative humidity (% RH) in the printing press and fill factor (%) in Examples 1 to 9. It is a cross-sectional schematic diagram which shows an example of a common solar cell. It is a side surface schematic diagram of the principal part of a general screen printer. It is the plane schematic diagram which looked at the spread of the paste by a general screen printing method from the screen platemaking, and the side surface diagram seen from the side.
  • FIG. 10 is a diagram showing the relationship between relative humidity (% RH) in the printing press and appearance yield (%) in Examples 1 to 9.
  • FIG. 6 is a graph showing the relationship between relative humidity (% RH) in the printing press and conversion efficiency Eff (%) in Examples 1 to 12.
  • FIG. 6 is a diagram showing the relationship between k ′ and conversion efficiency Eff (%) in Examples 1 to 12.
  • Such a problem also occurs when electrodes are formed by screen printing in a typical method for manufacturing a crystalline silicon solar cell. That is, in this case as well, there is a problem that the paste printed in the electrode pattern on the silicon substrate is smeared to cause defective printing and the yield is lowered.
  • a screen printer provided with a humidity controller for adjusting the humidity in the screen printer, a screen printing method for adjusting the humidity in the screen printer during screen printing, and an electrode of a solar cell using the screen printing method
  • the present inventors have found that a forming method can solve the above problems, and have completed the present invention.
  • FIG. 1 is a schematic side view of the main part of the screen printing machine of the present invention.
  • FIG. 2 is a diagram (a) is a top view and (b) is a side view) showing a state where humidification is applied to the protruding paste in screen printing using the screen printing machine of the present invention.
  • a screen printing machine 10 according to the present invention includes a screen plate making 11 provided with an opening corresponding to a printing pattern, and a paste 16 supplied to the upper surface of the screen plate making 11.
  • a printing stage 14 for installing the substrate 15 is provided. With such a screen printing machine, the printability of the paste can be improved by controlling the amount of water in the paste on the screen plate making.
  • the humidity during printing can be kept constant.
  • this plate-like member has light transmittance. Since the printing step can be visually confirmed from the outside, device troubles and occurrence of defects can be detected early.
  • the shapes of the screen plate making 11, the scraper 12, the squeegee 13, the printing stage 14, and the substrate 15 are not particularly limited, but may be the same as those used in a known screen printing machine.
  • the humidity adjuster 25 is not particularly limited, and examples thereof include a humidifier, a dehumidifier, a precision air conditioner (an air conditioner capable of adjusting temperature and humidity), and the like.
  • the humidity controller 25 can be provided in the screen printer.
  • the type of paste 16 is not particularly limited, and may include, for example, particles such as a solvent and conductive particles and other additives.
  • the type of the solvent is not particularly limited.
  • aliphatic hydrocarbon solvents carbitol solvents, cellosolve solvents, higher fatty acid ester solvents, higher alcohol solvents, higher fatty acid solvents, aromatic hydrocarbons.
  • Organic solvents such as system solvents can be mentioned.
  • aliphatic hydrocarbon solvent examples include “IP Solvent” manufactured by Idemitsu Kosan Co., Ltd., “Shellsol D40” (Shellsol is a registered trademark) manufactured by Shell Chemical Co., Ltd., “Shellsol D70”, “Shellsol 70”, “Shellsol 71”, Exxon.
  • examples of the carbitol solvent include methyl carbitol, ethyl carbitol, butyl carbitol and the like.
  • cellosolve solvent examples include ethyl cellosolve, isoamyl cellosolve, and hexyl cellosolve.
  • examples of the higher fatty acid ester solvent include dioctyl phthalate, dibutyl succinic acid isobutyl ester, adipic acid isobutyl ester, dibutyl sepacate, disepacate acid, and 2-ethylhexyl.
  • higher alcohol solvents examples include methyl hexanol, oleyl alcohol, trimethyl hexanol, trimethyl butanol, tetramethyl nonanol, 2-pentyl nonanol, 2-nonyl nonanol, and 2-hexyl decanol.
  • higher fatty acid solvents include caprylic acid, 2-ethylhexanoic acid, oleic acid and the like.
  • aromatic hydrocarbon solvent examples include butylbenzene, diethylbenzene, dipentylbenzene, diisopropylnaphthalene and the like.
  • Solvents can be used alone or in combination of two or more.
  • the screen printing machine of the present invention is provided with a humidity controller for adjusting the humidity inside the machine, the solvent is volatilized and the paste protruding from the printing pattern area 19 on the plate, particularly the squeegee scanning area and the scraper scanning area, is present. Drying can be suppressed and the paste surface can be prevented from partially solidifying. Therefore, even if the operator rubs the collected paste to the center and collects the paste again, the viscosity of the paste on the plate does not increase locally, and the printed paste becomes thicker or rubbed. Is less likely to occur.
  • FIG. 2 schematically shows the paste accumulation region 20 outside the print pattern region during continuous printing.
  • the paste 16 can be a conductive silver paste containing silver particles, glass frit, varnish and the like, particularly when forming an electrode of a solar cell.
  • the substrate 15 can be a semiconductor substrate.
  • the screen printing method of the present invention uses a screen printing machine 10 including a screen plate making 11 provided with an opening corresponding to a printing pattern, a scraper 12, and a squeegee 13, and is supplied to the upper surface of the screen printing plate 11.
  • the paste 16 is filled in the opening of the screen plate making 11 by the scraper 12, the paste 16 is pushed out from the opening of the screen making plate 11 to a predetermined position of the printing material 15 by the squeegee 13.
  • the paste 16 is screen-printed and is a screen-printing method for adjusting the humidity in the screen printer 10 when screen-printing.
  • the printability of the paste can be improved by controlling the amount of water in the paste on the screen plate making.
  • the dew point temperature in the screen printing machine 10 is adjusted to 8.2 to 18.0 ° C. by adjusting the humidity in the screen printing machine 10. Thereby, the printability of the paste can be further improved.
  • the humidity in the screen printer 10 is not particularly limited, but is preferably 30% to 65% relative humidity, and more preferably 45% to 55% relative humidity. Such a screen printing method can increase the aspect ratio of the printed paste. Moreover, a preferable humidity range can be set as appropriate depending on the type of solvent used in the paste.
  • the method of adjusting the humidity in the screen printer 10 can include a method of adjusting the humidity by providing a humidity controller in the screen printer as described above. More specifically, for example, a printing chamber for storing the screen making plate 11, the scraper 12, the squeegee 13 and the like is provided by a method such as enclosing with a plate-like member, and the temperature and humidity are set so that the printing chamber has a positive pressure. There is a method of installing a precision air conditioner outside the printing chamber that can blow the air adjusted in the printing chamber into the printing chamber. In this case, the printing chamber may not be completely sealed.
  • the temperature in the screen printer 10 is not specifically limited, For example, it can be 20 degreeC or more and 30 degrees C or less.
  • T temperature in the printing press of the screen printing press
  • H relative humidity in the printing press
  • k defined by the following equation is the dew point temperature (° C.). equally, It was found that printing was stabilized when 8.2 ⁇ k ⁇ 18.0.
  • the shape of the opening of the screen plate making 11 is not particularly limited, but the effect of the present invention is particularly effectively exhibited for fine line printing having a length of 156 to 8 mm.
  • the width of the opening of the screen plate making 11 is not particularly limited, but can be, for example, 60 ⁇ m or less.
  • variety of the opening part of the screen plate making 11 is not specifically limited, For example, it can be 20 micrometers.
  • FIG. 7 is a schematic cross-sectional view of a general solar cell when an n-type silicon substrate is used as the substrate.
  • the solar cell 50 is provided with a light receiving surface diffusion layer (p-type diffusion layer) 52 on the light receiving surface side and a back surface diffusion on the back surface side with respect to a semiconductor substrate (n-type silicon substrate) 51.
  • a layer (n-type diffusion layer) 53 is provided.
  • the n-type diffusion layer 53 is also referred to as a BSF (back surface field) layer.
  • a light receiving surface electrode 55 is provided on the p-type diffusion layer 52, and a back electrode 56 is provided on the n-type diffusion layer 53.
  • An antireflection film 57 such as SiN (silicon nitride) is provided on the light receiving surface side.
  • the antireflection film 57 can also act as a passivation film.
  • a passivation film 58 such as SiN can be provided on the back side.
  • the electrode forming method of the present invention can be applied to various solar cells.
  • the solar cell to which the electrode forming method of the present invention can be applied is not limited to the one shown in FIG.
  • the semiconductor substrate 51 is prepared.
  • the semiconductor substrate 51 is made of single crystal or polycrystalline silicon, and may be either p-type or n-type, but includes p-type semiconductor impurities such as boron, and has a specific resistance of 0.1 to 4.0 ⁇ ⁇ cm.
  • a p-type silicon substrate is often used.
  • a plate-shaped member having a size of 100 to 156 mm square and a thickness of 0.05 to 0.30 mm is preferably used.
  • a solar cell manufacturing method using an n-type silicon substrate will be described as an example.
  • the surface of the n-type silicon substrate 51 to be the light-receiving surface of the solar cell is immersed in, for example, an acidic solution to remove surface damage caused by slicing, and then further with an alkaline solution.
  • An uneven structure called a texture is formed by chemical etching, washing and drying.
  • the concavo-convex structure causes multiple reflection of light on the solar cell light-receiving surface. Therefore, by forming the concavo-convex structure, the reflectance is effectively reduced and the conversion efficiency is improved.
  • an n-type silicon substrate 51 is placed in a high-temperature gas at 850 to 1000 ° C. containing, for example, BBr 3 and the like, and a p-type impurity element such as boron is diffused over the entire surface of the n-type silicon substrate 51 by a vapor phase diffusion method.
  • a p-type diffusion layer 52 having a sheet resistance of about 30 to 300 ⁇ / ⁇ is formed on the light receiving surface.
  • the p-type diffusion layer may be formed not only on the light receiving surface of the n-type silicon substrate but also on the back surface and the end surface.
  • an unnecessary p-type formed on the back surface and the end face is immersed in a hydrofluoric acid solution by immersing a p-type silicon substrate in which the light-receiving surface that needs to leave the p-type diffusion layer is coated with an acid-resistant resin.
  • the diffusion layer can be removed.
  • the glass layer formed on the surface of the n-type silicon substrate at the time of diffusion is removed by immersing in a chemical such as a diluted hydrofluoric acid solution, and washed with pure water.
  • the n-type silicon substrate 51 is placed in oxygen gas at 850 to 1000 ° C., and the entire surface of the n-type silicon substrate 51 is thermally oxidized to form a thermal oxide film of about 1000 mm.
  • the light-receiving surface that needs to leave the p-type diffusion layer is covered with an acid-resistant resin, and the n-type silicon substrate 51 is immersed in a hydrofluoric acid solution to remove the thermal oxide film formed on the back surface.
  • the formed thermal oxide film on the light receiving surface side functions as a barrier film in n-type impurity diffusion.
  • an n-type silicon substrate 51 is placed in a high-temperature gas of 850 to 1000 ° C. containing, for example, POCl 3 and the like, and a vapor phase diffusion method is performed in which an n-type impurity element such as phosphorus is diffused on the back surface of the n-type silicon substrate 51.
  • An n-type diffusion layer 53 having a sheet resistance of about 30 to 300 ⁇ / ⁇ is formed on the back surface.
  • the glass layer formed on the surface of the n-type silicon substrate at the time of diffusion is removed by immersing in a chemical such as a diluted hydrofluoric acid solution, and washed with pure water.
  • the method for forming the n-type diffusion layer 53 and the p-type diffusion layer 52 is not limited to the above-described vapor phase diffusion method, and a method of applying a heat treatment by applying a coating agent containing n-type or p-type impurities to a substrate ( A coating diffusion method) can also be used.
  • This junction separation by plasma etching may be performed before or after the removal of the glass layer formed on the surface of the n-type silicon substrate when the n-type impurity element is diffused.
  • an antireflection film / passivation film 57 is formed on the light-receiving surface side of the n-type silicon substrate 51, and a passivation film 58 is formed on the back surface side.
  • These films are made of, for example, SiN or the like, and are formed by, for example, a plasma CVD method in which a mixed gas of SiH 4 and NH 3 is diluted with N 2 and is plasmalized and deposited by glow discharge decomposition.
  • This antireflection film / passivation film 57 is formed so as to have a refractive index of about 1.8 to 2.3 in consideration of a refractive index difference from the n-type silicon substrate, and has a thickness of about 500 to 1000 mm.
  • this SiN also functions as a passivation film having a passivation effect on the p-type diffusion layer, and has an effect of improving the electric characteristics of the solar cell together with an antireflection function.
  • an electrode is formed using the method for forming an electrode of a solar cell of the present invention.
  • the method for forming an electrode of a solar cell according to the present invention uses the above-described screen printing method of the present invention to screen-print the above-described paste 16 on at least one main surface of the semiconductor substrate 51, and then apply the screen-printed paste 16.
  • electrodes are formed by drying and firing.
  • the humidity inside the screen printing machine is adjusted to prevent the drying of the paste on the screen plate making, and the paste discharge is stabilized, so that an electrode with a high aspect ratio can be easily formed. Can be formed. Therefore, by using such a method for forming an electrode of a solar cell, a solar cell having high electrical characteristics and high conversion efficiency can be manufactured with high yield.
  • the paste 16 can be screen-printed on the light receiving surface and the back surface, for example.
  • the order of screen printing is not particularly limited.
  • baking of the paste on the back surface and the paste on the light receiving surface can be performed simultaneously or separately.
  • a conductive silver paste containing, for example, silver particles, glass frit, varnish and the like is screen printed on the back surface using the screen printing method of the present invention and dried.
  • the printing pattern at this time is not particularly limited, but may be a thin line shape that is substantially parallel and connects both ends of the substrate. That is, depending on the substrate size, a parallel linear pattern having a length of 156 to 100 mm can be obtained.
  • the width of the print pattern is not particularly limited, but it is preferably 60 ⁇ m or less because the effect of the present invention is particularly exhibited.
  • the conductive silver paste is screen-printed on the light-receiving surface using the screen printing method of the present invention and dried.
  • the printed pattern on the light receiving surface can be set as appropriate similarly to the back surface. Thereafter, each electrode paste is baked at a temperature of about 500 ° C. to 950 ° C. to form the light receiving surface electrode 55 and the back surface electrode 56. At this time, even if a film of SiN or the like is formed on the silicon substrate surface as described above, an electrode can be formed by penetrating the film during firing (fire-through).
  • the electrode to be formed can be a finger electrode, and the aspect ratio of the finger electrode can be 0.5 or more and 1.0 or less.
  • the printed paste is not easily thickened or rubbed, and thus a finger electrode having such a high aspect ratio can be easily formed.
  • the finger electrode and the bus bar electrode can also be formed by simultaneously printing the paste for forming the finger electrode and the paste for forming the bus bar electrode on at least one main surface of the semiconductor substrate.
  • the finger length changes according to the number of bus bars.
  • the number of bus bars is preferably about 2 to 12, and the finger length is 76 mm to 8 mm. Even with this length, the effect of the present invention is exhibited.
  • Example 1 Crystal plane orientation (100), 15.6 cm square 200 ⁇ m thickness, as-slice specific resistance 2 ⁇ ⁇ cm (dopant concentration 7.2 ⁇ 10 15 cm ⁇ 3 ) Phosphorus-doped n-type single crystal silicon substrate is immersed in an aqueous sodium hydroxide solution The damaged layer was removed by etching, and texture formation was performed by soaking in an aqueous solution obtained by adding isopropyl alcohol to an aqueous potassium hydroxide solution and performing alkali etching. The obtained silicon substrate was heat-treated at 1000 ° C. for 1 hour to form an oxide film.
  • the oxide film on the light-receiving surface is removed using a chemical solution such as hydrofluoric acid, and after applying a coating agent containing boron dopant to the light-receiving surface, heat treatment is performed at 950 ° C. for 1 hour, and the p-type diffusion layer is formed on the light-receiving surface. Formed. After the heat treatment, glass components attached to the substrate were removed with a hydrofluoric acid solution and then washed.
  • a silicon oxide film is formed on the entire silicon substrate, the silicon oxide film on the back surface is removed using a chemical solution such as hydrofluoric acid, and after applying a coating agent containing a phosphorus dopant on the back surface, heat treatment is performed at 900 ° C. for 30 minutes. The n-type diffusion layer was formed on the entire back surface.
  • the substrate side surfaces were bonded and separated by plasma etching. Specifically, a substrate having a diffusion layer formed on both sides after diffusion heat treatment is stacked so that plasma and radicals do not enter the light-receiving surface and the back surface, and a plasma etching process using CF 4 gas is performed to remove the end surface of the substrate. Shaved a few micrometers.
  • the glass component attached to the substrate was removed with a high-concentration hydrofluoric acid solution and then washed.
  • a silicon nitride film as a surface protective film was laminated on the light receiving surface and the back surface using a direct plasma CVD apparatus. This film thickness was 100 nm.
  • the humidity in the printing press is adjusted to 45% RH with a humidifier, and silver paste (SOL 9350A SOLAR CELL PASTE made by Heraeus Co., Ltd.) Silver particles, 2- (2-butoxyethoxy) ethanol and other additives)) were printed in an electrode pattern to form a finger paste pattern and a bus bar electrode pattern silver paste.
  • the finger opening width was 60 ⁇ m.
  • baking was performed at 800 ° C. for 20 minutes to form a light receiving surface electrode and a back surface electrode.
  • the frequency of the operation of bringing the paste on the plate emulsion protruding outside the finger electrode pattern area to the center during printing was performed every 500 prints.
  • Example 2 Except that the humidity in the printing press was adjusted to 50% RH, the same process as in Example 1 was performed to produce a solar cell.
  • Example 3 A solar cell was fabricated by performing the same process as in Example 1 except that the humidity in the printing press was adjusted to 54% RH.
  • Example 4 A solar cell was produced by performing the same process as in Example 1 except that the humidity in the printing press was adjusted to 14% RH.
  • Example 5 Except having adjusted the humidity in a printing press to 21% RH, the process similar to Example 1 was performed and the solar cell was produced.
  • Example 6 A solar cell was fabricated by performing the same process as in Example 1 except that the humidity in the printing press was adjusted to 33% RH.
  • Example 7 A solar cell was fabricated by performing the same process as in Example 1 except that the humidity in the printing press was adjusted to 63% RH.
  • Example 8 Except that the humidity in the printing press was adjusted to 65% RH, the same process as in Example 1 was performed to produce a solar cell.
  • Example 9 A solar cell was fabricated by performing the same process as in Example 1 except that the humidity in the printing press was adjusted to 70% RH.
  • FIG. 3 is a graph showing the relationship between the relative humidity (% RH) in the printing press and the conversion efficiency Eff (%) in Examples 1 to 9.
  • FIG. 4 is a graph showing the relationship between the relative humidity (% RH) in the printing press and the open circuit voltage Voc (mV) in Examples 1 to 9.
  • FIG. 5 is a graph showing the relationship between the relative humidity (% RH) in the printing press and the short-circuit current density Jsc (mA / cm 2 ) in Examples 1 to 9.
  • FIG. 3 is a graph showing the relationship between the relative humidity (% RH) in the printing press and the conversion efficiency Eff (%) in Examples 1 to 9.
  • FIG. 4 is a graph showing the relationship between the relative humidity (% RH) in the printing press and the open circuit voltage Voc (mV) in Examples 1 to 9.
  • FIG. 5 is a graph showing the relationship between the relative humidity (% RH) in the printing press and the short-circuit current density Jsc (mA / cm 2 ) in Examples 1
  • FIG. 6 is a diagram showing the relationship between the relative humidity (% RH) in the printing press and the fill factor (%) in Examples 1 to 9. Moreover, the investigation result of the yield in the corresponding appearance inspection is shown in FIG. Those in which disconnection or electrode thickening occurred were regarded as defective.
  • Examples 1 to 9 by using the screen printing method of the present invention (Examples 1 to 9), a solar cell having high conversion efficiency can be produced. In particular, good results were obtained in Examples 1 to 3. This is because a stable discharge amount of the paste can be obtained by suppressing a local increase in paste viscosity due to a change in the moisture content on the paste surface that protrudes from the printing region. With such a screen printing method, the electrical characteristics of the solar cell are improved as described above, and the yield in the appearance inspection is also improved. On the other hand, as the humidity increases, Jsc tends to decrease.
  • moderate humidification in order not to increase the finger width due to the paste viscosity reduction, that is, to prevent the aspect ratio from decreasing, moderate humidification (Example It can be seen that 1 to 3) is more preferable.
  • Appearance yield increased at a humidity of 30% to 65%. This is because wire breakage hardly occurs mainly at a humidity of 30% or more, and line thickening hardly occurs at a humidity of 65% or less. From the viewpoint of appearance, the humidity is preferably 30% to 65%.
  • Example 2 Except not adjusting the humidity in a printing machine, the same process as Example 1 was performed and the solar cell was produced. In the comparative example, there was a variation in humidity, and the discharge amount of the paste could not be controlled, and the printability of the paste deteriorated. Therefore, 5000 solar cells could not be produced under the same conditions as in Example 1 (except for the humidity condition).
  • Example 10 A solar cell was fabricated by performing the same process as in Example 1 except that the temperature in the printing press was adjusted to 15 ° C. and the humidity was adjusted to 14 to 90% RH.
  • Example 11 A solar cell was fabricated in the same manner as in Example 1 except that the temperature in the printing press was adjusted to 35 ° C. and the humidity was adjusted to 14 to 54% RH.
  • Example 12 A solar cell was fabricated by performing the same process as in Examples 1 to 9 except that the finger opening width was 40 ⁇ m.
  • FIG. 12 shows the result of substituting the obtained data and plotting it again.
  • the optimum humidity changes as the temperature changes.
  • the parameter k ′ corresponding to the dew point temperature in the present invention the temperature, humidity, and line width can be standardized. . From FIG. 12, the optimum value of k ′ can be 8.2 ⁇ k ′ ⁇ 18.0.
  • the present invention it is shown that by adjusting the humidity in the screen printing apparatus, the discharge amount of the paste at the time of printing the conductive paste of the solar cell is stabilized, and a solar cell having high conversion efficiency can be manufactured. It was.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Photovoltaic Devices (AREA)
  • Printing Methods (AREA)
  • Screen Printers (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本発明は、印刷パターンに対応する開口部が設けられたスクリーン製版と、スクレッパと、スキージとを備えたスクリーン印刷機を用い、前記スクリーン製版の上面に供給されたペーストを、前記スクレッパにより前記スクリーン製版の開口部に充填した後に、前記スキージにより前記スクリーン製版の開口部から被印刷物の所定位置に前記ペーストを押し出すことにより、前記被印刷物に前記印刷パターンに対応して前記ペーストをスクリーン印刷する方法であって、前記スクリーン印刷する際に、前記スクリーン印刷機内の湿度を調整するスクリーン印刷方法である。これにより、スクリーン製版上のペースト中の水分量を制御することによって、ペーストの印刷性を向上させることが可能なスクリーン印刷方法が提供される。

Description

スクリーン印刷機、スクリーン印刷方法及び太陽電池の電極形成方法
 本発明は、スクリーン印刷機、スクリーン印刷方法及び太陽電池の電極形成方法に関する。
 一般に、太陽電池は、図7に示す構造を有する。図7に示すように、太陽電池50では、例えば、大きさが100~156mm角、厚みが0.1~0.3mmの板状で、かつ、多結晶や単結晶シリコン等からなり、リン等のn型不純物がドープされたn型の半導体基板51に対し、受光面側にはp型拡散層52が設けられ、裏面側にはn型拡散層53が設けられている。p型拡散層52の上には受光面電極55が設けられ、n型拡散層53の上には裏面電極56が設けられている。また、受光面側にSiN(窒化シリコン)等の反射防止膜兼パッシベーション膜57が設けられている。また、裏面側にもSiN等のパッシベーション膜58を設けることができる。ここで、p型拡散層52は、ボロン等のp型不純物をドープして受光面側に形成され、n型拡散層53は、リン等のn型不純物をドープして裏面側に形成される。受光面電極55及び裏面電極56は、スクリーン印刷法を用いて、裏面側及び受光面側に導電性銀ペーストを印刷した後、乾燥・焼成することで形成される。これらの電極は、太陽電池で生じた光生成電流を外部へ取出すためのバスバー電極と、これらのバスバー電極に接続される集電用のフィンガー電極とからなる。
 このような構造の太陽電池にあっては、上記のように、電極形成にスクリーン印刷法を用いることが一般的である(例えば特許文献1、2参照)。スクリーン印刷法は、感光性材料を扱うフォトリソグラフィ法等に比べて、厚膜の電極を歩留まりよく大量生産することに向いており、比較的設備費が少なくてすむという利点がある。そのため、スクリーン印刷法は太陽電池の電極形成の他、プラズマディスプレイパネルや液晶ディスプレイパネル等の大面積ディスプレイの電極層、抵抗層、誘電体層、あるいは蛍光体層等のパターン形成を含め、電子工業界で広範囲に使用されている。
 従来のスクリーン印刷法について、図面を用いて説明する。図8は、一般的なスクリーン印刷機の主要部の側面模式図である。図9は、一般的なスクリーン印刷法によるペーストの広がりをスクリーン製版の上から見た平面模式図と、横から見た側面模式図である。一連の印刷動作を、図8を参照して説明する。まず、スクリーン印刷機110のうち、形成したいパターンが開口されたスクリーン製版111の上に、ペースト116が載せられる。このペースト116の上を、スクレッパ112が上部から圧力をかけられながら一定方向に動くことで、スクリーン製版111の開口部のパターンにペースト116を充填する。次に、スキージ113が上部から圧力をかけられながら、スクレッパ112とは反対方向に動くことで、スクリーン製版111の開口部のパターンに充填されたペースト116を、印刷ステージ114上に設置された被印刷物115に転写する。続いて、スクレッパ112がスキージ113とは反対方向に動きながら、残ったペースト116を再度スクリーン製版111の開口部のパターンに充填する。これらの一連の動作が繰り返し行われる。
 図9を参照して、従来のスクリーン印刷法におけるペーストの広がりについて説明する。従来のスクリーン印刷方法で、連続的に印刷を繰り返すと、スクリーン製版111の上のペースト116の一部がスキージ113及びスクレッパ112に押されて、ペースト堆積領域の範囲が印刷パターン領域119の範囲を超えて拡大する。これにより、スキージ走査領域及びスクレッパ走査領域からはみ出したペーストは、スキージ113やスクレッパ112の動作範囲の外にあるため、以後の印刷に使用されなくなってしまう。なお、図9中には、連続印刷中の印刷パターン領域外のペースト堆積領域120を模式的に示している。
 上記のように、従来のスクリーン印刷法では、供給されたペーストの一部がスキージ動作の後、スキージ動作領域の両端にはみ出して残留してしまい、印刷回数を重ねるにつれて、はみ出したペースト表面から溶剤成分が揮発し、ペースト表面が部分的に凝固してしまう。この凝固したペーストを作業者が中央部に掻き寄せて集めて再度印刷を行うと、版上のペーストの粘度が局所的に高くなってしまう。従って、特に太陽電池におけるフィンガー電極を形成するためにフィンガー電極パターン状に半導体基板にペーストを印刷すると、印刷したペーストの太りあるいは擦れが生じてしまう。この場合、得られる太陽電池において、フィンガー電極の太りが発生したり、外観検査での歩留りが悪化したりする恐れがある。これらの印刷不良は、フィンガー電極幅が60μm以下において特に影響が大きくなり、太陽電池特性を低下させる大きな要因となっていた。
特開2006-347077号公報 特開2012-054442号公報
 本発明は、上記問題点に鑑みてなされたものであって、スクリーン製版上のペーストからの溶剤揮発を抑制することによって、ペーストの印刷性を向上させることが可能なスクリーン印刷機及びスクリーン印刷方法を提供することを目的とする。本発明はまた、そのようなスクリーン印刷方法を用いて、高い電気特性を有する太陽電池を作製することが可能な太陽電池の電極形成方法を提供することを目的とする。
 上記目的を達成するために、本発明では、印刷パターンに対応する開口部が設けられたスクリーン製版と、スクレッパと、スキージとを備えたスクリーン印刷機を用い、前記スクリーン製版の上面に供給されたペーストを、前記スクレッパにより前記スクリーン製版の開口部に充填した後に、前記スキージにより前記スクリーン製版の開口部から被印刷物の所定位置に前記ペーストを押し出すことにより、前記被印刷物に前記印刷パターンに対応して前記ペーストをスクリーン印刷する方法であって、
 前記スクリーン印刷する際に、前記スクリーン印刷機内の湿度を調整することを特徴とするスクリーン印刷方法を提供する。
 このようなスクリーン印刷方法であれば、スクリーン製版上のペースト中の水分量を制御することによって、ペーストの印刷性を向上させることができる。
 また、前記スクリーン印刷する際に、前記スクリーン印刷機内の湿度を調整することにより、前記スクリーン印刷機内の露点温度を8.2~18.0℃とすることが好ましい。
 このようなスクリーン印刷方法であれば、スクリーン製版上のペースト中の水分量を制御することによって、ペーストの印刷性を更に向上させることができる。
 前記スクリーン印刷機の印刷機内温度をT(℃)、印刷機内相対湿度をH(%)としたとき、次式で定義されるkが、8.2<k<18.0となるようにすることが好ましい。
Figure JPOXMLDOC01-appb-M000001
 この条件下であれば、高い変換効率のセルを歩留りよく製造することできる。
 また、前記スクリーン印刷機内の湿度を相対湿度で30~65%の間で調整することが好ましく、さらには50±5%以内に調整することがより好ましい。
 このようなスクリーン印刷方法であれば、印刷したペーストのアスペクト比を高くできる。
 前記ペーストは、脂肪族炭化水素系溶剤、カルビトール系溶剤、セロソルブ系溶剤、高級脂肪酸エステル系溶剤、高級アルコール系溶剤、高級脂肪酸系溶剤及び芳香族炭化水素系溶剤から選ばれる1種以上の有機溶剤を含むことが好ましい。
 これらにより、本発明の効果を特に有効に発現させることができる。
 前記スクリーン製版の開口部の形状を細線状とし、長手方向の長さを156~8mmとすることができる。
 本発明の方法は、開口部の長手方向の長さが156~8mmのような細線に対し特に有効である。
 また、前記スクリーン製版の開口部の幅を60μm以下とすることができる。
 本発明のスクリーン印刷方法であれば、このようなスクリーン製版の開口部の幅が小さいものを用いたとしても、印刷不良が発生しにくくなる。
 前記スクリーン印刷機の印刷機内温度をT(℃)、印刷機内相対湿度をH(%)、印刷物の幅をw(μm)としたとき、次式で定義されるk’が、8.2<k’<18.0となるようにすることが好ましい。
Figure JPOXMLDOC01-appb-M000002
 この条件下であれば、いかなる線幅に対しても、高い変換効率のセルを歩留りよく製造することできる。
 更に本発明では、上記本発明のスクリーン印刷方法を用いて、半導体基板の少なくとも一方の主表面に、前記ペーストをスクリーン印刷し、該スクリーン印刷されたペーストを乾燥及び焼成することにより、電極を形成することを特徴とする太陽電池の電極形成方法を提供する。
 このような太陽電池の電極形成方法であれば、アスペクト比の高い電極を容易に形成することができる。従って、このような太陽電池の電極形成方法を用いれば、高い電気特性を有する太陽電池を作製することができる。
 また、前記形成する電極をフィンガー電極とし、該フィンガー電極のアスペクト比を0.5以上1.0以下とすることができる。
 本発明の太陽電池の電極形成方法であれば、このようなアスペクト比の高いフィンガー電極を容易に形成することができる。
 更に本発明では、印刷パターンに対応する開口部が設けられたスクリーン製版と、前記スクリーン製版の上面に供給されたペーストを前記スクリーン製版の開口部に充填するスクレッパと、前記スクリーン製版の開口部から被印刷物の所定位置に前記ペーストを押し出すスキージと、スクリーン印刷機内の湿度を調整する湿度調整器とを備えたものであることを特徴とするスクリーン印刷機を提供する。
 このようなスクリーン印刷機であれば、スクリーン製版上のペースト中の水分量を制御することによって、ペーストの印刷性を向上させることができる。
 少なくとも、前記スクリーン製版と、前記スクレッパと、前記スキージとを含む空間は板状部材で囲われていることが好ましい。
 また、前記板状部材の材質は、ポリエチレン、ポリプロピレン、塩化ビニル樹脂、ポリスチレン、ABS(アクリロニトリル・ブタジエン・スチレン)樹脂、ポリエチレンテレフタラート、メタクリル樹脂、ポリビニルアルコール、塩化ビニリデン樹脂、ポリカーボネート、メラミン樹脂、ユリア樹脂、ポリアクリロニトリル、ポリメチルペンテン、環状オレフィンコポリマー、MBS(メチルメタクリレート・ブタジエン・スチレン)樹脂、SBC(スチレン・ブタジエン共重合)樹脂、ポリメタクリルスチレン、ポリエステルカーボネート、ポリエチレンナフタレート、ポリエーテルイミド、ポリアリレート、ポリアリルサルホン及びガラスのいずれかであることが好ましい。
 このようなスクリーン印刷機であれば、作業性を損なうことなく、湿度を安定化できるため、より安定した印刷が可能となる。
 本発明のスクリーン印刷機及びスクリーン印刷方法であれば、スクリーン製版上のペースト中の水分量を制御することによって、ペーストの印刷性を向上させることができる。本発明の太陽電池の電極形成方法であれば、アスペクト比の高い電極を容易に形成することができる。従って、このような太陽電池の電極形成方法を用いれば、高い電気特性を有する太陽電池を作製することができる。
本発明のスクリーン印刷機の主要部の側面模式図である。 本発明のスクリーン印刷機を用いたスクリーン印刷におけるはみ出したペーストに加湿を行う様子を示す図である。 実施例1~9における印刷機内の相対湿度(%RH)と変換効率Eff(%)の関係を示す図である。 実施例1~9における印刷機内の相対湿度(%RH)と開放電圧Voc(mV)の関係を示す図である。 実施例1~9における印刷機内の相対湿度(%RH)と短絡電流密度Jsc(mA/cm)の関係を示す図である。 実施例1~9における印刷機内の相対湿度(%RH)とフィルファクタ(Fill Factor)(%)の関係を示す図である。 一般的な太陽電池の一例を示す断面模式図である。 一般的なスクリーン印刷機の主要部の側面模式図である。 一般的なスクリーン印刷法によるペーストの広がりをスクリーン製版の上から見た平面模式図と、横から見た側面模式図である。 実施例1~9における印刷機内の相対湿度(%RH)と外観歩留り(%)の関係を示す図である。 実施例1~12における印刷機内の相対湿度(%RH)と変換効率Eff(%)の関係を示す図である。 実施例1~12におけるk’と変換効率Eff(%)の関係を示す図である。
 以下、本発明をより詳細に説明する。
 従来のスクリーン印刷法では、供給されたペーストの一部がスキージ動作の後、スキージの両端にはみ出して残留してしまうために、印刷回数を重ねるにつれて、使用されなくなるペーストが増加する一方で、はみ出したペーストの表面から溶剤成分が揮発し、高粘度化したペーストを中央に寄せて再度印刷を行うと、スクリーン製版の開口部から吐出されるペースト量が安定せず、被印刷物上にパターン状に印刷されたペーストがかすれて印刷不良になり、歩留まりが低下するという問題があった。
 このような問題は、典型的な結晶シリコン太陽電池の製造方法において、電極形成をスクリーン印刷法にて行う場合にも生じる。すなわち、この場合も、上記と同様に、シリコン基板上の電極パターン状に印刷されたペーストがかすれて印刷不良になり、歩留まりが低下するという問題があった。
 これらの印刷不良を防止するために、従来、作業者がはみ出したペーストを中央部に掻き寄せて集める頻度を高めるか、はみ出したペーストを回収して固形化したペースト成分を濾過して粘度を再調整する必要があり、工程の煩雑さや製造コストの点で問題となっていた。
 本発明者らは、上記問題点を解決するために鋭意検討を行った。その結果、スクリーン印刷機内の湿度を調整する湿度調整器を備えたスクリーン印刷機及びスクリーン印刷する際に、スクリーン印刷機内の湿度を調整するスクリーン印刷方法並びに該スクリーン印刷方法を用いた太陽電池の電極形成方法が、上記問題点を解決できることを見出し、本発明を完成させた。
 以下、本発明の実施形態を詳細に説明する。しかし、本発明は下記説明に加えて広範な他の実施形態で実施することが可能であり、本発明の範囲は、下記に制限されるものではなく、特許請求の範囲に記載されるものである。更に、図面は原寸に比例して示されていない。本発明の説明や理解をより明瞭にするために、関連部材によっては寸法が拡大されており、また、重要でない部分については図示されていない。
[スクリーン印刷機]
 図1は、本発明のスクリーン印刷機の主要部の側面模式図である。図2は、本発明のスクリーン印刷機を用いたスクリーン印刷におけるはみ出したペーストに加湿を行う様子を示す図((a)は上面図、(b)は側面図)である。図1及び図2に示すように、本発明のスクリーン印刷機10は、印刷パターンに対応する開口部が設けられたスクリーン製版11と、スクリーン製版11の上面に供給されたペースト16をスクリーン製版11の開口部に充填するスクレッパ12と、スクリーン製版11の開口部から被印刷物15の所定位置にペースト16を押し出すスキージ13と、スクリーン印刷機10内の湿度を調整する湿度調整器25とを備える。また、被印刷物15を設置するための印刷ステージ14を備える。このようなスクリーン印刷機であれば、スクリーン製版上のペースト中の水分量を制御することによって、ペーストの印刷性を向上させることができる。
 さらに、少なくとも、スクリーン製版11と、ペースト16と、スクレッパ12と、被印刷物15と、スキージ13と、ステージ14とを含む空間は板状部材で囲われていることが望ましい。こうすることで、印刷時の湿度を一定に保つことができる。
 また、この板状部材は、光透過性があることが好ましい。印刷ステップが外部から目視確認できるため、装置トラブルや不良発生が早期に発見できる。具体的には、ポリエチレン、ポリプロピレン、塩化ビニル樹脂、ポリスチレン、ABS(アクリロニトリル・ブタジエン・スチレン)樹脂、ポリエチレンテレフタラート、メタクリル樹脂、ポリビニルアルコール、塩化ビニリデン樹脂、ポリカーボネート、メラミン樹脂、ユリア樹脂、ポリアクリロニトリル、ポリメチルペンテン、環状オレフィンコポリマー、MBS(メチルメタクリレート・ブタジエン・スチレン)樹脂、SBC(スチレン・ブタジエン共重合)樹脂、ポリメタクリルスチレン、ポリエステルカーボネート、ポリエチレンナフタレート、ポリエーテルイミド、ポリアリレート、ポリアリルサルホン及びガラスのいずれかであることが好ましい。
 スクリーン製版11、スクレッパ12、スキージ13、印刷ステージ14及び被印刷物15の形状等は特に限定されないが、公知のスクリーン印刷機に用いられるものと同様のものとすることができる。
 湿度調整器25は特に限定されないが、例えば、加湿器、除湿機、精密空調機(温度及び湿度を調整できる空調機)等を挙げることができる。湿度調整器25はスクリーン印刷機内に設けることができる。
 ペースト16の種類は特に限定されないが、例えば、溶剤、導電性粒子等の粒子及びその他の添加物を含有するものとすることができる。この場合、溶剤の種類は特に限定されないが、例えば、脂肪族炭化水素系溶剤、カルビトール系溶剤、セロソルブ系溶剤、高級脂肪酸エステル系溶剤、高級アルコール系溶剤、高級脂肪酸系溶剤、芳香族炭化水素系溶剤等の有機溶剤を挙げることができる。
 脂肪族炭化水素系溶剤としては、例えば、出光興産製「IPソルベント」、シェル化学社製「Shellsol D40」(Shellsolは登録商標)、「Shellsol D70」、「Shellsol 70」、「Shellsol 71」、Exxon社製「Isopar G」、「Isopar H」、「Isopar L」、「Isopar M」、「Exxol D40」、「Exxol D80」、「Exxol D100」、「Exxol D130」(沸点:279~316℃)、「Exxol D140」(沸点:280~320℃)、「Exxol DCS100/140」等が挙げられる。
 また、カルビトール系溶剤としてはメチルカルビトール、エチルカルビトール、ブチルカルビトール等が挙げられる。
 セロソルブ系溶剤としては、エチルセロソルブ、イソアミルセロソルブ、ヘキシルセロソルブ等が挙げられる。
 また、高級脂肪酸エステル系溶剤としては、ジオクチルフタレート、ジブチルコハク酸イソブチルエステル、アジピン酸イソブチルエステル、セパシン酸ジブチル、セパシン酸ジ,2エチルヘキシル等が挙げられる。
 高級アルコール系溶剤としては、メチルヘキサノール、オレイルアルコール、トリメチルヘキサノール、トリメチルブタノール、テトラメチルノナノール、2-ペンチルノナノール、2-ノニールノナノール、2-ヘキシルデカノール等が挙げられる。
 また、高級脂肪酸系溶剤としては、カプリル酸、2-エチルヘキサン酸、オレイン酸等が挙げられる。
 芳香族炭化水素系溶剤としては、ブチルベンゼン、ジエチルベンゼン、ジペンチルベンゼン、ジイソプロピルナフタレン等が挙げられる。
 溶剤は1種を単独で又は2種以上を組み合わせて使用できる。
 本発明のスクリーン印刷機は、機内の湿度を調整する湿度調整器を備えるものであるため、溶剤が揮発し、版上の印刷パターン領域19、特にスキージ走査領域及びスクレッパ走査領域からはみ出したペーストが乾燥することを抑制し、ペースト表面が部分的に凝固するのを防ぐことができる。従って、このはみ出したペーストを作業者が中央部に掻き寄せて集めて再度印刷を行っても、版上のペーストの粘度が局所的に高くなってしまうことがなく、印刷したペーストの太りあるいは擦れが生じにくくなる。なお、図2中には、連続印刷中の印刷パターン領域外のペースト堆積領域20を模式的に示している。
 ここで、湿度と溶剤の揮発との間の関係について説明する。機内の湿度を調整することにより、溶剤の揮発が抑制される理由は完全に解明はされていないが、恐らく、以下に示すメカニズムによるものであると考えられる。ペースト中の、水より高沸点の溶媒に対しヘンリーの法則を適用すれば、周囲の水の分圧に比例した量の水が溶媒(ペースト)中に溶け込むと考えられる。溶け込んだ水の量に応じてペースト粘度が変化する、すなわち、高湿度下ではペーストは緩くなり、この結果、かすれ、断線や粘度低下によるダレの頻度が低下し、一定幅の線を印刷可能となる。従って、本発明により太陽電池の電極を形成する場合は、低特性の太陽電池の発生を抑制でき、変換効率の平均値が向上する。なお、上記のように溶剤の揮発が抑制される理由は完全に解明はされていないが、いずれにしても湿度と溶剤の揮発との間に相関があることは明らかであり、本発明は溶剤の種類によらずに実施可能である。以上のように、相対湿度よりも、絶対湿度ないし露点温度を制御することが重要と考えられる。
 ペースト16は、特に太陽電池の電極を形成する場合は、銀粒子とガラスフリットとワニス等を含む導電性銀ペーストとすることができる。この場合、被印刷物15を半導体基板とすることができる。
[スクリーン印刷方法]
 次に、図1及び図2を参照して、本発明のスクリーン印刷方法について説明する。
 本発明のスクリーン印刷方法は、印刷パターンに対応する開口部が設けられたスクリーン製版11と、スクレッパ12と、スキージ13とを備えたスクリーン印刷機10を用い、スクリーン製版11の上面に供給されたペースト16を、スクレッパ12によりスクリーン製版11の開口部に充填した後に、スキージ13によりスクリーン製版11の開口部から被印刷物15の所定位置にペースト16を押し出すことにより、被印刷物15に印刷パターンに対応してペースト16をスクリーン印刷する方法であって、スクリーン印刷する際に、スクリーン印刷機10内の湿度を調整するスクリーン印刷方法である。このようなスクリーン印刷方法であれば、スクリーン製版上のペースト中の水分量を制御することによって、ペーストの印刷性を向上させることができる。特に、スクリーン印刷する際に、スクリーン印刷機10内の湿度を調整することにより、スクリーン印刷機10内の露点温度を8.2~18.0℃とすることが好ましい。これにより、ペーストの印刷性を更に向上させることができる。
 スクリーン印刷機10内の湿度は特に限定されないが、好ましくは相対湿度で30%以上65%以下、より好ましくは相対湿度で45%以上55%以下である。このようなスクリーン印刷方法であれば、印刷したペーストのアスペクト比を高くできる。また、ペーストに使用する溶剤の種類等によっても好ましい湿度の範囲を適宜設定できる。
 スクリーン印刷機10内の湿度を調整する方法は、上記のように、スクリーン印刷機に湿度調整器を設けて湿度を調整する方法を挙げることができる。より具体的には、例えば、板状部材で囲う等の方法により、スクリーン製版11、スクレッパ12、スキージ13等を収納する印刷室を設け、この印刷室内が陽圧になるように、温度及び湿度を調整した空気を印刷室内に送風することができる精密空調機を印刷室外に設置する方法が挙げられる。この場合、印刷室は完全密閉でなくてもよい。
 スクリーン印刷機10内の温度は特に限定されないが、例えば、20℃以上30℃以下とすることができる。本発明者らの鋭意研究の結果、スクリーン印刷機の印刷機内温度をT(℃)、印刷機内相対湿度をH(%)としたとき、次式で定義されるkは露点温度(℃)に等しく、
Figure JPOXMLDOC01-appb-M000003
8.2<k<18.0となるようにすると、印刷が安定することが判明した。
 k(=露点温度)の導出
 下記式(1)
Figure JPOXMLDOC01-appb-M000004
で示されるkは以下のようにして導出されたものである。
 まず、温度Tr(℃)に対する水の飽和蒸気圧Pr(hPa)を双曲線関数で近似すると、15<Tr<40℃において、
Figure JPOXMLDOC01-appb-M000005
とできる。この式(2)を変形すると、下記式(3)
Figure JPOXMLDOC01-appb-M000006
となる。すなわち、これが、水の分圧がPrのときの露点温度である。温度Tのときの相対湿度H(%)は、分圧Pを用いて、下記式(4)で示される。また、下記式(4)を変形すると、下記式(5)になる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
このときの露点温度は、上記式(3)のPrに上記式(5)を代入して、
Figure JPOXMLDOC01-appb-M000009
となる。従って、温度T、相対湿度Hのときの露点温度は、上記式(1)の右辺で与えられる。
 スクリーン製版11の開口部の形状は特に限定されないが、長さが156~8mmの細線状の印刷に対して、本発明の効果は特に有効に発揮される。さらに、スクリーン製版11の開口部の幅は特に限定されないが、例えば、60μm以下とすることができる。スクリーン製版11の開口部の幅の下限は特に限定されないが、例えば、20μmとすることができる。本発明のスクリーン印刷方法であれば、このようなスクリーン製版の開口部の幅が小さいものを用いたとしても、印刷不良が発生しにくくなる。本発明者らの鋭意研究の結果、スクリーン印刷機の印刷機内温度をT(℃)、印刷機内相対湿度をH(%)、印刷物の幅をw(μm)としたとき、次式で定義されるk’は露点温度(℃)に等しく、
Figure JPOXMLDOC01-appb-M000010
8.2<k’<18.0となるようにすると、印刷が安定することが判明した。
 k’の線幅依存項の意味
 下記式(7)
Figure JPOXMLDOC01-appb-M000011
で示されるk’は、もともとは下記式(8)
Figure JPOXMLDOC01-appb-M000012
で示されるものであり、上記式(8)に下記式(9)及び(10)
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
で示される近似値を代入したものである。
[太陽電池]
 次に、上記スクリーン印刷方法を用いた本発明の太陽電池の電極形成方法により電極を形成することができる太陽電池の一例を説明する。
 前述したように、図7は、基板としてn型シリコン基板を用いた場合の一般的な太陽電池の断面模式図である。図7に示すように、太陽電池50は、半導体基板(n型シリコン基板)51に対し、受光面側には受光面拡散層(p型拡散層)52が設けられ、裏面側には裏面拡散層(n型拡散層)53が設けられている。n型拡散層53はBSF(back surface field)層ともいう。p型拡散層52の上には受光面電極55が設けられ、n型拡散層53の上には裏面電極56が設けられている。また、受光面側にSiN(窒化シリコン)等の反射防止膜57が設けられている。この反射防止膜57は、パッシベーション膜として作用することもできる。また、裏面側にもSiN等のパッシベーション膜58を設けることができる。
[太陽電池の製造方法]
 次に、太陽電池の製造方法を説明し、本発明の太陽電池の電極形成方法を説明する。本発明の電極形成方法は種々の太陽電池に適用することができる。本発明の電極形成方法を適用できる太陽電池は図7に図示したものに限られず、以下に説明する太陽電池の製造プロセス以外にも適用できる。
 ここで、図7に示す太陽電池の製造工程を説明する。まず、半導体基板51を用意する。この半導体基板51は、単結晶又は多結晶シリコン等からなり、p型、n型いずれでもよいが、ボロン等のp型の半導体不純物を含み、比抵抗は0.1~4.0Ω・cmのp型シリコン基板が用いられることが多い。大きさは100~156mm角、厚みは0.05~0.30mmの板状のものが好適に用いられる。以下、n型シリコン基板を用いた太陽電池の製造方法を例にとって説明する。
 n型シリコン基板51を用意した後、太陽電池の受光面となるn型シリコン基板51の表面に、例えば酸性溶液中に浸漬してスライス等による表面のダメージを除去してから、更にアルカリ溶液で化学エッチングして洗浄、乾燥することで、テクスチャとよばれる凹凸構造を形成する。凹凸構造は、太陽電池受光面において光の多重反射を生じさせる。そのため、凹凸構造を形成することにより、実効的に反射率が低減し、変換効率が向上する。
 その後、例えばBBr等を含む、850~1000℃の高温ガス中にn型シリコン基板51を設置し、n型シリコン基板51の全面にボロン等のp型不純物元素を拡散させる気相拡散法により、シート抵抗が30~300Ω/□程度のp型拡散層52を受光面に形成する。なお、p型拡散層を気相拡散法により形成する場合には、n型シリコン基板の受光面だけでなく、裏面及び端面にもp型拡散層が形成されることがある。この場合には、このp型拡散層を残す必要がある受光面を耐酸性樹脂で被覆したp型シリコン基板をフッ硝酸溶液中に浸漬することによって、裏面及び端面に形成された不要なp型拡散層を除去することができる。その後、例えば希釈したフッ酸溶液等の薬品に浸漬させることにより、拡散時にn型シリコン基板の表面に形成されたガラス層を除去し、純水で洗浄する。
 その後、850~1000℃の酸素ガス中にn型シリコン基板51を設置し、n型シリコン基板51の全面を熱酸化し、1000Å程度の熱酸化膜を形成する。次に、p型拡散層を残す必要がある受光面を耐酸性樹脂で被覆し、n型シリコン基板51をフッ酸溶液中に浸漬することによって、裏面に形成された熱酸化膜を除去することができる。ここで、形成された受光面側の熱酸化膜は、n型不純物拡散におけるバリア膜として機能する。
 その後、例えばPOCl等を含む、850~1000℃の高温ガス中にn型シリコン基板51を設置し、n型シリコン基板51の裏面にリン等のn型不純物元素を拡散させる気相拡散法により、シート抵抗が30~300Ω/□程度のn型拡散層53を裏面に形成する。その後、例えば希釈したフッ酸溶液等の薬品に浸漬させることにより、拡散時にn型シリコン基板の表面に形成されたガラス層を除去し、純水で洗浄する。
 なお、n型拡散層53及びp型拡散層52を形成する方法は、上記気相拡散法に限定されず、n型又はp型の不純物を含む塗布剤を基板に塗布して熱処理する方法(塗布拡散法)を用いることもできる。
 次に、プラズマエッチングによって基板側面を接合分離する。このプラズマエッチングによる接合分離は、n型不純物元素の拡散時にn型シリコン基板の表面に形成されたガラス層の除去前に行ってもよいし、除去後に行ってもよい。
 更に、上記n型シリコン基板51の受光面側に反射防止膜兼パッシベーション膜57を、及び裏面側にパッシベーション膜58を形成する。これらの膜は、例えばSiN等からなり、例えばSiHとNHとの混合ガスをNで希釈し、グロー放電分解でプラズマ化させて堆積させるプラズマCVD法等で形成される。この反射防止膜兼パッシベーション膜57は、n型シリコン基板との屈折率差等を考慮して、屈折率が1.8~2.3程度になるように形成され、厚み500~1000Å程度の厚みに形成され、n型シリコン基板の表面で光が反射するのを防止して、n型シリコン基板内に光を有効に取り込むために設けられる。また、このSiNは、p型拡散層に対してパッシベーション効果があるパッシベーション膜としても機能し、反射防止の機能と併せて太陽電池の電気特性を向上させる効果がある。
 次に、本発明の太陽電池の電極形成方法を用いて電極を形成する。本発明の太陽電池の電極形成方法は、上記本発明のスクリーン印刷方法を用いて、半導体基板51の少なくとも一方の主表面に、上述のペースト16をスクリーン印刷し、該スクリーン印刷されたペースト16を乾燥及び焼成することにより、電極を形成する方法である。このような太陽電池の電極形成方法であれば、スクリーン印刷機内の湿度を調整することでスクリーン製版上のペーストの乾燥を防止し、ペースト吐出を安定させることによって、アスペクト比の高い電極を容易に形成することができる。従って、このような太陽電池の電極形成方法を用いれば、高い電気特性及び高い変換効率を有する太陽電池を歩留りよく作製することができる。
 ペースト16は、例えば、受光面及び裏面にスクリーン印刷することができる。この場合、スクリーン印刷する順番は特に限定されない。この場合、裏面のペースト及び受光面のペーストの焼成は、同時に行うこともできるし、別々に行うこともできる。
 具体的には、まず、裏面に、例えば銀粒子とガラスフリットとワニス等を含む導電性銀ペーストを本発明のスクリーン印刷方法を用いてスクリーン印刷し、乾燥させる。この際の印刷パターンは特に限定されないが、略平行で基板の両端を結ぶ細線状とすることができる。すなわち、基板サイズによるが、長さ156~100mmの平行線状パターンとできる。印刷パターンの幅も特に限定されないが、60μm以下とすると本発明の効果が特に発揮され好ましい。しかる後、受光面に、導電性銀ペーストを本発明のスクリーン印刷方法を用いてスクリーン印刷し、乾燥させる。受光面の印刷パターンも裏面同様に適宜設定することができる。この後、各電極用ペーストを500℃~950℃程度の温度で焼成することで、受光面電極55と裏面電極56とを形成する。このときシリコン基板表面に上記のようにSiN等の膜を形成していても、焼成の際に膜を貫通させて電極形成できる(ファイアースルー)。
 形成する電極の種類は特に限定されないが、形成する電極をフィンガー電極とし、該フィンガー電極のアスペクト比を0.5以上1.0以下とすることができる。本発明の太陽電池の電極形成方法であれば、印刷したペーストの太りあるいは擦れが生じにくいので、このようなアスペクト比の高いフィンガー電極を容易に形成することができる。なお、本発明により、半導体基板の少なくとも一方の主表面にフィンガー電極を形成するためのペースト及びバスバー電極を形成するためのペーストを同時に印刷し、フィンガー電極及びバスバー電極を形成することもできる。バスバー同時形成の場合は、バスバー本数に応じてフィンガー長さが変化する。バスバー本数は2本から12本程度が好適であり、フィンガー長さは76mm~8mmとなるが、この長さでも本発明の効果は発揮される。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
(実施例1)
 結晶面方位(100)、15.6cm角200μm厚、アズスライス比抵抗2Ω・cm(ドーパント濃度7.2×1015cm-3)リンドープn型単結晶シリコン基板を、水酸化ナトリウム水溶液に浸してダメージ層をエッチングで取り除き、水酸化カリウム水溶液にイソプロピルアルコールを加えた水溶液に浸してアルカリエッチングすることでテクスチャ形成を行った。得られたシリコン基板全体を1000℃・1時間熱処理して酸化膜を形成した。次に、受光面の酸化膜をフッ酸等の薬液を用いて除去し、受光面にボロンドーパントを含む塗布剤を塗布した後に、950℃・1時間熱処理を行い、p型拡散層を受光面に形成した。熱処理後、基板に付いたガラス成分はフッ酸溶液等により除去後、洗浄した。
 再度、シリコン基板全体にシリコン酸化膜を形成し、裏面のシリコン酸化膜をフッ酸等の薬液を用いて除去し、裏面にリンドーパントを含む塗布剤を塗布した後に、900℃・30分熱処理を行い、n型拡散層を裏面全体に形成した。
 次に、プラズマエッチングによって基板側面を接合分離した。具体的には、拡散熱処理後の両面に拡散層を形成した基板をプラズマやラジカルが受光面や裏面に侵入しないようにスタックし、CFガスを用いたプラズマエッチング処理を行って基板の端面を数マイクロメートル削った。
 次に、基板に付いたガラス成分を高濃度フッ酸溶液等により除去後、洗浄した。
 引き続き、ダイレクトプラズマCVD装置を用い、受光面及び裏面に表面保護膜であるシリコン窒化膜を積層した。この膜厚は100nmであった。
 最後に、温度25℃一定の下、印刷機内の湿度を加湿器によって45%RHに調整し、受光面側及び裏面側にそれぞれ、銀ペースト(ヘレウス株式会社製、SOL 9350A SOLAR CELL PASTE(これは、銀粒子、2-(2-ブトキシエトキシ)エタノール及びその他の添加物を含む))を電極パターン状に印刷し、フィンガー電極パターン状及びバスバー電極パターン状の銀ペーストを形成した。フィンガー開口幅は60μmとした。この銀ペーストの乾燥後、800℃で20分焼成を行い、受光面電極及び裏面電極を形成した。印刷途中でフィンガー電極パターン領域外にはみ出した版乳剤上のペーストを中央に寄せる作業の頻度は印刷500枚毎に行った。
(実施例2)
 印刷機内の湿度を50%RHに調整したこと以外は実施例1と同様の工程を行って太陽電池を作製した。
(実施例3)
 印刷機内の湿度を54%RHに調整したこと以外は実施例1と同様の工程を行って太陽電池を作製した。
(実施例4)
 印刷機内の湿度を14%RHに調整したこと以外は実施例1と同様の工程を行って太陽電池を作製した。
(実施例5)
 印刷機内の湿度を21%RHに調整したこと以外は実施例1と同様の工程を行って太陽電池を作製した。
(実施例6)
 印刷機内の湿度を33%RHに調整したこと以外は実施例1と同様の工程を行って太陽電池を作製した。
(実施例7)
 印刷機内の湿度を63%RHに調整したこと以外は実施例1と同様の工程を行って太陽電池を作製した。
(実施例8)
 印刷機内の湿度を65%RHに調整したこと以外は実施例1と同様の工程を行って太陽電池を作製した。
(実施例9)
 印刷機内の湿度を70%RHに調整したこと以外は実施例1と同様の工程を行って太陽電池を作製した。
 表1及び図3~図6に、上記実施例1~9の方法で、導電性ペーストを印刷して作製した太陽電池それぞれ5000枚ずつの変換効率及び各特性因子の平均値を示す。図3は、実施例1~9における印刷機内の相対湿度(%RH)と変換効率Eff(%)の関係を示す図である。図4は、実施例1~9における印刷機内の相対湿度(%RH)と開放電圧Voc(mV)の関係を示す図である。図5は、実施例1~9における印刷機内の相対湿度(%RH)と短絡電流密度Jsc(mA/cm)の関係を示す図である。図6は、実施例1~9における印刷機内の相対湿度(%RH)とフィルファクタ(Fill Factor)(%)の関係を示す図である。また、対応する外観検査での歩留りの調査結果を図10に示す。断線や電極太りが発生したものを不良とした。
Figure JPOXMLDOC01-appb-T000001
 表1及び図3~図6に示すように、本発明のスクリーン印刷方法(実施例1~9)を用いることで、高い変換効率を有する太陽電池を作製することができる。特に実施例1~3で良好な結果が得られた。これは、印刷領域からはみ出したペースト表面の水分量の変化による局所的なペースト粘度の増大が抑制されることで、ペーストの安定した吐出量が得られることによるものである。このようなスクリーン印刷方法であれば、上記のように太陽電池の電気特性が向上すると共に、外観検査での歩留りも向上する。一方で、湿度が高くなるにつれ、Jscが低下する傾向があることから、ペースト粘度の低減によるフィンガー幅の太り、すなわちアスペクト比の低下を引き起こさないようにするためには、適度な加湿(実施例1~3)がより好ましいということがわかる。湿度30%以上65%以下で外観歩留りは高くなった。湿度30%以上では主に断線が発生しにくくなり、湿度65%以下では主に線太りが発生しにくくなったためである。外観の観点からは湿度は30%~65%が好適である。
(比較例)
 印刷機内の湿度を調整しない以外は実施例1と同様の工程を行って太陽電池を作製した。比較例では、湿度のバラツキがあってペーストの吐出量を制御できず、ペーストの印刷性が悪化した。そのため、実施例1と同様の条件(湿度の条件を除く)では、太陽電池を5000枚作製することができなかった。
(実施例10)
 印刷機内の温度を15℃、湿度を14~90%RHに調整したこと以外は実施例1と同様の工程を行って太陽電池を作製した。
(実施例11)
 印刷機内の温度を35℃、湿度を14~54%RHに調整したこと以外は実施例1と同様の工程を行って太陽電池を作製した。
(実施例12)
 フィンガー開口幅を40μmとした以外は実施例1~9と同様の工程を行って太陽電池を作製した。
 実施例1~12の結果をあわせて図11に示す。低温では高湿で、高温では低湿で変換効率が高くなっている。また、線幅が小さいと湿度の最適範囲が狭い。
印刷機内温度をT(℃)、印刷機内相対湿度をH(%)、印刷物の幅をw(μm)としたとき、次式で定義されるk’に対し、
Figure JPOXMLDOC01-appb-M000015
得られたデータを代入してプロットしなおしたものが図12である。図11では、温度が変化すると最適湿度が変化していたが、本発明における露点温度に相当するパラメータk’を導入することで温度、湿度、線幅を一元的に規格化することができた。図12より、k’の最適値は8.2<k’<18.0とできる。
 本発明により、スクリーン印刷装置内での湿度を調整することにより、太陽電池の導電性ペースト印刷時のペーストの吐出量が安定し、高い変換効率を有する太陽電池が作製可能であることが示された。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (14)

  1.  印刷パターンに対応する開口部が設けられたスクリーン製版と、スクレッパと、スキージとを備えたスクリーン印刷機を用い、前記スクリーン製版の上面に供給されたペーストを、前記スクレッパにより前記スクリーン製版の開口部に充填した後に、前記スキージにより前記スクリーン製版の開口部から被印刷物の所定位置に前記ペーストを押し出すことにより、前記被印刷物に前記印刷パターンに対応して前記ペーストをスクリーン印刷する方法であって、
     前記スクリーン印刷する際に、前記スクリーン印刷機内の湿度を調整することを特徴とするスクリーン印刷方法。
  2.  前記スクリーン印刷する際に、前記スクリーン印刷機内の湿度を調整することにより、前記スクリーン印刷機内の露点温度を8.2~18.0℃とすることを特徴とする請求項1に記載のスクリーン印刷方法。
  3.  前記スクリーン印刷機の印刷機内温度をT(℃)、印刷機内相対湿度をH(%)としたとき、次式で定義されるkが、8.2<k<18.0となるようにすることを特徴とする請求項1又は請求項2に記載のスクリーン印刷方法。
    Figure JPOXMLDOC01-appb-M000016
  4.  前記スクリーン印刷機内の湿度を相対湿度で30~65%の間で調整することを特徴とする請求項1から請求項3のいずれか1項に記載のスクリーン印刷方法。
  5.  前記スクリーン印刷機内の湿度を相対湿度で50±5%以内に調整することを特徴とする請求項1から請求項4のいずれか1項に記載のスクリーン印刷方法。
  6.  前記ペーストは、脂肪族炭化水素系溶剤、カルビトール系溶剤、セロソルブ系溶剤、高級脂肪酸エステル系溶剤、高級アルコール系溶剤、高級脂肪酸系溶剤及び芳香族炭化水素系溶剤から選ばれる1種以上の有機溶剤を含むことを特徴とする請求項1から請求項5のいずれか1項に記載のスクリーン印刷方法。
  7.  前記スクリーン製版の開口部の形状を細線状とし、長手方向の長さを156~8mmとすることを特徴とする請求項1から請求項6のいずれか1項に記載のスクリーン印刷方法。
  8.  前記スクリーン製版の開口部の幅を60μm以下とすることを特徴とする請求項1から請求項7のいずれか1項に記載のスクリーン印刷方法。
  9.  前記スクリーン印刷機の印刷機内温度をT(℃)、印刷機内相対湿度をH(%)、印刷物の幅をw(μm)としたとき、次式で定義されるk’が、8.2<k’<18.0となるようにすることを特徴とする請求項1から請求項8のいずれか1項に記載のスクリーン印刷方法。
    Figure JPOXMLDOC01-appb-M000017
  10.  請求項1から請求項9のいずれか1項に記載のスクリーン印刷方法を用いて、半導体基板の少なくとも一方の主表面に、前記ペーストをスクリーン印刷し、該スクリーン印刷されたペーストを乾燥及び焼成することにより、電極を形成することを特徴とする太陽電池の電極形成方法。
  11.  前記形成する電極をフィンガー電極とし、該フィンガー電極のアスペクト比を0.5以上1.0以下とすることを特徴とする請求項10に記載の太陽電池の電極形成方法。
  12.  印刷パターンに対応する開口部が設けられたスクリーン製版と、前記スクリーン製版の上面に供給されたペーストを前記スクリーン製版の開口部に充填するスクレッパと、前記スクリーン製版の開口部から被印刷物の所定位置に前記ペーストを押し出すスキージと、スクリーン印刷機内の湿度を調整する湿度調整器とを備えたものであることを特徴とするスクリーン印刷機。
  13.  少なくとも、前記スクリーン製版と、前記スクレッパと、前記スキージとを含む空間は板状部材で囲われていることを特徴とする請求項12に記載のスクリーン印刷機。
  14.  前記板状部材の材質は、ポリエチレン、ポリプロピレン、塩化ビニル樹脂、ポリスチレン、ABS(アクリロニトリル・ブタジエン・スチレン)樹脂、ポリエチレンテレフタラート、メタクリル樹脂、ポリビニルアルコール、塩化ビニリデン樹脂、ポリカーボネート、メラミン樹脂、ユリア樹脂、ポリアクリロニトリル、ポリメチルペンテン、環状オレフィンコポリマー、MBS(メチルメタクリレート・ブタジエン・スチレン)樹脂、SBC(スチレン・ブタジエン共重合)樹脂、ポリメタクリルスチレン、ポリエステルカーボネート、ポリエチレンナフタレート、ポリエーテルイミド、ポリアリレート、ポリアリルサルホン及びガラスのいずれかであることを特徴とする請求項13に記載のスクリーン印刷機。
PCT/JP2016/003347 2015-07-22 2016-07-15 スクリーン印刷機、スクリーン印刷方法及び太陽電池の電極形成方法 WO2017013866A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/745,650 US11101391B2 (en) 2015-07-22 2016-07-15 Screen printing apparatus, screen printing method, and electrode formation method of solar battery
DE112016002917.9T DE112016002917T5 (de) 2015-07-22 2016-07-15 Siebdruckvorrichtung, Siebdruckverfahren und Elektrodenbildungsverfahren für eine Solarbatterie
MYPI2018700178A MY192805A (en) 2015-07-22 2016-07-15 Screen printing apparatus, screen printing method, and electrode formation method of solar battery
CN201680042453.8A CN107848314B (zh) 2015-07-22 2016-07-15 丝网印刷机、丝网印刷方法及太阳能电池的电极形成方法
SG11201800461TA SG11201800461TA (en) 2015-07-22 2016-07-15 Screen printing apparatus, screen printing method, and electrode formation method of solar battery
JP2017529453A JP6879913B2 (ja) 2015-07-22 2016-07-15 太陽電池の電極形成方法及び太陽電池の電極形成用スクリーン印刷機
KR1020187000822A KR102393056B1 (ko) 2015-07-22 2016-07-15 스크린 인쇄기, 스크린 인쇄 방법 및 태양전지의 전극 형성 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015145152 2015-07-22
JP2015-145152 2015-07-22

Publications (1)

Publication Number Publication Date
WO2017013866A1 true WO2017013866A1 (ja) 2017-01-26

Family

ID=57834241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003347 WO2017013866A1 (ja) 2015-07-22 2016-07-15 スクリーン印刷機、スクリーン印刷方法及び太陽電池の電極形成方法

Country Status (9)

Country Link
US (1) US11101391B2 (ja)
JP (2) JP6879913B2 (ja)
KR (1) KR102393056B1 (ja)
CN (1) CN107848314B (ja)
DE (1) DE112016002917T5 (ja)
MY (1) MY192805A (ja)
SG (2) SG10201912336SA (ja)
TW (1) TWI712510B (ja)
WO (1) WO2017013866A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113172993A (zh) * 2021-04-27 2021-07-27 广州诚鼎机器人有限公司 一种浆料湿度监测设备和椭圆印花机

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3482934B1 (de) * 2017-11-10 2021-06-30 Exentis Group AG 3d-siebdrucksystem zum drucken dreidimensional geformter strukturen
EP3482939B1 (de) 2017-11-10 2020-05-20 Exentis Group AG Siebbereitstellungssystem
CN108788124B (zh) * 2018-05-28 2019-10-11 北京梦之墨科技有限公司 一种导电油墨及丝网印刷方法
WO2020109351A1 (de) 2018-11-28 2020-06-04 Ulrich Ernst Verfahren und system zur herstellung eines energiespeichers
CN109605914A (zh) * 2018-12-21 2019-04-12 北京铂阳顶荣光伏科技有限公司 一种丝网印刷装置及丝网印刷设备
CN109624488A (zh) * 2019-02-28 2019-04-16 业成科技(成都)有限公司 网印喷头装置
CN114132054A (zh) * 2021-11-01 2022-03-04 智慧星空(上海)工程技术有限公司 一种低温丝网印刷装置
CN114103406B (zh) * 2021-11-25 2022-11-11 晶澳太阳能有限公司 丝网印刷机的修正方法
CN115042507B (zh) * 2022-07-14 2023-09-01 江苏赛尔制版有限公司 一种太阳能光伏网版印刷机烘干工装

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184994A (ja) * 1988-01-20 1989-07-24 Toshiba Corp スクリーン印刷機
JPH04236494A (ja) * 1991-01-18 1992-08-25 Furukawa Electric Co Ltd:The クリーム半田の印刷装置
JPH07125175A (ja) * 1993-11-08 1995-05-16 Sanyo Electric Co Ltd スクリーン印刷機
JP2006286366A (ja) * 2005-03-31 2006-10-19 The Inctec Inc 導電性ペースト組成物およびプリント配線板
JP2007273271A (ja) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd 導電性ペースト組成物およびプリント配線板
WO2011111192A1 (ja) * 2010-03-10 2011-09-15 三菱電機株式会社 太陽電池セルの電極形成方法及び太陽電池セル
JP2011212926A (ja) * 2010-03-31 2011-10-27 Dainippon Printing Co Ltd スクリーン印刷装置およびスクリーン印刷方法
JP2013143457A (ja) * 2012-01-10 2013-07-22 Sumitomo Metal Mining Co Ltd 金属モリブデン塗布膜の製造方法、及び金属モリブデン塗布膜、並びにその製造方法に用いられる金属モリブデン塗布膜形成用塗布液
JP2013146958A (ja) * 2012-01-20 2013-08-01 Mitsubishi Electric Corp メタルマスクおよび太陽電池の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149837B2 (ja) * 1997-12-08 2001-03-26 松下電器産業株式会社 回路形成基板の製造方法とその製造装置および回路形成基板用材料
JP4917278B2 (ja) 2005-06-17 2012-04-18 信越半導体株式会社 スクリーン印刷版およびスクリーン印刷装置
WO2008001430A1 (en) 2006-06-27 2008-01-03 Mitsubishi Electric Corporation Screen printing machine and solar battery cell
KR100917777B1 (ko) * 2007-11-15 2009-09-21 (주) 태양기전 인쇄회로기판의 제조방법, 베이스 기판위에 패턴을형성하는 방법 및 인쇄회로기판
KR101631711B1 (ko) * 2008-03-21 2016-06-17 신에쓰 가가꾸 고교 가부시끼가이샤 확산용 인 페이스트 및 그것을 이용한 태양 전지의 제조 방법
KR101051913B1 (ko) * 2008-09-26 2011-07-26 코오롱글로텍주식회사 염료의 경화를 방지한 스크린 프린팅 장치
JP2012054112A (ja) 2010-09-01 2012-03-15 Ulvac Japan Ltd リチウム二次電池用の電極活物質層の形成方法
JP2012054442A (ja) 2010-09-02 2012-03-15 Shin Etsu Chem Co Ltd 太陽電池の製造方法及びこれに用いるスクリーン製版
CN102285263A (zh) * 2011-05-31 2011-12-21 江苏顺风光电科技有限公司 印刷晶体硅太阳能电池电极的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184994A (ja) * 1988-01-20 1989-07-24 Toshiba Corp スクリーン印刷機
JPH04236494A (ja) * 1991-01-18 1992-08-25 Furukawa Electric Co Ltd:The クリーム半田の印刷装置
JPH07125175A (ja) * 1993-11-08 1995-05-16 Sanyo Electric Co Ltd スクリーン印刷機
JP2006286366A (ja) * 2005-03-31 2006-10-19 The Inctec Inc 導電性ペースト組成物およびプリント配線板
JP2007273271A (ja) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd 導電性ペースト組成物およびプリント配線板
WO2011111192A1 (ja) * 2010-03-10 2011-09-15 三菱電機株式会社 太陽電池セルの電極形成方法及び太陽電池セル
JP2011212926A (ja) * 2010-03-31 2011-10-27 Dainippon Printing Co Ltd スクリーン印刷装置およびスクリーン印刷方法
JP2013143457A (ja) * 2012-01-10 2013-07-22 Sumitomo Metal Mining Co Ltd 金属モリブデン塗布膜の製造方法、及び金属モリブデン塗布膜、並びにその製造方法に用いられる金属モリブデン塗布膜形成用塗布液
JP2013146958A (ja) * 2012-01-20 2013-08-01 Mitsubishi Electric Corp メタルマスクおよび太陽電池の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113172993A (zh) * 2021-04-27 2021-07-27 广州诚鼎机器人有限公司 一种浆料湿度监测设备和椭圆印花机

Also Published As

Publication number Publication date
JPWO2017013866A1 (ja) 2018-04-19
DE112016002917T5 (de) 2018-03-15
KR102393056B1 (ko) 2022-04-29
KR20180032554A (ko) 2018-03-30
JP2019214207A (ja) 2019-12-19
MY192805A (en) 2022-09-09
TW201707995A (zh) 2017-03-01
TWI712510B (zh) 2020-12-11
CN107848314A (zh) 2018-03-27
SG11201800461TA (en) 2018-02-27
US11101391B2 (en) 2021-08-24
CN107848314B (zh) 2020-06-16
JP6862507B2 (ja) 2021-04-21
US20180219111A1 (en) 2018-08-02
SG10201912336SA (en) 2020-02-27
JP6879913B2 (ja) 2021-06-02

Similar Documents

Publication Publication Date Title
JP6862507B2 (ja) スクリーン印刷方法及び太陽電池の電極形成用スクリーン印刷機
US10084100B2 (en) Solar cell element and method for manufacturing same
EP2355167A2 (en) Method for manufacturing electrode for solar cell, substrate for solar cell manufactured by the same, and solar cell manufactured by the same
TWI673726B (zh) 導電性組成物、半導體元件與太陽電池元件
KR20190095555A (ko) 태양전지, 그 제조방법 및 태양전지 모듈
US9997650B2 (en) Solar cell, manufacturing method thereof, and solar cell module
CN103858239A (zh) 全背接触太阳能电池和制造方法
US9171975B2 (en) Solar cell element and process for production thereof
EP4369424A1 (en) Double-sided solar cell and manufacturing method therefor
JP5555509B2 (ja) 太陽電池及びその製造方法
US20160233353A1 (en) Solar cell, manufacturing method thereof, and solar cell module
WO2011024587A1 (ja) 導電性ペースト、半導体装置用電極、半導体装置および半導体装置の製造方法
JP2012054442A (ja) 太陽電池の製造方法及びこれに用いるスクリーン製版
TW201242040A (en) Method for manufacturing solar cell element and solar cell element
CN103688370B (zh) 太阳能电池单元的制造方法以及太阳能电池单元制造系统
JP5794193B2 (ja) 太陽電池素子の製造方法及びスクリーン印刷機
JP6359394B2 (ja) 半導体装置とその製造方法
JP5794209B2 (ja) 太陽電池素子の製造方法及びスクリーン印刷機
EP3702048B1 (en) Method for drying polyimide paste and method for producing solar cells capable of highly-efficient photoelectric conversion
CN107078178A (zh) 太阳能电池及其制造方法
JP2014220462A (ja) 太陽電池の製造方法
JP2016004943A (ja) 太陽電池の製造方法および太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529453

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187000822

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15745650

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016002917

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11201800461T

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 16827433

Country of ref document: EP

Kind code of ref document: A1