WO2017006247A1 - Micro ou nanocápsulas com propriedades fotocatalíticas para libertação controlada de agentes difusores e respetivo método de obtenção - Google Patents

Micro ou nanocápsulas com propriedades fotocatalíticas para libertação controlada de agentes difusores e respetivo método de obtenção Download PDF

Info

Publication number
WO2017006247A1
WO2017006247A1 PCT/IB2016/054027 IB2016054027W WO2017006247A1 WO 2017006247 A1 WO2017006247 A1 WO 2017006247A1 IB 2016054027 W IB2016054027 W IB 2016054027W WO 2017006247 A1 WO2017006247 A1 WO 2017006247A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalytic
capsules
mixtures
capsule
microcapsules
Prior art date
Application number
PCT/IB2016/054027
Other languages
English (en)
French (fr)
Inventor
Carlos José MACEDO TAVARES
Juliana Filipa GOUVEIA MARQUES
Original Assignee
Universidade Do Minho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Do Minho filed Critical Universidade Do Minho
Priority to EP16753471.8A priority Critical patent/EP3318323B1/en
Priority to CN201680040092.3A priority patent/CN107847896A/zh
Priority to BR112018000264-0A priority patent/BR112018000264B1/pt
Priority to US15/741,811 priority patent/US20180243717A1/en
Priority to ES16753471T priority patent/ES2830753T3/es
Priority to CA2991553A priority patent/CA2991553A1/en
Priority to AU2016288830A priority patent/AU2016288830A1/en
Publication of WO2017006247A1 publication Critical patent/WO2017006247A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/12Making microcapsules or microballoons by phase separation removing solvent from the wall-forming material solution
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/18Vapour or smoke emitting compositions with delayed or sustained release
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0042Photocleavage of drugs in vivo, e.g. cleavage of photolabile linkers in vivo by UV radiation for releasing the pharmacologically-active agent from the administered agent; photothrombosis or photoocclusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay

Definitions

  • the present disclosure is in the field of production of functional coatings for the controlled release of volatile agents. More specifically, it consists of capsules, in particular microcapsules or nanocapsules chemically functionalized with photocatalytic nano materials on the inner or outer surface of the capsule wall, which by solar action or artificial light with the same spectrum of electromagnetic radiation releases the diffuser / active agent. which is a vapor, liquid or solid.
  • the present disclosure is a technology of heterostructured materials with the ability to diffuse by solar activation certain encapsulated agents in microcapsules or nanocapsules functionalized with photocatalytic nanomaterials.
  • Photocatalytic nanomaterials can be nanostructures such as nanotubes, nanoparticles, nanofibers or quantum dots, depending on the intended functionality. Release agents or products may be encapsulated in the polymer microcapsules or nanocapsules in a solid, liquid or vapor phase.
  • photocatalytic nanomaterials which are semiconductors with an energy gap between 2.8 and 3.4 eV, will absorb this radiation and promote electronic transitions between the valence band and conduction band, which subsequently give rise to oxidation / reduction (redox) mechanisms.
  • redox oxidation / reduction
  • These redox mechanisms initiate degradation or rupture of the microcapsule wall by promoting thus diffusion of the encapsulated agent.
  • microcapsules There are already several types of microcapsules on the market that release certain agents by direct diffusion through the porous microcapsule wall or by mechanical action: friction, cracking, crushing.
  • this technology solves this problem by activating the diffusion of agents by light activation.
  • WO2009 / 062516 describes coated panels consisting of several layers of nanoparticles deposited on a surface. It also adds that one of these layers may be photocatalytic nanoparticles or may also have particulate layers having antimicrobial or deodorizing properties. More specifically, it refers to a self-cleaning surface for wood floors or panels consisting essentially of the dispersion of photocatalytic nanoparticles in a binder polymer matrix, for example a resin or varnish, which may be applied, for example, to the floor.
  • a binder polymer matrix for example a resin or varnish
  • the nanoparticles When the nanoparticles are in contact with moisture, they will turn that water into a hydrophilic film (wetting the surface) which, for example, by electrostatic repulsion, will make the dirt on the surface of this water film easily removed. This technology facilitates cleaning and makes this water film more removable (dry).
  • EP1531667 B2 and US6077522 A report porous microcapsules containing a biologically active material that is sensitive to ultraviolet light. These capsules are prepared to contain an ultraviolet radiation shield for biologically active material, selected from titanium dioxide, zinc oxide and mixtures, suspended and completely dispersed in the liquid, and a dispersant that serves to disperse the radiation shield. ultraviolet in the organic liquid, and to maintain it in said liquid but which does not allow it to be diffused extracted, for example into water. This process is not related to the controlled release effect of a substance by direct light action or photocatalytic processes induced by photocatalytic materials that are physically bound to microcapsules containing a volatile agent to be spread. US2009010977 A1 describes the synthesis of permethrin nanocapsules without any nano material or principle. Reports the use of solar energy only to verify the prolonged activity level of nanocapsules that break under friction (mechanical actuation).
  • WO2007 / 051198 describes the process of synthesizing microcapsules that slowly diffuse certain agents by using photosensitive polymers in their formation.
  • the microcapsule wall structure is functionalized with catalysts that initiate its degradation by a solar sensitization process, without relying on photocatalytic nano materials, as is the case with the present technology.
  • the presence of photocatalytic nanomaterials makes release more efficient and better controlled through sun exposure.
  • the invention underlying GB1513614 A relates to a microencapsulated adjuvant composition intended to be released into the soil by a diffusion process from within a porous polymeric microcapsule aided by water drainage.
  • This is suitable for agrochemicals, pharmaceuticals, paints and dyes as an active component contained within a microcapsule wall shell.
  • the porosity of the microcapsule wall is designed to provide slow release. This process is not related to photocatalysis, nor to the controlled release effect of a substance by direct light action or photocatalytic processes induced by photocatalytic materials that are physically bound to microcapsules containing an agent to be diffused. Hence they cannot be used, for example, on static exposures with sun exposure.
  • JP6228882 A reports on an insect-proof textile structure with slow release of an insecticide.
  • the insecticide is either encapsulated in porous microcapsules or adsorbed on the textile mesh, having no effect that can be activated and controlled by light exposure.
  • This technology does not utilize the principle of photocatalysis, nor the controlled release effect of a substance by the direct action of light.
  • EP0376385 A2 and US7786027 describe processes for the synthesis of microcapsules containing a detergent / softener, but without alluding to a process. photocatalytic or by solar activation. Detergent / softener is diffused through the intrinsic open porosity of the microcapsule.
  • JP2004188325 A discloses the use of porous microparticles for ammonia degradation. These are not microcapsules functionalized with photocatalytic nanomaterials to diffuse a particular agent; simply from a porous microparticle that has on the surface a dispersion of photocatalytic particles. Said particle serves solely as a support for such particles when in contact with ammonia to decompose.
  • the microparticles are porous and as such do not enable controlled release of any internal agent.
  • WO2009048186 A1 discloses titanium dioxide nanoparticles encased in a metal core. This nucleus is not a microcapsule; just a stand. There is no controlled release mechanism from this nucleus. The core promotes a larger surface area to the particle so that it can develop redox processes to decontaminate pollutants.
  • WO2004022841 A1 discloses a system in which in one particular case photocatalytic nanoparticles are dispersed in a binder sublayer of a varnish, for example for floor applications.
  • photocatalytic nanoparticles are dispersed in a binder sublayer of a varnish, for example for floor applications.
  • the objective is to produce a hydrophilic surface that allows a better surface cleaning and to release a deodorizing agent or an antibacterial agent by mechanical action. It does not refer to the release of any substance by solar activation.
  • the capsules or simply the agent itself which is housed in previously generated micro cracks, may be diffused after the surface layer is scratched, crushed, crushed, or otherwise mechanically acted upon. the release of the product. After the active ingredient has been exhausted, the material cannot be regenerated.
  • WO2011012935 discloses a heterostructured layered coating comprising a substrate; photocatalytic material in the form of solid thin film; nano or polymeric microcapsules with an encapsulated diffuser.
  • This technology assumes the existence of a photocatalytic base material previously deposited in the holder, which in contact with the microcapsule wall initiates the redox process to release the diffuser.
  • This technology is distinguished from the present since in the present said photocatalytic support or substrate is not necessary since the microcapsule wall is functionalized with the photocatalytic materials in the process of its synthesis. Additionally, the microcapsules are of different origin. Regeneration of the active surface implies that a photocatalytic coating is previously deposited on the surface so that it can then be regenerated, for example by spraying it with an aerosol containing microcapsules with a certain volatile agent.
  • the present technology has advantages over others referenced in the literature as it can be applied on untreated static supports simply by fixing on the support, which can be clothing, tent, mosquito net, curtains, awnings, or any other support or structure with direct sun exposure or equivalent ultraviolet radiation by spraying or depositing the microcapsule system functionalized with photocatalytic nano materials and certain encapsulated agents.
  • the diffuser In order for the diffuser to be released in a controlled manner, it does not require a mechanical initiation that breaks the microcapsule wall, as such activation will be performed solely by oxidation / reduction mechanisms associated with the intrinsic photocatalysis process of the nanoparticles that are present. functionalized on the outer wall of the microcapsule.
  • the present disclosure is characterized by using micro and nano functional materials, enhancers of promoting the controlled release of a diffuser.
  • the present disclosure describes nanocapsules and microcapsules preferably comprising diameters between 100 - 1000 nm and 1 - 500 ⁇ , respectively, and that by solar action or artificial light with the same spectrum of electromagnetic radiation a redox reaction is promoted. that results in dissociation or rupture of the capsule wall and subsequent release of the diffuser which may be solid, liquid or vapor.
  • This technology takes advantage of the established photocatalytic and semiconductor effect of titanium dioxide to be used as an active surface, promoting the controlled release of a particular diffuser from within the polymeric micro or nanocapsules; be they insecticides, larvicides, repellents, pesticides, phytonutrients, fragrances, additives for paints or varnishes, or deodorants, among others.
  • nano titanium dioxide based materials such as nanoparticles with a diameter between 5 and 50 nm, nanofibers with a length range between 10 - 500 nm, nanotubes with diameters between 5 - 100 nm and lengths between 20 nm - 1 ⁇ , or other nano material with photocatalytic characteristics, are chemically functionalized with the wall surface of the micro or nanocapsules, which comprise the diffuser within a useful volume of 10 "to 25 " of 10 ml. preferably 10 15 to 10 5 ml.
  • the titanium dioxide nanoparticles, or derivatives thereof may be on the inside or outside of the capsule wall, or both, or on the microstructure of the micro or nanocapsule wall itself.
  • nanocapsules are all capsules comprising a diameter between 0.1 - 1 ⁇ .
  • Microcapsules are all capsules that have a diameter between 1 - 500 ⁇ .
  • Nanomaterial is defined as a nanoparticle, nanotube or nanofiber comprising in its composition unit cell aggregates of one or more photocatalytic compounds smaller than 1 micrometer in size.
  • Photocatalytic compounds are energy absorbing semiconductors and give rise to oxidation-reduction reactions responsible for the degradation or disruption of the microcapsule or nanocapsule and subsequent release of an active agent.
  • Active agent is a compound placed in the core of the capsule in liquid, solid or gaseous state which is released by degradation or disruption of the microcapsule or nanocapsule.
  • Solar radiation illuminating the semiconductor surface of the photocatalytic material will trigger oxidation-reduction mechanisms that will degrade or open the pores of polymeric nanocapsules containing the diffuser and promote their release. controlled and enhancing the desired effect.
  • external compounds with chemical affinity may be used for both. Due to the affinity of Ti0 2 with reactive hydroxyl groups (-OH), compounds having this reactive group in their structure can be used, namely polyethers such as polyethylene glycol, polyethylene oxide and polypropylene oxide. Polyols capable of increasing the density of hydrogen bonds may be used and thus promote the bonding between the microcapsules or nanocapsules and the titanium dioxide nano materials.
  • amines such as amines (-N H2)
  • This group of compounds is one of the microcapsule wall constituent monomers obtained by interfacial polymerization and when overused during synthesis makes the unused -NH 2 groups for wall formation available to bond to the Ti0 2 structure. , allowing a homogeneous coating of microcapsules with nano materials such as Ti0 2 nanoparticles.
  • nanoparticles with photocatalytic compounds are negatively charged due to the accumulation of electrons on their surface. Incorporation during synthesis of cationic compounds in the microcapsule wall allows chemical bonding between nanoparticles and microcapsules due to the electronic attraction between the two compounds.
  • cationic (positively charged) compounds which may be used are the quaternary ammonium salts such as tetramethylammonium hydroxide, cetrimonium chloride, cetrimonium bromide and benzalkonium chloride.
  • This technology is characterized in that it can be applied to untreated static supports simply by fixing to the support by spraying, or deposition with or without intermediation of cationic or anionic surfactants, depending on the electrostatic attraction between the surfaces of the system.
  • microcapsules functionalized with photocatalytic nano materials and certain encapsulated agents.
  • acrylic compounds such as acrylic acid, ethyl acrylate, methyl acrylate, hydroxyethyl acrylate and hydroxyethyl methacrylate may be used.
  • Synthetic latexes may also be used as styrene butadiene, as well as cellulose derivatives.
  • Polyvinyl acetate is also one of the most commonly used polymers for binding to wood supports.
  • the use of surfactants is mostly with quarternary cationic ammonium salts such as tetramethylammonium hydroxide, cetrimonium chloride, cetrimonium bromide and benzalkonium chloride.
  • the support may consist of clothing, tent, mosquito net, curtains, awnings, glazed surfaces, varnished or painted surfaces, or metal, ceramic or polymeric panels, wood, or any other directly exposed structure or support. solar or equivalent ultraviolet radiation.
  • the diffuser does not require a mechanical initiation that breaks the microcapsule or nanocapsule wall, since this activation will be performed solely by oxidation-reduction mechanisms associated with the intrinsic photocatalysis process of the nanomaterials that are functionalized. outer wall of the micro or nanocapsule.
  • the synthesis of photocatalytic nanomaterials is accomplished by an autoclaved hydrothermal chemical process from a given precursor.
  • the microcapsules or nanocapsules are further synthesized by an interfacial polymerization process or phase inversion technique, where photocatalytic nanomaterials and the active agent are added.
  • the present disclosure relates to capsules for transporting an active agent with photocatalytic properties, with an outer diameter between 0.05-500 ⁇ , preferably 1- 500 ⁇ , wherein the capsule is formed by a wall and a housing core.
  • the diffuser wherein the capsule wall is comprised of a polymeric film selected from the list consisting of parylene, poly (p-xylene), poly (lactic acid), poly (E-caprolactone), polyoxyethylene derivatives, phthalocyanine melamine-formaldehyde, polyurethane, polysulfone, cellulose acetate, acrylic polymers, collagen, chitosan, and mixtures thereof;
  • the polymeric film comprises nano materials, such as nanoparticles, nanotubes or nanofibers, chemically functionalized with a photocatalytic compound selected from a list: Ti0 2 , W0 3 , WS 2 , Nb 2 0 5 , MoO, MoS 2 , V 2 0 5 , MgF 2 , Cu 20 , Na Bi0 3 , NaTa0 3 , SiO 2 , u0 2 , BiV0 4 , Bi 2 W0 6 , Bii 2 TiO 20 , NiO-K 4 NB 6 Hi 7 , SrTi 3 , Sr 2 Nb0 7 , Mr 2 Ta0 7 , BaTi0 3, BaTaTi 2 0 5, ZnO, Zr0 2, Sn0 2, ZnS, CaBi204, Fe 2 0 3, AI 2 0 3, Bi 2 0 6 Bi 2 S 3, CdS, CdSe, and mixtures thereof;
  • a photocatalytic compound selected from a list: Ti0
  • the active agent / diffuser is in the core in liquid, solid or gaseous state. Due to their high mechanical strength these capsules are specially adapted for the transport of active agent / diffuser in solid or liquid state.
  • the distribution of photocatalytic nanomaterials on the surface of the capsule is 0.1 - 5% w / v total capsule (includes core).
  • the capsule wall is comprised between 55-80% w / v of a polymeric film and 20-45% w / v wall of photocatalytic nanomaterials.
  • the photocatalytic nanomaterials are dispersed - chemically functionalized - on the outer surface of the capsule wall, or on the inner surface of the capsule wall or attached to the capsule wall.
  • the polymeric film may be selected from the list consisting of: polysulfone, polymethyl methacrylate, polyurethane, or mixtures thereof.
  • the capsules comprise a polymeric film of polymethyl methacrylate and dispersed nano materials comprising a photocatalytic material selected from a list: Ti0 2 , W0 3 , SrTi0 3 , ZnO, or mixtures thereof.
  • the capsules comprise a polymeric polyurethane film and dispersed nanomaterials comprising a photocatalytic material selected from a list: Ti0 2 , W0 3 , SrTi0 3 , ZnO, or mixtures thereof.
  • the capsules comprise a polymeric film of polysulfone and dispersed nanomaterials comprising a photocatalytic material selected from a list: Ti0 2 , W0 3 , SrTi0 3 , ZnO, or mixtures thereof.
  • the diameter of the capsule ranges from 0.1 - 500 ⁇ .
  • nanoparticle-shaped nanomaterials have a diameter between 5 and 50 nm; nanofiber-shaped nanomaterials have a range of lengths between 10 - 500 nm; nanotube-shaped nanomaterials have diameters between 5 - 100 nm and lengths between 20 nm - 1 ⁇ .
  • the wall thickness of the capsule ranges from 0.05 - 25 ⁇ ; in particular 0.2-10 ⁇ .
  • the capsule wall is formed a plurality of layers.
  • the volume of the active agent ranges from 10 "25 - 10 " 5 ml, in particular 10 15 - 10 10 ml.
  • the active agent may be an insect repellent, an insecticide, a therapeutic agent, a radiotherapy agent, a deodorizing agent, a natural essence, a fragrance, a moisturizing agent, a component of a lacquer or ink, an agrochemical.
  • the capsules may further comprise at least one surfactant, emulsifier, binder, or mixtures thereof.
  • the surfactant is selected from the following list: tetramethylammonium hydroxide, cetrimonium chloride, cetrimonium bromide and benzalkonium chloride.
  • the active agent may be hydrophobic.
  • the capsules may be obtainable by interfacial polymerization.
  • the present disclosure also relates to articles comprising at least one capsule described above, in particular such articles may be textiles, fibers, glass, wood, metal, tents, mosquito nets, resins, paints, detergent curtains, softeners, colloidal creams, foams or suspensions.
  • the present disclosure also relates to a process for obtaining the capsules described above and which may comprise the following steps:
  • aqueous solution comprising an emulsifier, colloidal agent or mixtures thereof, in a particular case where the emulsifier is gum arabic (15-20% w / v), Tween 20 (1-3% v / v) or mixtures thereof and wherein the colloidal agent is polyvinyl acid (1-3% w / v);
  • hydrophilic monomer selected from the following list: ethylenediamine, diethylenetriamine, hexamethylenediamine, p-phenylenediamine, 1,4 butanediol, 1,6 hexanediol, ethylene glycol or polyethylene glycol in a concentration range between 0.2 and 1 mol / dm 3 ;
  • stirring the emulsion preferably at 400 - 800 rpm for 10 - 60 min, preferably 40 min;
  • aqueous solutions comprising 10 - 20% v / v of amines, polyols, polyethers or mixtures thereof;
  • a nano material such as a nanoparticle, nanotube or nanofiber comprising a photocatalytic material wherein the nano material is selected from the following list: Ti0 2 , W0 3 , WS 2 , Nb 2 0 5 , MoO, MoS 2, V 2 0 5, MgF 2, Cu 2 0, NaBi0 3 NaTa0 3 SI0 2, U0 2, BiV0 4, Bi 2 W0 6, Bii 2 TiO 20, NiO-K 4 NB 6 Hi 7 , SrTi0 3 , Sr 2 Nb0 7 , Sr 2 Ta0 7 , BaTi0 3 , BaTaTi 2 O s , ZnO, Zr0 2 , Sn0 2 , ZnS, CaBi 2 0 4 , Fe 2 0 3 , Al 2 0 3 , Bi 2 0 6 , Bi 2 S 3 , CdS, CdSe, or mixtures thereof.
  • the hydrophilic and hydrophobic monomer concentration ratio is 3: 1, 4: 1 or 5: 1.
  • the percentage used of gum arabic is 15-20% w / v. In one embodiment, the percentage used of Tween 20 is 1-2% v / v.
  • the percentage used of polyvinyl acid is 1 - 3% w / v.
  • capsules comprising a hydrophilic active agent encapsulated therein.
  • the capsules are obtained by phase inversion technique.
  • the process of obtaining the capsules described above comprises the following steps:
  • an organic solution comprising 10-20% w / v of a polymer selected from the following list: polysulfone, cellulose acetate, polymethylacrylate and polyacrylonitrile,
  • an organic solution comprising 80 - 90% v / v of a volatile solvent selected from the following list: dichloromethane, ⁇ , ⁇ -dimethylformamide, acetone and chloroform,
  • aqueous solutions comprising 10 - 20% v / v of amines, polyols, polyethers or mixtures thereof;
  • nano material such as a nanoparticle, nanotube or nanofiber comprising a photocatalytic material wherein the nano material is selected from the following list: Ti02, W0 3 , WS 2 , Nb 2 0 5 , MoO, MoS 2, V 2 0 5, MgF 2, Cu 2 0, NaBi0 3 NaTa0 3 SI0 2, U0 2, BiV0 4, Bi 2 W0 6, Bii 2 TiO 20, NiO-K 4 NB 6 Hi 7, SrTi0 3 , Sr 2 Nb0 7 , Sr 2 Ta0 7 , BaTi0 3 , BaTaTi 2 O s , ZnO, Zr0 2 , Sn0 2 , ZnS, CaBi 2 0 4 , Fe 2 0 3 , Al 2 0 3 , Bi 2 0 6 , Bi 2 S 3 , CdS, CdSe, or mixtures thereof.
  • a process according to the preceding claim wherein the step of dispersing the nano or microcapsules is by dispersing it in an aqueous solution comprising one or more surfactants.
  • the step of adding the photocatalytic nanomaterial is made with a basic pH, in particular between 9-11.
  • the polyol is selected from the following list: 1,4 butanediol, ethylene glycol, 1,6 butanediol, or mixtures thereof.
  • polyether embodiment is selected from the following list: polyethylene glycol, polyethylene oxide, polypropylene oxide, or mixtures thereof.
  • the process begins by polymerization or precipitation reactions leading to the formation of microcapsules or nanocapsules, which may be based on polyurethane, among other polymers such as parylene, poly (p-xylylene), poly (lactic acid), poly (E-caprolactone), polyoxyethylene derivatives, phthalocyanine, polysulfone, polystyrene, cellulose acetate, acrylic polymers, collagen or chitosan, which encapsulate the diffuser to be released, which may be in liquid, solid or gaseous state.
  • polyurethane among other polymers such as parylene, poly (p-xylylene), poly (lactic acid), poly (E-caprolactone), polyoxyethylene derivatives, phthalocyanine, polysulfone, polystyrene, cellulose acetate, acrylic polymers, collagen or chitosan, which encapsulate the diffuser to be released, which may be in liquid, solid or gaseous state.
  • the photocatalytic nanomaterials ie Ti0 2 -based nanotubes, nanotubes or nanofibers, or other type of nano-materials with demonstrated photocatalytic activity, such as W0 3 , WS 2 , Nb 2 05, MoO , MoS 2 , V 2 O 5 , MgF 2 , Cu 2 O, Na Bi0 3 , NaTa0 3 , SiO 2 , u0 2 , BiV0 4 , Bi 2 W0 6 , Bii 2 TiO 20 , NiO-K 4 NB 6 Oi 7 , SrTi0 3 , Sr 2 Nb0 7 , Sr 2 Ta0 7 , BaTi0 3 , BaTaTi 2 O s , ZnO, Zr0 2 , Sn0 2 , ZnS, CaBi 2 0 4 , Fe 2 0 3 , Al 2 0 3 , Bi 2 0 6 , Bi 2 S 3 , CdS, or Cd
  • microcapsules or nanocapsules are obtained which, through solar activation, the oxidation-reduction mechanisms (redox) initiated by photocatalytic nanomaterials lead to degradation or rupture of the microcapsule or nanocapsule wall, promoting the diffusion of the agent. specific that was encapsulated.
  • redox oxidation-reduction mechanisms
  • the interfacial polymerization technique is used, based on the interfacial reaction between different solubilized monomers in different phases.
  • the first step in the microencapsulation process is emulsification, wherein one of the diffuser-containing monomers is solubilized in an aqueous dispersed phase.
  • emulsification emulsification
  • one of the diffuser-containing monomers is solubilized in an aqueous dispersed phase.
  • the organic solution containing 0.1 to 5 ml diffuser and 0.25 to 8 ml organic monomer is vortexed for 1 to 2 min.
  • Various organic monomers are used to promote microcapsule or nanocapsule wall formation, depending on the type of polymer that is desired.
  • the monomers 2,4-toluene diisocyanate, 2,4-diphenylmethane diisocyanate and 1,6-hexamethylene diisocyanate are used.
  • the next step in the process is the formation of an oil-in-water (O / W) emulsion for the use of oils as diffusers. Under mechanical stirring (400-1200 rpm), the organic solution is dispersed in the aqueous phase containing an emulsifier (15-20% arabic gum and tween 20 1-2%) or a colloidal agent (1-3% polyvinyl alcohol). To ensure its stability the emulsion is stirred for a period of time from 3 to 8 min. The size of the final microcapsules or nanocapsules is directly linked to the size of the emulsion droplets resulting from the breakdown of the oil phase due to surface tension and intermolecular collisions caused by mechanical agitation.
  • an aqueous solution containing the hydrophilic monomer in a concentration range between 0.2 and 1 mol / dm 3, is added .
  • the hydrophilic monomers used are polyols such as 1,4 butanediol, 1,6 hexanediol, ethylene glycol or polyethylene glycol.
  • the addition of these monomers to the emulsion triggers polymerization reactions between the organic monomer and the hydrophilic monomer, resulting in a polymeric coating at the interface of the already emulsified oil droplets, resulting in the microcapsule or nanocapsule wall.
  • the suspension of formed microcapsules or nanocapsules is kept stirring for a maximum of 40 minutes for maturation and stabilization of the polymeric coating around the microcapsule.
  • the stirring speed during the process ranges from 400 to 800 rpm.
  • the final microcapsules or nanocapsules are further subjected to a washing process with cyclohexane or water to remove excess solvents.
  • chemical affinity monomers are used for this type of material, namely amines.
  • hydrophilic monomer Using an excess concentration of hydrophilic monomer relative to hydrophobic monomer, OH reactive groups will be available chemically for the polymerization reaction with the organic monomer and also to chemically bind to titanium dioxide. Hydrophilic and hydrophobic monomer concentration ratios of 3: 1, 4: 1 or 5: 1 are used for this procedure.
  • the pH of the microcapsule suspension For the chemical adsorption of Ti0 2 nanoparticles to be efficient, the pH of the microcapsule suspension must be basic, between 9-11.
  • the microencapsulation of hydrophilic active compounds is made using the phase inversion technique. Precipitation of the microcapsules or microspheres may be induced by an immersion process or by evaporation of the solvent.
  • the first step is the preparation of a water-in-oil (W / O) primary emulsion.
  • An aqueous solution containing the active agent is added to a polymer solution and emulsified with mechanical stirring for a period of time from 2 to 8 hours, forming the A / O emulsion ( Figure 2).
  • the polymer solution Prior to the emulsification step, the polymer solution is prepared by dissolving the polymer in a suitable solvent under magnetic stirring for 2-3 h.
  • Different polymers may be used such as polysulfone, cellulose acetate, polymethylacrylate and polyacrylonitrile.
  • concentration of polymer in solution should be 10 to 20% (w / v).
  • the solvent used should be able to solubilize the polymer, have low water solubility, high volatility and low toxicity. Among the most common solvents may be highlighted dichloromethane, ⁇ , ⁇ -dimethylformamide, acetone and chloroform. Precipitation of the microcapsules may occur by immersion of the primary emulsion in a bath containing a non-solvent represented in the scheme of Figure 2 by b1 or by the solvent evaporation technique represented by b2.
  • the final microcapsules are obtained by dispersing the primary A / O emulsion in the form of a microtropules in a water bath.
  • the polymeric coating of the active agent occurs through a rapid gelatinization process (5-10 s) based on diffusion processes between solvent and non-solvent leading to polymer separation and precipitation around the active agent.
  • microcapsule formation can be induced by evaporation of the solvent from the polymer solution ( Figure 2 b2).
  • the first stage of microencapsulation is the homogeneous dispersion of the active agent in the polymer solution and the volatile solvent, generating a water-in-oil (W / O) emulsion.
  • This emulsion is then added to an aqueous solution containing one or more emulsifiers to form a water-in-water (W / O / W) double emulsion.
  • W / O / W water-in-water
  • Tween 20 1-2%) or polyvinyl acid (1-3%).
  • the generated W / O / A double emulsion is mechanically vigorously agitated until evaporation of the volatile solvent is complete, leading to polymer precipitation and capsule formation.
  • This technique can be used for the microencapsulation of solid active compounds, having as main difference the stirring time of the solution containing the polymer, the solvent and the active agent.
  • the mixture should be stirred between 12 and 24 h to ensure that the polymeric coating of the solid is homogeneous.
  • the microcapsules may be collected by centrifugation or filtration and dried at room temperature.
  • the photocatalytic titanium dioxide nano-materials are coated.
  • Ti0 2 nanoparticles they are dispersed in aqueous solution of pH greater than 9, using ultrasound for 30 min.
  • the photocatalytic nanoparticles are added to the microcapsule suspension under mechanical agitation using a propeller-type shaft at a speed of 400 rpm. The mixture remains stirring for 30 min and is then collected.
  • the resulting microcapsules containing titanium dioxide nanoparticles adsorbed on their surface are either dispersed in water or filtered and oven dried at 40 ° C.
  • the process of coating the micro or nanocapsules with titanium dioxide nanomaterials such as nanoparticles can also be obtained by using external compounds having affinity for nanoparticles, namely compounds with -OH reactive groups.
  • external compounds having affinity for nanoparticles namely compounds with -OH reactive groups.
  • examples of such compounds are polyethylene glycol, polyethylene oxide, polypropylene oxide.
  • Chain extenders such as 1,4-butanediol, ethylene glycol or 1,6-hexanediol may also be used to increase the density of hydrogen bonds in the wall of the micro or nano capsules.
  • titanium dioxide nanomaterials are solubilized in the presented solvents and incorporated into the micro or nanocapsules after their production and washing.
  • Figure 1 Representative scheme of the production of the system for controlled release of hydrophobic diffusers by solar activation in samples of chemically functionalized polyurethane film microcapsules with photocatalytic nanomaterials, in which:
  • hydrophobic monomer e.g. 4,4-diphenylmethane diisocyanate
  • 2- Aqueous Phase aqueous solution with emulsifier (e.g. PVA, Tween 20)
  • emulsifier e.g. PVA, Tween 20
  • hydrophilic monomer e.g. 1,4-butanediol
  • Figure 2 Schematic representation of the production of the system for controlled release of hydrophilic diffusers by solar activation in samples of chemically functionalized polymethyl methacrylate or polysulfone microcapsules with photocatalytic nanomaterials, in which:
  • Aqueous Phase aqueous solution of hydrophilic active agent
  • polymeric solution eg Polymethyl methacrylate or polysulfone
  • Figure 3 Illustrative graphic of the evaluation of the controlled release by mass spectrometry gas chromatography of pine fragrance-loaded microcapsule samples (for example) with and without chemically functionalized Ti0 2 nanoparticles on the outer wall of the microcapsule. It is found that when microcapsules are functionalized with photocatalytic nanoparticles the release of pine essence (bornyl acetate / isoborneol acetate) molecules that adsorb on PDMS fiber is much higher.
  • pine essence bornyl acetate / isoborneol acetate
  • Figure 4 Example micrograph of photocatalytic microcapsules of the present disclosure loaded with a diffuser.
  • Ti0 2 -based nanoparticles An example of photocatalytic nanomaterials are Ti0 2 -based nanoparticles. These materials are synthesized using an autoclaved hydrothermal sol-gel process. A colloidal solution is prepared with water and 2-propanol (10: 1). As an example, it is mixed at room temperature and vortexed in a homogenizer of 125 ⁇ 2-propanol and 1125 ⁇ water at pH 2.40 (adjusted with 0.1 M HCl solution).
  • Ti0 2 -based nanoparticles may be prepared with triethylamine to be nitrogen doped for the purpose of increasing the energy gap and absorbing efficiency of sunlight.
  • titanium isopropoxide source precursor of titanium atoms
  • source precursor of titanium atoms 3000 ⁇ of triethylamine is added to the resulting white suspension.
  • the amine is responsible for doping T1O2 with nitrogen.
  • the reaction must be left under magnetic stirring for 2 days. After this time 10 ml of water and 10 ml of 2-propanol are added to the suspension and the mixture is autoclaved at 200 ° C for 2h. After cooling to room temperature, the particles are washed.
  • an organic solvent (2-propanol) is used which allows the particles to precipitate after centrifugation.
  • the washing process is repeated several times to ensure that all unreacted solvents are removed.
  • the collected particles are oven dried at 80 ° C for 8 h.
  • the particles are placed in an oven to heat treat at 635 ° C and ensure the formation of crystalline allotropic phases of the material, in this case anatase. preferably and rutile, which are shown to have catalytic photoactivity.
  • the material is characterized by: evaluating the photocatalytic activity in a photoreactor, in the presence of a simulating pollutant; performing X-ray diffraction to determine the crystalline phases that have developed (anatase, rutile); performing dynamic light scattering to evaluate the size and size distribution of nanoparticles; evaluation of particle morphology by scanning electron microscopy.
  • polymeric microcapsules obtained by interfacial polymerization are polyurethane coated microcapsules.
  • the organic solution is prepared by mixing 5 ml of active diffuser and 5 ml of organic monomer (4,4-diphenylmethane diisocyanate) in an organic solvent (dichloromethane) by vortexing with a homogenizer, in particular for 2 min
  • the previously prepared organic solution is added dropwise to a 2% aqueous solution of PVA (polyvinyl alcohol) under mechanical stirring with a cowles rod at a speed of 1000 rpm.
  • PVA polyvinyl alcohol
  • This polymer is used as an emulsifying agent which allows the dispersion of oil droplets from the organic solution in the aqueous phase.
  • the emulsion formed is allowed to stir for 3 min.
  • the stirring speed is reduced to 600 rpm and an aqueous 1,4-butanediol solution is added, in particular with a concentration of 0.32 mol / dm 3 and at a speed of 0.6 ml / min.
  • the addition of the hydrophilic monomer triggers the polymerization reactions between the organic monomer and the hydrophilic monomer, resulting in a polyurethane polymeric film at the interface of the already emulsified oil droplets, giving rise to the microcapsule wall.
  • the solution is allowed to stir for a further 30 min to ensure that the polymerization process is completed in its entirety. This process is described in Figure 1.
  • the capsules In order to remove excess solvent, the capsules should be washed with water and cyclohexane. The process is performed by vacuum filtration using a 2 ⁇ porosity polycarbonate membrane. The microcapsules are collected and dispersed again in water.
  • polysulfone microcapsules containing solid diffusers with hydrophilic properties are polysulfone microcapsules containing solid diffusers with hydrophilic properties.
  • the polymer solution constituting the wall of the final capsules is prepared by dissolving 1.5 g of polysulfone in 10 ml of N, N-dimethylformamide under magnetic stirring for 2h. After complete dissolution 0.5 g of solid diffuser is added to the polymer solution. The suspension is allowed to stir magnetically for a period of no less than 12 hours to ensure that the polymeric coating of the solid is homogeneous.
  • the polymeric suspension containing the diffuser is dispersed in the form of microtropules in a water bath (200 ml) at room temperature.
  • the precipitation process is immediate and the formed microcapsules are collected by centrifugation or filtration and dried at room temperature. In order to remove excess solvent, the capsules should be washed with water.
  • the process is performed by vacuum filtration using a 2 ⁇ porosity polycarbonate membrane.
  • the size, distribution, morphology of microcapsules are directly linked to parameters such as amount of active agent, emulsifier concentration, polymer concentration, stirring speed, temperature and pressure.
  • Ti0 2 nanoparticles they are dispersed in aqueous solution of pH greater than 9, using ultrasound for 30 min. After this time, the photocatalytic nanoparticles are added to a microcapsule suspension under mechanical agitation using a propeller-type shaft at a speed of 400 rpm. The mixture remains stirring for 30 min and is then collected. The resulting microcapsules containing chemically functionalized surface titanium dioxide nanoparticles are either dispersed in water or filtered and oven dried at 40 ° C.
  • thermogravimetry TGA
  • Fourier transform infrared spectroscopy FTI
  • FTIR analysis the pure diffuser, polymeric wall and microcapsules previously dried at 40 ° C for 6 h are evaluated.
  • KBr spectroscopic grade powder is mixed together with pure diffuser, dry polymer wall or dry microcapsules (1%).
  • the resulting powder is placed in a 1 cm diameter mold and taken to a hydraulic press to form the translucent tablet used for the analysis.
  • the microcapsules are crushed and washed several times with water and ethanol.
  • the chemical structure of the diffuser, polymeric wall and resulting microcapsules is characterized by FTIR in a range of wavelengths ranging from 400 cm -1 to 4000 cm -1 .
  • the spectrum obtained to determine the characteristic chemical bonds of the agent is evaluated.
  • the presence of the characteristic absorption bands of the diffuser in the spectra obtained for the microcapsules leads to the conclusion that the diffuser is successfully encapsulated within the microcapsules.
  • the percentage of encapsulated diffuser within the resulting microcapsules is determined by the mass loss value associated with the boiling temperature or degradation of the diffuser; The mass loss related to the degradation of the microcapsule polymeric wall occurs at temperatures above 300 ° C.
  • thermogravimetric analyzes 10-20 mg of the previously dried microcapsules are placed at 40 ° C for 6h in a Teflon or platinum crucible. The sample is heated at a temperature ramp between 60 and 600 ° C under argon atmosphere and at a heating rate of 10 ° C / min.
  • the percentage of encapsulated diffuser within the resulting microcapsules is determined by the mass loss value associated with the boiling temperature or degradation of the diffuser; in the case of dodecane (eg diffuser) at 190 - 220 ° C.
  • the mass loss related to the degradation of the microcapsule polymeric wall occurs at temperatures above 300 ° C.
  • the gas chromatography coupled to mass spectrometry technique is used. Analyzes are performed on a chromatograph equipped with a column and an ion trap detector with an ionization energy of 70 eV.
  • the extraction and preconcentration technique is the headspace mode solid phase microextraction (SPME) method.
  • the microcapsules are placed in an airtight vial for 2 h under UV irradiation and in the dark. After this time a 10 mm long PDMS (polydimethylsiloxane) polymeric fiber is injected into the vial without direct contact with the microcapsule sample but only with the vapor phase, adsorbing the volatile analytes from the sample. Immediately after extraction, the fiber is collected and injected into the gas chromatograph. The collected analytes are separated and detected by the equipment.
  • the diffuser is identified by analyzing the chromatograms and mass spectra obtained for each sample. Its concentration is determined by a linear regression obtained for the calibration curve relating the area calculated by the integration of the chromatogram peaks and the mass of the compound. The calibration curve is obtained by injecting standards containing known masses of the diffuser.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Animal Behavior & Ethology (AREA)
  • Toxicology (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Environmental Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catalysts (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

A presente divulgação insere-se no domínio de produção de revestimentos funcionais para a libertação controlada de agentes voláteis. Mais especificamente, consiste em cápsulas, em particular microcápsulas ou nanocápsulas funcionalizadas quimicamente com nano materiais fotocatalíticos na superfície interna ou externa da parede da cápsula, que por ação solar ou luz artificial com o mesmo espectro de radiação eletromagnética, libertam o agente difusor/agente ativo, sendo este um vapor, líquido ou sólido. A presente divulgação diz assim respeito a uma cápsula para transportar um agente ativo com propriedades fotocatalíticas, com um diâmetro externo entre 0.1-500 µm, em que a cápsula é formada por uma parede e um núcleo para alojar o agente difusor. A presente divulgação também diz respeito a um método de obtenção das cápsulas agora divulgadas. As aplicações visam a área farmacêutica, biotecnologia, engenharia civil, sanitária, agroquímica, automóvel e alimentar.

Description

D E S C R I Ç Ã O
MICRO OU NANOCÁPSULAS COM PROPRIEDADES FOTOCATALÍTICAS PARA LIBERTAÇÃO CONTROLADA DE AGENTES DIFUSORES E RESPETIVO MÉTODO DE OBTENÇÃO
Domínio técnico
[0001] A presente divulgação insere-se no domínio de produção de revestimentos funcionais para a libertação controlada de agentes voláteis. Mais especificamente, consiste em cápsulas, em particular microcápsulas ou nanocápsulas funcionalizadas quimicamente com nano materiais fotocatalíticos na superfície interna ou externa da parede da cápsula, que por ação solar ou luz artificial com o mesmo espectro de radiação eletromagnética, liberta o agente difusor/agente ativo, sendo este um vapor, líquido ou sólido.
[0002] As aplicações visam a área farmacêutica, biotecnologia, engenharia civil, sanitária, agroquímica, automóvel e alimentar.
Estado da técnica
[0003] A presente divulgação consiste numa tecnologia de materiais heteroestruturados com a capacidade de difundir por ativação solar determinados agentes encapsulados em microcápsulas ou nanocápsulas funcionalizadas com nano materiais fotocatalíticos. Os nano materiais fotocatalíticos podem ser nano estruturas, como nanotubos, nanopartículas, nanofibras ou pontos quânticos, dependendo da funcionalidade pretendida. Os agentes ou produtos a libertar podem estar encapsulados nas microcápsulas ou nanocápsulas poliméricas, numa fase sólida, líquida ou vapor. Por ativação solar, ou por outra radiação com propriedades semelhantes, preferencialmente incorporando radiação ultravioleta, os nano materiais fotocatalíticos, que são semicondutores com um hiato de energia entre 2,8 a 3,4 eV, vão absorver essa radiação e promover transições eletrónicas entre a banda de valência e a de condução, que subsequentemente originam mecanismos de oxidação/redução (redox). Estes mecanismos redox iniciam a degradação ou rutura da parede da microcápsula promovendo assim a difusão do agente que estiver encapsulado. Já existem no mercado vários tipos de microcápsulas que libertam determinados agentes por difusão direta através da parede de microcápsulas porosas ou por ação mecânica: fricção, fissura, esmagamento. Contudo, em suportes estáticos onde os mecanismos de ação mecânica não estejam disponíveis, esta tecnologia resolve esse problema ao ativar a difusão dos agentes por ativação de luz.
[0004] Encontram-se referidas na literatura alguns exemplos de tecnologias que utilizam microcápsulas, porém de uma forma bastante distinta.
[0005] O documento WO2009/062516 descreve painéis com revestimento constituído por várias camadas de nanopartículas depositadas sobre uma superfície. Acrescenta também que uma dessas camadas pode ser de nanopartículas fotocatalíticas ou poderá ter também camadas com partículas que possuem propriedades antimicrobianas ou desodorizantes. Mais especificamente, refere-se a uma superfície autolimpante para soalhos ou painéis de madeira que consiste essencialmente na dispersão de nanopartículas fotocatalíticas numa matriz polimérica ligante, por exemplo uma resina ou um verniz, que poderá ser aplicada, por exemplo, sobre o soalho. Quando as nanopartículas estiverem em contacto com humidade, vão transformar essa água numa película hidrofílica (molha a superfície) que, por exemplo, por repulsão eletrostática, fará com que a sujidade fique à superfície dessa película de água e seja facilmente removida. Esta tecnologia facilita a limpeza e faz com que essa película de água seja removível (seca) com mais facilidade.
[0006] Os documentos de patente EP1531667 B2 e US6077522 A reportam microcápsulas porosas contendo um material biologicamente ativo que é sensível à luz ultravioleta. Estas cápsulas são preparadas para conter um protetor de radiação ultravioleta para o material biologicamente ativo, selecionado a partir de dióxido de titânio, óxido de zinco e suas misturas, suspenso e completamente disperso no líquido, e um dispersante que serve para dispersar o protetor de radiação ultravioleta no líquido orgânico, e para o manter no referido líquido, mas que não permite que seja extraído por difusão, por exemplo para a água. Este processo não está relacionado com efeito de libertação controlada de uma substância pela ação direta da luz ou por processos fotocatalíticos induzidas por materiais fotocatalíticos que estão fisicamente ligados a microcápsulas contendo um agente volátil para ser espalhado. [0007] O documento de patente US2009010977 Al descreve a síntese de nanocápsulas com permetrina, sem qualquer nano material ou princípio. Relata o uso de energia solar apenas para verificar o nível de atividade prolongada de nanocápsulas que quebram sob fricção (acionamento mecânico).
[0008] O documento de patente WO2007/051198 descreve o processo de síntese de microcápsulas que difundem lentamente determinados agentes por utilizarem na sua formação polímeros fotossensíveis. A estrutura da parede da microcápsula é funcionalizada com catalisadores que iniciam a sua degradação por um processo de sensibilização solar, sem depender de nano materiais fotocatalíticos, como é o caso da presente tecnologia. A presença dos nano materiais fotocatalíticos faz com que a libertação seja mais eficiente e controlada de uma melhor forma através da exposição solar.
[0009] A invenção subjacente ao documento de patente GB1513614 A relaciona-se com uma composição de adjuvante microencapsulado, destinado a ser libertado para o solo por um processo de difusão a partir de dentro de uma microcápsula polimérica porosa, auxiliado pela drenagem de água. Isto é apropriado para os produtos agroquímicos, produtos farmacêuticos, tintas e corantes, como um componente ativo contido no interior de um invólucro de parede da microcápsula. A porosidade da parede da microcápsula é concebida para proporcionar a libertação lentamente. Este processo não está relacionado com fotocatálise, nem com o efeito de libertação controlada de uma substância pela ação direta da luz ou por processos fotocatalíticos induzidas por materiais fotocatalíticos que estão fisicamente ligados a microcápsulas contendo um agente para ser difundido. Daí que não podem ser usados, por exemplo, em suportes estáticos com exposição solar.
[0010] O documento JP6228882 A reporta sobre uma estrutura têxtil à prova de insetos com desprendimento lento de um inseticida. O inseticida ou é encapsulado em microcápsulas porosas ou é adsorvido na malha têxtil, não tendo um efeito que possa ser ativado e controlado por exposição de luz. Esta tecnologia não utiliza o princípio da fotocatálise, nem o efeito de libertação controlada de uma substância pela ação direta da luz.
[0011] Os documentos EP0376385 A2 e US7786027 descrevem processos para a síntese de microcápsulas contendo um detergente/amaciador, porém sem aludir a um processo fotocatalítico ou por ativação solar. O detergente/amaciador é difundido através da porosidade aberta intrínseca da microcápsula.
[0012] O documento JP2004188325 A refere a utilização de micropartículas porosas para degradação de amónia. Não se trata de microcápsulas funcionalizadas com nano materiais fotocatalíticos para difundir um determinado agente; simplesmente de uma micropartícula porosa que tem na superfície uma dispersão de partículas fotocatalíticas. A referida partícula serve unicamente como suporte para que essas partículas quando estiverem em contacto com a amónia a decomponham. As micropartículas são porosas e, como tal, não possibilitam a libertação controlada de qualquer agente interno.
[0013] O documento WO2009048186 Al refere nanopartículas de dióxido de titânio envoltas num núcleo metálico. Esse núcleo não é uma microcápsula; apenas um suporte. Não há nenhum mecanismo de libertação controlada a partir desse núcleo. O núcleo promove uma maior área de superfície à partícula de modo que possa desenvolver processos redox para descontaminar os poluentes.
[0014] O documento WO2004022841 Al refere um sistema em que, numa das situações particulares, nanopartículas fotocatalíticas estão dispersas numa subcamada ligante de um verniz, por exemplo para aplicações em soalhos. Numa situação particular, também poderá haver uma dispersão de microcápsulas nessa subcamada desse verniz, contendo um agente desodorizante, contudo sem ligação aparente entre as microcápsulas e nanopartículas. O objetivo é produzir uma superfície hidrofílica que permita uma melhor limpeza da sua superfície e libertar um agente desodorizante ou um agente antibacteriano por ação mecânica. Não refere a libertação de qualquer substância por ativação solar. Contudo, refere que, por ação mecânica as cápsulas, ou simplesmente o agente em si que se encontra alojado em micro fissuras previamente geradas, pode ser difundido após a camada superficial ser riscada, pisada, esmagada, ou sofrer outro tipo de ação mecânica que possibilite a libertação do produto. Após o esgotamento do princípio ativo, o material não pode ser regenerado.
[0015] O documento WO2011012935 relata um revestimento heteroestruturado em camadas caracterizado por ser compreendido por um substrato; material fotocatalítico na forma de filme fino sólido; nano ou microcápsulas poliméricas com um agente difusor encapsulado. Esta tecnologia pressupõe a existência de um material base fotocatalítico, previamente depositado no suporte, que em contacto com a parede da microcápsula inicie o processo redox para libertar o agente difusor. Esta tecnologia distingue-se da presente dado que na presente o referido suporte ou substrato fotocatalítico não é necessário, dado que a parede da microcápsula é funcionalizada com os materiais fotocatalíticos no processo da sua síntese. Adicionalmente, as microcápsulas são de origem diferente. A regeneração da superfície ativa implica que seja previamente depositado na superfície um revestimento fotocatalítico, para que depois possa ser regerado, por exemplo, através da sua pulverização com um aerossol contendo microcápsulas com um determinado agente volátil.
[0016] A presente tecnologia traz vantagens relativamente às outras referenciadas na literatura dado que pode ser aplicada em suportes estáticos não tratados, simplesmente por fixação no suporte, que pode ser vestuário, tenda, rede mosquiteira, cortinas, toldos, ou qualquer outro suporte ou estrutura com exposição direta solar ou de radiação ultravioleta equivalente, através de uma pulverização, ou deposição, do sistema de microcápsulas funcionalizadas com os nano materiais fotocatalíticos e determinados agentes encapsulados. Para que o agente difusor seja libertado, de uma forma controlada, não necessita de uma iniciação mecânica que quebre a parede da microcápsula, dado que essa ativação será realizada unicamente por mecanismos de oxidação/redução associados ao processo intrínseco da fotocatálise dos nano materiais que estão funcionalizados na parede externa da microcápsula.
[0017] Estes factos são apresentados para ilustrar o problema que se resolve pela presente divulgação.
Descrição geral
[0018] A presente divulgação caracteriza-se por utilizar micro e nano materiais funcionais, potenciadores de promover a libertação controlada de um agente difusor.
[0019] A presente divulgação descreve nanocápsulas e microcápsulas que compreendem, de preferência, diâmetros entre 100 - 1000 nm e 1 - 500 μιτι, respetivamente, e que por ação solar ou luz artificial com o mesmo espectro de radiação eletromagnética é promovida uma reação redox que resulta na dissociação ou rutura da parede da cápsula e subsequente libertação do agente difusor que pode ser sólido, líquido ou vapor. Esta tecnologia aproveita o efeito fotocatalítico e semicondutor já estabelecido do dióxido de titânio para ser utilizado como superfície ativa, promotora da libertação controlada de um determinado agente difusor do interior das micro ou nanocápsulas poliméricas; sejam eles inseticidas, larvicidas, repelentes, pesticidas, fitonutrientes, fragrâncias, aditivos para tintas ou vernizes, ou desodorizantes, entre outros.
[0020] Nesta solução, nano materiais à base de dióxido de titânio, como nanopartículas com um diâmetro entre 5 e 50 nm, nanofibras com uma gama de comprimentos entre 10 - 500 nm, nanotubos com diâmetros entre 5 - 100 nm e comprimentos entre 20 nm - 1 μιτι, ou outro nano material com características fotocatalíticas, encontram-se funcionalizados quimicamente com a superfície da parede das micro ou nanocápsulas, que compreendem no seu interior o agente difusor num volume útil entre IO"25 a IO"5 ml, de preferência IO 15 a IO"5 ml. Opcionalmente, as nanopartículas de dióxido de titânio, ou seus derivados, podem estar na parte interna ou externa da parede da cápsula, ou em ambas, ou na própria microestrutura da parede das micro ou nanocápsulas.
[0021] Desta forma, nanocápsulas são todas as cápsulas que compreendem um diâmetro entre 0.1 - 1 μιτι. As microcápsulas são todas as cápsulas que compreendem um diâmetro entre 1 - 500 μηι.
[0022] Define-se como nano material uma nanopartícula, nanotubo ou nanofibra que compreende na sua composição agregados de células unitárias de um ou mais compostos fotocatalíticos com tamanho inferior a 1 micrómetro.
[0023] Os compostos fotocatalíticos são semicondutores que absorvem energia e originam reações de oxidação-redução responsáveis pela degradação ou rutura da microcápsula ou nanocápsula e subsequente libertação de um agente ativo.
[0024] Agente ativo é um composto colocado no núcleo da cápsula, no estado líquido, sólido ou gasoso e cuja libertação é feita por degradação ou rutura da microcápsula ou nanocápsula.
[0025] A radiação solar ao iluminar a superfície semicondutora do material fotocatalítico irá desencadear mecanismos de oxidação-redução que degradarão ou abrirão os poros de nano ou microcápsulas poliméricas contendo o agente difusor, promovendo a sua libertação controlada e potenciando o efeito desejado. Para o auxílio na incorporação de nano materiais de dióxido de titânio na superfície das microcápsulas ou nanocápsulas poliméricas podem ser utilizados compostos externos com afinidade química para ambos. Devido à afinidade do Ti02 com grupos reativos hidroxilo (-OH), podem ser utilizados compostos que apresentem este grupo reativo na sua estrutura, nomeadamente poliéteres como o polietilenoglicol, óxido de polietileno e óxido de polipropileno. Podem ainda ser utilizados polióis capazes de aumentar a densidade de ligações de hidrogénio e assim promover a ligação entre as microcápsulas ou nanocápsulas e os nano materiais à base de dióxido de titânio. Podem ser utilizados compostos intrínsecos às microcápsulas ou nanocápsulas, nomeadamente aminas (-N H2). Este grupo de compostos é um dos monómeros constituintes da parede de microcápsulas obtidas por polimerização interfacial e quando utilizado em excesso durante a síntese faz com que os grupos -NH2 não utilizados para a formação da parede fiquem disponíveis para se ligarem à estrutura do Ti02, permitindo um revestimento homogéneo das microcápsulas com os nano materiais, como, por exemplo, as nanopartículas de Ti02.
[0026] Para pH superiores ao seu ponto isoelétrico (pH=6), as nanopartículas com compostos fotocatalíticos, em particular de dióxido de titânio, apresentam carga negativa, devido à acumulação de eletrões na sua superfície. A incorporação durante a síntese de compostos catiónicos na parede das microcápsulas permite a ligação química entre as nanopartículas e as microcápsulas, devido à atração eletrónica entre os dois compostos. Exemplos de compostos catiónicos (carregados positivamente) que podem ser usados são os sais quarternários de amónio, como o hidróxido de tetrametilamónio, cloreto de cetrimónio, brometo de cetrimónio e cloreto de benzalcónio.
[0027] Esta tecnologia caracteriza-se por poder ser aplicada em suportes estáticos não tratados, simplesmente por fixação no suporte através de uma pulverização, ou deposição com ou sem intermediação de tensioativos catiónicos ou aniónicos, dependendo da atração eletroestática entre as superfícies, do sistema de microcápsulas funcionalizadas com os nano materiais fotocatalíticos e determinados agentes encapsulados.
[0028] Para a ligação das microcápsulas ou nanocápsulas aos diferentes suportes podem ser utilizados compostos acrílicos como o ácido acrílico, acrilato de etilo, acrilato de metilo, hidroxietil acrilato e hidroxietilo metacrilato. Podem ainda ser utilizados látex sintéticos como o estireno-butadieno, assim como derivados de celulose. O acetato de polivinilo é também um dos polímeros mais utilizados como ligação a suportes de madeira. A utilização de tensoativos é efetuada maioritariamente com sais cationicos quarternários de amónio, como o hidróxido de tetrametilamónio, cloreto de cetrimónio, brometo de cetrimónio e cloreto de benzalcónio.
[0029] Numa realização, o suporte pode consistir em vestuário, tenda, rede mosquiteira, cortinas, toldos, superfícies vidradas, superfícies envernizadas ou pintadas, ou em painéis metálicos, cerâmicos ou poliméricos, madeiras, ou qualquer outro suporte ou estrutura com exposição direta solar ou de radiação ultravioleta equivalente. Para que o agente difusor seja libertado não necessita de uma iniciação mecânica que quebre a parede da microcápsula ou nanocápsula, dado que essa ativação será realizada única e exclusivamente por mecanismos de oxidação-redução associados ao processo intrínseco da fotocatálise dos nano materiais que estão funcionalizados na parede externa da micro ou nanocápsula.
[0030] Numa realização, a síntese dos nano materiais fotocatalíticos é realizado através de um processo químico hidrotermal em autoclave a partir de um determinado precursor. As microcápsulas ou nanocápsulas são sintetizadas posteriormente através de um processo de polimerização interfacial ou pela técnica de inversão de fase, onde são adicionados os nano materiais fotocatalíticos e o agente ativo.
[0031] A presente divulgação diz respeito a cápsulas para transportar um agente ativo com propriedades fotocatalíticas, com um diâmetro externo entre 0.05-500 μιτι, de preferência 1- 500 μΐΌ, em que a cápsula é formada por uma parede e um núcleo para alojar o agente difusor, em que a parede da cápsula é compreendida por um filme polimérico selecionado da lista constituída por parileno, poli(p-xileno), poli(ácido lático), poli(E-caprolactona), derivados de poli-oxietilenados, ftalocianina, melamina-formaldeído, poliuretano, polisulfona, acetato de celulose, polímeros acrílicos, colagénio, quitosano, e suas misturas;
em que o filme polimérico compreende nano materiais, tais como nanopartículas, nanotubos ou nanofibras, funcionalizados quimicamente com um composto fotocatalítico selecionado de uma lista: Ti02, W03, WS2, Nb205, MoO, MoS2, V205, MgF2, Cu20, Na Bi03, NaTa03, Si02, u02, BiV04, Bi2W06, Bii2TiO20, NiO-K4N B6Oi7, SrTi03, Sr2Nb07, Sr2Ta07, BaTi03, BaTaTi205, ZnO, Zr02, Sn02, ZnS, CaBi204, Fe203, Al203, Bi206, Bi2S3, CdS, CdSe, e suas misturas;
e o agente ativo/agente difusor se encontra no núcleo em estado líquido, sólido ou gasoso. Devido a sua elevada resistência mecânica estas capsulas estão especialmente adaptadas para o transporte de agente ativo/agente difusor no estado sólido ou líquido.
[0032] Numa forma de realização, a distribuição dos nano materiais fotocatalíticos na superfície da cápsula é de 0.1 - 5% m/v total cápsula (inclui o núcleo).
[0033] Numa forma de realização, a parede da cápsula está compreendida entre 55-80 % m/v de um filme poNmérico e 20-45 % m/ v parede de nano materiais fotocatalíticos.
[0034] Numa forma de realização, os nano materiais fotocatalíticos estão dispersos - funcionalizados quimicamente - na superfície externa da parede da cápsula, ou na superfície interna da parede da cápsula ou ligadas à parede da cápsula.
[0035] Numa forma de realização, o filme polimérico pode ser selecionado da lista constituída por: polisulfona, polimetilmetacrilato, poliuretano, ou suas misturas.
[0036] Numa forma de realização, as cápsulas compreendem um filme polimérico de polimetilmetacrilato e nano materiais dispersos que compreendem um material fotocatalítico selecionado de uma lista: Ti02, W03, SrTi03, ZnO, ou suas misturas.
[0037] Numa forma de realização, as cápsulas compreendem um filme polimérico de poliuretano e nano materiais dispersos que compreendem um material fotocatalítico selecionado de uma lista: Ti02, W03, SrTi03, ZnO, ou suas misturas.
[0038] Numa forma de realização, as cápsulas compreendem um filme polimérico de polisulfona e nano materiais dispersos que compreendem um material fotocatalítico selecionado de uma lista: Ti02, W03, SrTi03, ZnO, ou suas misturas.
[0039] Numa forma de realização, o diâmetro da cápsula varia entre 0.1 - 500 μιτι.
[0040] Numa forma de realização, os nanomaterias em forma de nanopartículas têm um diâmetro entre 5 e 50 nm; os nanomaterias em forma de nanofibras têm uma gama de comprimentos entre 10 - 500 nm; os nanomaterias em forma de nanotubos têm diâmetros entre 5 - 100 nm e comprimentos entre 20 nm - 1 μιτι.
[0041] Numa forma de realização, a espessura da parede da cápsula varia entre 0.05 - 25 μιτι; em particular 0.2-10 μιτι.
[0042] Numa forma de realização, a parede da cápsula é formada uma pluralidade de camadas.
[0043] Numa forma de realização, o volume do agente ativo varia entre IO"25 - IO"5 ml, em particular 10 15 - 10 10 ml.
[0044] Numa forma de realização, o agente ativo pode ser um repelente de insetos, um inseticida, um agente terapêutico, um agente de radioterapia um agente desodorizante, uma essência natural, uma fragrância, um agente hidratante, um componente de um verniz ou tinta, um agroquímico.
[0045] Numa forma de realização, as cápsulas podem ainda compreender pelo menos um tensioativo, um emulsificante, um ligante, ou suas misturas.
[0046] Numa forma de realização, o tensioativo é selecionado da seguinte lista: hidróxido de tetrametilamónio, cloreto de cetrimónio, brometo de cetrimónio e cloreto de benzalcónio.
[0047] Numa forma de realização, o agente ativo pode ser hidrofóbico.
[0048] Numa forma de realização, as cápsulas podem ser obteníveis por polimerização interfacial.
[0049] A presente divulgação também diz respeito a artigos que compreendem pelo menos uma cápsula descrita anteriormente, em particular estes artigos podem ser têxteis, fibras, vidro, madeira, metal, tendas, redes mosquiteiras, resinas, tintas, cortinados detergentes, amaciadores, cremes, espumas ou suspensões coloidais.
[0050] A presente divulgação diz também respeito a um processo de obtenção das cápsulas descritas anteriormente e que pode compreender os seguintes passos:
preparar uma solução orgânica que compreende 5 - 30 % (m/v) de um composto reativo selecionado da seguinte lista 2,4-tolueno diisocinato, 2,4-difenilmetano diisocianato, 1,6 hexametileno diisocianato; preparar uma solução orgânica que compreende 70 - 95 %(m/v) de um agente ativo hidrofóbico;
agitar a solução orgânica, em particular durante 1 - 2 min;
preparar uma solução aquosa que compreende um emulsificante, um agente coloidal ou suas misturas, num caso particular em que o emulsificante é a goma-arábica (15-20% m/v), Tween 20 (1-3 % v/v) ou suas misturas e em que o agente coloidal é ácido polivinílico (1-3% m/v);
formar uma emulsão óleo/água com as soluções anteriores, de preferência sob agitação mecânica a 400 - 1200 rpm durante 3-8 min;
adicionar à emulsão um monómero hidrofílico selecionado da seguinte lista: etilenodiamina, dietilenotriamina, hexametilenodiamina, p-fenilenodiamina, 1,4 butanodiol, 1,6 hexanodiol, etilenoglicol ou polietilenoglicol numa gama de concentrações compreendida entre 0.2 e 1 mol/dm3;
agitar a emulsão, de preferência a 400 - 800 rpm durante 10 - 60 min, de preferência 40 min;
recolher as nano ou microcápsulas obtidas, em particular por centrifugação ou filtração à temperatura ambiente,
dispersar as nano ou microcápsulas recolhidas em soluções aquosas que compreendem 10 - 20 % v/v de aminas, polióis, poliéters, ou suas misturas;
adicionar à suspensão de nano ou microcápsulas obtida um nano material, tal como uma nanopartícula, nanotubo ou nanofibra que compreende um material fotocatalítico em que os nano material é selecionado da seguinte lista: Ti02, W03, WS2, Nb205, MoO, MoS2, V205, MgF2, Cu20, NaBi03, NaTa03, Si02, u02, BiV04, Bi2W06, Bii2TiO20, NiO-K4NB6Oi7, SrTi03, Sr2Nb07, Sr2Ta07, BaTi03, BaTaTi2Os, ZnO, Zr02, Sn02, ZnS, CaBi204, Fe203, Al203, Bi206, Bi2S3, CdS, CdSe, ou suas misturas.
[0051] Numa forma de realização, a razão de concentrações de monómero hidrofílico e hidrofóbico de 3:1, 4:1 ou 5:1.
[0052] Numa forma de realização, a percentagem usada de goma-arábica é 15 - 20% m/v. [0053] Numa forma de realização, a percentagem usada de Tween 20 é 1 - 2 % v/v.
[0054] Numa forma de realização, a percentagem usada de ácido polivinílico é 1 - 3% m/v. [0055] Numa forma de realização, as cápsulas que compreendem um agente ativo hidrofílico encapsulado no seu interior.
[0056] Numa forma de realização, as cápsulas são obtidas através da técnica de inversão de fase.
[0057] Numa forma de realização, o processo de obtenção das cápsulas descritas anteriormente compreende os seguintes passos:
preparar uma solução orgânica que compreende 10 - 20 % m/v de um polímero selecionado da seguinte lista: polisulfona, acetato de celulose, polimetrilacrilato e poliacrilonitrilo,
preparar uma solução orgânica que compreende 80 - 90 % v/v de um solvente volátil selecionado da seguinte lista: diclorometano, Ν,Ν-dimetilformamida, acetona e clorofórmio,
agitar a solução orgânica, em particular durante 23 h;
preparar uma solução aquosa que compreende agente difusor hidrofílico;
formar uma emulsão água/óleo com as soluções anteriores, de preferência sob agitação mecânica a 400 - 1200 rpm durante 2-8 h;
imersão da emulsão num banho contendo um não solvente, em particular água, recolher as nano ou microcápsulas obtidas, em particular por centrifugação ou filtração à temperatura ambiente,
dispersar as nano ou microcápsulas recolhidas em soluções aquosas que compreendem 10 - 20 % v/v de aminas, polióis, poliéters, ou suas misturas;
adicionar à suspensão de nano ou microcápsulas um nano material, tal como uma nanopartícula, nanotubo ou nanofibra que compreende um material fotocatalítico em que os nano material é selecionado da seguinte lista: Ti02, W03, WS2, Nb205, MoO, MoS2, V205, MgF2, Cu20, NaBi03, NaTa03, Si02, u02, BiV04, Bi2W06, Bii2TiO20, NiO-K4NB6Oi7, SrTi03, Sr2Nb07, Sr2Ta07, BaTi03, BaTaTi2Os, ZnO, Zr02, Sn02, ZnS, CaBi204, Fe203, Al203, Bi206, Bi2S3, CdS, CdSe, ou suas misturas.
[0058] Processo de acordo com a reivindicação anterior em que o passo de dispersão da nano ou microcápsulas é feito por dispersão numa solução aquosa que compreende um ou mais tensioativos. [0059] Numa forma de realização, o passo de adicionar o nanomaterial fotocatalitico é feito com um pH básico, em particular entre 9-11.
[0060] Numa forma de realização, o poliol é selecionado da seguinte lista : 1,4 butanodiol, etilenoglicol, 1,6 butanodiol, ou suas misturas.
[0061] Numa forma de realização poliéter é selecionado da seguinte lista: polietilenoglicol, óxido de polietileno, óxido de polipropileno, ou suas misturas.
Processo de elaboração das microcápsulas ou nanocápsulas:
[0062] Em termos gerais, o processo inicia-se através de reações de polimerização ou precipitação que leva à formação de microcápsulas ou nanocápsulas, que podem ser à base de poliuretano, entre outros polímeros tais como parileno, poli(p-xilileno), poli(ácido lático), poli(E-caprolactona), derivados de poli-oxietilenados, ftalocianina, polisulfona, poliestireno, acetato de celulose, polímeros acrílicos, colagénio ou o quitosano, que encapsulam o agente difusor que se pretende libertar, que pode estar no estado líquido, sólido ou gasoso. De seguida os nano materiais fotocata líticos, isto é nano partículas, nanotubos ou nanofibras, à base de Ti02, ou outro tipo de nano materiais com atividade fotocatalítica demonstrada, tais como à base de W03, WS2, Nb205, MoO, MoS2, V205, MgF2, Cu20, Na Bi03, NaTa03, Si02, u02, BiV04, Bi2W06, Bii2TiO20, NiO-K4N B6Oi7, SrTi03, Sr2Nb07, Sr2Ta07, BaTi03, BaTaTi2Os, ZnO, Zr02, Sn02, ZnS, CaBi204, Fe203, Al203, Bi206, Bi2S3, CdS, ou CdSe, sintetizados através de um processo de síntese hidrotermal em autoclave, são adicionadas à solução das microcápsulas ou nanocápsulas, sob o efeito de homogeneização mecânica. Após o processo estar terminado, obtém-se microcápsulas ou nanocápsulas que, através de ativação solar, os mecanismos de oxidação-redução (redox) iniciados pelos nano materiais fotocatalíticos levam à degradação ou rutura da parede da microcápsula ou nanocápsula, promovendo a difusão do agente específico que foi encapsulado.
[0063] Mais especificamente, para a microencapsulação de agentes difusores hidrofóbicos utiliza-se a técnica de polimerização interfacial, baseada na reação interfacial entre diferentes monómeros solubilizados em fases distintas. A primeira etapa do processo de microencapsulação é a emulsificação, em que um dos monómeros contendo o agente difusor é solubilizado numa fase dispersa aquosa. Numa realização, antes da etapa de emulsão prepara- se a solução orgânica contendo 0.1 a 5 ml de agente difusor e 0.25 a 8 ml de monómero orgânico, sob agitação em vórtice durante 1 a 2 min. Vários monómeros orgânicos são utilizados para promover a formação da parede da microcápsula ou nanocápsula, dependendo do tipo de polímero que é pretendido. No caso do poliuretano são utilizados os monómeros 2,4-tolueno diisocianato, 2,4-difenilmetano diisocianato e o 1,6-hexametileno diisocianato. O próximo passo do processo é a formação de uma emulsão óleo-em-água (O/A) para a utilização de óleos como agentes difusores. Sob agitação mecânica (400-1200 rpm), a solução orgânica é dispersa na fase aquosa contendo um emulsificante (goma arábica 15-20% e tween 20 1-2%) ou um agente coloidal (álcool polivinílico 1-3%). Para assegurar a sua estabilidade a emulsão é agitada durante um período de tempo entre 3 a 8 min. O tamanho das microcápsulas ou nanocápsulas finais está diretamente ligado ao tamanho das gotículas da emulsão, resultado da rutura da fase oleosa por ação da tensão superficial e colisões intermoleculares causadas pela agitação mecânica.
[0064] Na última fase do processo, adiciona-se uma solução aquosa contendo o monómero hidrofílico, numa gama de concentração entre 0.2 e 1 mol/dm3. Para revestimentos de poliuretano, os monómeros hidrofílicos utilizados são polióis como o 1,4 butanodiol, 1,6 hexanodiol, etilenoglicol ou polietilenoglicol. A adição destes monómeros à emulsão desencadeia as reações de polimerização entre o monómero orgânico e o monómero hidrofílico, resultando num revestimento polimérico na interface das gotículas de óleo já emulsionadas, dando origem à parede das microcápsulas ou nanocápsulas. A suspensão de microcápsulas ou nanocápsulas formadas é mantida a agitar por um período de tempo máximo de 40 minutos, para a maturação e estabilização do revestimento polimérico em redor da microcápsula. A velocidade de agitação durante o processo varia entre 400 e 800 rpm. As microcápsulas ou nanocápsulas finais são ainda sujeitas a um processo de lavagem com ciclohexano ou água para a remoção do excesso de solventes. Numa realização, para a incorporação das nanopartículas, nanotubos ou nanofibras, à base de Ti02 na superfície das microcápsulas ou nanocápsulas durante o processo de síntese são utilizados monómeros com afinidade química para este tipo de materiais, nomeadamente aminas. Utilizando uma concentração em excesso de monómero hidrofílico relativamente ao monómero hidrofóbico, os grupos reativos OH vão estar disponíveis quimicamente para a reação de polimerização com o monómero orgânico e também para se ligar quimicamente ao dióxido de titânio. Para este procedimento são utilizadas razões de concentração de monómero hidrofílico e hidrofóbico de 3:1, 4:1 ou 5:1. Para que a adsorção química das nanopartículas de Ti02 seja eficiente é necessário que o pH da suspensão das microcápsulas seja básico, entre valores de 9-11.
[0065] Numa realização, para a microencapsulação de compostos ativos hidrofílicos recorre- se à técnica de inversão de fase. A precipitação das microcápsulas ou microesferas pode ser induzida através de um processo de imersão ou por evaporação do solvente. Para ambos os processos, a primeira etapa consiste na preparação de uma emulsão primária água em óleo (A/O). Uma solução aquosa contendo o agente ativo é adicionada a uma solução polimérica e emulsionada com agitação mecânica por um período de tempo entre 2 a 8 horas, formando a emulsão A/O (Figura 2). Antes da etapa de emulsificação prepara-se a solução polimérica, dissolvendo o polímero num solvente adequado sob agitação magnética durante 2-3 h. Diferentes polímeros podem ser utilizados como a polisulfona, acetato de celulose, polimetrilacrilato e poliacrilonitrilo. A concentração do polímero em solução deve ser 10 a 20 % (m/V). O solvente utilizado deve ser capaz de solubilizar o polímero, apresentar baixa solubilidade em água, volatilidade elevada e baixa toxicidade. Entre os solventes mais comuns podem ser destacados o diclorometano, Ν,Ν-dimetilformamida, acetona e clorofórmio. A precipitação das microcápsulas pode ocorrer através da imersão da emulsão primária num banho contendo um não solvente representado no esquema da Figura 2 por bl ou através da técnica de evaporação do solvente representado por b2. No primeiro caso as microcápsulas finais são obtidas através da dispersão da emulsão primária A/O sob forma de microgotículas num banho de água. O revestimento polimérico do agente ativo ocorre através de um rápido processo de gelatinização (5-10 s), baseado em processos de difusão entre o solvente e o não solvente, levando à separação e precipitação do polímero em redor do agente ativo.
[0066] Para além da técnica de imersão, a formação das microcápsulas pode ser induzida por evaporação do solvente da solução polimérica (Figura 2 b2). Tal como no processo anterior, a primeira fase da microencapsulação consiste na dispersão homogénea do agente ativo na solução de polímero e do solvente volátil, gerando uma emulsão água em óleo primária (A/O). Esta emulsão é então adicionada a uma solução aquosa contendo um ou mais emulsificantes para formar uma dupla emulsão água em óleo em água (A/O/A). Entre os emulsificantes mais utilizados podemos destacar o Tween 20 (1-2 %) ou ácido polivinílico (1-3%). A dupla emulsão A/O/A gerada é agitada mecanicamente de forma vigorosa até que a evaporação do solvente volátil seja completa, conduzindo à precipitação do polímero e formação das cápsulas.
[0067] Esta técnica pode ser utilizada para a microencapsulação de compostos ativos sólidos, apresentando como principal diferença o tempo de agitação da solução contendo o polímero, o solvente e o agente ativo. Neste caso, a mistura deve ser agitada entre 12 e 24 h para assegurar que o revestimento polimérico do sólido é homogéneo.
[0068] Para ambos os processos, as microcápsulas podem ser recolhidas por centrifugação ou filtração e secas à temperatura ambiente.
[0069] Após a síntese e lavagem das microcápsulas obtidas pelas diferentes técnicas procede- se ao revestimento com os nano materiais à base de dióxido de titânio fotocata lítico. Para o caso de nanopartículas de Ti02, estas são dispersas em solução aquosa de pH superior a 9, com recurso a ultrassons durante 30 min. Após este período de tempo, as nanopartículas fotocatalíticas são adicionadas à suspensão de microcápsulas sob agitação mecânica, utilizando uma haste do tipo hélice e a uma velocidade de 400 rpm. A mistura permanece a agitar durante 30 min e depois é recolhida. As microcápsulas resultantes contendo nanopartículas de dióxido de titânio adsorvidas na sua superfície ficam em dispersão aquosa ou são filtradas e secas no forno a 40 °C.
[0070] O processo de revestimento das micro ou nanocápsulas com nano materiais à base de dióxido de titânio, como por exemplo as nanopartículas, pode também ser obtido por recurso a compostos externos que possuam afinidade com as nanopartículas, nomeadamente compostos com grupos reativos -OH. Exemplo deste tipo de compostos são o polietilenoglicol, óxido de polietileno, óxido de polipropileno. Podem ainda ser utilizados extensores de cadeia como o 1,4-butanodiol, etilenoglicol ou 1,6-hexanodiol, para aumentar a densidade de ligações de hidrogénio na parede das micro ou nano cápsulas. Para este tipo de processo, os nano materiais de dióxido de titânio são solubilizadas nos solventes apresentados e incorporadas nas micro ou nanocápsulas após a sua produção e lavagem. Breve descrição das figuras
[0071] Para uma mais fácil compreensão da solução juntam-se em anexo as figuras, as quais, representam realizações preferenciais da solução agora divulgada que, contudo, não pretendem limitar o objeto do presente pedido.
[0072] Figura 1: Esquema representativo da produção do sistema para libertação controlada de agentes difusores hidrofóbicos por ativação solar, em amostras de microcápsulas com filme de poliuretano funcionalizadas quimicamente com nano materiais fotocatalíticos, em que:
(a) P EPARAÇÃO EMULSÃO
1- Fase Orgânica: monómero hidrofóbico (pe. 4,4-difenilmetano diisocianato) +
agente ativo
2- Fase Aquosa: solução aquosa com emulsificante (p.e. PVA, Tween 20)
3- Emulsificação: 3 a 5 min
4- Gotícula do agente ativo
5- Formação da pré-membrana polimérica
(b) PRECIPITAÇÃO DO POLÍMERO E MICROENCAPSULAÇÃO
6- Adição do monómero hidrofílico (p.e. 1,4-butanodiol) à emulsão
7- Agitação mecânica
8- Reações de condensação entre os monómeros reativos
9- Parede polimérica
10- Microcápsula polimérica contendo o agente ativo
(c) LIBERTAÇÃO CONTROLADA DO AGENTE ATIVO
11- Revestimento das microcápsulas com nanopartículas de Ti02
12- Nanopartículas de Ti02
13- Irradiação UV
14- Reações de oxidação-redução na superfície da parede da microcápsula
funcionalizada com Ti02 15- utura da parede polimérica da microcápsula
16- Libertação do agente ativo do interior da microcápsula
[0073] Figura 2: Esquema representativo da produção do sistema para libertação controlada de agentes difusores hidrofílicos por ativação solar, em amostras de microcápsulas com filme de polimetilmetacrilato ou polisulfona funcionalizadas quimicamente com nano materiais fotocatalítico, em que:
(a) PREPARAÇÃO DA EMULSÃO PRIMÁRIA
1- Fase Aquosa: solução aquosa do agente ativo hidrofílico
2- Fase Orgânica: solução polimérica (pe. Polimetilmetacrilato ou polisulfona)
contendo um solvente volátil
3- Emulsificação
4- Emulsão primária água em óleo
5- Gotícula do agente ativo hidrofílico
(bl) PRECIPITAÇÃO DO POLÍMERO POR IMERSÃO E MICROENCAPSULAÇÃO
6- Imersão da emulsão primária num banho de precipitação contendo um não - solvente
7- Solução de um não-solvente (pe. água)
8- Difusão do solvente para o banho e do não-sovente para a solução polimérica
9- Precipitação do polímero
10- Parede polimérica
11- Microcápsula polimérica contendo o agente ativo
(b2) PRECIPITAÇÃO DO POLÍMERO POR EVAPORAÇÃO DO SOLVENTE E
MICROENCAPSULAÇÃO
12- Dispersão da emulsão primária numa solução aquosa contendo um ou mais
emulsificantes
13- Dupla Emulsão água em óleo em água
14- Evaporação do solvente
15- Precipitação do polímero 16- Matriz polimérica
(c) LIBERTAÇÃO CONTROLADA DO AGENTE ATIVO
17- Revestimento das microcápsulas com nanopartículas de Ti02
18- Nanopartículas de Ti02
19- Irradiação UV
20- Reações de oxidação-redução na superfície da parede da microcápsula
funcionalizada com Ti02
21- Rutura da parede polimérica da microcápsula
22- Libertação do agente ativo do interior da microcápsula
[0074] Figura 3: Gráfico ilustrativo da avaliação da libertação controlada, por cromatografia gasosa com espectrometria de massa, de amostras de microcápsulas carregadas com uma fragrância de pinho (por exemplo), com e sem nanopartículas de Ti02 funcionalizadas quimicamente na parede externa da microcápsula. Verifica-se que quando as microcápsulas estão funcionalizadas com as nanopartículas fotocatalíticas a libertação de moléculas da essência de pinho (acetato de bornil/isoborneol) que adsorvem na fibra de PDMS é muito maior.
[0075] Figura 4: Micrografia exemplo de microcápsulas fotocatalíticas da presente divulgação carregadas com um agente difusor.
Descrição detalhada
[0076] Um exemplo de nano materiais fotocatalíticos são as nanopartículas à base de Ti02. Estes materiais são sintetizados utilizando um processo de sol-gel hidrotermal em autoclave. Uma solução coloidal é preparada com água e 2-propanol (10:1). Como exemplo, mistura-se à temperatura ambiente e sob agitação em vórtice num homogeneizador 125 μΙ de 2-propanol e 1125 μΙ de água a pH 2.40 (ajustado com uma solução de HCI 0.1 M). Opcionalmente, as nanopartículas à base de Ti02 podem ser preparadas com trietilamina de modo a serem dopadas com azoto, para efeitos de aumentar o hiato energético e eficiência de absorção de luz solar. Sob agitação magnética forte entre 400 - 600 rpm e à temperatura ambiente adiciona-se 1000 μΙ de isopropóxido de titânio (precursor fonte de átomos de titânio) a um volume de 1250 μΙ de solução coloidal. No caso de síntese de partículas dopadas adiciona-se à suspensão branca resultante 3000 μΙ de trietilamina. A amina é a responsável pela dopagem do T1O2 com azoto. Para que a dopagem das partículas de T1O2 com azoto ocorra, é necessário deixar a reação sob agitação magnética durante 2 dias. Após este período de tempo adiciona- se à suspensão 10 ml de água e 10 ml de 2-propanol e coloca-se a mistura num autoclave a 200 °C durante 2h. Após arrefecimento à temperatura ambiente, procede-se à lavagem das partículas. Para tal, utiliza-se um solvente orgânico (2-propanol) que permita a precipitação das partículas após centrifugação. O processo de lavagem é repetido várias vezes, de modo a garantir que todos os solventes por reagir sejam eliminados. As partículas coletadas são secas num forno a 80 °C durante 8 h. Opcionalmente, de forma a afinar o tamanho das cristalites das nano partículas entre 5 e 50 nm colocam-se as partículas num forno de para efetuar o tratamento térmico a 635 °C e garantir a formação das fases alotrópicas cristalinas do material, neste caso a anatase, preferencialmente, e o rutilo, que demonstram ter fotoatividade catalítica. Após todo este processo, procede-se à caraterização do material: avaliando a atividade fotocatalítica num fotoreator, na presença de um poluente simulador; realizando difração de raios-X para determinar as fases cristalinas que se desenvolveram (anatase, rutilo); realizando dispersão de luz dinâmica para avaliar o tamanho e a distribuição de tamanhos das nanopartículas; avaliação da morfologia das partículas através de microscopia eletrónica de varrimento.
[0077] Um exemplo de microcápsulas poliméricas obtidas por polimerização interfacial são as microcápsulas com revestimento de poliuretano. Numa primeira fase do processo prepara- se a solução orgânica misturando 5 ml de agente ativo difusor e 5 ml de monómero orgânico (4,4-difenilmetano diisocianato) num solvente orgânico (diclorometano) sob agitação em vórtice com um homogeneizador, em particular durante 2 min. Numa segunda fase, a solução orgânica previamente preparada é adicionada gota-a-gota a uma solução aquosa de 2% de PVA (álcool polivinílico), sob agitação mecânica com uma haste tipo cowles, a uma velocidade de 1000 rpm. Este polímero é utilizado como agente emulsificante que permite a dispersão das gotículas de óleo da solução orgânica na fase aquosa. A emulsão formada é deixada a agitar durante 3 min. [0078] Após esta etapa, a velocidade de agitação é reduzida para 600 rpm e adiciona-se uma solução aquosa de 1,4-butanodiol, em particular com uma concentração 0.32 mol/dm3 e a uma velocidade de 0.6 ml/min. A adição do monómero hidrofílico desencadeia as reações de polimerização entre o monómero orgânico e o monómero hidrofílico, resultando num filme polimérico de poliuretano na interface das gotículas de óleo já emulsionadas, dando origem à parede das microcápsulas. Após a adição estar completa deixa-se a solução a agitar por mais 30 min para assegurar que o processo de polimerização é finalizado na totalidade. Este processo encontra-se descrito na Figura 1.
[0079] De modo a remover excessos de solventes, é necessário proceder à lavagem das cápsulas com água e ciclohexano. O processo é realizado por filtração em vácuo, utilizando uma membrana de policarbonato de porosidade 2 μιτι. As microcápsulas são coletadas e dispersas novamente em água.
[0080] Um exemplo de microcápsulas poliméricas obtidas pela técnica de inversão de fase são as microcápsulas de polisulfona contendo no seu interior agentes difusores sólidos com propriedades hidrofílicas. Numa primeira fase do processo prepara-se a solução polimérica constituinte da parede das cápsulas finais, dissolvendo 1.5 g de polisulfona em 10 ml de N,N- dimetilformamida, sob agitação magnética durante 2h. Após dissolução completa é adicionado à solução polimérica 0.5 g do agente difusor sólido. A suspensão é deixada a agitar magneticamente por um período de tempo nunca inferior a 12h, para assegurar que o revestimento polimérico do sólido é homogéneo. Com recurso a uma pistola de ar comprimido, a suspensão polimérica contendo o agente difusor é dispersa sob a forma de microgotículas num banho de água (200 ml) à temperatura ambiente. O processo de precipitação é imediato e as microcápsulas formadas são recolhidas por centrifugação ou filtração e secas à temperatura ambiente. De modo a remover excessos de solventes, é necessário proceder à lavagem das cápsulas com água. O processo é realizado por filtração em vácuo, utilizando uma membrana de policarbonato de porosidade 2 μιτι. O tamanho, distribuição, morfologia das microcápsulas está diretamente ligados a parâmetros como a quantidade de agente ativo, concentração do emulsificante, concentração do polímero, velocidade de agitação, temperatura e pressão. [0081] Após a síntese e lavagem das microcápsulas obtidas pelas diferentes técnicas procede-se à sua funcionalização química com os nano materiais à base de dióxido de titânio fotocatalítico. Para o caso de nanopartículas de Ti02, estas são dispersas em solução aquosa de pH superior a 9, com recurso a ultrassons durante 30 min. Após este período de tempo, as nanopartículas fotocatalíticas são adicionadas à uma suspensão de microcápsulas sob agitação mecânica, utilizando uma haste do tipo hélice e a uma velocidade de 400 rpm. A mistura permanece a agitar durante 30 min e depois é recolhida. As microcápsulas resultantes contendo nanopartículas de dióxido de titânio funcionalizadas quimicamente na sua superfície ficam em dispersão aquosa ou são filtradas e secas no forno a 40 °C.
[0082] Para avaliar o sucesso da microencapsulação do agente difusor utilizam-se as técnicas analíticas de termogravimetria (TGA) e espectroscopia de infravermelho por transformada de Fourier (FTI ).
[0083] Na análise por FTIR são avaliados o agente difusor puro, a parede de polimérica e as microcápsulas previamente secas a 40 °C durante 6 h. Num almofariz mistura-se o pó de KBr (grau espetroscópico) juntamente com o agente difusor puro, parede de polimérica seca ou microcápsulas secas (1 %). O pó resultante é colocado num molde com 1 cm de diâmetro e levado a uma prensa hidráulica para formar a pastilha translúcida utilizada para a análise. Para a preparação das amostras, as microcápsulas são esmagadas e lavadas várias vezes com água e etanol. A estrutura química do agente difusor, parede polimérica e microcápsulas resultantes é caracterizada por FTIR numa gama de comprimentos de onda que varia entre 400 cm 1 e 4000 cm"1. Numa primeira análise é avaliado o espetro obtido para determinar as ligações químicas caraterísticas do agente difusor. A presença das bandas de absorção características do agente difusor no espetro obtido para as microcápsulas permite concluir que o agente difusor é encapsulado com sucesso no interior das microcápsulas. Como exemplo, a análise da parede de poliuretano permite determinar se o processo de polimerização foi completo na totalidade, através da presença das bandas de absorção características das ligações uretano N-H entre 3300-3200 cm 1, ligações C=0 entre 1730-1715 cm 1 e ligações N=C=0 entre 1640-1600 cm4. Para as análises termogravimétricas, colocam-se 10-20 mg das microcápsulas previamente secas a 40 °C durante 6h, num cadinho de teflon ou platina. A amostra é aquecida numa rampa de temperatura entre 60 e 600 °C sob atmosfera de árgon e a uma velocidade de aquecimento de 10 °C/min. A percentagem de agente difusor encapsulado no interior das microcápsulas resultantes é determinada pelo valor de perda de massa associada à temperatura de ebulição ou degradação do agente difusor; a perda de massa relativa à degradação da parede polimérica das microcápsulas ocorre para temperaturas superiores a 300 °C.
[0084] Para as análises termogravimétricas, colocam-se 10-20 mg das microcápsulas previamente secas a 40 °C durante 6h, num cadinho de teflon ou platina. A amostra é aquecida numa rampa de temperatura entre 60 e 600 °C sob atmosfera de árgon e a uma velocidade de aquecimento de 10 °C/min. A percentagem de agente difusor encapsulado no interior das microcápsulas resultantes é determinada pelo valor de perda de massa associada à temperatura de ebulição ou degradação do agente difusor; no caso do dodecano (exemplo de agente difusor) entre 190 - 220 °C. A perda de massa relativa à degradação da parede polimérica das microcápsulas ocorre para temperaturas superiores a 300 °C.
[0085] Para uma análise quantitativa do agente difusor encapsulado no interior da microcápsula é utilizada a técnica de cromatografia gasosa acoplada a espetrometria de massa. As análises são realizadas num cromatografo equipado com uma coluna e um detetor do tipo armadilha iónica (ion trap) com uma energia de ionização de 70 eV. Utiliza-se como técnica de extração e pré-concentração o método de microextração em fase sólida (SPME) no modo headspace.
[0086] Para quantificar a libertação do agente difusor é necessário analisar amostras de microcápsulas poliméricas, carregadas com um agente difusor, na presença e ausência de nanopartículas de dióxido de titânio adsorvidas na superfície da parede, sob irradiação UV (5 mW/cm2) e no escuro.
[0087] Para a preparação das amostras a analisar por cromatografia gasosa, colocam-se as microcápsulas no interior de um vial hermético durante 2 h, sob irradiação UV e no escuro. Após este período de tempo é injetada uma fibra polimérica de PDMS (polidimetilsiloxano) com 10 mm de comprimento no interior do vial sem entrar em contato direto com a amostra de microcápsulas mas apenas com a fase vapor, adsorvendo os analitos voláteis da amostra. Imediatamente após a extração, a fibra é recolhida e injetada no cromatografo gasoso. Os analitos coletados são separados e detetados pelo equipamento. O agente difusor é identificado através da análise dos cromatogramas e espetros de massa obtidos para cada amostra. A sua concentração é determinada através de uma regressão linear obtida para a curva de calibração relacionando a área calculada pela integração dos picos do cromatograma e a massa do composto. A curva de calibração é obtida injetando-se padrões contendo massas conhecidas do agente difusor.
[0088] Ainda que na presente solução se tenham somente representado e descrito realizações particulares da solução, o perito na matéria saberá introduzir modificações e substituir umas características técnicas por outras equivalentes, dependendo dos requisitos de cada situação, sem sair do âmbito de proteção definido pelas reivindicações anexas.
[0089] As realizações apresentadas são combináveis entre si. As seguintes reivindicações definem adicionalmente realizações preferenciais.

Claims

R E I V I N D I C A Ç Õ E S
1. Cápsulas para transportar um agente ativo com propriedades fotocatalíticas, com um diâmetro externo entre 0.1-500 μιτι, em que a cápsula é formada por uma parede e um núcleo para alojar o agente difusor
em que a parede da cápsula é compreendida por um filme polimérico selecionado da lista constituída por parileno, poli(p-xileno), poli(ácido lático), poli(E-caprolactona), derivados de poli-oxietilenados, ftalocianina, melamina-formaldeído, poliuretano, polisulfona, acetato de celulose, polímeros acrílicos, colagénio, quitosano, e suas misturas;
em que o filme polimérico compreende na superfície externa nano materiais, tais como nanopartículas, nanotubos ou nanofibras, quimicamente funcionalizado com um composto fotocatalítico selecionado de uma lista: Ti02, W03, WS2, Nb205, MoO, MoS2, V205, MgF2, Cu20, NaBi03, NaTa03, Si02, u02, BiV04, Bi2W06, Bii2TiO20, NiO-K4NB6Oi7, SrTi03, Sr2Nb07, Sr2Ta07, BaTi03, BaTaTi205, ZnO, Zr02, Sn02, ZnS, CaBi204, Fe203, Al203, Bi206, Bi2S3, CdS, CdSe, e suas misturas;
e o núcleo compreende pelo menos um agente ativo em estado líquido, sólido ou gasoso.
2. Cápsulas de acordo com a reivindicação anterior em que a distribuição dos nano materiais fotocata líticos na superfície da cápsula é de 0.1 - 5% m/v total cápsula.
3. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que a parede da cápsula é uma distribuição de filme polimérico compreendido entre 55-80 % m/v total parede e de nanomateriais fotocatalíticos compreendido entre 20-45% m/v total parede.
4. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que os nano materiais fotocatalíticos estão funcionalizados quimicamente na superfície externa da parede da cápsula.
5. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que o filme polimérico selecionado da lista constituída por: polimetilmetacrilato, polisulfona, poliuretano, ou suas misturas.
6. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que as cápsulas compreendem um filme polimérico de polimetilmetacrilato e nano materiais funcionalizados quimicamente na sua superfície externa que compreendem um material fotocatalítico selecionado de uma lista: Ti02, W03, SrTi03, ZnO, ou suas misturas.
7. Cápsulas de acordo com as reivindicações anteriores em que as cápsulas compreendem um filme polimérico de poliuretano e nano materiais funcionalizados quimicamente na sua superfície externa que compreendem um material fotocatalítico selecionado de uma lista: Ti02, W03, SrTi03, ZnO, ou suas misturas.
8. Cápsulas de acordo com as reivindicações anteriores em que as cápsulas compreendem um filme polimérico de polisulfona e nano materiais funcionalizados quimicamente na sua superfície externa que compreendem um material fotocatalítico selecionado de uma lista: Ti02, W03, SrTi03, ZnO, ou suas misturas.
9. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que o diâmetro da cápsula varia entre 0.1 - 500 μιτι.
10. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que os nanomaterias em forma de nanopartículas têm um diâmetro entre 5 e 50 nm.
11. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que os nanomaterias em forma de nanofibras têm uma gama de comprimentos entre 10 - 500 nm.
12. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que os nanomaterias em forma de nanotubos têm diâmetros entre 5 - 100 nm e comprimentos entre 20 nm - 1 μιτι.
13. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que a espessura da parede da cápsula varia entre 0.05 - 25 μιτι; em particular 0.2-10 μιτι.
14. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que a parede da cápsula é formada uma pluralidade de camadas.
15. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que o volume do agente ativo varia entre IO"25 - IO"5 ml, em particular 10 15 - 10 10 ml.
16. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que o agente ativo é um repelente de insetos, um inseticida, um agente terapêutico, um agente de radioterapia um agente desodorizante, uma essência natural, uma fragrância, um agente hidratante, um componente de um verniz ou tinta, um agroquímico.
17. Cápsulas de acordo com qualquer uma das reivindicações anteriores que compreende ainda pelo menos um tensioativo, um emulsificante, um ligante, ou suas misturas.
18. Cápsulas de acordo com qualquer uma das reivindicações anteriores em que o tensioativo é selecionado da seguinte lista: hidróxido de tetrametilamónio, cloreto de cetrimónio, brometo de cetrimónio e cloreto de benzalcónio.
19. Artigos que compreendem pelo menos uma cápsula descrita nas reivindicações anteriores.
20. Artigos de acordo com as reivindicações anteriores em que os artigos são têxteis, fibras, vidro, madeira, metal, tendas, redes mosquiteiras, resinas, tintas, cortinados detergentes, amaciadores, cremes, espumas ou suspensões coloidais.
21. Processo de obtenção das cápsulas descritas em qualquer uma das reivindicações 1-20 que compreende os seguintes passos:
preparar uma solução orgânica que compreende 5 - 30 % (m/v) de um composto reativo selecionado da seguinte lista: 2,4-tolueno diisocinato, 2,4-difenilmetano diisocianato, 1,6 hexametileno diisocianato ou 10-20 % (m/v) de um polímero selecionado da seguinte lista: polisulfona, polimetil-metacrilatopolimetilmetacrilato, acetato de celulose e poliacrilonitrilo;
preparar uma solução orgânica que compreende um solvente volátil selecionado da seguinte lista: diclorometano, N-N-dimetilformamida, acetona e clorofórmio; 70 - 95 %(m/v) de um agente ativo hidrofóbico;
agitar a solução orgânica, em particular durante 1 - 2 min;
preparar uma solução aquosa que compreende um emulsificante, um agente coloidal ou suas misturas, em particular que o emulsificante é goma-arábica (15-20 % m/v), Tween 20 (1-3 % v/v) ou suas misturas e em que o agente coloidal é ácido polivinílico (1-3 % m/v);
adicionar o agente ativo difusor na solução orgânica ou aquosa;
formar uma emulsão óleo/água com as soluções anteriores, de preferência sob agitação mecânica a 400 - 1200 rpm durante 3-8 min;
para a encapsulação de agentes ativos hidrofóbicos utilizando os monómeros reativos 2,4-tolueno diisocinato, 2,4-difenilmetano diisocianato, 1,6 hexametileno diisocianato, adicionar à emulsão um monómero hidrofílico selecionado da seguinte lista: etilenodiamina, dietilenotriamina, hexametilenodiamina, p-fenilenodiamina, 1,4 butanodiol, 1,6 hexanodiol, etilenoglicol ou polietilenoglicol numa gama de concentrações compreendida entre 0.2 e 1 mol/dm3;
para a encapsulação de agentes ativos hidrofílicos utilizando polisulfona, polimetilmetacrilato, acetato de celulose e poliacrilonitrilo adicionar a emulsão a um banho de precipitação seguido de evaporação do solvente;
agitar a emulsão, de preferência a 400 - 800 rpm durante 10 - 60 min, de preferência 40 min;
recolher as nano ou microcápsulas obtidas, em particular por centrifugação ou filtração à temperatura ambiente,
dispersar as nano ou microcápsulas recolhidas em soluções aquosas que compreendem 10 - 20 % v/v de aminas, polióis, poliéters, ou suas misturas;
adicionar à suspensão de nano ou microcápsulas obtida um nano material, tal como uma nanopartícula, nanotubo ou nanofibra que compreende um material fotocatalítico em que os nano material é selecionado da seguinte lista: Ti02, W03, WS2, Nb205, MoO, MoS2, V2O5, MgF2, Cu20, NaBi03, NaTa03, Si02, u02, B1VO4, Bi2W06, Bii2TiO20, NiO- K4NB60i7, SrTi03, Sr2Nb07, Sr2Ta07, BaTi03, BaTaTi2Os, ZnO, Zr02, Sn02, ZnS, CaBi204, Fe203, Al203, Bi206, Bi2S3, CdS, CdSe, ou suas misturas.
22. Processo de acordo com a reivindicação anterior em que o passo de dispersão da nano ou microcápsulas é feito por dispersão numa solução aquosa que compreende um ou mais tensioativos.
23. Processo de acordo com as reivindicações 21-22 em que a adição do nanomaterial fotocatalitico é feita com um pH básico, em particular entre 9-11.
24. Processo de acordo com as reivindicações 21-23 em que o poliol é selecionado da seguinte lista: 1,4 butanodiol, etilenoglicol, 1,6 butanodiol, ou suas misturas.
25. Processo de acordo com as reivindicações 21-24 em que o poliéter é selecionado da seguinte lista: polietilenoglicol, óxido de polietileno, óxido de polipropileno, ou suas misturas.
PCT/IB2016/054027 2015-07-05 2016-07-05 Micro ou nanocápsulas com propriedades fotocatalíticas para libertação controlada de agentes difusores e respetivo método de obtenção WO2017006247A1 (pt)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16753471.8A EP3318323B1 (en) 2015-07-05 2016-07-05 Micro- or nanocapsules having photocatalytic properties for controlled release of diffusing agents and respective methods of obtainment
CN201680040092.3A CN107847896A (zh) 2015-07-05 2016-07-05 用于扩散剂的控制释放的具有光催化性能的微胶囊或纳米胶囊及相应的制造方法
BR112018000264-0A BR112018000264B1 (pt) 2015-07-05 2016-07-05 Cápsulas para transportar um agente ativo com propriedades fotocatalíticas, seu processo de produção e artigos
US15/741,811 US20180243717A1 (en) 2015-07-05 2016-07-05 Micro- or nanocapsules having photocatalytic properties for controlled release of diffusing agents and respective method of production
ES16753471T ES2830753T3 (es) 2015-07-05 2016-07-05 Micro- o nanocápsulas que tienen propiedades fotocatalíticas para la liberación controlada de agentes de difusión y respectivos métodos de obtención
CA2991553A CA2991553A1 (en) 2015-07-05 2016-07-05 Micro-or nanocapsules having photocatalytic properties for controlled release of diffusing agents and respective method of obtainment
AU2016288830A AU2016288830A1 (en) 2015-07-05 2016-07-05 Micro- or nanocapsules having photocatalytic properties for controlled release of diffusing agents and respective method of production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT108665 2015-07-05
PT108665A PT108665B (pt) 2015-07-05 2015-07-05 Micro ou nanocápsulas com propriedades fotocatalíticas para libertação controlada de agentes difusores e respetivo método de obtenção

Publications (1)

Publication Number Publication Date
WO2017006247A1 true WO2017006247A1 (pt) 2017-01-12

Family

ID=56694196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/054027 WO2017006247A1 (pt) 2015-07-05 2016-07-05 Micro ou nanocápsulas com propriedades fotocatalíticas para libertação controlada de agentes difusores e respetivo método de obtenção

Country Status (8)

Country Link
US (1) US20180243717A1 (pt)
EP (1) EP3318323B1 (pt)
CN (1) CN107847896A (pt)
AU (1) AU2016288830A1 (pt)
CA (1) CA2991553A1 (pt)
ES (1) ES2830753T3 (pt)
PT (1) PT108665B (pt)
WO (1) WO2017006247A1 (pt)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604344A (zh) * 2017-09-26 2018-01-19 天津城建大学 一种用于光电催化的CaBi2O4薄膜电极的制备方法
CN107956000A (zh) * 2017-12-29 2018-04-24 济南大学 一种NiO多级中空纤维的合成方法及所得产品
CN108085784A (zh) * 2017-12-29 2018-05-29 济南大学 一种NiO多级微纳米纤维的合成方法及所得产品
CN109776548A (zh) * 2018-11-14 2019-05-21 浙江农林大学 一种生物质基分子胶囊囊壁材料及利用其制备缓释灭藻微胶囊的方法
CN110302822A (zh) * 2019-07-15 2019-10-08 陕西科技大学 一种氮掺杂碳点@氧化锌微胶囊及其制备方法
WO2022230431A1 (ja) 2021-04-28 2022-11-03 パナソニックIpマネジメント株式会社 誘電体、キャパシタ、電気回路、回路基板、及び機器

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017075328A1 (en) * 2015-10-30 2017-05-04 Corning Incorporated Porous ceramic filters and methods for making the same
CN110099743B (zh) * 2016-12-22 2022-06-14 弗门尼舍有限公司 具有矿物层的微胶囊
MX2020004605A (es) 2017-10-31 2020-10-19 Corning Inc Cuerpo en forma de panal y filtro de partículas que comprende un cuerpo en forma de panal.
CN109609100B (zh) * 2018-12-26 2021-07-27 上海驰纺材料科技有限公司 一种同时具备吸光发热储热功能的光热复合材料及其制备方法
CN109794134A (zh) * 2019-03-18 2019-05-24 中山爱居环保科技有限公司 一种耐高温光催化持续释放型除醛净味膏体及其制备方法
CN109939744B (zh) * 2019-04-16 2021-08-17 黑龙江大学 一种超薄二维金属酞菁/钒酸铋复合光催化剂的制备方法及应用
WO2021070149A2 (en) * 2019-10-11 2021-04-15 College Of The North Atlantic In Qatar Rapid mercury-free photochemical microencapsulation/ nanoencapsulation at ambient conditions
CN110882704A (zh) * 2019-11-14 2020-03-17 常州大学 一种棒状硫化镉复合钨酸铋z型异质结光催化材料的制备方法
CN111574934B (zh) * 2020-05-19 2021-01-12 常州百佳年代薄膜科技股份有限公司 纳米导热胶膜及制备方法、光伏组件
CN112089702B (zh) * 2020-09-11 2022-05-06 北京科技大学 基于纳米氮化钛和微胶囊的光热响应药物载体及制备方法
CN112275325B (zh) * 2020-09-28 2022-06-21 长春工业大学 用于光催化的硫化镉/二氧化钛/聚丙烯腈复合纳米材料的制备
WO2022081795A2 (en) * 2020-10-14 2022-04-21 University Of Maryland, Baltimore County On demand and long-term drug delivery from degradable nanocapsules
CN112691622B (zh) * 2020-12-07 2022-06-17 绍兴文理学院元培学院 一种氮掺杂纳米二氧化钛/芳香微胶囊及其制备方法和应用
CN113413881A (zh) * 2021-06-17 2021-09-21 兰州大学 一种BWO/Fe3O4@cBC壳聚糖凝胶小球的制备方法及应用
CN115487758B (zh) * 2022-09-23 2023-07-25 中国人民解放军国防科技大学 一种单体态酞菁锌的微胶囊、制备方法及其用途
CN116020364B (zh) * 2022-11-21 2024-03-12 武汉中科先进材料科技有限公司 一种表面褶皱的柔性芳香微胶囊及其制备方法
CN115532286B (zh) * 2022-11-24 2023-04-07 河北地质大学 一种MoS2量子点/Bi2WO6异质结型复合催化剂制备方法及其应用
CN116236614B (zh) * 2022-12-08 2024-09-24 淮阴工学院 一种催化释放CO的TiO2纳米管材料、其制备方法及应用
CN117753320A (zh) * 2023-12-14 2024-03-26 湖北三峡实验室 一种改性双层复合香精微胶囊及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1513614A (en) 1975-04-09 1978-06-07 Minnesota Mining & Mfg Microcapsule insecticide composition
EP0376385A2 (en) 1988-12-29 1990-07-04 The Procter & Gamble Company Perfume microcapsules for use in granular detergent compositions
JPH06228882A (ja) 1993-02-01 1994-08-16 Kanebo Ltd 防虫性を有する繊維構造物
US6077522A (en) 1993-11-15 2000-06-20 Zeneca Limited Microcapsules containing suspensions of biologically active compounds and ultraviolet protectant
WO2004022841A1 (en) 2002-09-09 2004-03-18 Jung-Eun Seo Polymer article and method for manufacturing the same
JP2004188325A (ja) 2002-12-11 2004-07-08 Washin Chemical Industry Co Ltd 中空多孔質マイクロカプセル、光触媒マイクロカプセル、アンモニア分解用光触媒マイクロカプセル、光触媒マイクロカプセル含有コーティング組成物、静電塗装用光触媒マイクロカプセル含有コーティング組成物及び光触媒マイクロカプセル含有皮膜構造体
WO2007051198A2 (en) 2005-10-28 2007-05-03 Solarbre, Inc Photo-responsive microencapsulation materials, compositions and methods of use thereof
US20090010977A1 (en) 2007-07-02 2009-01-08 The Hong Kong Polytechnic University Insect repellant fabrics having nanocapsules with insecticide
WO2009048186A1 (en) 2007-10-08 2009-04-16 Industrial Cooperation Foundation Chonbuk National University Tio2-capsulated metallic nanoparticles photocatalyst enable to be excited by uv or visible lights and its preparation method
WO2009062516A2 (en) 2007-11-16 2009-05-22 Scf Technologies A/S Photocatalytic boards or panels and a method of manufacturing thereof
US20100054988A1 (en) * 2008-08-29 2010-03-04 Kwangyeol Lee Photocatalytic nanocapsule and fiber for water treatment
US7786027B2 (en) 2006-05-05 2010-08-31 The Procter & Gamble Company Functionalized substrates comprising perfume microcapsules
WO2011012935A2 (en) 2009-07-29 2011-02-03 Universidade Do Minho Photocatalytic coating for the controlled release of volatile agents
EP1531667B2 (en) 2002-08-22 2011-04-13 Syngenta Limited Microencapsulated agrochemical composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1037679B1 (en) * 1998-10-13 2008-07-02 Gambro Lundia AB Biocompatible polymer film
US6635702B1 (en) * 2000-04-11 2003-10-21 Noveon Ip Holdings Corp. Stable aqueous surfactant compositions
CN101455197A (zh) * 2008-08-14 2009-06-17 迟德富 光降解纳米吡虫啉微胶囊制备方法
CN101362069B (zh) * 2008-10-08 2011-06-01 中国科学院过程工程研究所 一种中空多孔微胶囊及其制备方法
CN103992773B (zh) * 2014-05-28 2017-02-22 北京化工大学常州先进材料研究院 一种具有光催化特性的双功能微胶囊相变储能材料及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1513614A (en) 1975-04-09 1978-06-07 Minnesota Mining & Mfg Microcapsule insecticide composition
EP0376385A2 (en) 1988-12-29 1990-07-04 The Procter & Gamble Company Perfume microcapsules for use in granular detergent compositions
JPH06228882A (ja) 1993-02-01 1994-08-16 Kanebo Ltd 防虫性を有する繊維構造物
US6077522A (en) 1993-11-15 2000-06-20 Zeneca Limited Microcapsules containing suspensions of biologically active compounds and ultraviolet protectant
EP1531667B2 (en) 2002-08-22 2011-04-13 Syngenta Limited Microencapsulated agrochemical composition
WO2004022841A1 (en) 2002-09-09 2004-03-18 Jung-Eun Seo Polymer article and method for manufacturing the same
JP2004188325A (ja) 2002-12-11 2004-07-08 Washin Chemical Industry Co Ltd 中空多孔質マイクロカプセル、光触媒マイクロカプセル、アンモニア分解用光触媒マイクロカプセル、光触媒マイクロカプセル含有コーティング組成物、静電塗装用光触媒マイクロカプセル含有コーティング組成物及び光触媒マイクロカプセル含有皮膜構造体
WO2007051198A2 (en) 2005-10-28 2007-05-03 Solarbre, Inc Photo-responsive microencapsulation materials, compositions and methods of use thereof
US7786027B2 (en) 2006-05-05 2010-08-31 The Procter & Gamble Company Functionalized substrates comprising perfume microcapsules
US20090010977A1 (en) 2007-07-02 2009-01-08 The Hong Kong Polytechnic University Insect repellant fabrics having nanocapsules with insecticide
WO2009048186A1 (en) 2007-10-08 2009-04-16 Industrial Cooperation Foundation Chonbuk National University Tio2-capsulated metallic nanoparticles photocatalyst enable to be excited by uv or visible lights and its preparation method
WO2009062516A2 (en) 2007-11-16 2009-05-22 Scf Technologies A/S Photocatalytic boards or panels and a method of manufacturing thereof
US20100054988A1 (en) * 2008-08-29 2010-03-04 Kwangyeol Lee Photocatalytic nanocapsule and fiber for water treatment
WO2011012935A2 (en) 2009-07-29 2011-02-03 Universidade Do Minho Photocatalytic coating for the controlled release of volatile agents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI Z ET AL: "Preparation of chitosan-sodium alginate microcapsules containing ZnS nanoparticles and its effect on the drug release", MATERIALS SCIENCE AND ENGINEERING C, ELSEVIER SCIENCE S.A, CH, vol. 29, no. 7, 31 August 2009 (2009-08-31), pages 2250 - 2253, XP026446101, ISSN: 0928-4931, [retrieved on 20090522] *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604344A (zh) * 2017-09-26 2018-01-19 天津城建大学 一种用于光电催化的CaBi2O4薄膜电极的制备方法
CN107956000A (zh) * 2017-12-29 2018-04-24 济南大学 一种NiO多级中空纤维的合成方法及所得产品
CN108085784A (zh) * 2017-12-29 2018-05-29 济南大学 一种NiO多级微纳米纤维的合成方法及所得产品
CN107956000B (zh) * 2017-12-29 2019-11-08 济南大学 一种NiO多级中空纤维的合成方法及所得产品
CN108085784B (zh) * 2017-12-29 2020-02-07 济南大学 一种NiO多级微纳米纤维的合成方法及所得产品
CN109776548A (zh) * 2018-11-14 2019-05-21 浙江农林大学 一种生物质基分子胶囊囊壁材料及利用其制备缓释灭藻微胶囊的方法
CN109776548B (zh) * 2018-11-14 2020-08-21 浙江农林大学 一种生物质基分子胶囊囊壁材料及利用其制备缓释灭藻微胶囊的方法
CN110302822A (zh) * 2019-07-15 2019-10-08 陕西科技大学 一种氮掺杂碳点@氧化锌微胶囊及其制备方法
CN110302822B (zh) * 2019-07-15 2021-11-02 陕西科技大学 一种氮掺杂碳点@氧化锌微胶囊及其制备方法
WO2022230431A1 (ja) 2021-04-28 2022-11-03 パナソニックIpマネジメント株式会社 誘電体、キャパシタ、電気回路、回路基板、及び機器

Also Published As

Publication number Publication date
EP3318323A1 (en) 2018-05-09
ES2830753T3 (es) 2021-06-04
CA2991553A1 (en) 2017-01-12
PT108665A (pt) 2017-01-05
CN107847896A (zh) 2018-03-27
EP3318323B1 (en) 2020-08-12
AU2016288830A1 (en) 2018-03-01
PT108665B (pt) 2020-11-02
US20180243717A1 (en) 2018-08-30
BR112018000264A2 (pt) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2017006247A1 (pt) Micro ou nanocápsulas com propriedades fotocatalíticas para libertação controlada de agentes difusores e respetivo método de obtenção
Shi et al. Biodegradable PLA nonwoven fabric with controllable wettability for efficient water purification and photocatalysis degradation
US10323138B2 (en) Process for producing cellulosic shaped articles, cellulosic shaped articles and the use thereof
CN102618043B (zh) 一种丝蛋白-银纳米粒子复合材料及其制备方法
Chen et al. Preparation of pH-responsive dual-compartmental microcapsules via pickering emulsion and their application in multifunctional textiles
Hartati et al. Synthesis of electrospun PAN/TiO2/Ag nanofibers membrane as potential air filtration media with photocatalytic activity
Li et al. Hollow C, N-TiO2@ C surface molecularly imprinted microspheres with visible light photocatalytic regeneration availability for targeted degradation of sulfadiazine
Ribeiro et al. Microencapsulation of citronella oil for solar-activated controlled release as an insect repellent
Koo et al. UV-triggered encapsulation and release from polyelectrolyte microcapsules decorated with photoacid generators
EP2732803B1 (de) Thermisch öffnende stabile Kern/Schale-Mikrokapseln
KR101109096B1 (ko) 나노입자가 함침된 피톤치드 마이크로캡슐의 제조방법
Ramasundaram et al. Multi-usable titanium dioxide and poly (vinylidene fluoride) composite foam photocatalyst for degradation of organic pollutants
Han et al. Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption of dye rose bengal
Pascariu et al. New composite membranes based on PVDF fibers loaded with TiO2: Sm nanostructures and reinforced with graphene/graphene oxide for photocatalytic applications
JP2002200148A (ja) 不飽和炭化水素系アルデヒドガス用消臭剤
Zhang et al. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants
CN101886331A (zh) 功能性纳米金颗粒/静电纺复合纳米纤维毡的原位制备方法
BR112018000264B1 (pt) Cápsulas para transportar um agente ativo com propriedades fotocatalíticas, seu processo de produção e artigos
Marques et al. Release of volatile compounds from polymeric microcapsules mediated by photocatalytic nanoparticles
JP5358433B2 (ja) 複合体及びその製造方法並びにそれを含む組成物
KR100521007B1 (ko) 광분해 활성과 항균 및 살균성이 증진된 기능성 캡슐과이의 제조방법
Park et al. Effect of acid–base interaction between silica and fragrant oil in the PCL/PEG microcapsules
Omura et al. Preparation of cellulose particles with a hollow structure
Zhao et al. Hierarchical composite microstructures fabricated at the air/liquid interface through multilevel self-assembly of block copolymers
DE10041004A1 (de) Mikrokapseln

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16753471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15741811

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2991553

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016753471

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016288830

Country of ref document: AU

Date of ref document: 20160705

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018000264

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018000264

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180105